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ON THE STRUCTURE OF K (T M)

PAUL-EMILE PARADAN

ABSTRACT. In this expository paper, we revisit the results of Atiyah-Singer
and de Concini-Procesi-Vergne concerning the structure of the K-theory groups

K5 (TEM).
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1. INTRODUCTION

When a compact Lie group G acts on a compact manifold M, the K-theory group
K2 (T*M) is the natural receptacle for the principal symbol of any G-invariant
elliptic pseudo-differential operators on M. One important point of Atiyah-Singer’s
Index Theory [4, 3, 5, 6] is that the equivariant index map Index§; : K(T* M) —
R(G) can be defined as the composition of a pushforward map i, : K&(T"M) —

K2(T*V) associated to an embedding M <% V in a G-vector space, with the
index map Index{ : K&(T*V) — R(G) which is the inverse of the Bott-Thom
isomorphism [15].

In his Lecture Notes [1] describing joint work with I.M. Singer, Atiyah extends
the index theory to the case of transversally elliptic operators. If we denote by T, M
the closed subset of T* M, union of the conormals to the G-orbits, Atiyah explains
how the principal symbol of a pseudo-differential transversally elliptic operator on
M determines an element of the equivariant K-theory group K (T¢M), and how
the analytic index induces a map

(1) Index$, : K& (TE M) — R™2(Q),

where R~*°(G) := hom(R(G),Z).

Like in the elliptic case the map (1) can be seen as the composition of a push-
forward map i) : K& (TEM) — K% (T V) with the index map Index¥ : K%(TLV) —
R~°°(@). Hence the comprehension of the R(G)-module

(2) K& (TeV)

is fundamental in this context. For example, in [8, 14] the authors gave a cohomo-
logical formula for the index and the knowledge of the generators of K([)J(l) (Ty1)C)
was used to establish the formula. In [11], de Concini-Procesi-Vergne proved a
formula for the multiplicities of the index by checking it on the generators of (2).

When G is abelian, Atiyah-Singer succeeded to find a set of generators for (2),
and recently de Concini-Procesi-Vergne have shown that the index map identifies
(2) with a generalized Dahmen-Michelli space [9, 10]. Let us explain their result.

Let G be the set of characters of the abelian compact Lie group G : for any
X € G we denote C, the corresponding complex one dimensional representation
of G. We associate to any element ® := 3° _5m,Cy € R™>°(G) its support
Supp(®) = {x | my # 0} € G.

For any real G-module V, we denote Ag(V') the set formed by the infinitesimal
stabilizer of points in V: we denote b, the minimal stabilizer. For any h € Ag(V),
we denote H := exp(h) the corresponding torus and we denote 7y : G — H the
restriction map.

We denote R~*°(G/H) C R °°(G) the subgroup formed by the elements ® €
R™°(@) such that 75 (Supp(®)) C H is reduced to the trivial representation. Let

(R™*(G/H)) C R™%(G)

be the R(G)-submodule generated by R~°°(G/H). We have ® € (R~°°(G/H)) if
and only if 74 (Supp(®)) C H is finite.

For any subspace a C g, we denote V* C V' the subspace formed by the vectors
fixed by the infinitesimal action of a. We fix an invariant complex structure on
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V/V¥ hence the vector space V/V? C V/V? is equipped with a complex struc-
ture for any h € Ag (V). Following [11], we introduce the following submodule of
R~>°(@G): the Dahmen-Michelli submodule

DM (V) :=

(R (G Hyin)) (1{® € R7(G) | A*VIVI @@ =0, ¥ # buuin € Ac(V) },
and the generalized Dahmen-Michelli submodule

Fo(V) = {cp ER™(G) | AVIVI®® e (R¥(G/H)), Vh € Ag(V)}.

Note that the relation A°V/VY @ ® € (R~°°(G/H)) becomes & € (R™°°(G/Hpmin))
when § = hpin. Hence DM (V) is contained in Fg (V). We have the following
remarkable result [10].

Theorem 1.1 (de Concini-Procesi-Vergne). Let G be an abelian compact Lie group,
and let V' be a real G-module. Let VI C 'V be its open subset formed by the G-
orbits of mazimal dimension. The index map defines

e an isomorphism between K& (TV) and Fa(V),

e an isomorphism between K% (TEV9") and DMg(V).

The purpose of this note is to give a comprehensive account on the work of
Atiyah-Singer and de Concini-Procesi-Vergne concerning the structure of (2) when
G is a compact abelian Lie group. We will explain in details the following facts :

e The decomposition of K, (T M) relatively to the stratification of the man-
ifold M relatively to the type of infinitesimal stabilizers.
A set of generators of K, (TgV).
A set of generators of K, (T5V9").
The injectivness of the index map Index$ : K& (TgV) — R™°(Q).
The isomorphisms K% (T V) ~ Fg (V) and K& (T5V9") ~ DM¢(V).

Acknowledgements. I wish to thank Michele Vergne for various comments on
this text.

2. PRELIMINARY ON K-THEORY

In this section, G denotes a compact Lie group. Let R(G) be the representation
ring of G and let R~°°(G) = hom(R(G),Z).

2.1. Equivariant K-theory. We briefly review the notations for K-theory that
we will use, for a systematic treatment see Atiyah [2] and Segal [15].

Let N be a locally compact topological space equipped with a continuous action
of G. Let E* — N be two G-equivariant complex vector bundles. An equivariant
morphism o on N is defined by a vector bundle map o € T'(N,hom(E™, E7)),
that we denote also o : ET — E~: at each point n € N, we have a linear map
o(n) : E;f — E, . The support of the morphism o is the closed set formed by the
point n € N where o(n) is not an isomorphism. We denote it Support(c) C N.

A morphism o is elliptic when its support is compact, and then it defines a class

o] € K&(N)

in the equivariant K-group [15]. The group K} (N) is by definition the group
K% (N x R) where G acts trivially on R.
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Let j : U < N be an invariant open subset, and let us denote by r : N\U — N
the inclusion of the closed complement. We have a push-forward morphism j. :
K (U) — K (N) and a restriction morphism r* : K% (N) — K& (N \ U) that fit
in a six terms exact sequence :

J

(3) K (U) — = K%(N) — > K% (N \ U)

| |

KG(N\U) <—KG(N) =——Kg(U)

In the next sections we will use the following basic lemma which is a direct
consequence of (3).

Lemma 2.1. Suppose that we have a morphism S : KL(N \U) — K&(N) of
R(G)-module such that r* o S is the identity on K& (N \ U). Then

Kg(N) = Kg(U) @ Kg(N\U)
as R(G)-module.

We finish this section by considering the case of torus T belonging to the center
of G. Let i : T < G be the inclusion map. We still denote 7 : Lie(T) — g the map
of Lie algebra, and ¢* : g* — Lie(T)* the dual map. Note that the restriction to T
of an irreducible representation V\’ is isomorphic to (C(y))? with p = dim(V,).
The representation ring R(G) contains as a subring R(G/T). At each character y
of T, we associate the R(G/T)-submodule of R(G) defined by

R@G)y= > zvi.
i*(N)=p
Note that R(G)o = R(G/T).
We have then a grading R(G) = @,z R(G),. since R(G),- R(G)r C R(G) gy
If we work now with the R(G)-module R=°°(G), we have also a decomposition®
R=(G) = @,,czR™>(G),u such that R(G), - R™>(G)w € R™%(G) gy -
Let us consider now the case of a G-space N, connected, such that the action

of the subgroup T is trivial. Each G-equivariant complex vector bundle £ — N
decomposes as a finite sum

(4) E=Pe.
pneX

where &, ~ homt(C,,£) is the G-sub-bundle where T acts trough the character
t — t*. Note that a G-equivariant morphism o : £t — £~ is equal to the sum
of morphisms o, : EJ — &, . Hence, at the level of K-theory we have also a
decomposition

(5) K&(NV) = @KE(N)H
ueT

such that R(G), - K&(N)w CKE(N)ugp -

IThe sign @ means that one can take infinite sum.
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—T —
Definition 2.2. We denote K¢, (N) or simply K¢ (N) the R(G)-module formed
by the infinite sum ZMET o, with 0, € KE(N),. When N = {o}, K (o) = R(G)
is a R(G)-submodule of R~°(G).

2.2. Index morphism : excision and free action. When M is a compact G-
manifold, an equivariant morphism o on the cotangent bundle T*M is called a
symbol on M. We denote by T M the following subset of T*M

TrLM :={(m,&) € T*M | (£, Xps(m)) =0 for all X € g}.

where Xy (m) = %eftx - mli—o is the vector field generated by the infinitesimal

action of X € g. More generally, if D C G is a distinguished subgroup, we can
consider the G-invariant subset

(6) T M D T4 M.

An elliptic symbol o on M defines an element of K& (T*M), and the index of o is
a virtual finite dimensional representation of G that we denote Index$,; (o) [4, 3, 5, 6].
An equivariant symbol o on M is transversally elliptic when Support(o) N T M
is compact: in this case Atiyah and Singer have shown that its index, still denoted
Index$, (o), is well defined in R~°(G) and its depends only of the class [0] €
K2(T;M) (see [1] for the analytic index and [14] for the cohomological one). It is
interesting to look at the index map as a pairing

(7) Index$; : K&(TEM) x K& (M) — R™°(G).

Let 0 be a G; x Gs-equivariant symbol ¢ on a manifold M. If o is G-
transversally elliptic it defines a class

o] € K&, xq, (TG, M),

and its index is smooth relatively to Go. Tt means that Index$}*?(0) = 2oued; u®
VS where 0, € R(Gs) for any pu. Hence

e the G)-index Index$} (o) = Zue@ dim(6,,) @V, is equal to the restriction

of Index{} *“2(0) to g =1 € Ga.
e the product of Index§?*“2(¢) with any element © € R~°(G)) is a well
defined element © - Index$} *“2(0) € R=®°(Gy x Ga).

Remark 2.3. Suppose that a torus T belonging to the center of G acts trivially on
the manifold M. Since the index map Index% is a morphism of R(G)-module, the
pairing (7) specializes in a map from K&L(TEM), x K&(M),s into R™°(G),4 0 -
Hence on can extend the pairing (7) to

—

(8) Index§; : K& (TeM) x K& (M) — R™°(Q).
See Definition 2.2, for the notation I/(E(M)

Let U be a non-compact K-manifold. Lemma 3.6 of [1] tell us that, for any open
K-embedding j : U < M into a compact manifold, we have a push-forward map
jo t KG(T5U) = K (TiM).

Let us rephrase Theorem 3.7 of [1].
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Theorem 2.4 (Excision property). The composition

. G
indexy,

K&(TLU) 25 K (TEM) "5 R™2(G)
is independent of the choice of j : U < M : we denote this map indexg.

Note that a relatively compact G-invariant open subset U of a G-manifold admits
an open G-embedding j : U < M into a compact G-manifold. So the index map
indexg is defined in this case. Another important example is when U — N is a
G-equivariant vector bundle over a compact manifold N : we can imbed U as an
open subset of the real projective bundle P(U & R).

Let K be another compact Lie group. Let P be a compact manifold provided
with an action of K x G. We assume that the action of K is free. Then the manifold
M := P/K is provided with an action of G and the quotient map ¢ : P — M is
G-equivariant. Note that we have the natural identification of T P with ¢*T* M,
hence (T% P)/K ~ T*M and more generally

(TywoP)/K ~T¢M.
This isomorphism induces an isomorphism
Q" Kg(TEM) = Kie o o(Ti o P)-

The following theorem was obtained by Atiyah-Singer in [1]. For any © €
R™°(K x @), we denote [O]X € R™>°(G) its K-invariant part.

Theorem 2.5 (Free action property). For any [0] € K%(TLM), we have the
following equality in R~°°(K):

[index?XG(Q*[a])} " = index§, ([0]).

2.3. Product. Suppose that we have two G-locally compact topological spaces
Ny, k =1,2. For j € Z/27, we have a product

(9) Oeat : KE(N7) x K& (No) — K& (Ny x No)

which is defined as follows [1]. Suppose first that * = 0. For k = 1,2, let oy, : E,j —
E," be a morphism on N. Let E¥* be the vector bundles on N7 x N5 defined as
Et=E'®Ey @E; ®E; and E- = E] ® Ef @ Ef ® E;. On Ny x N, the
morphism 01 ®egt 02 : BT — E7, is defined by the matrix

_( oila)®Id —Id® oa(b)*
01 Oeat 02(a,b) = ( Id®o2(b)  o1(a)* @ Id

for (a,b) € N1 x Nao. Note that Support(c; @eqt 02) = Support(oy) X Support(oz).
Hence the product o1 ®cqt 02 is elliptic when each oy, is elliptic, and the product
[01] @ext [02] is defined as the class [01 @eyr 02]. When x = 1, we make the same
construction with the spaces N7 and Ny x R.

Two particular cases of this product are noteworthy:

- When N; = Ny = N, the inner product on K%(N) is defined as a ® b =
A*(@ @egt b), where A* : KL (N x N) — K%(N) is the restriction morphism
associated to the diagonal mapping A: N — N x N.

- The structure of R(G)-module of K7, (N2) can be understood as a particular
case of the exterior product, when V7 is reduced to a point.
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Let us recall the multiplicative property of the index for the product of manifolds.
Consider a compact Lie group G2 acting on two manifolds M7 and Ms, and assume
that another compact Lie group G acts on M; commuting with the action of Gs.
The external product of complexes on T*M; and T*Ms induces a multiplication

(see (9)):
ent + K5y (T, My) % Ky (T, Ma) — K, (Thsy ey (M x M),

Since T, « g, (M1 x M) # Tg, My x Tg, M in general, the product [01] ©ext [02]
of transversally elliptic symbols need some care: we have to take representative oy
that are almost homogeneous (see Lemma 4.9 in [13]).

Theorem 2.6 (Multiplicative property). For any [01] € K&, ¢, (Tg, M) and any
[o2] € K, (Tg, Ms) we have

indexfjlxxﬁjz([al] Oext [02]) = imdexfjlxa2 ([o1]) indexsz([ag]).

In the last theorem, the product of indexg;IXGQ([ol]) € R™°(G1 x G2) and

indeXC]\:j’2 ([o2]) € R~°°(G2) is well defined since indeXC]\:leG2 ([o1]) is smooth relatively
to G (see Section 2.2).

Suppose now that G is abelian. For a generalized character ® € R™*°(G),
we consider its support Supp(®) C G and the corresponding subset Supp(®) C g*
formed by the differentials.

Let a C g a rational? subspace, and let 7, : g* — a* be the projection. We will be
interested to the K-groups K¢, (T, M) associated to the G-spaces T, M := {(m,§) €
T*M | (¢, Xm(m)) =0 for all X € a}. We can prove that if 0 € K%(T;M), then
its index ® := Index (¢) € R~°°(@) has the following property : the projection
Ta, when restricted to Supp(®), is proper (see [8]).

We have another version of Theorem 2.6.

Theorem 2.7 (Multiplicative property - Abelian case). Let M; and My be two
G-manifolds (with G abelian), and let ay,as be two rationnal subspaces of g such
that a1 Nag = {0}. If the infinitesimal action of ay is trivial on Ma, we have an
external product

Oeat K (Tq, M1) x K&(Ty, Mz) — KG(TG, g, (M1 X Ma)),
and for any [o}] € K& (T, My.) we have

index§y, 1z, ([01] @ext [02]) = index§y, ([o1]) index )y, ([o2]).

Let us briefly explain why the product of the generalized characters ®; :=

index%k ([ox]) € R~°°(G) is well-defined. We know that the projection my, : g* — aj
is proper when restricted to the infinitesimal support Supp(®;) C g*. Since the in-
finitesimal action of ay is trivial on Ms, we know also that the image of Supp(®2)
by m is finite (see Remark 2.8). These three facts insure that for any y € G the
set {(x1,x2) € Supp(P1) X Supp(P2) |x1 + x2 = X} is finite. Hence we can define

the product ®; ® @5 as the restriction of (P, P2) € R~°°(G x G) to the diagonal.

2A subspace a C g is rational when it is the Lie algebra of a closed subgroup.
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Remark 2.8. Consider an action of a compact abelian Lie group G on a manifold
M. Suppose that a torus subgroup H C G acts trivially on M. Let H' be a
closed subgroup of G such that G ~ H x H'. In this case we have an isomorphism
K (TEM) ~ R(H)®K3, (T3 M) and we see that the index map sends K& (TEM)
into R(H) @ R™°°(H') ~ (R™>°(G/H)). See the introduction where the submodule
(R=°(G/H)) is defined without using a decomposition G ~ H x H'.

2.4. Direct images and Bott symbols. Let 7 : £ — N be a G-equivariant
complex vector bundle. We define the Bott morphism on &
Bott(€) : ATn*E — AT 7€,

by the relation Bott(£)(n,v) = Cl(v) : ATE, — A™E,. Here the Clifford map is
defined after the choice of a G-invariant Hermitian product on £.
Let s : N — & be the 0-section map. Since the support of Bott(€) is the zero
section, we have a push-forward morphism
(10) si: K&E(N) — Kg(&)
o — Bott(E) Oext 7 (0)

which is bijective: it is the Bott-Thom isomorphism [15].

Consider now an Euclidean vector space V. Then its complexification V¢ is
an Hermitian vector space. The cotangent bundle T*V is identified with V¢: we
associate to the covector € € T,V the element v + zf € Vo, where £ € V* — é eV
is the identification given by the Euclidean structure.

Then Bott(Vg) defines an elliptic symbol on V' which is equivariant relative to
the action of the orthogonal group O(V'). Its analytic index is computed in [1]. We
have the equality

(11) index0™") (Bott(Ve)) = 1

in R(O(V)).
Let 7 : V — M be a G-equivariant real vector bundle over a compact manifold.
We have the fundamental fact

Proposition 2.9. We have a push-forward morphism
(12) sy KG(TeM) — KE(TEY)
such that index$ o s; = index$; on K (TgM).

Proof. We fix a G-invariant euclidean structure on V. Let n = rank V. Let P be
the associated orthogonal frame bundle. We have M = P/O and V = P xo V
where V' = R™ and O is the orthogonal group of V. For the cotangent bundle we
have canonical isomorphisms
TeM ~Tg, o(P/O) and TEY ~ T o(P xV)/O

which induces isomorphisms between K-groups

Q1 KG(TeM) — Kgo(Toxol),

Q5 KG(TY) — Kgxo(Taxo(P x V).
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Let us use the multiplicative property (see Section 2.3) with the groups Go =
G x O,G1 = {1} and the manifolds My =V, My = P. We have a map

(13) 5; : KEXO(TEXOP) — KEXO(TEXO(P X V))
o +— Bott(Vg) Oext 0
The map s; : K§(TeM) — KL (TGV) is defined by the relation sy = Q7 o s{ o
(@)~
Thanks to Theorem 2.6, the relation (11) implies that index%X$) os = index%*¢
on K2 o(T&oP). Thanks to Theorem 2.5 we have

O
index{i(si(0) = [index 0 (st 0 (Q3) ()]
O
= |indexf*°((@3)7}(0)]
= index$, (o).
for any 0 € K& o(TéyoP). O

We finish this section by considering the case of a G-equivariant embedding
i:Z — M between G-manifolds.

Proposition 2.10. We have a push-forward morphism
(14) i KG(ToZ) — KL(TEM)
such that index$; o i) = index on K%4(T5Z).

Proof. Let N = TM|z/TZ be the normal bundle. We know that an open G-
invariant tubular neighborhood U of Z is equivariantly diffeomorphic with A: let
us denote by ¢ : U — N this equivariant diffeomorphism. Let j : U < M be
the inclusion. We consider the morphism s, : K& (T Z) — KE(TEN) defined
in Proposition 2.9, the isomorphism ¢* : K& (TEN) — K& (TGU) and the push-
forward morphism j, : KL (ToU) — K& (TG M). Thanks to Proposition 2.9,
one sees that the composition iy = j, o ¢* o s satisfies index% o4 = indexg on
K%(T4Z). O

2.5. Restriction : the vector bundle case. Let £ — M be a G-equivariant
complex vector bundle. Let us introduce the invariant open subset T¢ (€ \ {0}) of
TrE and its complement TEE|g—section = T M x E*. We denote

(15) R:K{L(TLE) — KG(TEM)

the composition of the restriction morphism K¢ (TE) — K& (TEM x £*) with the
Bott-Thom isomorphism K% (T5M x £*) ~ K& (T M). Note that the morphism

(16) R:KL(THE) — KE(THM)

is also defined when D C G is a distinguished subgroup.

If S ={v e &| |v|]|> =1} is the sphere bundle, we have £ \ {0} ~ S x R and
then TE(E\ {0}) ~ T&S x T*R. Let i : S — & be the canonical immersion. The
composition of the Bott-Thom isomorphism K% (T:S) ~ K& (T (€ \ {0})) with
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the morphism j, : K& (T (E\ {0})) = K (T¢E) correspond to the push-forward
map i defined in Proposition 2.10. The six term exact sequence (3) becomes

* i * R *
(17) K%(TG‘S) - K%(TGS) - K%(TGM)

] |

KL(TEM) < K5(T5E) <—— K5(TES).

Let sy : K& (T M) — K& (T;E) be the push-forward morphism associated to
the zero section s : M < & (see Proposition 2.10). We have the fundamental

Proposition 2.11. e The composition Ro s : K&(TeM) — K& (TG M) is
the map 0 — 0 @ N°E.

e The composition sy o R : KL(TGE) — KE(TEE) is defined by 0 —

0@ N T*E.

e We have index$;(R(0)) = index& (0 @ A*7*E) for any o € K2%(TLE).
Proof. The third point is a consequence of second point. Let us check the first two
points.

We use the notations of the proof of proposition 2.9: we have a principal bundle
P — M = P/O and & coincides as a real vector bundle with P xo E. Since & has
an invariant complex structure, we can consider the frame bundle Q C P formed
by the unitary basis of £&. Here E = R?® = C". Let U C O be the unitary group
of E. Here the map s; and R can be defined with the reduced data (@, U) through
the maps

5!/: *GXU(T*GXUQ) — KEXU(TEXU(QXE))
o — Bott(Eg) Oecxt 0

and R’ : K, (Tayp(Q x BE)) — Ky (Téy Q). Since E admits a complex
structure J, the map w @ iv — (w + Jv,w — Jv) is an isomorphism between
Ec and the orthogonal sum E @ E. Hence on Ec the Bott morphism Cl(w & iv) :
AT Ec — A~ Eg is equal to the product of the morphisms Cl(w+Jv) : ATE — ATFE
and Cl(w — Jv) : ATE — A~E. When we restrict the Bott symbol Bott(Eg) €
K (T*FE) to the 0-section, we get

<A+E ) /\E> o) <A+F ) AF)

which is equal to the class Bott(E) ® A°E in K¢ (E). Finally the composition
R'os|: Kby (TawuQ) = Ky p(Téyp@) is equal to the map 0 — o ® A°E.
We get the first point through the isomorphism K,/ (T¢, Q) ~ K&(TGM).

Let 0 € K (Tayp(Q x E)). For (z,&v,w) € T*Q x T*E, the transversally
elliptic symbols

o(r,&v,w) @ A°E

o(z,&v,w) @ Cl(v)

o(z,§0,w) © Cl(v)

R'(0)(z,¢) ® Clw)® Cl(v)

R/'(0)(x,&) © Cllw+ Jv)o (w— Jv)
S o R(0)w&v,w)
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define the same class in K, ;(Téy o (Q X E)). We have proved that s{ o R'(c) =
o ® A*E, and we get the second point through the isomorphism K (T Q) =~
K (T M). O

2.6. Restriction to a sub-manifold. Let M be a G-manifold and let Z be a
closed G-invariant sub-manifold of M. Let us consider the open subset T¢ (M \ Z)
of T, M. Tts complement is the closed subset T(;M|z. Let A be the normal bundle
of Z in M. We have T*M|z = T*Z x N* and then TEM |z = TEZ x N*.

We make the following hypothesis : the real vector bundle N* — Z has a
G-equivariant complex structure. Then we can define the map

(18) Ry :KG(TEM) — KG(THZ)

as the composition of the restriction K§&(TgM) — K (TgM|z) =

K. (T Z x N*) with the Bott-Thom isomorphism K, (T Z x N*) — K& (T Z).
3. LOCALIZATION

In this section, § € g denotes a non-zero G-invariant element, and 7 : £ — M is
a G-equivariant hermitian vector bundle such that

(19) &P =M.

Remark 3.1. Note that (19) imposes the existence of a G-invariant complex struc-

ture on the fibers of . We can take® Jg := L(B)(—L(B)2)T , where L(B) denotes
the linear action on the fibers of £.

The aim of this section is the following

Theorem 3.2. There exists a morphism Sg : K& (T M) — KE(TEE) satisfying
the following properties:
(1) The composition RoSg is the identity on K& (ToM).
(2) For any a € KEL(TGM), we have Sg(a) @ AN*w*E = si(a).
(3) For any o € K&(TEM), we have the following equality
Index¥ (S5(0)) = Index§; (o ® [/\'E]El)

in R~°°(G), where [/\'E]E1 is a polarized inverse of N*E.

Remark 3.3. The maps R and Sg depend on the choice of the G-invariant complex
structure on E.

Theorem 3.2 tells us that (17) breaks in an exact sequence
0 = K5(TeS) = K5(THE) — Kg(TEM) — 0.
Since RoS3 = RoS_z the image of the map Sy —S_3 : K&L(ToM) — KE(TGE)
belongs to the image of the push-forward map i, : K5 (T6S) — K& (TEE).
Let us work now with the complex structure Jz on £ We denote S7 5 the
corresponding morphism. In Section 3.5.3 we will prove the following
Theorem 3.4. There exists a morphism 0g : KL (T M) — KE(TES) such that

O_B—S%:i!oeﬂ.

3Relatively to a G-invariant Euclidean metric on &, the linear map 712(6)2 is positive definite,
hence one can take its square root.
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3.1. Atiyah-Singer pushed symbols. Let M be a G-manifold with an invari-
ant almost complex structure J. Then the cotangent bundle T*M is canonically
equipped with a complex structure, still denoted J. The Bott morphism on T*M
associated to the complex vector bundle (T*M, J) — M, is called the Thom symbol
of M, and is denoted® Thom(M,.J). Note that the product by the Thom symbol
induces an isomorphism K, (M) ~ K¢ (T*M).

d —tX

For any X € g, we denote Xp(m) := £|oe -m the corresponding vector field

on M. Thanks to an invariant Riemmannian metric on M, we define the 1-form
Xnr(m) = (Xar(m), -).

From now on, we take X = [ a non-zero G-invariant element. Then the cor-
responding 1-form (), is G-invariant, and we define following Atiyah-Singer the
equivariant morphism

Thomg (M, J)(m, €) := Thom(M, J)(m, & — Bar(m),  (§,m) € T"M.
We check easily that

Support (Thomg(M, .J)) (| Ts, M = {(m,0); m € M"}.
where Tg = exp(Rp) is the torus generated by . In particular, we get a class
(20) Thomg (M, J) € K&(Tr, M)

when M? is compact.

3.2. Atiyah-Singer pushed symbols : the linear case. Let us consider the
case of a G-Hermitian vector space E such that E# = {0}.

Let i : K& (T3,S) — K& (Th, E) be the push-forward morphism associated to
the inclusion i : S < E of the sphere of radius one. Let R : K (T1, E) — K¢ ({e})
be the restriction morphism. Since K, ({o}) = 0, the six term exact sequence (17)
becomes

(21) 0 — K%(T5,Sp) —= K%(T5, E) =5 R(G).
The pushed Thom symbol on E defines a class Thomg(E) € K¢ (Tr, E).

Proposition 3.5. e We have R(Thomg(FE)) =1 in R(G).
o The sequence (21) breaks down: we have a decomposition

K¢(Tr, B) = Kg(T1,Sp) ® (Thomg(E)),
where (Thomg(E)) denotes the free R(G)-module generated by Thomg(E).

Proof. At (z,§) € T"E the map Thomg(E)(x,§) : ATE — ATE is equal to
Cl(€ — Br(x)), where ¢ € E* — ¢ € E is the identification given by the Eu-
clidean structure. We see that the restriction of Thomg(E) to Ty, Elg = E* is
equal to Bott(E*) and then the first point follows. The second point is a direct
consequence of the first one. O

4When the almost complex structure is understood, we will use the notation Thom(M).
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Let ']/fg the group of characters of the torus Tg. The complex G-module E
decomposes into weight spaces F = ZaeTg E, whereeach E, = {v € E|t-v = t*v}
are GG-submodules. We define the S-positive and negative part of E,

EX = Y B, Ef= > E,

aefﬁ aéfﬁ
(a,8)>0 (a,8)<0

and the 3-polarized module |E|® = E+# @ E—#. It is important to note that the
complex G-module |E|? is isomorphic to® (E, J3), and so it does no depend on the
initial complex structure of FE.

—

Let R(G) be the R(G)-submodule of R~°°(G) defined by the torus Tg (see
Definition 2.2). Since all the T s-weights in |E|? satisfy the condition (e, 3) > 0, the

symmetric space S*(|E|?) decomposes as a sum ety S*(|E|P), with S*(|E|?),, €

—

R(G),. Hence S*(|E|?) defines an element of R(G).
The following computation is done in [1][Lecture 5] (see also [12][Section 5.1]).

Proposition 3.6. We have the following equality in R~°°(G) :
(22) Index% (Thomg(E)) = (—1)7me E™7 det(EHP) @ S*(|E|P),
where det(E?) is a character of G.

Example 3.7. Let V = C with the canonical action of G = S'. Let 8 = %1 in
Lie(S') =R. The class Thom1(C) € K%, (Ts:C) are represented by the symbols

Cl(¢ +ir):C — C, (z,8) € T*C ~C>
We have TndexS (CL(€ + iz)) = — s, t*, and IndexS (CL(¢ — iz)) = 3,0 t* in
R=°(S1).

Remark 3.8. Let Ji,k = 0,1 be two invariants complex structures on E, and
let Thomg(E, Jy,) be the corresponding pushed symbols. There exists an invertible
element ® € R(G) such that

Index%(Thomg(E, Jo)) = @ - Index%(Thomg(E, J)).

3.3. Pushed symbols : functoriality. Suppose now that we have a decomposi-
tion V = W @ E of G-complex vector spaces such that V# = {0}.

Proposition 3.9. In K& (T.V), we have® the equalities
Thomg (V) @ ALV = Bott(V¢),
Thomg (V) @ ALE = Thomg(W) ® Bott(Eg).

Proof. Note that the first relation is a particular case of the second one when W = 0.
A covector (z,£) € T*V decomposes in x = zw & zg, and £ = &y & . The
morphism o := Thomg(W) © Bott(Ec) defines at (x,&) the map

Cl(éw — yw (zw)) © Cl(zg + iép)
from (AW @ AEg)T to (AW @ AE¢)™.

PWith J5 = L(5)(~L(8)*)~ /2.
6These equalities holds also in K%(T.}B V).
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We have an isomorphism of complex G-modules : Eg¢ ~ E x E. We have two
classes Bott(E) and Bott(E) in K& (FE) and Bott(Ec) = Bott(E) © Bott(E). At
the level of endomorphism on AE¢c ~ AE ® AE, one has
(23) Cllxg +i€p) = Cl(g — Jpxg) © Cl(€r + Jrag)
where Jp is the complex structure on £. We consider the family of maps os(z, &) :
(AW ® AE @ AE)T — (AW ® AE ® AE)” defined by
Cl(fw — ﬁw(ww)) ® Cl(fE — 95(1‘E)) ® Cl(fE + JEwE) where 0, = (1 — S)JE + sBE.
One checks easily that Support(os) [ TaV = {zw = 2 = &w = &g = 0} for
any s € [0,1]. Hence o = 0y is equal to o1 in K%(TLE). Finally we check that
o1(z,&) = Cl(§ — Py (x)) © Cl(€g + Jgxg) can be deformed in

Cl(¢ — By (z)) ® C1(0) = Thomp(V) @ ALE,

without changing its class in K (TEV). O

Since Index$ (Bott(V)) = 1, the first relation of Proposition 3.9 gives that
(24) Index{} (Thomg (V) - AV =1
in R—°(G).

Definition 3.10. Let V be a compler G-vector space such that VP = {0}. We
denote [/\'V]E1 € R~*°(Q) the element (—1)‘“”’@‘/7’13 det(V—F) @ S*(|V|?).

We come back to the morphism
(25) R:K&(TLV) — KE(TEW)

which is the composition of the restriction morphism K% (T;V) — K& (TLW x E*)
with the Thom isomorphism K% (T;W x E*) ~ K (T;W). We are interested by
the image of the transversally elliptic symbols Thomg(V) € K&(T;V) by the
morphism R.

Proposition 3.11. We have the following equality in K% (T5LW)
R (Thomg(V)) = Thomg(W).

Proof. The class Thomg (V') are defined by the symbols C1(€ —3(z)) : ATV — AV,
for (z,€) € TV. Relatively to the decomposition V = W& E, we write x = zw Gup
and & = &y @ €. If we restrict Cl(€ — B(x)) to T*V|w = T*W x E* we get
Cl(&w — Blzw)) © Cl(Eg) acting from (AW @ AE)" to (AW @ AE)~. By definition
of the map R we find that R (Thomg(V')) = Thomg(W). O

We consider now the case of a product of pushed symbols. Suppose that we have
an invariant decomposition £ = FE; & F» and invariant elements 31,82 € g such
that

o BP = B = (0),
e (5 acts trivially on Fj.
We consider then ' = t8; + B2 with ¢ > 0. We have V] Lo {0} for any ¢ > 0
and Vft = {0} if ¢ > 0 is small enough.
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Lemma 3.12. Let J = J1 ® Jo be an invariant complex structure on V =V, & Vs.
Then if t > 0 is small enough, we have the following equality in K%(T*G\/):

Thomgt (V, J) = ThOIng1 (Vl, J1> O] ThOIng2 (VQ, JQ).

Proof. Both symbols are maps from (AV; @ AVa)™T into (AV) @ AVa)~. We write
a tangent vector (§,2) € TV as £ = & ® & and @ = 21 & x3. The symbol
Thomg: (V, J) is equal to

Cl(&1 + Bt(x1)) ® Cl(Ex + Bt (w2)) = CL&r + thi(21)) © CU(E + (t51 + F2)(x2))

Note that Bg : Vo — V4 is invertible, so there exist ¢ > 0 such that tﬂ] + ﬂ}
is invertible for any t € [0,¢]. Hence Thomg:(V,J) is transversally elliptic for
0 < t < c¢. We consider the deformation

oy = Cl(& + (st + (1 — 8))B1(x1)) ® Cl(E + (stf1 + Ba)(x2))

for s € [0,1]. We check easily that Support(cs) N TeV = {(0,0)} for any s € [0, 1].
Hence o1 = Thomg:(V, J) and og = Thomg, (V1, J1) ® Thomg, (V2, J2) defines the
same class in K& (TgV). O

3.4. The map Sg. We come back to the situation of a G-equivariant complex
vector bundle w : & — M such that €% = M. Since the torus Ty acts trivially
on M, we have a decomposition &€ = @yecxE, where X is a finite set of character
of Tg, and &, is the complex sub-bundle of £ where Ty acts trough the character
t — t*. Definition 3.10 can be extended as follows. We denote

(26) [AtE]5t = (~1)dme e det(£7F) @ S*(|€)°).

where %7 = >t (a,py>0Ea and €|? = €T & E-F. Note that [A°E]5" belongs to

KU,(M) (see Definition 2.2).
Let n, be the complex rank of &,, and let E be the following T g-complex vector

space
E=PC)m,

aeX

which is equipped with the standard Hermitian structure.

Let U be the unitary group of E, and let U’ be the subgroup of elements that
commute with the action of Tg: we have U’ ~ IaexU(C"). Let P’ — M be
the U’-principal bundle defined as follows: for m € M, the fiber P/ is defined as
the set of maps f : E — &, preserving the Hermitian structures and which are
Tg-equivariant. By definition, the bundle P’ — M is G-equivariant. We consider
the following groups action:

e G x U’ acts on P/,
e U’ x Tg acts on E,
e Ty and G acts trivially respectively on P’ and on FE.

Let us use the multiplicative property (see Section 2.3) with the groups Go =
GxU,G = Ts and the manifolds My = E, My = P’. We have a product

K%ngxU/(T:E‘gE) x KExU’(TExU’P/) — K’}ngxU/(T’}ngxU/(Pl X E))’
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and the Thom class Thomg(E) € K%ng/ (Tt,E) induces the map

(27) S,/é : EXU/(T*GXU/P> — K’}ngxU/(T’}ngxU/(Pl x E))
0 +— Thomg(E) Gext 0

After taking the quotient by U’, we get a map

Finally, since Tr. axg€ = T¢E, we can compose Sj with the forgetful map
Kr*ﬂ.ﬁxG(TZvé') — K&(TEHE) to get

S5 : K&(TeM) — K (THE).

Now we see that in Theorem 3.2 :

e The relation RoSg = Id is induced by the relation R(Thomg(E)) = 1,
where R : K3 7/ (T7, E) — R(Tg x U’) (see Proposition 3.5).

e The relation Sg(a) ® A*m*E = si1(a) is induced by the relation Thomg(E) ®
A*E = Bott(Ec) proved in Proposition 3.9.

Let us prove the last point of Theorem 3.2. Let 0 € K& (T M) and let o be the
corresponding element in K% (Tt P). The index Index¥ (Sz(0)) € R™°(G)
is equal to the restriction of Indexgxm" (Sh(0) € R-°(GxT)att =1¢€ Ty (see
Section 2.2). By definition we have the following equalities in R™>°(G x Tg)

/

IndeX?XTﬂ(S’B(U)) = [Indexgjigxm(sg(a)

" / U’
- [Indexg,XG(G) Tndex’ " (Thomﬂ(E))}

Z Index§ (0 @ W,) ® C,,
neTy

where Indexgxm (Thomg(E)) = [/\'E]El =2 et Wu®Cy with W, € R(U'). We
denote W, = P’ xy» W), the corresponding element in K% (M),. Finally we get

Index& (Sp(0)) = Z Index§; (0 @ W,,)
peTy

= Index§, (a ® [/\'g]gl) ,
where [A*E];1 = Y, s Wi, € K (M).

3.5. The map 63. We keep the same notation than the previous section: m :
£ — M is a G-equivariant complex vector bundle such that £° = M, but here
we work with the complex structure Jg on £. Since the map S% 4 are defined
through the pushed Thom classes Thomgs(E) € K¢ (T3, E) (see (27)), we have
to study the class Thom_g(E) — Thomg(E) in order to understand how the map

25— 85 : KG(TeM) — K(TGE) factorizes through the push-forward morphism
i K5 (TES) = K5(THE).
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3.5.1. The tangential Cauchy Riemann operator. Let E be a Euclidean G-module
such that E” = {0}. We equipped F with the invariant complex structure Jz (see
Remark 3.1). Let S C E be the sphere of radius one. Let us defined the tangential
Cauchy Riemann operator on S. For y € S, we have

T,S = {£](&y) =0}
= Hy & RJﬂy,
where H,, = (Cy)* is a complex invariant subspace of (E, Jg). Let H — S be the
corresponding Hermitian vector bundle. For ¢ € TS, we denote ¢ its component

in H,. Since (Be(y),Jgy) # 0 for y # 0, we see that for £ € T¢S|,, we have
=0s¢=0.
Definition 3.13. The Cauchy Riemann symbol’ o2 : NTH — A~H is defined by

B)
o2 (y,&) = CU&') : AT Hy — A" Hy. It defines® a class of € Kg(TES).

The Thom isomorphism tells us that K%(TS) ~ K%(T&(E \ {0})) and we

know that i, : K&(TS) — KX (TGE) is injective. Hence, it will be convenient

to use the same notations for O'g and ig(ag ) and to consider them as a class in

Ke(Ta(E\ {0})) or in Kg(TGE).
Example 3.14. Consider the Cauchy Riemann symbol ng € KL(T;C,) associ-

ated to the one dimensional representation C, of G. We check that ooX s repre-
sented by the map p : T*C, — C defined by: p(w, z) = R(wz) +(||z]| — 1).

We come back to the setting of Section 3.1. We have an exact sequence 0 —
K5 (T%,S) 5 K5(Th, E) - R(G) — 0, and we know that R(Thom s(E)) = 1.
Then Thomg(E) — Thom_g(E) belongs to ker(R) = Im(4).

The following result is due to Atiyah-Singer when G is the circle group (see
[1][Lemma 6.3]). The proof in the general case is given in Appendix B.

Proposition 3.15. Let E be a G-module equipped with the invariant complex struc-
ture Jg. We have the following equality

Thom_g(E) — Thomg(E) = i(0F).
in KL(TLE).

3.5.2. Functoriality. Suppose that V = W@ F with W# = Ef = {0}. We equipped
V,W, E by the invariant complex structures defined by /3. Let ag € KL(T&(V\

{0})), O'g/ € KL(T;(W\ {0})) be the corresponding Cauchy Riemann classes. We
have a natural product

K&(TG(WAA{0})) x Kg(T"E) — Kg(Tg(V \ {0})).
and a restriction morphism R : K& (T V) — KL (TEW) (see (25)).
Proposition 3.16. We have
o o7 @Bott(Ec) = oy P @ AEin K (TH(V \ {0})),
e R(oy”) =0 in KL (TEW).

"Here we use an identification T*S ~ TS given by the Euclidean structure.
8Note that ag defines also a class in K% (Tq*liﬁ S).
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Proof. These are direct consequences of Proposition 3.15. For the first point, we
use it together with Proposition 3.9, and for the second one we use it together with
Proposition 3.11. O

The element O‘g’ﬂ belongs to the subspace K& (T (V \ {0})) — K& (T V), and

the restriction map R sends K& (T (V \ {0})) into K& (T (W \ {0})) (see remark
5.5). We can precise the last statement of Proposition 3.16, by saying that the

equality R(ag”ﬁ) = ag/’ﬂ holds in K& (Tg (W \ {0})).

3.5.3. Definition of the map 63. We come back to the setting of Section 3.4. The
complex vector bundle & — M corresponds to P’ Xy E — P’/U’, and the sphere
bundle is S = P’ xyv Sg.

Let us use the multiplicative property (see Section 2.3) with the groups Go =
G x U',G; = Tp and the manifolds My = Sg, My = P’. Thanks to the product

K%Bxng/(T'E‘BSE) x KZ‘XU/(TEXU’P/) — K%gXGXU’(T:E‘BXGXU’(P/ X SE))
we can define
(28) elé : KExU’(TExU’Pl) — K’H‘ngxU’(T’}ngxU’(Pl X SE))
o — Ug’ﬁ Oext O
After taking the quotient by U’, we get a map
Finally, since Ty ngS = TS, we can compose % with the forgetful map
K}MG(TES) — K&(TES) to get 0 : KE(TeM) — K& (TES).

The identity Thom_g(E) — Thomg(E) = i!(og’ﬂ) shows that we have a commu-
tative diagram

« 0 . .
K*GXU/(TGXU’P/) > KTBXGXU’(TTBXGXU’(P/ X SE)

K3, waxv (Thywaxu (P % E)) .

After taking the quotient by U’, we get the commutative diagram

* 0 * *
K*G(TGM) — KG(TGS)

s°, - S7 Jf
K&(TgE) .
which is the content of Theorem 3.4.

3.6. Restriction to a fixed point sub-manifold. Let M be a G-manifold and
let 8 € g be a G-invariant element. Let Z be a connected component of the fixed
point set M?. Note that 8 defines a complex structure Jg on the normal bundle of
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Z in M. Following Section 2.6 we have a restriction morphism Rz that fits in the
six term exact sequence

* ‘* * R‘ *
K%(TG(M \ 2)) e K%(TGM) —— K%(TGZ)

| |
KG(ToZ) = Ka(TeM) =——KgG(To(M \ 7).
Proposition 3.17. e There exists a morphism S,z : KGL(T¢Z) — K&(TeM)
such that Rz 0 Sg 7 is the identity on K (T Z).
e We have an isomorphism of R(G)-modules :

KG(TeM) =~ K5(TgZ) © Kg(Tg(M \ 2)).

Proof. Let N be the normal bundle of Z in M. Let U be an invariant tubular neigh-
borhood of Z, which is small enough so that we have an equivariant diffeomorphism
¢ : U — N which is the identity on Z. Let Sg n : K& (T Z) — K& (TEN) the map
that we have constructed in Section 3.4. Let j, : K5 (ToU) — K& (TE M) be the
push-forward map associated to the inclusion j : U < M. Let ¢* :: KL (TeN) —
K¢ (TsU) be the isomorphism associated to ¢. We can consider the composition

Sp,z :=jsx0¢" 0Sp .,

and we leave to the reader the verification that Rz 0Sg z = Id. The last point is
a direct consequence of the first one. O

4. DECOMPOSITION OF K¢ (T;M) WHEN G IS ABELIAN

In this section GG denotes a compact abelian Lie group, with Lie algebra g. Let
M be a (connected) manifold equipped with an action of G. For any m € M, we
denote g, C g its infinitesimal stabilizer.

Let Ag(M) be the set formed by the infinitesimal stabilizer of points in M.
During this section, we suppose that Ag (M) is finite: it is the case if M is compact
or when M is embedded equivariantly in a G-module. We have a partition

M= || M,
heAg(M)

where My := {m € M | h = g,,,} is an invariant open subset of the smooth sub-
manifold MY :={m & M | h C g}

On the other hand, we consider for 0 < k < s = dim G the closed subset
M=k c M
formed by the points m € M such that dim(G - m) = codim(g,,) < k. We have
Mk= || My= |J M
codimh<k codimb <k
Let M=k = M=F\ M=F=1 and M>* = M \ M=F~1. We note that

M~ = || M,
codimbh=k
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Let s, be the maximal dimension of the G-orbit in M. We will use the increasing
sequence of invariant open subsets

Mz lc...c M>'c M>% c M.

Here M~>% = M\ M9, and M>%—1 = M9°" is the dense open subset formed by the
G-orbits of maximal dimension. Note also that M 9" corresponds to My, , where
Binin is the minimal stabilizer.

Let us consider the related sequences of open subspaces

TeM> oo C TEM™ C TEM™Y C TEM.
At level of K-theory the inclusion ji : M~F < M>k—1 gives rise to the map
()« : KE(TeM™F) — K& (TEMZFh).
Let 0 < k < s, — 1. We have the decomposition
T*GM>k71 _ TGM>k UTEM>k71|M:k
= ToM7F| | || TeM™F |,
codimbh=Fk
= TeMR ] || TEMy x N
codimbh=Fk
where Ny is the normal bundle of My in M. Note that My is a closed sub-manifold
of the open subset M>*~1 when codimh = k.

Lemma 4.1. Let h € Ag(M) with codimh = k. There exists v, € b so that My is
equal to the fized point set (M>*=1)" .= {m e M>* =1 | vy € g;n}. The element
vy defines then a complex structure J., on the normal bundle Nj.

Proof. Let H be the closed connected subgroup of G with Lie algebra h. Let v, € b
generic so that the closure of {exp(t7y),t € R} is equal to H. Then for any m € M,
Yo € 9m < b C gm. Then

{m€M>k_1|7;,Egm}:{m€M>k_1|f)CEm}:{WEM“):Em}:Mh-
O

Thanks to Lemma 4.1, we can exploit Section 3.6. For any h € Ag(M) of
codimension k, we have a restriction morphism
(29) Ry : K& (TeM ™ 1) — Kg(TgMy)
and a section
Sy := Sy, - KG(TGMy) — Kg(TeM ™ )
such that Ry oSy is the identity on K (TgMy).
We have also a long exact sequence

« (Jr )= « _ Ry N
K%(TGM>k) KO(TGM>k 1) %k @codimh:k K%(TGMb)

,;T |

Deodimy—r K (TG M) e K (TgM=h1) oo KL (T M%),
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where Ry, = @codimy—k Ry. We define Sy, : @codimp=1 K& (TeMy) — KE(TEM>’“_1)
by
Sk(Deodimh—=k0y) = Y Sp(0).
codimbh=Fk

Lemma 4.2. Let a,b € Ag(M).

e We have Rqo08S, =1d in K (TiM,).

e We have RqoSy, =0 if a # b.

e The map Ry, 0 Sy, is the identity on @eodimy—r K5 (TG My).

Proof. The last point is a direct consequence of the firsts one. The first point
is known, and the second assertion is due to the fact that M, N My = 0 when

a#b. O

The previous lemma shows that the map
(30)  (()«s Sk) : KN(TEM ™) X @codimp=t K& (TG Mg) — K (TeM ™)

is an isomorphism of R(G)-module. In particular the maps (ji). are injective.

Remark 4.3. If we consider the open subset j : M9°™ — M formed by the G-orbits
of maximal dimension, we know then that
ot KE(TEM") — K5(T5M)

is injective, since j is the composition of all the jj.

The isomorphisms (30) all together give the following Theorem (which was given
in a less precise version in [1][Theorem 8.4]).

Theorem 4.4 (Atiyah-Singer). Let v := {vy,h € Ag(M)} such that My = {m €
MZeodimb=1 | e g Y. We have an isomorphism
(31) ¢ P Ku(TeM,) — KG(TeM)
heAg(M)
of R(G)-module such that
Indexf; (B,(S0y)) = Y Indexf, (o @ S*(NV))
heA

for any ©yoy € @ycp KG(TEMy). Here Ny is the normal bundle of My in M
which is equipped with the complex structure defined by —y

For any h € Ag(M) we denote H C G the closed connected subgroup with Lie
algebra f. Let us denote H' C G be a Lie subgroup such that G ~ H x H'. Then
the R(G)-module K (T¢ M) is equal to
Thus Theorem 4.4 says that K¢ (T M) is isomorphic to

P K (Ti M) @ R(H).
heAg (M)

Note that the action of H' on My, has finite stabilizers, hence the group K, (T, My)

is equal to K* , (T*My), where My = My/H' is an orbifold.

orb
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5. THE LINEAR CASE

In this section, the group G is a compact abelian Lie group. Let V be a
real G-module. Let V9" be the open subset formed by the G-orbits of maximal
dimension. We equip V/V? with an invariant complex structure. For any v € g
such that V7 = V¥ we associate the class

Thom,, (V/V9) ® Bott(V?) € K&(TELV).

Let H,,;, C G be the minimal stabilizer for the G-action on V. Let s :=
dim G — dim H,,,.

Definition 5.1. A4 (G,V)-flag ¢ corresponds to a decomposition V)V = V¥ @
<& V# in complex G-subspaces, and a decomposition g = Hpin, & REY & -+ - RB?
such that for any 1 <k <s

cl B acts trivially on V7 when j < k,
c2 B¢ acts bijectively’ on V,7.
We can associate to the data ¢ above , the flags V¢ = VIO c yllv ¢ .
VLY =V oand b = gl c glthv ... c gl*h¥ = g where
vibe — yo g Z vV, and gl = b ®R f+1 ©--- ORBY.
1<k<j
We see that conditions ¢l and c2 are equivalent to saying that the generic infini-

tesimal stabilizer of the G-action on the vector space VU# is equal to glil#.

Thanks to c2, the Cauchy-Riemann symbol
k *
05" € Kg(Tig, (VO {0})),
is well defined. Conditions c1 and ¢2 tell us also that (V}?\ {0}) x --- x (V£ \ {0})
is an open subset of (V/V9)9"  and thanks to Theorem 2.7 we know that the
following product
Jg/vg’(’a = Jg’l (ORERNO) Ug’s
is a well defined class in K% (T (V/V8)9em),
We need the following submodule of R~°°(G) defined by the relations

deFg(V) < AV/VI@de (R™(G/H)) ,Vhe Ag(V),
®eDMg(V) <= AV/VI®®=0,Yh#bpin and & € (R(G/Hpmin))-

The purpose of this section is to give a detailled proof of the following theorem.

Theorem 5.2. Let G a compact abelian Lie group and let V' be a real G-module.
We have
a. KL(TLV) = KL(TLV9") =0
b. The index map Indext : K&(TELV) — R™°(G) is one to one.
c. The elements Bott(V{) ® Thom, (V/V?®) generate K&(T5V), when v runs
over the elements such that VY = V8.
d. The elements Bott(VCg)@Ug/Vg’w generate K% (T;V9™), when ¢ runs over
the (G,V)-flag.
e. The image K5 (TgV) by Index$ is equal to Fg(V).
f. The image K5 (TEV9") by Index$ is equal to DM (V).

98 acts bijectively on a vector space V if VB = {0}.
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Hence b., e. and f. say that the R(G)-modules K (T V) and K (T V)
are respectively isomorphic to Fg(V) and DMg (V).

Note that, when dimV/V® = 0, we have TV = T;V9" = T*V and all the
points are direct consequences of the Bott isomorphism. Point d. is proved in [1],
and points a., e. and f. are due to de Concini-Procesi-Vergne [9, 10]. Point b. is
proved in [1] for the circle group, and in [9, 10] for the general case. In [9, 10], c.
is obtained as a consequence of d. together with the decomposition formula (31).

We will give a proof by induction on dim V/V?® that is based on the work of
[9, 10]. But here our treatment differs from those of [1, 9, 10], since the proof of all
points of Theorem 5.2 follows directly by a careful analysis of the exact sequence

0 — K2 (Tg W) —5 K& (TLV) 5 KG(TEW) — 0.

associated to an invariant decomposition V = C, & W.

5.1. Restriction to a subspace. Suppose that V' # V9. Then V contains a
complex representation C,, attached to a surjective character x : G — S*. Let
G, = ker(x) with Lie algebra g,. The differential of x is ¢x with x € g*. Here
Cy, NV? = {0} since y # 0.

Let us consider an invariant decomposition V =W & C,,.

Remark 5.3. We check that dimW/W?® = dimV/V9 — 1, and dim W/Wox <
dimV/V — 1.

We look at the open subset j : T¢,(W x Cy \ {0}) < TgV. Its complement is
the closed subset TGV |w 0y =~ TgW x C,. We have the six term exact sequence
(32)

K&(TE(W x Cy \ {0})) L— K% (TEV) T K (TLW x Cy)

| |

Kg(TeW x Cy) K(TgV) KG(TG(W x Cy \ {0})).

J

Let R : K (T V) — K§(TLW) be the composition of the map r with the Bott
isomorphism K% (TeW x Cy) — K& (T;W). Note that R depends of the choice
of the canonical complex structure on C,.

The open subset C, \ {0} with the G-action is isomorphic to G/G,, x R. Hence
T (W x Cy \ {0}) ~ TH(W x G/Gy) x TR. Since the G-manifold W x G/G, is
isomorphic to G xg, W, we get finally

KG(Te(W x Cy\{0})) = Kg(Tg(W x G/Gy) x TR)
~ KG(To(W x G/Gy))
~ Kg(Tg(G xa, W))
~ Ky (To W).

Let J : Kg; (T, W) — Kg(TgV) be the composition of the map j. with the
previous isomorphism K¢, (T¢, W) = K (T (W x €, \ {0})). The sequence (32)



24 PAUL-EMILE PARADAN

becomes

R

* J * *
(33) K¢, (Tg W) —=Kg(T5V) K& (TeW)

| |

KG(TeW) <— Ka(ToV) < Kg (T, W).

The following description of the morphism J will be used in the next sections.
Let B € g such that g = g, ©® R3. Since the action of G, is trivial on C,, the
product

* * © *
K%(TGXW) X K%(TRB(CX) — K%(TGV)

is well defined. Let ogx € K& (TgsCy) be the Cauchy-Riemann class.

Lemma 5.4. Let [o] € K%X (T W) be a class that is represented by a G-equivariant,

G -transversally elliptic morphism o. Then the product o © ng is G-transversally

elliptic and J([o]) = [a ©® agx} in KL(TEV).

Proof. The character x defines the inclusion i : G/Gy, — Cy,g9 — x(g). Let
i KE(TH(G/Gy x W)) — K%(TEV) be the push-forward morphism.

The manifold G x W is equipped with two G x Gy-actions: (g,h) -1 (z,w) :=
(gzh= h-w) and (g, h) -2 (x,w) := (gzh~ ', g - w). The map O(z,w) = (v,27 - w)
is an isomorphism between G' xo W and G x; W. The quotients by G and G, give
us the maps 7g : G x1 W — W, and 7g, : G x2 W — G/Gy x W.

We have

(34) J=1io0 (ﬂ'gx)_l o0 omy

where (m¢; )" loB*ory, K%X (Te, W) — K2 (T (G/Gy xW)) is an isomorphism.

It is an easy matter to check that if the class [o] € K%X (T¢, W) is represented by
a G-equivariant, G,-transversally elliptic morphism o, then (7, )~ 'of*o7% (o) =
o ©[0] where [0] : C — {0} is the zero symbol on G/G,. Finally JE((T) =i1(c®[0])

(CX
O'@O'g. O

Remark 5.5. In the next sections, we will use the exact sequence (33), when V is
replaced by an invariant open subset Uy . Suppose that there exist invariant open
subsets Uy, UZ, C W such that Uy = U, | |UZE, x Cy \ {0}. Then (33) becomes

* J * R *
(35) Kg (Tg Uiy) — Kg(ToUy) —— K (Toldy,)
| |
K& (TolUy ) <— Ke(Tolly) < Kg (T Uiy ).

For example, if Uy = VI, we take Uy, = W NVI" and UZ, = WoenGx
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5.2. The index map is injective. Let us prove by induction on n > 0 the fol-
lowing fact

(Hy) Index{} : K& (TELV) — R™°(G) is one to one if dim V/V? < n.

If dim V/V¥® = 0, we have TV = T*V and the index map K% (T*V) — R(G)
is the inverse of the Bott isomorphism.

Suppose now that (H,,) is true, and consider G © V such that dim V/V?® = n+1.
We start with a decomposition V' = W @ C,, and the exact sequence (33). The
induction map Indgx : R™°(Gy) — R™°°(G) is defined by the relation Indgx (E) =

[L*(G) @ E] %X We denote A*C, : R=°(G) — R°°(G) the product by 1 — C,.

Proposition 5.6. The following diagram is commutative
* J * R *
(36) K%X (TGXW) ——Kg(TgV) ——=Kg(TgW)
llndexgvx llndexg llndex‘c/}v
Indgx /\'@
R™®(Gy) ——— R>(G) ——= R™>(G).

Proof. Let o € K%X (TG, W). We have 75;(0) = o © [0] where [0] : C — {0} is

the zero symbol on G. Then the product formula says that Indexgigv" (r&(0)) =

IndexgvX (0) ® L?(G) and thanks to (34), we see that
Index$(J(0)) = Indexg/GXXw((ﬂgx)_l 00" om(0))
G

= [dexg 3 (ns(0))]

= Indgx (Indexg‘/X (U)) .

X

This proved the commutativity of the left part of the diagram, and the commu-
tativity of the right part of the diagram is a particular case of Proposition 2.11. [

We need now the following result that will be proved in Appendix A

Lemma 5.7. The sequence

G .
IndGX A°C

(37) 0 — R™™(Gy) — R™>(G) — R™>(G)
15 exact.
Lemma 5.7 tells us in particular that Indgx is one to one. We can now finish the

proof of the induction. In the commutative diagram (36), the maps Index%, Indevax

and Indgx are one to one. It is an easy matter to deduces that Index$ is one to
one.

We end up this section with the following statement which is the direct conse-
quence of the injectivity of Index‘cj (see Remark 3.8).

Remark 5.8. Let Ji,k = 0,1 be two invariants complex structures on V', and
let Thomg(V, Ji) be the corresponding pushed symbols attached to an element 3
satisfying VP = {0}. There exists an invertible element ® € R(G) such that

Thomﬂ(V, Jo)) = ThOHlﬂ(V, Jl)
in K&L(TGV).
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5.3. Generators of K (T;V). Let V be a real G-module : we equip V/V? with
an invariant complex structure. Let Ag(V) C K& (T;V) be the submodule gener-
ated by the family Bott(V{) ® Thom, (V/V9), where v runs over the element of g
satisfying V7 = V9. Remark 5.8 tells us that Ag (V) is independent of the choice
of the complex structure on V/V9.

In this section we will prove by induction on n > 0 the following fact

(H,) K&(TLV)=0 and KY(TLV) = Ag(V) if dimV/V® <n.

If dim V/V® = 0, we have TV = T*V and assertion (Hy) is a direct consequence
of the Bott isomorphism.

Suppose now that (H,) and is true, and consider G O V such that dim V/V¥ =
n + 1. We have a decomposition V = W @ C,, with x # 0. If we apply'® (H,,) to
GO W and Gy, O W, we get first that K5 (TEW) = 0 and Kéx (Tg, W) =0.

The long exact sequence (33) implies then that K5 (T V) = 0, and induces the
short exact sequence

(38) 0 — K2 (Tg W) —5 K& (TLV) =5 KG(TEW) — 0.

The assertion (H,,) gives also K& (TEW) = Ag(W) and K%X (T, W) = Ag, (W).
With the help of (38), the equality K% (T V) = Ag(V) will follows from following
Lemma.

Lemma 5.9. We have

o J(Ag, (W)) C Ac(V),
o Ac(W) C R(Ag(V))-

Proof. We equip V/V® = W/W?® @ C,, with the complex structure J := Jg where
(X,8) > 0. We will use the decomposition of complex G-vector spaces W/W?¥ ~
W/We @ W /W9 and the fact that V¥ = W9.

Let a := Bott(Wg*) ® Thom, (W/W®x) be a generator of Ac (W). It is a G-
equivariant symbol, hence Lemma 5.4 applies: its image by J is equal to J(a) =
Bott(WgX) @Thomv(W/WQX)Qogx. If we use the fact that ng = Thom_3(C,)—
Thomg(C, ), we see that J(a) = U_- — U where

Ur = Bott(W) ® Thom, (W/W) ® Thomz(Cy)
= Bott(Wg¥) ® Thom,, (W/W% & C,) 1]
= Bott(V?) ® Bott((W /W9)¢) ® Thom,, (W/We & C,)  [2]
= AW /W9 @ Bott(V2) ® Thom,,, (V/V?) [3].

In [1], the term ~4 is equal to y£¢5 with 0 << t << 1 (see Lemma 3.12). In [2], we
use that W9x ~ Vg 9x /W9, In [3] we use that V/V® = W/WIxaWex /WegC,
(see Proposition 3.9).

We have proved that J(a) belongs to Ag(V) for any generator a of Ag, (W).
We get the first point, since the restriction R(G) — R(G,) is surjective.

Let o := Bott(W¢) ® Thom, (W/W?9) be a generator of Ag(W). Thanks to
Proposition 3.11, we see that o/ = R(a") with o/ = Bott(V{) ® Thom. (V/V9).
The second point is then proved. O

10See Remark 5.3.
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5.4. Generators of K} (T;V9"). Let B;(V) be the submodule of K (T V9°™)
generated by the family Bott(V{) © oYV where © runs over the (G, V)-flag.

d
In this section we will prove by induction on n > 0 the following fact

(H,)  KL(TEevem) =0 and KL (TLV") = Bg(V) if dimV/V9 <n.

If dimV/V® = 0, we have T, V9" = TV and (Hf) is a direct consequence of
the Bott isomorphism. Suppose now that (H,) is true, and consider G O V such
that dim V/V9 = n + 1. We have an invariant decomposition V"= W & C,, with
X # 0, and

veer = yoer qw | |[weemGx x €, \ {0}
Note that V9" N W is either equal to W9 (if the G-orbits in V' and W have the
same maximal dimension) or is empty. Following Remark 5.5, we have the exact
sequence

R

* en J * en * en
(39) K¢, (Tg, Woemtx) —— K (T Vo) K¢ (Tgween)

| |
KL (TG o) < KL (TEVo) < Kb, (Tg Woer6x)

when V9" N W # . On the other hand, when V9" N W = (), we have an

isomorphism
(40) J:Kg (Tg WomGx) — KG(TEVIM).

If we apply (H],) to G O W and G, O W, we get first K5 (TEW9) = 0 and
Kéx (Te, W9en-Gx) = 0. Using the bottom of the diagram (39) and the isomor-
phism (40), we get K (T V) = 0. Moreover, the long exact sequence (39) induces
the short exact sequence

0 — K% (Tg WomCx) Ly KL(TEVI) 25 KL (TG(VI" W) — 0.

Since the assertion (H),) gives also

Kg(TWo™) = Bo(W) and K¢ (Tg W) = Bg, (W),
the equality K% (T;V9") = Ag (V) will follows from following Lemma.

Lemma 5.10. We have
o J (BGX(W)) C Ba(V),
e Ba(W) C R(Bg(V)), when VI NW # ).

Proof. Let 5 € g such that (x, ) > 0: we have g = g, & RS. For any (W, G, )-flag
, we consider the element
o= Bott(W) © on /W e K, (T Woen)
and we want to compute its image by J.
We note that the minimal stabilizer H,,;, C G for the G-action on V is equal
to the minimal stabilizer for the G -action on W. Let s := dim G, — dim Hi,. A
(Gy, W)-flag ¢ corresponds to

e a decomposition W/W = W7 @& --- @ W# in complex G-subspaces
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e a decomposition gy = bpin @ REY @ -+ -RA?
such that for any 1 < k < s, 7 acts trivially on WY @ --- @& W7, and 3} acts
bijectively on W;7. The term ag//ng’w € K%X (Tg, (W/Wx)9°") is equal to the
product of ggvk c K%X (TE‘W:WE), for 1 <k <s.
Since V/V8 ~ W /WS C, & W/W9x, we can define a (V, G)-flag ¢ as follows:
o V= W /W9®C, and 8V = 3,
° ka =W, | and ﬁ;f =07 for2<k<s+1.
We note that the G,-transversally symbols Jg’k € K%X (Trpy W) correspond
to the restriction of the G-transversally symbols 02" € K%(TRﬁ:+1Vk1i1).

d
Finally, thanks to Lemma 5.4 we have

Ja) = o5* ©Bott(VE) © Bott(Wo /W) 0 0l @ 0 o
= AWH/WI@Bott(VE) ©os! ©op? 0 0 op®

= AW /W3 @ Bott(VE) © oy .

Here we use the identity a(g" © Bott(Wo /WE) = A*Wex /W9 @ ag’l, valid in

K (Tgs(C\ ® W /W?)), which is proved in Proposition 3.16. Since R(G) —
R(G,) is onto, we have proved that J(Ag, (W)) C Aa(V).

Suppose now that V9" NW # (), and let us prove now that Ag(W) C R(Ag(V)).
Let ¢ be a (G, W)-flag : let W/W8 = W7/ ®---OWY and g = hinin ORBY & - -DRB?
be the corresponding decompositions. The hypothesis V9 N W # () means that
the minimal stabilizer b,,;, for the g-action in W is contained in g,. Hence ¥ does
not belongs to (RBY @ --- @ RB¥)L. Let

k=max{i | (x,B]) # 0}
Let ¢ be the (G, V)-flag defined as follows:

o VY =W¢isi#k, and V¥ = WY @ C,,
o Y =p¢for1 <k<s.

Then we have

v/ve, 1 k >
R(Bott(VCg)@og/ ") = Bott(W @l o R(eL") - 0oL
1 k )

= Bott(Wg) ® o

We use here the relation R(Ug’k) = 02" (see Proposition 3.11). It proves that
Aa(W) C R(Ag(V)). 0

5.5. K&(TV) is isomorphic to F¢ (V). For any G-module V', we denote F¢(V)’
the image of K%(T5V) by Index$;. We know from Section 5.2 that the index map
Index$ is injective, hence Fo (V) =~ K&(TLV). Let Fo(V) be the generalized
Dahmen-Michelli submodule defined in the introduction. We start with the follow-
ing

Lemma 5.11. We have Fo(V) C Fa(V).
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Proof. Let 0 € K& (T V) and let h € A (V). Since the vector space V/V carries
an invariant complex structure we have a restriction morphism Ry : K& (TGV) —
K2(TEVY). Let i) : KE(TEVY) — K%(TLV) be the push-forward morphism
associated to the inclusion VP < V. Thanks to Proposition 2.11 we know that
iroRy(0) =0 @ A°V/VY, and then

(41) A*V/VY @ Index$ (0) = Index$y (Ry (o).

But since the action of H is trivial on V9, we know that Index{,(Rg(0)) €
(R™°°(G/H)) (see Remark 2.8). The inclusion Fg (V) C Fg(V) is proved. O

We will now prove by induction on n > 0 the following fact

(H))  Fe(V) =Fe(V) if dimV/V®<n.

If dimV/V% = 0, we have TV = T*V and Ag(V) = {g}. In this situation,
Bmin = @ and (R™°°(G/Hpin)) = R(G). We have then F¢(V) = R(G), and (Hf)
is a direct consequence of the Bott isomorphism.

Suppose now that (H!/) and is true, and consider G ) V' such that dim V/V¥ =
n+ 1. We have a decomposition V =W & C, with y # 0. If we apply (H))) to
GO W and G, O W, we get Fg(W)' = Fag(W) and Fg, (W) = Fg, (W). The
following Lemma will be the key point of our induction.

Lemma 5.12. o Let H C G, be a closed subgroup (G is abelian). For any ® €
R™>°(Gy,), we have the equivalences

(42) ® € (R™(G\/H)) <= Indg _(®) € (R™(G/H)),

(43) ® € Fo (W) <= Indg_(®) € Fa(V).

e The exact sequence (37) specializes in the exact sequence

G

(44) 00— Fo (W) % Fo(v) 5 Fo(w).

Proof. Let us consider the first point. For ® :=3_ = m(u)C, € R™(Gy), we
have Indgx (@) = X cam(ma, () Cy, whfre Gy G — (/?;A We see then that
Supp(Inng(@)) = ﬂ'&i (Supp(®)). If 7y : G — H and 7% : Gy, — H denote the
projections, we have then the following relation

mir (Supp (Indg, (@)) ) = 7ty (Supp(@)

that induces (42).
For any ® € R~°°(G,,) and any subspace h € Ag(V'), we consider the expression

Q:=AV/ VY ® Indgx (®). We have two cases:
e Either h € g, : here C,, C V/V" and A®V/VD = A°C,, ® 6. In this case,
Q = 0 because A°C, o ImdgX = 0.
e Orh C gy : here h € Ag (W) and V/VP = W/WP. In this case Q =
Indg (AW/WH @ @).
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It is then immediate that the equivalence (43) follows from (42).

Thanks to (43) it is an easy matter to check that the sequence (44) is exact at
Fc(V). We leave to the reader the checking that A*C,, - F(V) C Fg(W). So the
second point is proved. O

Let Ir : Fa(V) < Fg(V) be the inclusion. Finally, we have the following
commutative diagram, where all the horizontal sequences are exact :

0——=KY% (T5 W) L KL(TLV) —B > K%(TEW) —0

l Indgx l /\-@ l

0 ——Fo, (W) ——— Fg(V) ——— Fa(W)

Indg

Fo (W) Fa(v) —25 o).

X

.

Except for 7, we know that all the vertical arrows are isomorphism. It is an easy
exercise to check that I must be an isomorphism.

5.6. K& (T;V9") is isomorphic to DM¢(V). For any G-module V, we denote
DM (V) the image of K% (T5V9¢") by Index$. Since the maps j. : K& (T V") —
K% (T;V) and Index$ are injective (see Remark 4.3 and Section 5.2), we have

DMg(V) ~ K% (TgLVIm).

for any G-module. Let DM¢ (V') be the generalized Dahmen-Michelli submodules
defined in the introduction. We start with the following

Lemma 5.13. We have DM(V)" € DMg(V).

Proof. Let 7 € KXL(T;V9") and j.(1) € K%(T;V). First we remark that
Index$ (1) € (R°(G/Hpmin)) since Hppip acts trivially on V (see Remark 2.8).
Let b # Byin be a stabilizer in Ag(V). Since VY N V9" = () the composition
Ry, 07 is the zero map, and (41) gives in this case that A®V/VI@Index$ (j. (o)) = 0.
Since by definition Index¥ (1) = Index¥ (j. (7)), the inclusion DM¢(V)' € DMq(V)
is proved. O

We will now prove by induction on n > 0 the following fact

(HY)  DMg(V) =DMg(V) if dimV/V® <n.

If dimV/V?® =0, we have TV = TV, V9" =V and Ag(V) = {g}. In this
situation, B = g and (R™°°(G/Hpmin)) = R(G). We have then DM (V) = R(G),
and assertion (H{’) is a direct consequence of the Bott isomorphism.

Suppose now that (H!”) and is true, and consider G O V such that dim V/V?® =
n+ 1. We have a decomposition V=W & C, with x # 0. If we apply (H/) to
GO Wand G, O W, we get DMg(W)" = DMg(W) and DMg, (W)" = DMg, (W).

It works like in the previous section, apart for the dichotomy concerning V9¢ N
W. We have the following
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Lemma 5.14. e Let H C G, be a closed subgroup (G is abelian). For any ® €
R™°(Gy,), we have the equivalences

(45) ® € DMg, (W) <= Indg (®) € DMg(V).

o If VI NV £ (), the exact sequence (37) specializes in the exact sequence
Indg ATy
(46) 0 — DMg, (W) — DMg(V) — DMg(W).
o If VI N =, the exact sequence (37) induces the isomorphism
(47) Indg : DMg, (W) < DMg(V).
Proof. Let ® € R~°(Gy) and h € Ag (V). We consider the term Q := A°V/VI @
Indgx (®). Like in the proof of lemma 5.12, we have two cases:

e Either h ¢ g, : in this case Q2 = 0.
e Orh C gy : here h € Ag (W) and V/VP = W/WP. In this case Q =
mdS (n) with n = A*W/WH @ ®.
X

Since the minimal stabilizer'! for the G, action on W coincides with the minimal
stabilizer for the G action on V, the relation (42) induces the equivalence ® €
(R™(Gy/Hmin)) <= Ind§ (@) € (R™%(G/Hpin)). For the stabilizers hpin &
b C gy, using the fact that IndgX is injective, we see that A°V/VH ® Indgx (®)=0
if and only if A*W/WY @ ® = 0. The first point follows.

Thanks to (45) it is an easy matter to check that the sequence (37) specializes in
the exact sequence 0 — DM (W) - DM (V) 2, R™>°(G), where o = IndgX
and = /\’(C_X. We can precise this sequence as follows.

Let Biin (W), Bmin (V) be respectively the minimal infinitesimal stabilizer for
the G-action on W and V. We note that VI N W # 0 <= hpin (W) C gy <
bmin(W) = bmzn(v)

Suppose that V¢ NW # (), and let us check that the image of § is contained in
DM¢g(W). Take ® € DM (V) and h € Ag(W). Let B(®) = A°C,, ® &. We have
to consider three cases :

(1) If b = bhpin(W), then ® and B(P) belong to (R™°(G/Hpmin(W))) =
(R™2(G/ Hpin(V)))-
(2) If Brin(W) & b C gy, then A°V/VD = ATW/WH and AW/ WD @ B(P) =
BN V/Vh @ @) =0.
(3) If h & gy, then V/VY = W/WH & C,. We get then A*W/WhH @ B(P) =
AV/VD @ ® = 0.
We have proved that 8(®) € DMq(W).

Suppose now that V9" N W = (), and let us check that 3 is the zero map. Let
B = Bmin(W) € Ag(V). We have V/VY = C, since h € gy, and by definition we
have 3(®) = A°C, ® ® = A*V/VD @ & = 0 for any ® € DMg (V). O

HSays Hmin Wih corresponding group Hymin = exp(Dmin ).
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Let Ipy : DM@ (V) < DMg(V) be the inclusion. If VI MW # (), we have the
following commutative diagram

0 —— K¢ (Tg, WoenGx) 21— K (TGV ") — > K (T W) ——0

P

0 —— DMg, (W) DM¢ (V) * > DMg(W) ——0

Indg A°Co

0 —— DMg, (W) —————= DM¢(V) ——— DMg(W)

)

and if V9" N W = (), we have the other commutative diagram

J

0—— K%X (Tgx WoenGx) — K%(TEVQG") 0
l Indg L
0 ——— DMg, wy DMg (V) 0
l ‘/IDM
Indg,
0 ———DMg, (W) DM¢ (V) 0.

In both diagrams, all the horizontal sequences are exact, and except for Ipy;, we
know that all the vertical arrows are isomorphisms. It is an easy exercise to check
that in both cases Ipy must be an isomorphism.

5.7. Decomposition of K (T V) ~ DMg (V). Let V be a real G-module such
that V® = {0}. Let J be an invariant complex structure on V. Let W C G be the
set of weights: x e Wif V;, :=={v € V | g- v = n(g)v} # {0}. The differential of
7 is denoted i) with 77 € g*. Let W := {7 | n € W} : it is the set of infinitesimal
weights for the action of g on V.

Let Ag (V) be the finite set formed by the infinitesimal stabilizer of points in V.
For a subspace b C g, we see that h € Ag(V) if and only if h+ C g* is generated
by b NW.

Any vector v € V decomposes as v = Zn v, with v, € V,. The subalgebra
g, that stabilizes v is equal to My, 2o ker(7) = (Zvﬁéo R7)+. For a subspace h C
Ag(V), we see that the subspace V7 := {v | h C g,} is equal to @;ep.V,, and
Vo = {v | h = g,} is the subspace (V")9¢" formed by the vectors v := 2 nent Vn
such that -, o Rij = ht.

We have V/VY ~ th 1 V;,. Following Section 4, we consider a collection v :=
{7 € b,h € Ag(V)} such that (V/V")7 = {0}. We look at the H-transversally
elliptic symbol Thom,, (V/V") on V/V". Since the action of H is trivial on V7,
the following map

K& (TH(VO)*")  — KG(TH(VP)r x V/VD))
o — O'@ThOHl%(V/Vb)

is well defined. We can compose the previous map with the push-forward morphism
K% (TE((V)9em x V/VD)) — K& (TEV): let us denote Sg the resulting map.



ON THE STRUCTURE OF K¢ (TgM) 33

We can now state Theorem 4.4 in our linear setting.

Theorem 5.15. The map

S, —@yS): @ KTHI")*") — KG(T5Y)
heAg(V)

is an isomorphism of R(G)-modules.

Now we can translate the previous decomposition through the index map. For
h € Ag(V), we consider the element [/\'V/Vh];b1 € R~°°(@) which is equal to the
G-index of Thom., (V/V") (see Definition 3.10 and Proposition 3.6).

We need first the following

Lemma 5.16. The product by [/\'V/Vh],;h1 defines a map from DMg(VY) into
Fa(V).

Proof. Since the symbol Thom.,, (V/V") is H-transversally elliptic, the projection
Ty : §° — bh* is proper when restricted to the infinitesimal support m of Q:=
[/\’W];ﬁl. Let ® € (R~°°(G/H)): the image of Supp(®) by 7y is finite. It is now
easy to check that for any x € G the set {(x1,x2) € Supp(2) xSupp(P) |x1+x2 = X}
is finite: the product [A\*V/VY]7! @ @ is well-defined.

Let ® € (R™>°(G/H)). For any a € Ag(V) we have the ‘mother” formula'?

(48)  AV/VE [AVIVIL @@ = ATV g [AVe V) L@ @

which is due to the isomorphisms V/V® ~ V/(VY + V®) @ VY/Vi+e V/Vh ~
V/(VO+V®*) @ Ve/Vh+e and the relation

AW @ [NW]S =1

that holds for any G-module such that W7 = {0}.

Note that for any a,h € Ag(V) we have the equivalence V% = VY «= a C .
Suppose now that ® € DM (V") and consider the product © := [/\'W];h1 QP e
R=°(@). If a C b, we have

NVIVE Q= [WVEVILLL 0 @ € (R7=(G/A))

since [\*Ve/VY| 71 € (R7°(G/A)) and @ € (R™>°(G/H)) C (R~>°(G/A)). In the
other hand, if a ¢ b, we have A*V/Ve @ Q = 0 since A*VH/Vh+e @ d = 0.
We have proved that Q = [/\'V/V"];h1 ® @ belongs to Fa (V). O

The map

Sy: @ DM(V") — Fa(V)
heAa(V)

128ee formula (2) in [9].
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defined by Sy (B ®Pg) = > pen,(v) [/\'V/Vh];h1 ® Py satisfies the following commu-
tative diagram

* en 5y *
D, K& (T (Vh)7") K&(TGV)
l@h Index‘c/h Index‘c,;
S
@y DM (V") - Fa(V).

Since S, and the index maps Index‘G/h , Indexg are isomorphisms we recover the
following theorem of de Concini-Procesi-Vergne [9].

Theorem 5.17. The map S, is an isomorphism of R(G)-modules.

6. APPENDIX

6.1. Appendix A. Let G be a compact abelian Lie group, and let x : G — U(1)
be a surjective morphism. We want to prove that the sequence

Indg ATy
(49) 0— R™™(G,) — R™™(G) — R™>(G)

is exact. Note that the induction map IndgX : R7°(Gy) = R™*°(GQ) is the dual

of the restriction morphism R(G) — R(G,). Hence the injectivity of Indgx will
follows from the classical

Lemma 6.1. Let H be a closed subgroup of a compact abelian Lie group G. The
restriction R(G) — R(H) is onto.

Proof. Let 6 be a character of H. For any L'-function ¢ : G — C, we consider the
average ¢(g) = [;; #(gh)0(h)~'dh : we have then

(50) p(gh) = ¢(g)0(h) for any (g9,h) € G x H.

Let us choose ¢ such that ¢ # 0. For any character y : G — C, we consider the
function

Gult) = /G S(tg)x(g) " dg.

We have ‘73x = (¢, x)x where (¢,x) = Ja d(9)x(g)"tdg € C. Tt is immediate that
(50) gives that ¢, (h) = (¢, x)0(h) for h € H. Hence the restriction of y to H is
equal to @ when (¢, ) # 0. By a density argument, we know that such x exists. O

Now we want to prove that Image(Indgx) = ker(A®C,). The inclusion
Image(lndgx) C ker(A®C, ) comes from the fact that A*C, = 0 in R(G,).

For the other inclusion, we consider ® :=3_ _zm(u)Cy € ker(A®C,). We have
the relation ® ® C,, = ®, which means that m(p + x) = m(u) for all p € G. Let
TG — é; be the restriction morphism. Thanks to Lemma 6.1, we know that 7
is surjective, and we see that for § € é;, 771(0) is of the form {kx + 0,k € Z}.
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For 0 € é;, we denote n(0) € Z the integer m(u) for p € 7=1(0). We have then

RIS S DRI SET) S

ned 0eG, nem1(0) 0eG, k€L

IndgX Z ngCy
0eGy

6.2. Appendix B. This section is devoted to the proof of Proposition 3.15. Let
V be equipped with the complex structure J := Jg. The class Thomyg(V) €
K2 (TGV) are represented by the symbols C1(¢ & 8(z)) : ATV — AV, Since
— Thomy g(V) is represented by —Cl({+3(z)) : A=V — ATV, the class Thom_g(V)—
Thomg(V) is represented by the symbol

T(x,8) : AV = AV

defined by 7(x, &) = CI(¢) o € — CI(B(x)), where e(w) = (—1)I"lw. We consider the
family 75 (2, &) = (sId+C1(§)) oe—C1(5°(z)), s € [0, 1], where 3° = sJ+(1—s)p.
Note that 8 is invertible for any s € [0, 1].

Lemma 6.2. The family 7s,s € [0,1] is an homotopy of transversally elliptic sym-
bols.

Thanks to the last lemma, we know that 7 = 71 in K& (T V). Since Support(7;)N
TGV C To(V\{0}), the restriction 7" := 71|y {0} is a G-transversally elliptic sym-
bol on V'\ {0}, and the excision property tells us that ji(7') = 7, = 7 in K& (TEV).

For (z,£) € T*(V \ {0}), the map 7/'(x,&) : A°V — A®V is given by
7'(2,€) = (Id + C1(¢)) o € — Cl(Jz).

Let S be the sphere of radius one of V. We work with the isomorphism S x R ~
V\ {0}, (y,t) = e'y. Let C =S x R x C be the trivial complex vector bundle. Let
H — S x R be the vector bundle defined by H, ;) = (Cy)*+ c T,S. We use the
isomorphism of vector bundle

¢:H®C — T(S x R)

defined by ¢, ) (&' ®a+ib) = (£’ +bJ(y),a) € TyS x T;R. Through ¢ the bundle
map Cl1(¢) : ATV — ATV for € € T,V becomes

Cliyp(& ®2): (ANHy @ AC)F — (ANHy @ AC)™
Through ¢, the vector field = — J.x becomes the section of C given by (y,t) —
e'i, and the morphism 7/ is defined as follows: for (y,t) € SxR, and &' ®z € H,®C,
the map T(Iy,t)(fl @ z): ANHy @ AC — AH, @ AC is defined by
(€ @2)=(Id+CLE @ 2))oe— e Cl(3).

Let A, ¢ = ClI(¢' @ 2) and B = Cl(¢) be the maps from (AH, ® AC)" into
(AHy @ AC)~. The matrix of T(’y # (& @ z) relatively to the grading of AH, ® AC is

1d A% +e'B*
Az,g/ — etB —Id ’
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Let us consider the deformation of 7/ in a family

Id sA* ., +e'B*
. 2,
o ( B 1 ), s €[0,1].

Lemma 6.3. The family os,s € [0,1] is an homotopy of transversally elliptic
symbols.

Id e! B
AZ@/ — etB —Id

- d 0 d 0
g2 = etB Id )7\ —e'B 1d

B 0 e'B*
- Az,f’ — (et — eft)B 0

Since the morphism e'B : (AH ® AC)™ — (AH ® AC)™T is always invertible, its
class vanishes. Hence we have

The symbol g := ( ) is clearly clearly homotopic to

[7'] = [o0] = [02] = [Aser — (e' —e™)B] in K&(T&(S x R)).

We are now working with the morphism o3 : (AH ® AC)T — (AH @ AC)™ defined
by

o3(& ®2) = Cl¢) + Cl(z — (' — e 1)i).

Since > 0 on R, we can deform the term z — (e* —e~")i in t +iRe(z) without
changing the intersection of the support with T¢ (S x R).

Finally we have proved that Thom_g(V) — Thomg(V') is represented on S x R
by the morphism CI1(¢) + Cl(t +iRe(2)) : (AH @ AC)T — (AH @ AC)~ which is by

definition equal to O'g © Bott(TR) = 4 (O'g).

el—et

We finish this section with the proofs of the deformation Lemmas. For the family
7s(2,&) = (sId + C1(€)) o e — C1(3*(x)), we have

) _( SHIE=p@IP —25Cl(B% ()
(Ts(l',f)) Ts(%&) - ( 2501(55(:6)) s2+ ||§+ﬂs(z)”2 )

Then det(75(x, §)) = 0 if and only if
(57 + 11§ = B*@) ") (s* + 1€ + B°(@)]1*) = 4[| 5° ()|

which is equivalent to the equality (s?+(|&||>+||3%(x)(|?)? = 4s2||8° (x)[|2+4(E, 52 (x))>.
If § ¢ RB*(x), we have (&, 8°(2))? < [|€]|*]|8*()]|, and then

(87 + 1117 + 18 (@)II*)* < 4(s* + 1) [18° ()|

which gives (s + ||€]|? — || 3% (2)]|?)? < 0 which is contradictory. Then det(7s(x,&))
= 0 if and only if ¢ € RB*(x) and s* + ||€]|? — ||8%(x)||*> = 0. If furthermore
¢ € TEV |z, then! € = 0. We have proved that Support(rs) N TEV is equal to
the compact set {(z,€) | £ = 0 and s? — [|3%(2)||> = 0}. So s € [0,1] — 7 is an
homotopy of transversally elliptic symbols.

131t is due to the fact that (8%(z), 8(x)) > 0 when  # 0.
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* t R*
For the family o, := ( A _IdetB 54 _Jrlg B > , we have
(o) 08 = pTId (1 —s)A* + 2! B*
a —5)A+ 2e p (s
a) s 1—5)A+2¢'B Id

with p* =1+ ||€'||? + ||z — €%i||? and p~(s) = 1 + ||s&'||? + ||sz + €'i]|>. We check
easily that ((1 — s)A* +2e'B*)((1 — s)A + 2¢'B) = p(s)Id with

p(s) = lI(s = DEN* + lI(s — 1)z + 2",

Finally det(os) = 0 if and only if p(s) = p~(s)pT. In other words, (y,t;&" @ 2)
belongs to the support of oy if and only if

(=D& P+ (s—1)z+2e"il|* = (1 + [ls&'[|* + [[sz + e“dl]*) (1 + [1€'1% + [lz — €"il|?) -

Let us suppose now that ' @ z € T;(S x R). It imposes Im(z) = 0, and
the last relation becomes (s — 1)20 + 4e* = (14 €?' + 5?0) (1+€* + O) with
O = ||¢|? + ||z||>. Tt is easy to see that the last relation holds if and only if
t = © = 0. Finally we have proved that

Support(cs) N T4 (S x R) = {(y, €' @2) | =0, € =0, =0},

and then o, s € [0, 1] defines an homotopy of transversally elliptic symbols.

REFERENCES

[1] M.F. AtivaH, Elliptic operators and compact groups, Springer, 1974. Lecture notes in Math-
ematics, 401.
[2] M.F. AtivaH, K-theory. Advanced Book Classics, 2nd edn. Addison-Wesley Publishing Com-
pany Advanced Book Program, Redwood City (1989). Notes by D.W. Anderson
[3] M.F. AtiYyAH and G.B. SEGAL, The indez of elliptic operators II, Ann. Math. 87, 1968, p.
531-545.
[4] M.F. AtivAaH and I.M. SINGER, The index of elliptic operators I, Ann. Math. 87, 1968, p.
484-530.
[5] M.F. ATivAH and I.M. SINGER, The index of elliptic operators III, Ann. Math. 87, 1968, p.
546-604.
[6] M.F. ATivAH and I.M. SINGER, The index of elliptic operators IV, Ann. Math. 93, 1971, p.
139-141.
[7] N. BERLINE and M. VERGNE, The Chern character of a transversally elliptic symbol and the
equivariant index, Invent. Math., 124, 1996, p. 11-49.
[8] N. BERLINE and M. VERGNE, L’indice équivariant des opérateurs transversalement elliptiques,
Invent. Math., 124, 1996, p. 51-101.
[9] C. DE Concini, C. Procest and M. VERGNE, Vector partition functions and generalized
dahmen and micchelli spaces Transformation Groups, Vol.15, No. 4, 2010, p. 751-773.
[10] C. DE Concini, C. PRocCEsI and M. VERGNE, Vector partition functions and index of transver-
sally elliptic operators Transformation Groups, Vol.15, No. 4, 2010, p. 775-811.
[11] C. DE Concini, C. Procest and M. VERGNE, Box splines and the equivariant index theorem,
J. Inst. Math. Jussieu, 2012
[12] P-E. PARADAN, Localization of the Riemann-Roch character, J. Funct. Anal. 187, 2001, p.
442-5009.
[13] P-E. PARADAN and M. VERGNE, Equivariant Chern characters with generalized coefficients,
arXiv:0801.2822, math.DG.
[14] P-E. PARADAN and M. VERGNE, Index of transversally elliptic operators, Astérique, Soc.
Math. Fr., 328, 2009, p. 297-338.
[15] G. SecAL, Equivariant K-Theory, Publ. Math. IHES, 34, 1968, p. 129-151.

1We write A for A, /.



38 PAUL-EMILE PARADAN

INSTITUT DE MATHEMATIQUES ET DE MODELISATION DE MONTPELLIER (I3M), UNIVERSITE
MONTPELLIER 2
E-mail address: Paul-Emile.Paradan@math.univ-montp2.fr



