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ON THE STRUCTURE OF K∗
G(T

∗
GM)

PAUL-EMILE PARADAN

Abstract. In this expository paper, we revisit the results of Atiyah-Singer
and de Concini-Procesi-Vergne concerning the structure of theK-theory groups
K

∗

G(T∗

GM).
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1. Introduction

When a compact Lie groupG acts on a compact manifoldM , theK-theory group
K0
G(T

∗M) is the natural receptacle for the principal symbol of any G-invariant
elliptic pseudo-differential operators onM . One important point of Atiyah-Singer’s
Index Theory [4, 3, 5, 6] is that the equivariant index map IndexGM : K0

G(T
∗M) →

R(G) can be defined as the composition of a pushforward map i! : K
0
G(T

∗M) →

K0
G(T

∗V ) associated to an embedding M
i
→֒ V in a G-vector space, with the

index map IndexGV : K0
G(T

∗V ) → R(G) which is the inverse of the Bott-Thom
isomorphism [15].

In his Lecture Notes [1] describing joint work with I.M. Singer, Atiyah extends
the index theory to the case of transversally elliptic operators. If we denote byT∗

GM
the closed subset of T∗M , union of the conormals to the G-orbits, Atiyah explains
how the principal symbol of a pseudo-differential transversally elliptic operator on
M determines an element of the equivariant K-theory group K0

G(T
∗
GM), and how

the analytic index induces a map

(1) IndexGM : K0
G(T

∗
GM) → R−∞(G),

where R−∞(G) := hom(R(G),Z).
Like in the elliptic case the map (1) can be seen as the composition of a push-

forwardmap i! : K
0
G(T

∗
GM) → K0

G(T
∗
GV ) with the index map IndexGV : K0

G(T
∗
GV ) →

R−∞(G). Hence the comprehension of the R(G)-module

(2) K∗
G(T

∗
GV )

is fundamental in this context. For example, in [8, 14] the authors gave a cohomo-
logical formula for the index and the knowledge of the generators of K0

U(1)(T
∗
U(1)C)

was used to establish the formula. In [11], de Concini-Procesi-Vergne proved a
formula for the multiplicities of the index by checking it on the generators of (2).

When G is abelian, Atiyah-Singer succeeded to find a set of generators for (2),
and recently de Concini-Procesi-Vergne have shown that the index map identifies
(2) with a generalized Dahmen-Michelli space [9, 10]. Let us explain their result.

Let Ĝ be the set of characters of the abelian compact Lie group G : for any

χ ∈ Ĝ we denote Cχ the corresponding complex one dimensional representation
of G. We associate to any element Φ :=

∑
χ∈ĜmχCχ ∈ R−∞(G) its support

Supp(Φ) = {χ | mχ 6= 0} ⊂ Ĝ.
For any real G-module V , we denote ∆G(V ) the set formed by the infinitesimal

stabilizer of points in V : we denote hmin the minimal stabilizer. For any h ∈ ∆G(V ),

we denote H := exp(h) the corresponding torus and we denote πH : Ĝ → Ĥ the
restriction map.

We denote R−∞(G/H) ⊂ R−∞(G) the subgroup formed by the elements Φ ∈

R−∞(G) such that πH(Supp(Φ)) ⊂ Ĥ is reduced to the trivial representation. Let

〈R−∞(G/H)〉 ⊂ R−∞(G)

be the R(G)-submodule generated by R−∞(G/H). We have Φ ∈ 〈R−∞(G/H)〉 if

and only if πH(Supp(Φ)) ⊂ Ĥ is finite.
For any subspace a ⊂ g, we denote V a ⊂ V the subspace formed by the vectors

fixed by the infinitesimal action of a. We fix an invariant complex structure on
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V/V g, hence the vector space V/V h ⊂ V/V g is equipped with a complex struc-
ture for any h ∈ ∆G(V ). Following [11], we introduce the following submodule of
R−∞(G): the Dahmen-Michelli submodule

DMG(V ) :=

〈R−∞(G/Hmin)〉
⋂{

Φ ∈ R−∞(G) | ∧• V/V h ⊗ Φ = 0, ∀h 6= hmin ∈ ∆G(V )
}
,

and the generalized Dahmen-Michelli submodule

FG(V ) :=
{
Φ ∈ R−∞(G) | ∧• V/V h ⊗ Φ ∈ 〈R−∞(G/H)〉, ∀h ∈ ∆G(V )

}
.

Note that the relation ∧•V/V h⊗Φ ∈ 〈R−∞(G/H)〉 becomes Φ ∈ 〈R−∞(G/Hmin)〉
when h = hmin. Hence DMG(V ) is contained in FG(V ). We have the following
remarkable result [10].

Theorem 1.1 (de Concini-Procesi-Vergne). Let G be an abelian compact Lie group,
and let V be a real G-module. Let V gen ⊂ V be its open subset formed by the G-
orbits of maximal dimension. The index map defines

• an isomorphism between K0
G(T

∗
GV ) and FG(V ),

• an isomorphism between K0
G(T

∗
GV

gen) and DMG(V ).

The purpose of this note is to give a comprehensive account on the work of
Atiyah-Singer and de Concini-Procesi-Vergne concerning the structure of (2) when
G is a compact abelian Lie group. We will explain in details the following facts :

• The decomposition ofK∗
G(T

∗
GM) relatively to the stratification of the man-

ifold M relatively to the type of infinitesimal stabilizers.
• A set of generators of K∗

G(T
∗
GV ).

• A set of generators of K∗
G(T

∗
GV

gen).

• The injectivness of the index map IndexGV : K0
G(T

∗
GV ) → R−∞(G).

• The isomorphisms K0
G(T

∗
GV ) ≃ FG(V ) and K0

G(T
∗
GV

gen) ≃ DMG(V ).

Acknowledgements. I wish to thank Michèle Vergne for various comments on
this text.

2. Preliminary on K-theory

In this section, G denotes a compact Lie group. Let R(G) be the representation
ring of G and let R−∞(G) = hom(R(G),Z).

2.1. Equivariant K-theory. We briefly review the notations for K-theory that
we will use, for a systematic treatment see Atiyah [2] and Segal [15].

Let N be a locally compact topological space equipped with a continuous action
of G. Let E± → N be two G-equivariant complex vector bundles. An equivariant
morphism σ on N is defined by a vector bundle map σ ∈ Γ(N, hom(E+, E−)),
that we denote also σ : E+ → E−: at each point n ∈ N , we have a linear map
σ(n) : E+

n → E−
n . The support of the morphism σ is the closed set formed by the

point n ∈ N where σ(n) is not an isomorphism. We denote it Support(σ) ⊂ N .
A morphism σ is elliptic when its support is compact, and then it defines a class

[σ] ∈ K0
G(N)

in the equivariant K-group [15]. The group K1
G(N) is by definition the group

K0
G(N × R) where G acts trivially on R.
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Let j : U →֒ N be an invariant open subset, and let us denote by r : N \U →֒ N
the inclusion of the closed complement. We have a push-forward morphism j∗ :
K∗
G(U) → K∗

G(N) and a restriction morphism r∗ : K∗
G(N) → K∗

G(N \ U) that fit
in a six terms exact sequence :

(3) K0
G(U)

j∗ // K0
G(N)

r∗ // K0
G(N \ U)

δ

��
K1
G(N \ U)

δ

OO

K1
G(N)

r∗
oo K1

G(U)
j∗

oo

In the next sections we will use the following basic lemma which is a direct
consequence of (3).

Lemma 2.1. Suppose that we have a morphism S : K∗
G(N \ U) → K∗

G(N) of
R(G)-module such that r∗ ◦ S is the identity on K∗

G(N \ U). Then

K∗
G(N) ≃ K∗

G(U)⊕K∗
G(N \ U)

as R(G)-module.

We finish this section by considering the case of torus T belonging to the center
of G. Let i : T →֒ G be the inclusion map. We still denote i : Lie(T) → g the map
of Lie algebra, and i∗ : g∗ → Lie(T)∗ the dual map. Note that the restriction to T
of an irreducible representation V Gλ is isomorphic to (Ci∗(λ))p with p = dim(V Gλ ).
The representation ring R(G) contains as a subring R(G/T). At each character µ
of T, we associate the R(G/T)-submodule of R(G) defined by

R(G)µ =
∑

i∗(λ)=µ

ZV Gλ .

Note that R(G)0 = R(G/T).
We have then a grading R(G) =

⊕
µ∈T̂

R(G)µ since R(G)µ ·R(G)µ′ ⊂ R(G)µ+µ′ .

If we work now with the R(G)-module R−∞(G), we have also a decomposition1

R−∞(G) =
⊕̂

µ∈T̂
R−∞(G)µ such that R(G)µ ·R−∞(G)µ′ ⊂ R−∞(G)µ+µ′ .

Let us consider now the case of a G-space N , connected, such that the action
of the subgroup T is trivial. Each G-equivariant complex vector bundle E → N
decomposes as a finite sum

(4) E =
⊕

µ∈X

Eµ

where Eµ ≃ homT(Cµ, E) is the G-sub-bundle where T acts trough the character
t 7→ tµ. Note that a G-equivariant morphism σ : E+ → E− is equal to the sum
of morphisms σµ : E+

µ → E−
µ . Hence, at the level of K-theory we have also a

decomposition

(5) K∗
G(N) =

⊕

µ∈T̂

K∗
G(N)µ

such that R(G)µ ·K∗
G(N)µ′ ⊂ K∗

G(N)µ+µ′ .

1The sign
⊕̂

means that one can take infinite sum.
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Definition 2.2. We denote K̂∗
G

T

(N) or simply K̂∗
G(N) the R(G)-module formed

by the infinite sum
∑
µ∈T̂

σµ with σµ ∈ K∗
G(N)µ. When N = {•}, K̂0

G(•) = R̂(G)

is a R(G)-submodule of R−∞(G).

2.2. Index morphism : excision and free action. When M is a compact G-
manifold, an equivariant morphism σ on the cotangent bundle T∗M is called a
symbol on M . We denote by T∗

GM the following subset of T∗M

T∗
GM := {(m, ξ) ∈ T∗M | 〈ξ,XM (m)〉 = 0 for all X ∈ g}.

where XM (m) := d
dte

−tX ·m|t=0 is the vector field generated by the infinitesimal
action of X ∈ g. More generally, if D ⊂ G is a distinguished subgroup, we can
consider the G-invariant subset

(6) T∗
DM ⊃ T∗

GM.

An elliptic symbol σ onM defines an element ofK0
G(T

∗M), and the index of σ is

a virtual finite dimensional representation ofG that we denote IndexGM (σ) [4, 3, 5, 6].
An equivariant symbol σ on M is transversally elliptic when Support(σ) ∩ T∗

GM
is compact: in this case Atiyah and Singer have shown that its index, still denoted
IndexGM (σ), is well defined in R−∞(G) and its depends only of the class [σ] ∈
K0
G(T

∗
GM) (see [1] for the analytic index and [14] for the cohomological one). It is

interesting to look at the index map as a pairing

(7) IndexGM : K0
G(T

∗
GM)×K0

G(M) → R−∞(G).

Let σ be a G1 × G2-equivariant symbol σ on a manifold M . If σ is G1-
transversally elliptic it defines a class

[σ] ∈ K0
G1×G2

(T∗
G1
M),

and its index is smooth relatively toG2. It means that IndexG1×G2

M (σ) =
∑

µ∈Ĝ1
θµ⊗

V G1
µ where θµ ∈ R(G2) for any µ. Hence

• the G1-index IndexG1

M (σ) =
∑

µ∈Ĝ1
dim(θµ)⊗V

G1
µ is equal to the restriction

of IndexG1×G2

M (σ) to g = 1 ∈ G2.

• the product of IndexG1×G2

M (σ) with any element Θ ∈ R−∞(G1) is a well

defined element Θ · IndexG1×G2

M (σ) ∈ R−∞(G1 ×G2).

Remark 2.3. Suppose that a torus T belonging to the center of G acts trivially on
the manifold M . Since the index map IndexGM is a morphism of R(G)-module, the
pairing (7) specializes in a map from K0

G(T
∗
GM)µ ×K0

G(M)µ′ into R−∞(G)µ+µ′ .
Hence on can extend the pairing (7) to

(8) IndexGM : K0
G(T

∗
GM)× K̂0

G(M) → R−∞(G).

See Definition 2.2, for the notation K̂0
G(M).

Let U be a non-compact K-manifold. Lemma 3.6 of [1] tell us that, for any open
K-embedding j : U →֒ M into a compact manifold, we have a push-forward map
j∗ : K∗

G(T
∗
GU) → K∗

G(T
∗
GM).

Let us rephrase Theorem 3.7 of [1].
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Theorem 2.4 (Excision property). The composition

K0
G(T

∗
GU)

j∗−→ K0
G(T

∗
GM)

indexGM−→ R−∞(G)

is independent of the choice of j : U →֒ M : we denote this map indexGU .

Note that a relatively compact G-invariant open subset U of a G-manifold admits
an open G-embedding j : U →֒ M into a compact G-manifold. So the index map
indexGU is defined in this case. Another important example is when U → N is a
G-equivariant vector bundle over a compact manifold N : we can imbed U as an
open subset of the real projective bundle P(U ⊕ R).

Let K be another compact Lie group. Let P be a compact manifold provided
with an action ofK×G. We assume that the action of K is free. Then the manifold
M := P/K is provided with an action of G and the quotient map q : P → M is
G-equivariant. Note that we have the natural identification of T∗

KP with q∗T∗M ,
hence (T∗

KP )/K ≃ T∗M and more generally

(T∗
K×GP )/K ≃ T∗

GM.

This isomorphism induces an isomorphism

Q∗ : K0
G(T

∗
GM) → K0

K×G(T
∗
K×GP ).

The following theorem was obtained by Atiyah-Singer in [1]. For any Θ ∈
R−∞(K ×G), we denote [Θ]K ∈ R−∞(G) its K-invariant part.

Theorem 2.5 (Free action property). For any [σ] ∈ K0
G(T

∗
GM), we have the

following equality in R−∞(K):
[
indexK×G

P (Q∗[σ])
]K

= indexGM ([σ]).

2.3. Product. Suppose that we have two G-locally compact topological spaces
Nk, k = 1, 2. For j ∈ Z/2Z, we have a product

(9) ⊙ext : K
0
G(N1)×K∗

G(N2) −→ K∗
G(N1 ×N2)

which is defined as follows [1]. Suppose first that ∗ = 0. For k = 1, 2, let σk : E+
k →

E−
k be a morphism on Nk. Let E± be the vector bundles on N1 × N2 defined as

E+ = E+
1 ⊗ E+

2

⊕
E−

1 ⊗ E−
2 and E− = E−

1 ⊗ E+
2

⊕
E+

1 ⊗ E−
2 . On N1 × N2, the

morphism σ1 ⊙ext σ2 : E+ → E−, is defined by the matrix

σ1 ⊙ext σ2(a, b) =

(
σ1(a)⊗ Id −Id⊗ σ2(b)

∗

Id⊗ σ2(b) σ1(a)
∗ ⊗ Id

)
.

for (a, b) ∈ N1 ×N2. Note that Support(σ1 ⊙ext σ2) = Support(σ1)× Support(σ2).
Hence the product σ1 ⊙ext σ2 is elliptic when each σk is elliptic, and the product
[σ1] ⊙ext [σ2] is defined as the class [σ1 ⊙ext σ2]. When ∗ = 1, we make the same
construction with the spaces N1 and N2 × R.

Two particular cases of this product are noteworthy:
- When N1 = N2 = N , the inner product on K0

G(N) is defined as a ⊙ b =
∆∗(a ⊙ext b), where ∆∗ : K0

G(N × N) → K0
G(N) is the restriction morphism

associated to the diagonal mapping ∆ : N → N ×N .
- The structure of R(G)-module of K∗

G(N2) can be understood as a particular
case of the exterior product, when N1 is reduced to a point.
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Let us recall the multiplicative property of the index for the product of manifolds.
Consider a compact Lie group G2 acting on two manifoldsM1 andM2, and assume
that another compact Lie group G1 acts on M1 commuting with the action of G2.
The external product of complexes on T∗M1 and T∗M2 induces a multiplication
(see (9)):

⊙ext : K
0
G1×G2

(T∗
G1
M1)×K∗

G2
(T∗

G2
M2) −→ K∗

G1×G2
(T∗

G1×G2
(M1 ×M2)).

Since T∗
G1×G2

(M1×M2) 6= T∗
G1
M1×T∗

G2
M2 in general, the product [σ1]⊙ext [σ2]

of transversally elliptic symbols need some care: we have to take representative σ2
that are almost homogeneous (see Lemma 4.9 in [13]).

Theorem 2.6 (Multiplicative property). For any [σ1] ∈ K0
G1×G2

(T∗
G1
M1) and any

[σ2] ∈ K0
G2

(T∗
G2
M2) we have

indexG1×G2

M1×M2
([σ1]⊙ext [σ2]) = indexG1×G2

M1
([σ1]) index

G2

M2
([σ2]).

In the last theorem, the product of indexG1×G2

M1
([σ1]) ∈ R−∞(G1 × G2) and

indexG2

M2
([σ2]) ∈ R−∞(G2) is well defined since indexG1×G2

M1
([σ1]) is smooth relatively

to G2 (see Section 2.2).

Suppose now that G is abelian. For a generalized character Φ ∈ R−∞(G),

we consider its support Supp(Φ) ⊂ Ĝ and the corresponding subset Supp(Φ) ⊂ g∗

formed by the differentials.
Let a ⊂ g a rational2 subspace, and let πa : g∗ → a∗ be the projection. We will be

interested to theK-groupsK∗
G(T

∗
aM) associated to theG-spacesT∗

aM := {(m, ξ) ∈
T∗M | 〈ξ,XM (m)〉 = 0 for all X ∈ a}. We can prove that if σ ∈ K0

G(T
∗
aM), then

its index Φ := IndexMG (σ) ∈ R−∞(G) has the following property : the projection

πa, when restricted to Supp(Φ), is proper (see [8]).
We have another version of Theorem 2.6.

Theorem 2.7 (Multiplicative property - Abelian case). Let M1 and M2 be two
G-manifolds (with G abelian), and let a1, a2 be two rationnal subspaces of g such
that a1 ∩ a2 = {0}. If the infinitesimal action of a1 is trivial on M2, we have an
external product

⊙ext : K
0
G(T

∗
a1
M1)×K∗

G(T
∗
a2
M2) −→ K∗

G(T
∗
a1⊕a2

(M1 ×M2)),

and for any [σk] ∈ K0
G(T

∗
ak
Mk) we have

indexGM1×M2
([σ1]⊙ext [σ2]) = indexGM1

([σ1]) index
G
M2

([σ2]).

Let us briefly explain why the product of the generalized characters Φk :=
indexGMk

([σk]) ∈ R−∞(G) is well-defined. We know that the projection πk : g∗ → a∗k
is proper when restricted to the infinitesimal support Supp(Φk) ⊂ g∗. Since the in-

finitesimal action of a1 is trivial on M2, we know also that the image of Supp(Φ2)

by π1 is finite (see Remark 2.8). These three facts insure that for any χ ∈ Ĝ the
set {(χ1, χ2) ∈ Supp(Φ1) × Supp(Φ2) |χ1 + χ2 = χ} is finite. Hence we can define
the product Φ1 ⊗Φ2 as the restriction of (Φ1,Φ2) ∈ R−∞(G×G) to the diagonal.

2A subspace a ⊂ g is rational when it is the Lie algebra of a closed subgroup.
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Remark 2.8. Consider an action of a compact abelian Lie group G on a manifold
M . Suppose that a torus subgroup H ⊂ G acts trivially on M . Let H ′ be a
closed subgroup of G such that G ≃ H ×H ′. In this case we have an isomorphism
K∗
G(T

∗
GM) ≃ R(H)⊗K∗

H′ (T
∗
H′M) and we see that the index map sends K0

G(T
∗
GM)

into R(H)⊗R−∞(H ′) ≃ 〈R−∞(G/H)〉. See the introduction where the submodule
〈R−∞(G/H)〉 is defined without using a decomposition G ≃ H ×H ′.

2.4. Direct images and Bott symbols. Let π : E → N be a G-equivariant
complex vector bundle. We define the Bott morphism on E

Bott(E) : ∧+π∗E → ∧−π∗E ,

by the relation Bott(E)(n, v) = Cl(v) : ∧+En → ∧−En. Here the Clifford map is
defined after the choice of a G-invariant Hermitian product on E .

Let s : N → E be the 0-section map. Since the support of Bott(E) is the zero
section, we have a push-forward morphism

s! : K
∗
G(N) −→ K∗

G(E)(10)

σ 7−→ Bott(E)⊙ext π
∗(σ)

which is bijective: it is the Bott-Thom isomorphism [15].

Consider now an Euclidean vector space V . Then its complexification VC is
an Hermitian vector space. The cotangent bundle T∗V is identified with VC: we

associate to the covector ξ ∈ T∗
vV the element v + iξ̂ ∈ VC, where ξ ∈ V ∗ → ξ̂ ∈ V

is the identification given by the Euclidean structure.
Then Bott(VC) defines an elliptic symbol on V which is equivariant relative to

the action of the orthogonal group O(V ). Its analytic index is computed in [1]. We
have the equality

(11) index
O(V )
V (Bott(VC)) = 1

in R(O(V )).
Let π : V → M be a G-equivariant real vector bundle over a compact manifold.

We have the fundamental fact

Proposition 2.9. We have a push-forward morphism

(12) s! : K
∗
G(T

∗
GM) −→ K∗

G(T
∗
GV)

such that indexGV ◦ s! = indexGM on K0
G(T

∗
GM).

Proof. We fix a G-invariant euclidean structure on V . Let n = rank V . Let P be
the associated orthogonal frame bundle. We have M = P/O and V = P ×O V
where V = Rn and O is the orthogonal group of V . For the cotangent bundle we
have canonical isomorphisms

T∗
GM ≃ T∗

G×O(P/O) and T∗
GV ≃ T∗

G×O(P × V )/O

which induces isomorphisms between K-groups

Q∗
1 : K∗

G(T
∗
GM) −→ K∗

G×O(T
∗
G×OP ),

Q∗
2 : K∗

G(T
∗
GV) −→ K∗

G×O(T
∗
G×O(P × V )).
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Let us use the multiplicative property (see Section 2.3) with the groups G2 =
G×O,G1 = {1} and the manifolds M1 = V,M2 = P . We have a map

s′! : K
∗
G×O(T

∗
G×OP ) −→ K∗

G×O(T
∗
G×O(P × V ))(13)

σ 7−→ Bott(VC)⊙ext σ

The map s! : K
∗
G(T

∗
GM) −→ K∗

G(T
∗
GV) is defined by the relation s! = Q∗

1 ◦ s
′
! ◦

(Q∗
2)

−1.

Thanks to Theorem 2.6, the relation (11) implies that indexG×O
P×V ◦s′! = indexG×O

P

on K0
G×O(T

∗
G×OP ). Thanks to Theorem 2.5 we have

indexGV (s!(σ)) =
[
indexG×O

P×V (s
′
! ◦ (Q

∗
2)

−1(σ))
]O

=
[
indexG×O

P ((Q∗
2)

−1(σ))
]O

= indexGM (σ).

for any σ ∈ K0
G×O(T

∗
G×OP ). �

We finish this section by considering the case of a G-equivariant embedding
i : Z →֒M between G-manifolds.

Proposition 2.10. We have a push-forward morphism

(14) i! : K
∗
G(T

∗
GZ) −→ K∗

G(T
∗
GM)

such that indexGM ◦ i! = indexGZ on K0
G(T

∗
GZ).

Proof. Let N = TM |Z/TZ be the normal bundle. We know that an open G-
invariant tubular neighborhood U of Z is equivariantly diffeomorphic with N : let
us denote by ϕ : U → N this equivariant diffeomorphism. Let j : U →֒ M be
the inclusion. We consider the morphism s! : K

∗
G(T

∗
GZ) −→ K∗

G(T
∗
GN ) defined

in Proposition 2.9, the isomorphism ϕ∗ : K∗
G(T

∗
GN ) −→ K∗

G(T
∗
GU) and the push-

forward morphism j∗ : K∗
G(T

∗
GU) −→ K∗

G(T
∗
GM). Thanks to Proposition 2.9,

one sees that the composition i! = j∗ ◦ ϕ∗ ◦ s! satisfies indexGM ◦ i! = indexGZ on
K0
G(T

∗
GZ). �

2.5. Restriction : the vector bundle case. Let E → M be a G-equivariant
complex vector bundle. Let us introduce the invariant open subset T∗

G(E \ {0}) of
T∗
GE and its complement T∗

GE|0−section = T∗
GM × E∗. We denote

(15) R : K∗
G(T

∗
GE) −→ K∗

G(T
∗
GM)

the composition of the restriction morphism K∗
G(T

∗
GE) → K∗

G(T
∗
GM×E∗) with the

Bott-Thom isomorphism K∗
G(T

∗
GM × E∗) ≃ K∗

G(T
∗
GM). Note that the morphism

(16) R : K∗
G(T

∗
DE) −→ K∗

G(T
∗
DM)

is also defined when D ⊂ G is a distinguished subgroup.
If S = {v ∈ E | ‖v‖2 = 1} is the sphere bundle, we have E \ {0} ≃ S × R and

then T∗
G(E \ {0}) ≃ T∗

GS ×T∗R. Let i : S →֒ E be the canonical immersion. The
composition of the Bott-Thom isomorphism K∗

G(T
∗
GS) ≃ K∗

G(T
∗
G(E \ {0})) with
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the morphism j∗ : K∗
G(T

∗
G(E \ {0})) → K∗

G(T
∗
GE) correspond to the push-forward

map i! defined in Proposition 2.10. The six term exact sequence (3) becomes

(17) K0
G(T

∗
GS)

i! // K0
G(T

∗
GE)

R // K0
G(T

∗
GM)

δ

��
K1
G(T

∗
GM)

δ

OO

K1
G(T

∗
GE)

R

oo K1
G(T

∗
GS).i!

oo

Let s! : K
∗
G(T

∗
GM) −→ K∗

G(T
∗
GE) be the push-forward morphism associated to

the zero section s :M →֒ E (see Proposition 2.10). We have the fundamental

Proposition 2.11. • The composition R ◦ s! : K∗
G(T

∗
GM) → K∗

G(T
∗
GM) is

the map σ −→ σ ⊗ ∧•E .
• The composition s! ◦ R : K∗

G(T
∗
GE) → K∗

G(T
∗
GE) is defined by σ −→

σ ⊗ ∧•π∗E.
• We have indexGM (R(σ)) = indexGE (σ ⊗ ∧•π∗E) for any σ ∈ K0

G(T
∗
GE).

Proof. The third point is a consequence of second point. Let us check the first two
points.

We use the notations of the proof of proposition 2.9: we have a principal bundle
P → M = P/O and E coincides as a real vector bundle with P ×O E. Since E has
an invariant complex structure, we can consider the frame bundle Q ⊂ P formed
by the unitary basis of E . Here E = R2n = Cn. Let U ⊂ O be the unitary group
of E. Here the map s! and R can be defined with the reduced data (Q,U) through
the maps

s′! : K
∗
G×U (T

∗
G×UQ) −→ K∗

G×U (T
∗
G×U (Q × E))

σ 7−→ Bott(EC)⊙ext σ

and R′ : K∗
G×U (T

∗
G×U (Q × E)) −→ K∗

G×U (T
∗
G×UQ). Since E admits a complex

structure J , the map w ⊕ iv 7→ (w + Jv, w − Jv) is an isomorphism between
EC and the orthogonal sum E ⊕ E. Hence on EC the Bott morphism Cl(w ⊕ iv) :
∧+EC → ∧−EC is equal to the product of the morphisms Cl(w+Jv) : ∧+E → ∧−E
and Cl(w − Jv) : ∧+E → ∧−E. When we restrict the Bott symbol Bott(EC) ∈
K0
U (T

∗E) to the 0-section, we get
(
∧+E

Cl(w)
−→ ∧−E

)
⊙

(
∧+E

Cl(w)
−→ ∧−E

)

which is equal to the class Bott(E) ⊗ ∧•E in K0
U (E). Finally the composition

R′ ◦ s′! : K
∗
G×U (T

∗
G×UQ) → K∗

G×U (T
∗
G×UQ) is equal to the map σ −→ σ ⊗ ∧•E.

We get the first point through the isomorphism K∗
G×U (T

∗
G×UQ) ≃ K∗

G(T
∗
GM).

Let σ ∈ K∗
G×U (T

∗
G×U (Q×E)). For (x, ξ; v, w) ∈ T∗Q×T∗E, the transversally

elliptic symbols

σ(x, ξ; v, w) ⊗ ∧•E

σ(x, ξ; v, w) ⊙ Cl(v)

σ(x, ξ; 0, w) ⊙ Cl(v)

R′(σ)(x, ξ) ⊙ Cl(w) ⊙ Cl(v)

R′(σ)(x, ξ) ⊙ Cl(w + Jv)⊙ (w − Jv)

s′! ◦ R′(σ)(x, ξ; v, w)
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define the same class in K∗
G×U (T

∗
G×U (Q × E)). We have proved that s′! ◦R

′(σ) =

σ⊗∧•E, and we get the second point through the isomorphism K∗
G×U (T

∗
G×UQ) ≃

K∗
G(T

∗
GM). �

2.6. Restriction to a sub-manifold. Let M be a G-manifold and let Z be a
closed G-invariant sub-manifold of M . Let us consider the open subset T∗

G(M \Z)
of T∗

GM . Its complement is the closed subset T∗
GM |Z . Let N be the normal bundle

of Z in M . We have T∗M |Z = T∗Z ×N ∗ and then T∗
GM |Z = T∗

GZ ×N ∗.

We make the following hypothesis : the real vector bundle N ∗ → Z has a
G-equivariant complex structure. Then we can define the map

(18) RZ : K∗
G(T

∗
GM) −→ K∗

G(T
∗
GZ)

as the composition of the restriction K∗
G(T

∗
GM) → K∗(T∗

GM |Z) =
K∗
G(T

∗
GZ ×N ∗) with the Bott-Thom isomorphism K∗

G(T
∗
GZ ×N ∗) → K∗

G(T
∗
GZ).

3. Localization

In this section, β ∈ g denotes a non-zero G-invariant element, and π : E →M is
a G-equivariant hermitian vector bundle such that

(19) Eβ =M.

Remark 3.1. Note that (19) imposes the existence of a G-invariant complex struc-

ture on the fibers of E. We can take3 Jβ := L(β)(−L(β)2)
−1

2 , where L(β) denotes
the linear action on the fibers of E.

The aim of this section is the following

Theorem 3.2. There exists a morphism Sβ : K∗
G(T

∗
GM) −→ K∗

G(T
∗
GE) satisfying

the following properties:

(1) The composition R ◦Sβ is the identity on K∗
G(T

∗
GM).

(2) For any a ∈ K∗
G(T

∗
GM), we have Sβ(a)⊗ ∧•π∗E = s!(a).

(3) For any σ ∈ K0
G(T

∗
GM), we have the following equality

IndexGE (Sβ(σ)) = IndexGM (σ ⊗ [∧•E ]−1
β )

in R−∞(G), where [∧•E ]−1
β is a polarized inverse of ∧•E.

Remark 3.3. The maps R and Sβ depend on the choice of the G-invariant complex
structure on E.

Theorem 3.2 tells us that (17) breaks in an exact sequence

0 → K∗
G(T

∗
GS)

i!−→ K∗
G(T

∗
GE)

R
−→ K∗

G(T
∗
GM) → 0.

Since R ◦Sβ = R ◦S−β the image of the map Sβ −S−β : K∗
G(T

∗
GM) → K∗

G(T
∗
GE)

belongs to the image of the push-forward map i! : K
∗
G(T

∗
GS) → K∗

G(T
∗
GE).

Let us work now with the complex structure Jβ on E . We denote So±β the
corresponding morphism. In Section 3.5.3 we will prove the following

Theorem 3.4. There exists a morphism θβ : K∗
G(T

∗
GM) −→ K∗

G(T
∗
GS) such that

So−β −Soβ = i! ◦ θβ .

3Relatively to a G-invariant Euclidean metric on E, the linear map −L(β)2 is positive definite,
hence one can take its square root.
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3.1. Atiyah-Singer pushed symbols. Let M be a G-manifold with an invari-
ant almost complex structure J . Then the cotangent bundle T∗M is canonically
equipped with a complex structure, still denoted J . The Bott morphism on T∗M
associated to the complex vector bundle (T∗M,J) →M , is called the Thom symbol
of M , and is denoted4 Thom(M,J). Note that the product by the Thom symbol
induces an isomorphism K∗

G(M) ≃ K∗
G(T

∗M).

For any X ∈ g, we denote XM (m) := d
dt |0e

−tX ·m the corresponding vector field
on M . Thanks to an invariant Riemmannian metric on M , we define the 1-form

X̃M (m) = (XM (m),−).

From now on, we take X = β a non-zero G-invariant element. Then the cor-

responding 1-form β̃M is G-invariant, and we define following Atiyah-Singer the
equivariant morphism

Thomβ(M,J)(m, ξ) := Thom(M,J)(m, ξ − β̃M (m)), (ξ,m) ∈ T∗M.

We check easily that

Support (Thomβ(M,J))
⋂

T∗
Tβ
M = {(m, 0); m ∈Mβ}.

where Tβ = exp(Rβ) is the torus generated by β. In particular, we get a class

(20) Thomβ(M,J) ∈ K0
G(T

∗
Tβ
M)

when Mβ is compact.

3.2. Atiyah-Singer pushed symbols : the linear case. Let us consider the
case of a G-Hermitian vector space E such that Eβ = {0}.

Let i! : K
0
G(T

∗
Tβ
S) → K0

G(T
∗
Tβ
E) be the push-forward morphism associated to

the inclusion i : S →֒ E of the sphere of radius one. Let R : K∗
G(T

∗
Tβ
E) → K∗

G({•})

be the restriction morphism. Since K1
G({•}) = 0, the six term exact sequence (17)

becomes

(21) 0 −→ K0
G(T

∗
Tβ
SE)

i!−→ K0
G(T

∗
Tβ
E)

R
−→ R(G).

The pushed Thom symbol on E defines a class Thomβ(E) ∈ K0
G(T

∗
Tβ
E).

Proposition 3.5. • We have R(Thomβ(E)) = 1 in R(G).
• The sequence (21) breaks down: we have a decomposition

K0
G(T

∗
Tβ
E) = K0

G(T
∗
Tβ
SE)⊕ 〈Thomβ(E)〉,

where 〈Thomβ(E)〉 denotes the free R(G)-module generated by Thomβ(E).

Proof. At (x, ξ) ∈ T∗E the map Thomβ(E)(x, ξ) : ∧+E → ∧−E is equal to

Cl(ξ̂ − βE(x)), where ξ ∈ E∗ 7→ ξ̂ ∈ E is the identification given by the Eu-
clidean structure. We see that the restriction of Thomβ(E) to T∗

Tβ
E|0 = E∗ is

equal to Bott(E∗) and then the first point follows. The second point is a direct
consequence of the first one. �

4When the almost complex structure is understood, we will use the notation Thom(M).
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Let T̂β the group of characters of the torus Tβ . The complex G-module E
decomposes into weight spacesE =

∑
α∈T̂β

Eα where each Eα = {v ∈ E | t·v = tαv}

are G-submodules. We define the β-positive and negative part of E,

E+,β =
∑

α∈T̂β

〈α,β〉>0

Eα, E−,β =
∑

α∈T̂β

〈α,β〉<0

Eα

and the β-polarized module |E|β = E+,β ⊕ E−,β. It is important to note that the
complex G-module |E|β is isomorphic to5 (E, Jβ), and so it does no depend on the
initial complex structure of E.

Let R̂(G) be the R(G)-submodule of R−∞(G) defined by the torus Tβ (see

Definition 2.2). Since all the T̂β-weights in |E|β satisfy the condition 〈α, β〉 > 0, the
symmetric space S•(|E|β) decomposes as a sum

∑
µ∈T̂β

S•(|E|β)µ with S•(|E|β)µ ∈

R(G)µ. Hence S
•(|E|β) defines an element of R̂(G).

The following computation is done in [1][Lecture 5] (see also [12][Section 5.1]).

Proposition 3.6. We have the following equality in R−∞(G) :

(22) IndexGE(Thomβ(E)) = (−1)dimC E
+,β

det(E+,β)⊗ S•(|E|β),

where det(E+,β) is a character of G.

Example 3.7. Let V = C with the canonical action of G = S1. Let β = ±1 in
Lie(S1) = R. The class Thom±1(C) ∈ K0

S1(TS1C) are represented by the symbols

Cl(ξ ± ix) : C −→ C, (x, ξ) ∈ T∗C ≃ C2.

We have IndexS
1

C (Cl(ξ + ix)) = −
∑
k≥1 t

k, and IndexS
1

C (Cl(ξ − ix)) =
∑

k≤0 t
k in

R−∞(S1).

Remark 3.8. Let Jk, k = 0, 1 be two invariants complex structures on E, and
let Thomβ(E, Jk) be the corresponding pushed symbols. There exists an invertible
element Φ ∈ R(G) such that

IndexGE(Thomβ(E, J0)) = Φ · IndexGE(Thomβ(E, J1)).

3.3. Pushed symbols : functoriality. Suppose now that we have a decomposi-
tion V =W ⊕ E of G-complex vector spaces such that V β = {0}.

Proposition 3.9. In K0
G(T

∗
GV ), we have6 the equalities

Thomβ(V )⊗ ∧•
CV = Bott(VC),

Thomβ(V )⊗ ∧•
CE = Thomβ(W )⊙ Bott(EC).

Proof. Note that the first relation is a particular case of the second one whenW = 0.
A covector (x, ξ) ∈ T∗V decomposes in x = xW ⊕ xE , and ξ = ξW ⊕ ξE . The

morphism σ := Thomβ(W )⊙ Bott(EC) defines at (x, ξ) the map

Cl(ξ̂W − γW (xW ))⊙ Cl(xE + iξ̂E)

from (∧W ⊗ ∧EC)
+ to (∧W ⊗ ∧EC)

−.

5With Jβ = L(β)(−L(β)2)−1/2.
6These equalities holds also in K

0

G(T∗

Tβ
V ).
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We have an isomorphism of complex G-modules : EC ≃ E × E. We have two
classes Bott(E) and Bott(E) in K0

G(E) and Bott(EC) = Bott(E) ⊙ Bott(E). At

the level of endomorphism on ∧EC ≃ ∧E ⊗ ∧E, one has

(23) Cl(xE + iξE) = Cl(ξE − JExE)⊙ Cl(ξE + JExE)

where JE is the complex structure on E. We consider the family of maps σs(x, ξ) :
(∧W ⊗ ∧E ⊗ ∧E)+ −→ (∧W ⊗ ∧E ⊗ ∧E)− defined by
Cl(ξW −βW (xW ))⊙Cl(ξE − θs(xE))⊙Cl(ξE +JExE) where θs = (1− s)JE+ sβE.
One checks easily that Support(σs)

⋂
TGV = {xW = xE = ξW = ξE = 0} for

any s ∈ [0, 1]. Hence σ = σ0 is equal to σ1 in K0(T∗
GE). Finally we check that

σ1(x, ξ) = Cl(ξ − βV (x))⊙ Cl(ξE + JExE) can be deformed in

Cl(ξ − βV (x)) ⊙ Cl(0) = Thomβ(V )⊗ ∧•
CE,

without changing its class in K0
G(T

∗
GV ). �

Since IndexGV (Bott(VC)) = 1, the first relation of Proposition 3.9 gives that

(24) IndexGV (Thomβ(V )) · ∧•V = 1

in R−∞(G).

Definition 3.10. Let V be a complex G-vector space such that V β = {0}. We

denote [∧•V ]−1
β ∈ R−∞(G) the element (−1)dimC V

−,β

det(V −,β)⊗ S•(|V |β).

We come back to the morphism

(25) R : K0
G(T

∗
GV ) −→ K0

G(T
∗
GW )

which is the composition of the restriction morphismK0
G(T

∗
GV ) → K0

G(T
∗
GW×E∗)

with the Thom isomorphism K0
G(T

∗
GW ×E∗) ≃ K0

G(T
∗
GW ). We are interested by

the image of the transversally elliptic symbols Thomβ(V ) ∈ K0
G(T

∗
GV ) by the

morphism R.

Proposition 3.11. We have the following equality in K0
G(T

∗
GW )

R (Thomβ(V )) = Thomβ(W ).

Proof. The class Thomβ(V ) are defined by the symbols Cl(ξ−β̃(x)) : ∧+V → ∧−V ,
for (x, ξ) ∈ TV . Relatively to the decomposition V =W⊕E, we write x = xW⊕xE
and ξ = ξW ⊕ ξE . If we restrict Cl(ξ − β̃(x)) to T∗V |W = T∗W × E∗ we get

Cl(ξW − β̃(xW ))⊙Cl(ξE) acting from (∧W ⊗ ∧E)+ to (∧W ⊗ ∧E)−. By definition
of the map R we find that R (Thomβ(V )) = Thomβ(W ). �

We consider now the case of a product of pushed symbols. Suppose that we have
an invariant decomposition E = E1 ⊕ E2 and invariant elements β1, β2 ∈ g such
that

• Eβ1

1 = Eβ2

2 = {0},
• β2 acts trivially on E1.

We consider then βt = tβ1 + β2 with t > 0. We have V β
t

1 = {0} for any t > 0

and V β
t

2 = {0} if t > 0 is small enough.
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Lemma 3.12. Let J = J1 ⊕ J2 be an invariant complex structure on V = V1 ⊕V2.
Then if t > 0 is small enough, we have the following equality in K0

G(T
∗
GV ):

Thomβt(V, J) = Thomβ1
(V1, J1)⊙ Thomβ2

(V2, J2).

Proof. Both symbols are maps from (∧V1 ⊗ ∧V2)+ into (∧V1 ⊗ ∧V2)−. We write
a tangent vector (ξ, x) ∈ TV as ξ = ξ1 ⊕ ξ2 and x = x1 ⊕ x2. The symbol
Thomβt(V, J) is equal to

Cl(ξ1 + β̃t(x1))⊙ Cl(ξ2 + β̃t(x2)) = Cl(ξ1 + tβ̃1(x1))⊙ Cl(ξ2 + (tβ̃1 + β̃2)(x2))

Note that β̃2 : V2 → V2 is invertible, so there exist c > 0 such that tβ̃1 + β̃2
is invertible for any t ∈ [0, c]. Hence Thomβt(V, J) is transversally elliptic for
0 < t ≤ c. We consider the deformation

σs = Cl(ξ1 + (st+ (1− s))β̃1(x1))⊙ Cl(ξ2 + (stβ̃1 + β̃2)(x2))

for s ∈ [0, 1]. We check easily that Support(σs)∩TGV = {(0, 0)} for any s ∈ [0, 1].
Hence σ1 = Thomβt(V, J) and σ0 = Thomβ1

(V1, J1) ⊙ Thomβ2
(V2, J2) defines the

same class in K0
G(T

∗
GV ). �

3.4. The map Sβ. We come back to the situation of a G-equivariant complex
vector bundle π : E → M such that Eβ = M . Since the torus Tβ acts trivially
on M , we have a decomposition E = ⊕α∈XEα where X is a finite set of character
of Tβ , and Eα is the complex sub-bundle of E where Tβ acts trough the character
t 7→ tα. Definition 3.10 can be extended as follows. We denote

(26) [∧•E ]−1
β = (−1)dimC E−,β

det(E−,β)⊗ S•(|E|β).

where E±,β =
∑

±〈α,β〉>0 Eα and |E|β = E+,β ⊕E−,β. Note that [∧•E ]−1
β belongs to

K̂0
G(M) (see Definition 2.2).
Let nα be the complex rank of Eα, and let E be the following Tβ-complex vector

space

E =
⊕

α∈X

(Cα)nα ,

which is equipped with the standard Hermitian structure.
Let U be the unitary group of E, and let U ′ be the subgroup of elements that

commute with the action of Tβ : we have U ′ ≃ Πα∈XU(Cnα). Let P ′ → M be
the U ′-principal bundle defined as follows: for m ∈ M , the fiber P ′

m is defined as
the set of maps f : E → Em preserving the Hermitian structures and which are
Tβ-equivariant. By definition, the bundle P ′ → M is G-equivariant. We consider
the following groups action:

• G× U ′ acts on P ′,
• U ′ × Tβ acts on E,
• Tβ and G acts trivially respectively on P ′ and on E.

Let us use the multiplicative property (see Section 2.3) with the groups G2 =
G× U ′, G1 = Tβ and the manifolds M1 = E,M2 = P ′. We have a product

K0
Tβ×G×U ′(T∗

Tβ
E)×K∗

G×U ′(T∗
G×U ′P ′) −→ K∗

Tβ×G×U ′(T∗
Tβ×G×U ′(P ′ × E)),
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and the Thom class Thomβ(E) ∈ K0
Tβ×U ′(T

∗
Tβ
E) induces the map

S′′
β : K∗

G×U ′(T∗
G×U ′P ) −→ K∗

Tβ×G×U ′(T∗
Tβ×G×U ′(P ′ × E))(27)

σ 7−→ Thomβ(E)⊙ext σ

After taking the quotient by U ′, we get a map

S′
β : K∗

G(T
∗
GM) −→ K∗

Tβ×G(T
∗
Tβ×GE)

Finally, since T∗
Tβ×G

E = T∗
GE , we can compose S′

β with the forgetful map

K∗
Tβ×G

(T∗
GE) → K∗

G(T
∗
GE) to get

Sβ : K∗
G(T

∗
GM) −→ K∗

G(T
∗
GE).

Now we see that in Theorem 3.2 :

• The relation R ◦Sβ = Id is induced by the relation R(Thomβ(E)) = 1,
where R : K0

Tβ×U ′(T
∗
Tβ
E) → R(Tβ × U ′) (see Proposition 3.5).

• The relation Sβ(a)⊗∧•π∗E = s!(a) is induced by the relation Thomβ(E)⊗
∧•E = Bott(EC) proved in Proposition 3.9.

Let us prove the last point of Theorem 3.2. Let σ ∈ K0
G(T

∗
GM) and let σ̃ be the

corresponding element in K0
G×U ′(T

∗
G×U ′P ). The index IndexGE (Sβ(σ)) ∈ R−∞(G)

is equal to the restriction of Index
G×Tβ

E (S′
β(σ)) ∈ R−∞(G × T) at t = 1 ∈ Tβ (see

Section 2.2). By definition we have the following equalities in R−∞(G× Tβ)

Index
G×Tβ

E (S′
β(σ)) =

[
Index

U ′×G×Tβ

P ′×E (S′′
β(σ̃))

]U ′

=
[
IndexU

′×G
P ′ (σ̃) · Index

U ′×Tβ

E (Thomβ(E))
]U ′

=
∑

µ∈T̂β

IndexGM (σ ⊗Wµ)⊗ Cµ

where Index
U ′×Tβ

E (Thomβ(E)) = [∧•E]−1
β =

∑
µ∈T̂

Wµ⊗Cµ with Wµ ∈ R(U ′). We

denote Wµ = P ′ ×U ′ Wµ the corresponding element in K0
G(M)µ. Finally we get

IndexGE (Sβ(σ)) =
∑

µ∈T̂β

IndexGM (σ ⊗Wµ)

= IndexGM

(
σ ⊗ [∧•E ]−1

β

)
,

where [∧•E ]−1
β =

∑
µ∈T̂

Wµ ∈ K̂0
G(M).

3.5. The map θβ. We keep the same notation than the previous section: π :
E → M is a G-equivariant complex vector bundle such that Eβ = M , but here
we work with the complex structure Jβ on E . Since the map So±β are defined

through the pushed Thom classes Thomβ(E) ∈ K0
G(T

∗
Tβ
E) (see (27)), we have

to study the class Thom−β(E) − Thomβ(E) in order to understand how the map
So−β −Soβ : K∗

G(T
∗
GM) → K∗

G(T
∗
GE) factorizes through the push-forward morphism

i! : K
∗
G(T

∗
GS) → K∗

G(T
∗
GE).
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3.5.1. The tangential Cauchy Riemann operator. Let E be a Euclidean G-module
such that Eβ = {0}. We equipped E with the invariant complex structure Jβ (see
Remark 3.1). Let S ⊂ E be the sphere of radius one. Let us defined the tangential
Cauchy Riemann operator on S. For y ∈ S, we have

TyS = {ξ | (ξ, y) = 0}

= Hy ⊕ RJβy,

where Hy = (Cy)⊥ is a complex invariant subspace of (E, Jβ). Let H → S be the
corresponding Hermitian vector bundle. For ξ ∈ TyS, we denote ξ′ its component
in Hy. Since (βE(y), Jβy) 6= 0 for y 6= 0, we see that for ξ ∈ TGS|y, we have
ξ′ = 0 ⇔ ξ = 0.

Definition 3.13. The Cauchy Riemann symbol7 σE
∂

: ∧+H → ∧−H is defined by

σE
∂
(y, ξ) = Cl(ξ′) : ∧+Hy → ∧−Hy. It defines8 a class σE

∂
∈ K0

G(T
∗
GS).

The Thom isomorphism tells us that K0
G(T

∗
GS) ≃ K0

G(T
∗
G(E \ {0})) and we

know that i! : K
0
G(T

∗
GS) −→ K0

G(T
∗
GE) is injective. Hence, it will be convenient

to use the same notations for σE
∂

and i!(σ
E
∂
) and to consider them as a class in

K0
G(T

∗
G(E \ {0})) or in K0

G(T
∗
GE).

Example 3.14. Consider the Cauchy Riemann symbol σ
Cχ

∂
∈ K0

G(T
∗
GCχ) associ-

ated to the one dimensional representation Cχ of G. We check that σ
Cχ

∂
is repre-

sented by the map ρ : T∗Cχ → C defined by: ρ(w, z) = ℜ(wz̄) + ı(‖z‖ − 1).

We come back to the setting of Section 3.1. We have an exact sequence 0 →

K∗
G(T

∗
Tβ
S)

i!−→ K∗
G(T

∗
Tβ
E)

R
−→ R(G) → 0, and we know that R(Thom±β(E)) = 1.

Then Thomβ(E)− Thom−β(E) belongs to ker(R) = Im(i!).
The following result is due to Atiyah-Singer when G is the circle group (see

[1][Lemma 6.3]). The proof in the general case is given in Appendix B.

Proposition 3.15. Let E be a G-module equipped with the invariant complex struc-
ture Jβ. We have the following equality

Thom−β(E)− Thomβ(E) = i!(σ
E
∂
).

in K0
G(T

∗
GE).

3.5.2. Functoriality. Suppose that V =W⊕E withW β = Eβ = {0}. We equipped
V,W,E by the invariant complex structures defined by β. Let σV

∂
∈ K0

G(T
∗
G(V \

{0})), σW
∂

∈ K0
G(T

∗
G(W \ {0})) be the corresponding Cauchy Riemann classes. We

have a natural product

K0
G(T

∗
G(W \ {0}))×K0

G(T
∗E) −→ K0

G(T
∗
G(V \ {0})).

and a restriction morphism R : K0
G(T

∗
GV ) −→ K0

G(T
∗
GW ) (see (25)).

Proposition 3.16. We have

• σW,β
∂

⊗ Bott(EC) = σV,β
∂

⊗ ∧•E in K0
G(T

∗
G(V \ {0})),

• R(σV,β
∂

) = σW,β
∂

in K0
G(T

∗
GW ).

7Here we use an identification T
∗S ≃ TS given by the Euclidean structure.

8Note that σE
∂

defines also a class in K
0

G(T∗

Tβ
S).
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Proof. These are direct consequences of Proposition 3.15. For the first point, we
use it together with Proposition 3.9, and for the second one we use it together with
Proposition 3.11. �

The element σV,β
∂

belongs to the subspace K0
G(T

∗
G(V \ {0})) →֒ K0

G(T
∗
GV ), and

the restriction map R sends K0
G(T

∗
G(V \ {0})) into K0

G(T
∗
G(W \ {0})) (see remark

5.5). We can precise the last statement of Proposition 3.16, by saying that the

equality R(σV,β
∂

) = σW,β
∂

holds in K0
G(T

∗
G(W \ {0})).

3.5.3. Definition of the map θβ. We come back to the setting of Section 3.4. The
complex vector bundle E → M corresponds to P ′ ×U ′ E → P ′/U ′, and the sphere
bundle is S = P ′ ×U ′ SE .

Let us use the multiplicative property (see Section 2.3) with the groups G2 =
G× U ′, G1 = Tβ and the manifolds M1 = SE ,M2 = P ′. Thanks to the product

K0
Tβ×G×U ′(T∗

Tβ
SE)×K∗

G×U ′(T∗
G×U ′P ′) −→ K∗

Tβ×G×U ′(T∗
Tβ×G×U ′(P ′ × SE))

we can define

θ′′β : K∗
G×U ′(T∗

G×U ′P ′) −→ K∗
Tβ×G×U ′(T∗

Tβ×G×U ′(P ′ × SE))(28)

σ 7−→ σE,β
∂

⊙ext σ.

After taking the quotient by U ′, we get a map

θ′β : K∗
G(T

∗
GM) −→ K∗

Tβ×G(T
∗
Tβ×GS)

Finally, since T∗
Tβ×GS = T∗

GS, we can compose θ′β with the forgetful map

K∗
Tβ×G

(T∗
GS) → K∗

G(T
∗
GS) to get θβ : K∗

G(T
∗
GM) −→ K∗

G(T
∗
GS).

The identity Thom−β(E)−Thomβ(E) = i!(σ
E,β

∂
) shows that we have a commu-

tative diagram

K∗
G×U ′(T

∗
G×U ′P ′)

θ′′β //

S
′′
−β −S

′′
β ++WWWW

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

K∗
Tβ×G×U ′(T

∗
Tβ×G×U ′(P ′ × SE)

i!

��
K∗

Tβ×G×U ′(T
∗
Tβ×G×U ′(P ′ × E)) .

After taking the quotient by U ′, we get the commutative diagram

K∗
G(T

∗
GM)

θβ //

S
o
−β −S

o
β ))TTT

T

T

T

T

T

T

T

T

T

T

T

T

K∗
G(T

∗
GS)

i!

��
K∗
G(T

∗
GE) .

which is the content of Theorem 3.4.

3.6. Restriction to a fixed point sub-manifold. Let M be a G-manifold and
let β ∈ g be a G-invariant element. Let Z be a connected component of the fixed
point set Mβ. Note that β defines a complex structure Jβ on the normal bundle of
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Z in M . Following Section 2.6 we have a restriction morphism RZ that fits in the
six term exact sequence

K0
G(T

∗
G(M \ Z))

j∗ // K0
G(T

∗
GM)

RZ // K0
G(T

∗
GZ)

δ

��
K1
G(T

∗
GZ)

δ

OO

K1
G(T

∗
GM)

RZ

oo K1
G(T

∗
G(M \ Z)).

j∗
oo

Proposition 3.17. • There exists a morphism Sβ,Z : K∗
G(T

∗
GZ) → K∗

G(T
∗
GM)

such that RZ ◦Sβ,Z is the identity on K∗
G(T

∗
GZ).

• We have an isomorphism of R(G)-modules :

K∗
G(T

∗
GM) ≃ K∗

G(T
∗
GZ)⊕K∗

G(T
∗
G(M \ Z)).

Proof. Let N be the normal bundle of Z inM . Let U be an invariant tubular neigh-
borhood of Z, which is small enough so that we have an equivariant diffeomorphism
φ : U → N which is the identity on Z. Let Sβ,N : K∗

G(T
∗
GZ) → K∗

G(T
∗
GN ) the map

that we have constructed in Section 3.4. Let j∗ : K∗
G(T

∗
GU) → K∗

G(T
∗
GM) be the

push-forward map associated to the inclusion j : U →֒ M . Let φ∗ :: K∗
G(T

∗
GN ) →

K∗
G(T

∗
GU) be the isomorphism associated to φ. We can consider the composition

Sβ,Z := j∗ ◦ φ
∗ ◦ Sβ,N ,

and we leave to the reader the verification that RZ ◦Sβ,Z = Id. The last point is
a direct consequence of the first one. �

4. Decomposition of K∗
G(T

∗
GM) when G is abelian

In this section G denotes a compact abelian Lie group, with Lie algebra g. Let
M be a (connected) manifold equipped with an action of G. For any m ∈ M , we
denote gm ⊂ g its infinitesimal stabilizer.

Let ∆G(M) be the set formed by the infinitesimal stabilizer of points in M .
During this section, we suppose that ∆G(M) is finite: it is the case ifM is compact
or when M is embedded equivariantly in a G-module. We have a partition

M =
⊔

h∈∆G(M)

Mh

where Mh := {m ∈ M | h = gm} is an invariant open subset of the smooth sub-
manifold Mh := {m ∈M | h ⊂ gm}.

On the other hand, we consider for 0 ≤ k ≤ s = dimG the closed subset

M≤k ⊂M

formed by the points m ∈M such that dim(G ·m) = codim(gm) ≤ k. We have

M≤k =
⊔

codimh≤k

Mh =
⋃

codimh≤k

Mh

Let M=k =M≤k \M≤k−1 and M>k =M \M≤k−1. We note that

M=k =
⊔

codimh=k

Mh
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Let so be the maximal dimension of the G-orbit inM . We will use the increasing
sequence of invariant open subsets

M>so−1 ⊂ · · · ⊂M>1 ⊂M>0 ⊂M.

HereM>0 =M \Mg, andM>so−1 =Mgen is the dense open subset formed by the
G-orbits of maximal dimension. Note also that Mgen corresponds to Mhmin where
hmin is the minimal stabilizer.

Let us consider the related sequences of open subspaces

T∗
GM

>so−1 ⊂ · · · ⊂ T∗
GM

>1 ⊂ T∗
GM

>0 ⊂ T∗
GM.

At level of K-theory the inclusion jk :M>k →֒M>k−1 gives rise to the map

(jk)∗ : K∗
G(TGM

>k) −→ K∗
G(T

∗
GM

>k−1).

Let 0 ≤ k ≤ so − 1. We have the decomposition

T∗
GM

>k−1 = TGM
>k

⊔
T∗
GM

>k−1|M=k

= T∗
GM

>k
⊔ ⊔

codimh=k

T∗
GM

>k−1|Mh

= T∗
GM

>k
⊔ ⊔

codimh=k

T∗
GMh ×N ∗

h

where Nh is the normal bundle of Mh in M . Note thatMh is a closed sub-manifold
of the open subset M>k−1, when codimh = k.

Lemma 4.1. Let h ∈ ∆G(M) with codimh = k. There exists γh ∈ h so that Mh is
equal to the fixed point set (M>k−1)γh :=

{
m ∈M>k−1 | γh ∈ gm

}
. The element

γh defines then a complex structure Jγh on the normal bundle Nh.

Proof. Let H be the closed connected subgroup of G with Lie algebra h. Let γh ∈ h

generic so that the closure of {exp(tγh), t ∈ R} is equal to H . Then for any m ∈M ,
γh ∈ gm ⇔ h ⊂ gm. Then
{
m ∈M>k−1 | γh ∈ gm

}
=

{
m ∈M>k−1 | h ⊂ gm

}
= {m ∈M | h = gm} =Mh.

�

Thanks to Lemma 4.1, we can exploit Section 3.6. For any h ∈ ∆G(M) of
codimension k, we have a restriction morphism

(29) Rh : K∗
G(T

∗
GM

>k−1) −→ K∗
G(T

∗
GMh)

and a section

Sh := Sγh,Mh
: K∗

G(T
∗
GMh) −→ K∗

G(T
∗
GM

>k−1)

such that Rh ◦Sh is the identity on K∗
G(T

∗
GMh).

We have also a long exact sequence

K0
G(T

∗
GM

>k)
(jk)∗ // K0(T∗

GM
>k−1)

Rk // ⊕
codimh=kK

0
G(T

∗
GMh)

δ

��⊕
codimh=kK

1
G(T

∗
GMh)

δ

OO

K1
G(T

∗
GM

>k−1)
Rk

oo K1
G(T

∗
GM

>k),
(jk)∗

oo
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whereRk = ⊕codimh=kRh. We define Sk : ⊕codimh=kK
∗
G(T

∗
GMh) −→ K∗

G(T
∗
GM

>k−1)
by

Sk(⊕codimh=kσh) =
∑

codimh=k

Sh(σh).

Lemma 4.2. Let a, b ∈ ∆G(M).

• We have Ra ◦Sa = Id in K∗
G(T

∗
GMa).

• We have Ra ◦Sb = 0 if a 6= b.
• The map Rk ◦Sk is the identity on ⊕codimh=kK

∗
G(T

∗
GMh).

Proof. The last point is a direct consequence of the firsts one. The first point
is known, and the second assertion is due to the fact that Ma ∩ Mb = ∅ when
a 6= b. �

The previous lemma shows that the map

(30) ((jk)∗,Sk) : K
∗(T∗

GM
>k)×⊕codimh=kK

∗
G(T

∗
GMh) −→ K∗(T∗

GM
>k−1)

is an isomorphism of R(G)-module. In particular the maps (jk)∗ are injective.

Remark 4.3. If we consider the open subset j :Mgen →֒M formed by the G-orbits
of maximal dimension, we know then that

j∗ : K∗
G(T

∗
GM

gen) −→ K∗
G(T

∗
GM)

is injective, since j is the composition of all the jk.

The isomorphisms (30) all together give the following Theorem (which was given
in a less precise version in [1][Theorem 8.4]).

Theorem 4.4 (Atiyah-Singer). Let γ := {γh, h ∈ ∆G(M)} such that Mh = {m ∈
M>codimh−1 | γh ∈ gm}. We have an isomorphism

(31) Φγ :
⊕

h∈∆G(M)

K∗
G(T

∗
GMh) −→ K∗

G(T
∗
GM)

of R(G)-module such that

IndexGM (Φγ(⊕hσh)) =
∑

h∈∆

IndexGMh
(σh ⊗ S•(Nh))

for any ⊕hσh ∈
⊕

h∈∆K0
G(T

∗
GMh). Here Nh is the normal bundle of Mh in M

which is equipped with the complex structure defined by −γh

For any h ∈ ∆G(M) we denote H ⊂ G the closed connected subgroup with Lie
algebra h. Let us denote H ′ ⊂ G be a Lie subgroup such that G ≃ H ×H ′. Then
the R(G)-module K∗

G(T
∗
GMh) is equal to

K∗
H′(T∗

H′Mh)⊗R(H).

Thus Theorem 4.4 says that K∗
G(T

∗
GM) is isomorphic to

⊕

h∈∆G(M)

K∗
H′ (T∗

H′Mh)⊗R(H).

Note that the action ofH ′ onMh has finite stabilizers, hence the groupK∗
H′(T

∗
H′Mh)

is equal to K∗
orb(T

∗Mh), where Mh =Mh/H
′ is an orbifold.
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5. The linear case

In this section, the group G is a compact abelian Lie group. Let V be a
real G-module. Let V gen be the open subset formed by the G-orbits of maximal
dimension. We equip V/V g with an invariant complex structure. For any γ ∈ g

such that V γ = V g we associate the class

Thomγ(V/V
g)⊙ Bott(V g) ∈ K0

G(T
∗
GV ).

Let Hmin ⊂ G be the minimal stabilizer for the G-action on V . Let s :=
dimG− dimHmin.

Definition 5.1. A (G, V )-flag ϕ corresponds to a decomposition V/V g = V ϕ1 ⊕
· · · ⊕ V ϕs in complex G-subspaces, and a decomposition g = hmin ⊕ Rβϕ1 ⊕ · · ·Rβϕs
such that for any 1 ≤ k ≤ s

c1 βϕk acts trivially on V ϕj when j < k,

c2 βϕk acts bijectively9 on V ϕk .

We can associate to the data ϕ above , the flags V g = V [0],ϕ ⊂ V [1],ϕ ⊂ . . . ⊂
V [s],ϕ = V and hmin = g[0],ϕ ⊂ g[1],ϕ ⊂ . . . ⊂ g[s],ϕ = g where

V [j],ϕ = V g ⊕
∑

1≤k≤j

V ϕk , and g[j],ϕ = hmin ⊕ Rβϕj+1 ⊕ · · · ⊕ Rβϕs .

We see that conditions c1 and c2 are equivalent to saying that the generic infini-
tesimal stabilizer of the G-action on the vector space V [j],ϕ is equal to g[j],ϕ.

Thanks to c2, the Cauchy-Riemann symbol

σϕ,k
∂

∈ K0
G(T

∗
Rβk

(V ϕk \ {0})),

is well defined. Conditions c1 and c2 tell us also that (V ϕ1 \ {0})× · · · × (V ϕs \ {0})
is an open subset of (V/V g)gen, and thanks to Theorem 2.7 we know that the
following product

σ
V/V g,ϕ

∂
:= σϕ,1

∂
⊙ · · · ⊙ σϕ,s

∂

is a well defined class in K0
G(T

∗
G(V/V

g)gen).
We need the following submodule of R−∞(G) defined by the relations

Φ ∈ FG(V ) ⇐⇒ ∧•V/V h ⊗ Φ ∈ 〈R−∞(G/H)〉 , ∀h ∈ ∆G(V ),

Φ ∈ DMG(V ) ⇐⇒ ∧•V/V h ⊗ Φ = 0, ∀h 6= hmin and Φ ∈ 〈R−∞(G/Hmin)〉.

The purpose of this section is to give a detailled proof of the following theorem.

Theorem 5.2. Let G a compact abelian Lie group and let V be a real G-module.
We have

a. K1
G(T

∗
GV ) = K1

G(T
∗
GV

gen) = 0

b. The index map IndexGV : K0
G(T

∗
GV ) −→ R−∞(G) is one to one.

c. The elements Bott(V g
C
)⊙Thomγ(V/V

g) generate K0
G(T

∗
GV ), when γ runs

over the elements such that V γ = V g.
d. The elements Bott(V g

C
)⊙σ

V/V g,ϕ

∂
generate K0

G(T
∗
GV

gen), when ϕ runs over

the (G, V )-flag.

e. The image K∗
G(T

∗
GV ) by IndexGV is equal to FG(V ).

f. The image K∗
G(T

∗
GV

gen) by IndexGV is equal to DMG(V ).

9β acts bijectively on a vector space V if V β = {0}.
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Hence b., e. and f. say that the R(G)-modules K∗
G(T

∗
GV ) and K∗

G(T
∗
GV

gen)
are respectively isomorphic to FG(V ) and DMG(V ).

Note that, when dimV/V g = 0, we have T∗
GV = T∗

GV
gen = T∗V and all the

points are direct consequences of the Bott isomorphism. Point d. is proved in [1],
and points a., e. and f. are due to de Concini-Procesi-Vergne [9, 10]. Point b. is
proved in [1] for the circle group, and in [9, 10] for the general case. In [9, 10], c.
is obtained as a consequence of d. together with the decomposition formula (31).

We will give a proof by induction on dimV/V g that is based on the work of
[9, 10]. But here our treatment differs from those of [1, 9, 10], since the proof of all
points of Theorem 5.2 follows directly by a careful analysis of the exact sequence

0 −→ K0
Gχ(T

∗
GχW )

J
−→ K0

G(T
∗
GV )

R
−→ K0

G(T
∗
GW ) −→ 0.

associated to an invariant decomposition V = Cχ ⊕W .

5.1. Restriction to a subspace. Suppose that V 6= V g. Then V contains a
complex representation Cχ attached to a surjective character χ : G → S1. Let
Gχ = ker(χ) with Lie algebra gχ. The differential of χ is iχ̄ with χ̄ ∈ g∗. Here
Cχ ∩ V g = {0} since χ̄ 6= 0.

Let us consider an invariant decomposition V =W ⊕ Cχ.

Remark 5.3. We check that dimW/W g = dim V/V g − 1, and dimW/W gχ ≤
dimV/V g − 1.

We look at the open subset j : T∗
G(W × Cχ \ {0}) →֒ T∗

GV . Its complement is
the closed subset T∗

GV |W×{0} ≃ T∗
GW ×Cχ. We have the six term exact sequence

(32)

K0
G(T

∗
G(W × Cχ \ {0}))

j∗ // K0
G(T

∗
GV )

r // K0
G(T

∗
GW × Cχ)

δ

��
K1
G(T

∗
GW × Cχ)

δ

OO

K1
G(T

∗
GV )r

oo K1
G(T

∗
G(W × Cχ \ {0})).

j∗
oo

Let R : K∗
G(T

∗
GV ) → K∗

G(T
∗
GW ) be the composition of the map r with the Bott

isomorphism K∗
G(T

∗
GW × Cχ) → K∗

G(T
∗
GW ). Note that R depends of the choice

of the canonical complex structure on Cχ.
The open subset Cχ \ {0} with the G-action is isomorphic to G/Gχ ×R. Hence

T∗
G(W × Cχ \ {0}) ≃ T∗

G(W ×G/Gχ)×TR. Since the G-manifold W ×G/Gχ is
isomorphic to G×Gχ W , we get finally

K∗
G(T

∗
G(W × Cχ \ {0})) = K∗

G(T
∗
G(W ×G/Gχ)×TR)

≃ K∗
G(T

∗
G(W ×G/Gχ))

≃ K∗
G(T

∗
G(G×Gχ W ))

≃ K∗
Gχ(T

∗
GχW ).

Let J : K∗
Gχ

(T∗
GχW ) → K∗

G(T
∗
GV ) be the composition of the map j∗ with the

previous isomorphism K∗
Gχ

(T∗
GχW ) ≃ K∗

G(T
∗
G(W ×Cχ \ {0})). The sequence (32)
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becomes

(33) K0
Gχ

(T∗
GχW )

J // K0
G(T

∗
GV )

R // K0
G(T

∗
GW )

δ

��
K1
G(T

∗
GW )

δ

OO

K1
G(T

∗
GV )

R

oo K1
Gχ

(T∗
GχW ).

J

oo

The following description of the morphism J will be used in the next sections.
Let β ∈ g such that g = gχ ⊕ Rβ. Since the action of Gχ is trivial on Cχ, the
product

K0
G(T

∗
GχW )×K0

G(T
∗
RβCχ)

⊙
−→ K0

G(T
∗
GV )

is well defined. Let σ
Cχ

∂
∈ K0

G(T
∗
RβCχ) be the Cauchy-Riemann class.

Lemma 5.4. Let [σ] ∈ K0
Gχ

(T∗
GχW ) be a class that is represented by a G-equivariant,

Gχ-transversally elliptic morphism σ. Then the product σ⊙ σ
Cχ

∂
is G-transversally

elliptic and J([σ]) =
[
σ ⊙ σ

Cχ

∂

]
in K0

G(T
∗
GV ).

Proof. The character χ defines the inclusion i : G/Gχ → Cχ, g 7→ χ(g). Let
i! : K

0
G(T

∗
G(G/Gχ ×W )) −→ K0

G(T
∗
GV ) be the push-forward morphism.

The manifold G ×W is equipped with two G × Gχ-actions: (g, h) ·1 (x,w) :=
(gxh−1, h · w) and (g, h) ·2 (x,w) := (gxh−1, g ·w). The map θ(x,w) = (x, x−1 ·w)
is an isomorphism between G×2W and G×1W . The quotients by G and Gχ give
us the maps πG : G×1 W →W , and πGχ : G×2 W → G/Gχ ×W .

We have

(34) J = i! ◦ (π
∗
Gχ)

−1 ◦ θ∗ ◦ π∗
G

where (π∗
Gχ

)−1◦ θ∗◦π∗
G : K0

Gχ
(T∗

GχW ) −→ K0
G(T

∗
G(G/Gχ×W )) is an isomorphism.

It is an easy matter to check that if the class [σ] ∈ K0
Gχ

(T∗
GχW ) is represented by

aG-equivariant, Gχ-transversally elliptic morphism σ, then (π∗
Gχ

)−1◦θ∗◦π∗
G(σ) =

σ⊙ [0] where [0] : C→ {0} is the zero symbol on G/Gχ. Finally J(σ) = i!(σ⊙ [0]) =

σ ⊙ σ
Cχ

∂
. �

Remark 5.5. In the next sections, we will use the exact sequence (33), when V is
replaced by an invariant open subset UV . Suppose that there exist invariant open
subsets U1

W ,U
2
W ⊂W such that UV = U1

W

⊔
U2
W × Cχ \ {0}. Then (33) becomes

(35) K0
Gχ

(T∗
GχU

2
W )

J // K0
G(T

∗
GUV )

R // K0
G(T

∗
GU

1
W )

δ

��
K1
G(T

∗
GU

1
W )

δ

OO

K1
G(T

∗
GUV )

R

oo K1
Gχ

(T∗
GχU

2
W ).

J

oo

For example, if UV = V gen, we take U1
W =W ∩ V gen and U2

W =W gen,Gχ .
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5.2. The index map is injective. Let us prove by induction on n ≥ 0 the fol-
lowing fact

(Hn) IndexGV : K0
G(T

∗
GV ) −→ R−∞(G) is one to one if dimV/V g ≤ n.

If dimV/V g = 0, we have T∗
GV = T∗V and the index map K0

G(T
∗V ) → R(G)

is the inverse of the Bott isomorphism.
Suppose now that (Hn) is true, and consider G 	 V such that dim V/V g = n+1.

We start with a decomposition V = W ⊕ Cχ and the exact sequence (33). The

induction map IndGGχ : R−∞(Gχ) → R−∞(G) is defined by the relation IndGGχ(E) =
[
L2(G)⊗ E

]Gχ
. We denote ∧•Cχ : R−∞(G) → R−∞(G) the product by 1− Cχ.

Proposition 5.6. The following diagram is commutative

(36) K0
Gχ

(T∗
GχW )

Index
Gχ

W

��

J // K0
G(T

∗
GV )

IndexGV
��

R // K0
G(T

∗
GW )

IndexGW
��

R−∞(Gχ)
IndGGχ // R−∞(G)

∧•
Cχ // R−∞(G).

Proof. Let σ ∈ K0
Gχ

(T∗
GχW ). We have π∗

G(σ) = σ ⊙ [0] where [0] : C → {0} is

the zero symbol on G. Then the product formula says that Index
G×Gχ
G×W (π∗

G(σ)) =

Index
Gχ
W (σ) ⊗ L2(G) and thanks to (34), we see that

IndexGV (J(σ)) = IndexGG/Gχ×W ((π∗
Gχ)

−1 ◦ θ∗ ◦ π∗
G(σ))

=
[
Index

G×Gχ
G×W (π∗

G(σ))
]Gχ

= IndGGχ

(
Index

Gχ
W (σ)

)
.

This proved the commutativity of the left part of the diagram, and the commu-
tativity of the right part of the diagram is a particular case of Proposition 2.11. �

We need now the following result that will be proved in Appendix A

Lemma 5.7. The sequence

(37) 0 −→ R−∞(Gχ)
IndGGχ
−→ R−∞(G)

∧•
Cχ

−→ R−∞(G)

is exact.

Lemma 5.7 tells us in particular that IndGGχ is one to one. We can now finish the

proof of the induction. In the commutative diagram (36), the maps IndexGW , Index
Gχ
W

and IndGGχ are one to one. It is an easy matter to deduces that IndexGV is one to
one.

We end up this section with the following statement which is the direct conse-
quence of the injectivity of IndexGV (see Remark 3.8).

Remark 5.8. Let Jk, k = 0, 1 be two invariants complex structures on V , and
let Thomβ(V, Jk) be the corresponding pushed symbols attached to an element β
satisfying V β = {0}. There exists an invertible element Φ ∈ R(G) such that

Thomβ(V, J0)) = Φ · Thomβ(V, J1)

in K0
G(T

∗
GV ).
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5.3. Generators of K∗
G(T

∗
GV ). Let V be a real G-module : we equip V/V g with

an invariant complex structure. Let AG(V ) ⊂ K0
G(T

∗
GV ) be the submodule gener-

ated by the family Bott(V g
C
)⊙ Thomγ(V/V

g), where γ runs over the element of g
satisfying V γ = V g. Remark 5.8 tells us that AG(V ) is independent of the choice
of the complex structure on V/V g.

In this section we will prove by induction on n ≥ 0 the following fact

(Hn) K1
G(T

∗
GV ) = 0 and K0

G(T
∗
GV ) = AG(V ) if dimV/V g ≤ n.

If dim V/V g = 0, we haveT∗
GV = T∗V and assertion (H0) is a direct consequence

of the Bott isomorphism.
Suppose now that (Hn) and is true, and consider G 	 V such that dim V/V g =

n+ 1. We have a decomposition V = W ⊕ Cχ with χ̄ 6= 0. If we apply10 (Hn) to
G 	W and Gχ 	W , we get first that K1

G(T
∗
GW ) = 0 and K1

Gχ
(T∗

GχW ) = 0.

The long exact sequence (33) implies then that K1
G(T

∗
GV ) = 0, and induces the

short exact sequence

(38) 0 −→ K0
Gχ(T

∗
GχW )

J
−→ K0

G(T
∗
GV )

R
−→ K0

G(T
∗
GW ) −→ 0.

The assertion (Hn) gives alsoK
0
G(T

∗
GW ) = AG(W ) andK0

Gχ
(T∗

GχW ) = AGχ(W ).

With the help of (38), the equality K0
G(T

∗
GV ) = AG(V ) will follows from following

Lemma.

Lemma 5.9. We have

• J
(
AGχ(W )

)
⊂ AG(V ),

• AG(W ) ⊂ R(AG(V )).

Proof. We equip V/V g = W/W g ⊕ Cχ with the complex structure J := Jβ where
〈χ̄, β〉 > 0. We will use the decomposition of complex G-vector spaces W/W g ≃
W/W gχ ⊕W gχ/W g, and the fact that V g =W g.

Let α := Bott(W
gχ
C

) ⊙ Thomγ(W/W
gχ) be a generator of AGχ(W ). It is a G-

equivariant symbol, hence Lemma 5.4 applies: its image by J is equal to J(α) =

Bott(W
gχ
C

)⊙Thomγ(W/W
gχ)⊙σ

Cχ

∂
. If we use the fact that σ

Cχ

∂
= Thom−β(Cχ)−

Thomβ(Cχ), we see that J(α) = U− − U+ where

U± = Bott(W
gχ
C

)⊙ Thomγ(W/W
gχ)⊙ Thom±β(Cχ)

= Bott(W
gχ
C

)⊙ Thomγ±(W/W
gχ ⊕ Cχ) [1]

= Bott(V g
C
)⊙ Bott((W gχ/W g)C)⊙ Thomγ±(W/W

gχ ⊕ Cχ) [2]

= ∧•W gχ/W g ⊗ Bott(V g
C
)⊙ Thomγ±(V/V

g) [3].

In [1], the term γ± is equal to γ±tβ with 0 << t << 1 (see Lemma 3.12). In [2], we
use thatW gχ ≃ V g⊕W gχ/W g. In [3] we use that V/V g =W/W gχ⊕W gχ/W g⊕Cχ
(see Proposition 3.9).

We have proved that J(α) belongs to AG(V ) for any generator α of AGχ(W ).
We get the first point, since the restriction R(G) → R(Gχ) is surjective.

Let α′ := Bott(W g
C
) ⊙ Thomγ(W/W

g) be a generator of AG(W ). Thanks to
Proposition 3.11, we see that α′ = R(α′′) with α′′ = Bott(V g

C
) ⊙ Thomγ(V/V

g).
The second point is then proved. �

10See Remark 5.3.
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5.4. Generators of K∗
G(T

∗
GV

gen). Let BG(V ) be the submodule of K0
G(T

∗
GV

gen)

generated by the family Bott(V g
C
)⊙ σ

V/V g,ϕ

∂
where ϕ runs over the (G, V )-flag.

In this section we will prove by induction on n ≥ 0 the following fact

(H′
n) K1

G(T
∗
GV

gen) = 0 and K0
G(T

∗
GV

gen) = BG(V ) if dimV/V g ≤ n.

If dimV/V g = 0, we have T∗
GV

gen = T∗V and (H′
0) is a direct consequence of

the Bott isomorphism. Suppose now that (Hn) is true, and consider G 	 V such
that dim V/V g = n + 1. We have an invariant decomposition V = W ⊕ Cχ, with
χ̄ 6= 0, and

V gen = V gen ∩W
⊔
W gen,Gχ × Cχ \ {0}.

Note that V gen ∩W is either equal to W gen (if the G-orbits in V and W have the
same maximal dimension) or is empty. Following Remark 5.5, we have the exact
sequence

(39) K0
Gχ

(T∗
GχW

gen,Gχ)
J // K0

G(T
∗
GV

gen)
R // K0

G(T
∗
GW

gen)

δ

��
K1
G(T

∗
GW

gen)

δ

OO

K1
G(T

∗
GV

gen)
R

oo K1
Gχ

(T∗
GχW

gen,Gχ)
J

oo

when V gen ∩ W 6= ∅. On the other hand, when V gen ∩ W = ∅, we have an
isomorphism

(40) J : K∗
Gχ(T

∗
GχW

gen,Gχ) −→ K∗
G(T

∗
GV

gen).

If we apply (H′
n) to G 	 W and Gχ 	 W , we get first K1

G(T
∗
GW

gen) = 0 and
K1
Gχ

(T∗
GχW

gen,Gχ) = 0. Using the bottom of the diagram (39) and the isomor-

phism (40), we get K1
G(T

∗
GV ) = 0. Moreover, the long exact sequence (39) induces

the short exact sequence

0 −→ K0
Gχ(T

∗
GχW

gen,Gχ)
J

−→ K0
G(T

∗
GV

gen)
R
−→ K0

G(T
∗
G(V

gen ∩W )) −→ 0.

Since the assertion (H′
n) gives also

K0
G(T

∗
GW

gen) = BG(W ) and K0
Gχ(T

∗
GχW

gen,Gχ) = BGχ(W ),

the equality K0
G(T

∗
GV

gen) = AG(V ) will follows from following Lemma.

Lemma 5.10. We have

• J
(
BGχ(W )

)
⊂ BG(V ),

• BG(W ) ⊂ R(BG(V )), when V gen ∩W 6= ∅.

Proof. Let β ∈ g such that 〈χ̄, β〉 > 0: we have g = gχ ⊕ Rβ. For any (W,Gχ)-flag
ϕ, we consider the element

α := Bott(W
gχ
C

)⊙ σ
W/Wgχ ,ϕ

∂
∈ K0

Gχ(T
∗
GχW

gen)

and we want to compute its image by J.
We note that the minimal stabilizer Hmin ⊂ G for the G-action on V is equal

to the minimal stabilizer for the Gχ-action on W . Let s := dimGχ − dimHmin. A
(Gχ,W )-flag ϕ corresponds to

• a decomposition W/W gχ =Wϕ
1 ⊕ · · · ⊕Wϕ

s in complex G-subspaces
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• a decomposition gχ = hmin ⊕ Rβϕ1 ⊕ · · ·Rβϕs
such that for any 1 ≤ k ≤ s, βϕk acts trivially on Wϕ

1 ⊕ · · · ⊕Wϕ
k−1 and βϕk acts

bijectively on Wϕ
k . The term σ

W/Wgχ ,ϕ

∂
∈ K0

Gχ
(T∗

Gχ(W/W
gχ)gen) is equal to the

product of σϕ,k
∂

∈ K0
Gχ

(T∗
Rβϕ

k
Wϕ
k ), for 1 ≤ k ≤ s.

Since V/V g ≃W gχ/W g⊕Cχ⊕W/W gχ , we can define a (V,G)-flag ψ as follows:

• V ψ1 :=W gχ/W g ⊕ Cχ and βψ1 = β,

• V ψk :=Wϕ
k−1 and βψk := βϕk−1 for 2 ≤ k ≤ s+ 1.

We note that the Gχ-transversally symbols σϕ,k
∂

∈ K0
Gχ

(TRβϕ
k
Wϕ
k ) correspond

to the restriction of the G-transversally symbols σψ,k+1

∂
∈ K0

G(TRβψ
k+1

V ψk+1).

Finally, thanks to Lemma 5.4 we have

J(α) = σ
Cχ

∂
⊙ Bott(V g

C
)⊙ Bott((W gχ/W g)C)⊙ σψ,2

∂
⊙ · · · ⊙ σψ,s

∂

= ∧•W gχ/W g ⊗ Bott(V g
C
)⊙ σψ,1

∂
⊙ σψ,2

∂
⊙ · · · ⊙ σψ,s

∂

= ∧•W gχ/W g ⊗ Bott(V g
C
)⊙ σ

V/V g,ψ

∂
.

Here we use the identity σ
Cχ

∂
⊙ Bott(W gχ/W g

C
) = ∧•W gχ/W g ⊗ σψ,1

∂
, valid in

K0
G(T

∗
Rβ(Cχ ⊕ W gχ/W g)), which is proved in Proposition 3.16. Since R(G) →

R(Gχ) is onto, we have proved that J(AGχ(W )) ⊂ AG(V ).

Suppose now that V gen∩W 6= ∅, and let us prove now that AG(W ) ⊂ R(AG(V )).
Let ϕ be a (G,W )-flag : letW/W g =Wϕ

1 ⊕· · ·⊕Wϕ
s and g = hmin⊕Rβ

ϕ
1 ⊕· · ·⊕Rβϕs

be the corresponding decompositions. The hypothesis V gen ∩W 6= ∅ means that
the minimal stabilizer hmin for the g-action in W is contained in gχ. Hence χ̄ does
not belongs to (Rβϕ1 ⊕ · · · ⊕ Rβϕs )

⊥. Let

k = max{i | 〈χ̄, βϕi 〉 6= 0}.

Let ψ be the (G, V )-flag defined as follows:

• V ψi =Wϕ
i is i 6= k, and V ψk =Wϕ

k ⊕ Cχ,
• βϕs = βϕs for 1 ≤ k ≤ s.

Then we have

R(Bott(V g
C
)⊙ σ

V/V g,ψ

∂
) = Bott(W g

C
)⊙ σϕ,1

∂
⊙ · · ·R(σψ,k

∂
) · · · ⊙ σϕ,s

∂

= Bott(W g
C
)⊙ σϕ,1

∂
⊙ · · ·σϕ,k

∂
· · · ⊙ σϕ,s

∂

= Bott(W g
C
)⊙ σ

W/Wg,ϕ

∂

We use here the relation R(σψ,k
∂

) = σϕ,k
∂

(see Proposition 3.11). It proves that

AG(W ) ⊂ R(AG(V )). �

5.5. K0
G(T

∗
GV ) is isomorphic to FG(V ). For anyG-module V , we denote FG(V )′

the image of K0
G(T

∗
GV ) by IndexGV . We know from Section 5.2 that the index map

IndexGV is injective, hence FG(V )′ ≃ K0
G(T

∗
GV ). Let FG(V ) be the generalized

Dahmen-Michelli submodule defined in the introduction. We start with the follow-
ing

Lemma 5.11. We have FG(V )′ ⊂ FG(V ).
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Proof. Let σ ∈ K0
G(T

∗
GV ) and let h ∈ ∆G(V ). Since the vector space V/V h carries

an invariant complex structure we have a restriction morphism Rh : K0
G(T

∗
GV ) →

K0
G(T

∗
GV

h). Let i! : K0
G(T

∗
GV

h) → K0
G(T

∗
GV ) be the push-forward morphism

associated to the inclusion V h →֒ V . Thanks to Proposition 2.11 we know that

i! ◦Rh(σ) = σ ⊗ ∧•V/V h, and then

(41) ∧•V/V h ⊗ IndexGV (σ) = IndexGV h(Rh(σ)).

But since the action of H is trivial on V h, we know that IndexGV h(Rh(σ)) ∈
〈R−∞(G/H)〉 (see Remark 2.8). The inclusion FG(V )′ ⊂ FG(V ) is proved. �

We will now prove by induction on n ≥ 0 the following fact

(H′′
n) FG(V )′ = FG(V ) if dimV/V g ≤ n.

If dimV/V g = 0, we have T∗
GV = T∗V and ∆G(V ) = {g}. In this situation,

hmin = g and 〈R−∞(G/Hmin)〉 = R(G). We have then FG(V ) = R(G), and (H′′
0 )

is a direct consequence of the Bott isomorphism.
Suppose now that (H′′

n) and is true, and consider G 	 V such that dim V/V g =
n + 1. We have a decomposition V = W ⊕ Cχ with χ̄ 6= 0. If we apply (H′′

n) to
G 	 W and Gχ 	 W , we get FG(W )′ = FG(W ) and FGχ(W )′ = FGχ(W ). The
following Lemma will be the key point of our induction.

Lemma 5.12. • Let H ⊂ Gχ be a closed subgroup (G is abelian). For any Φ ∈
R−∞(Gχ), we have the equivalences

(42) Φ ∈ 〈R−∞(Gχ/H)〉 ⇐⇒ IndGGχ(Φ) ∈ 〈R−∞(G/H)〉,

(43) Φ ∈ FGχ(W ) ⇐⇒ IndGGχ(Φ) ∈ FG(V ).

• The exact sequence (37) specializes in the exact sequence

(44) 0 −→ FGχ(W )
IndGGχ
−→ FG(V )

∧•
Cχ

−→ FG(W ).

Proof. Let us consider the first point. For Φ :=
∑

µ∈Ĝχ
m(µ)Cµ ∈ R−∞(Gχ), we

have IndGGχ(Φ) =
∑
ϕ∈Ĝm(πGχ(ϕ))Cϕ, where πGχ : Ĝ → Ĝχ. We see then that

Supp(IndGGχ(Φ)) = π−1
Gχ

(Supp(Φ)). If πH : Ĝ → Ĥ and π′
H : Ĝχ → Ĥ denote the

projections, we have then the following relation

πH

(
Supp

(
IndGGχ(Φ)

))
= π′

H (Supp(Φ))

that induces (42).
For any Φ ∈ R−∞(Gχ) and any subspace h ∈ ∆G(V ), we consider the expression

Ω := ∧•V/V h ⊗ IndGGχ(Φ). We have two cases:

• Either h * gχ : here Cχ ⊂ V/V h and ∧•V/V h = ∧•Cχ ⊗ δ. In this case,

Ω = 0 because ∧•Cχ ◦ IndGGχ = 0.

• Or h ⊂ gχ : here h ∈ ∆Gχ(W ) and V/V h = W/W h. In this case Ω =

IndGGχ(∧
•W/W h ⊗ Φ).
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It is then immediate that the equivalence (43) follows from (42).
Thanks to (43) it is an easy matter to check that the sequence (44) is exact at

FG(V ). We leave to the reader the checking that ∧•Cχ · FG(V ) ⊂ FG(W ). So the
second point is proved. �

Let IF : FG(V )′ →֒ FG(V ) be the inclusion. Finally, we have the following
commutative diagram, where all the horizontal sequences are exact :

0 // K0
Gχ

(T∗
GχW )

��

J // K0
G(T

∗
GV )

��

R // K0
G(T

∗
GW )

��

// 0

0 // FGχ(W )′

��

IndGGχ // FG(V )′

IF

��

∧•
Cχ // FG(W )′

��

// 0

FGχ(W )
IndGGχ // FG(V )

∧•
Cχ // FG(W ).

Except for IF , we know that all the vertical arrows are isomorphism. It is an easy
exercise to check that IF must be an isomorphism.

5.6. K0
G(T

∗
GV

gen) is isomorphic to DMG(V ). For any G-module V , we denote

DMG(V )′ the image ofK0
G(T

∗
GV

gen) by IndexGV . Since the maps j∗ : K0
G(T

∗
GV

gen) →

K0
G(T

∗
GV ) and IndexGV are injective (see Remark 4.3 and Section 5.2), we have

DMG(V )′ ≃ K0
G(T

∗
GV

gen).

for any G-module. Let DMG(V ) be the generalized Dahmen-Michelli submodules
defined in the introduction. We start with the following

Lemma 5.13. We have DMG(V )′ ⊂ DMG(V ).

Proof. Let τ ∈ K0
G(T

∗
GV

gen) and j∗(τ) ∈ K0
G(T

∗
GV ). First we remark that

IndexGV (τ) ∈ 〈R−∞(G/Hmin)〉 since Hmin acts trivially on V (see Remark 2.8).
Let h 6= hmin be a stabilizer in ∆G(V ). Since V h ∩ V gen = ∅ the composition

Rh ◦j∗ is the zero map, and (41) gives in this case that ∧•V/V h⊗IndexGV (j∗(σ)) = 0.

Since by definition IndexGV (τ) = IndexGV (j∗(τ)), the inclusion DMG(V )′ ⊂ DMG(V )
is proved. �

We will now prove by induction on n ≥ 0 the following fact

(H′′′
n ) DMG(V )′ = DMG(V ) if dimV/V g ≤ n.

If dimV/V g = 0, we have T∗
GV = T∗V , V gen = V and ∆G(V ) = {g}. In this

situation, hmin = g and 〈R−∞(G/Hmin)〉 = R(G). We have then DMG(V ) = R(G),
and assertion (H′′′

0 ) is a direct consequence of the Bott isomorphism.
Suppose now that (H′′′

n ) and is true, and consider G 	 V such that dim V/V g =
n + 1. We have a decomposition V = W ⊕ Cχ with χ̄ 6= 0. If we apply (H′′′

n ) to
G 	W and Gχ 	W , we get DMG(W )′ = DMG(W ) and DMGχ(W )′ = DMGχ(W ).

It works like in the previous section, apart for the dichotomy concerning V gen ∩
W . We have the following
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Lemma 5.14. • Let H ⊂ Gχ be a closed subgroup (G is abelian). For any Φ ∈
R−∞(Gχ), we have the equivalences

(45) Φ ∈ DMGχ(W ) ⇐⇒ IndGGχ(Φ) ∈ DMG(V ).

• If V gen ∩W 6= ∅, the exact sequence (37) specializes in the exact sequence

(46) 0 −→ DMGχ(W )
IndGGχ
−→ DMG(V )

∧•
Cχ

−→ DMG(W ).

• If V gen ∩W = ∅, the exact sequence (37) induces the isomorphism

(47) IndGGχ : DMGχ(W )
∼
−→ DMG(V ).

Proof. Let Φ ∈ R−∞(Gχ) and h ∈ ∆G(V ). We consider the term Ω := ∧•V/V h ⊗

IndGGχ(Φ). Like in the proof of lemma 5.12, we have two cases:

• Either h * gχ : in this case Ω = 0.

• Or h ⊂ gχ : here h ∈ ∆Gχ(W ) and V/V h = W/W h. In this case Ω =

IndGGχ(η) with η = ∧•W/W h ⊗ Φ.

Since the minimal stabilizer11 for the Gχ action onW coincides with the minimal
stabilizer for the G action on V , the relation (42) induces the equivalence Φ ∈
〈R−∞(Gχ/Hmin)〉 ⇐⇒ IndGGχ(Φ) ∈ 〈R−∞(G/Hmin)〉. For the stabilizers hmin  

h ⊂ gχ, using the fact that IndGGχ is injective, we see that ∧•V/V h ⊗ IndGGχ(Φ) = 0

if and only if ∧•W/W h ⊗ Φ = 0. The first point follows.
Thanks to (45) it is an easy matter to check that the sequence (37) specializes in

the exact sequence 0 → DMGχ(W )
α

−→ DMG(V )
β

−→ R−∞(G), where α = IndGGχ
and β = ∧•Cχ. We can precise this sequence as follows.

Let hmin(W ), hmin(V ) be respectively the minimal infinitesimal stabilizer for
the G-action on W and V . We note that V gen ∩W 6= ∅ ⇐⇒ hmin(W ) ⊂ gχ ⇐⇒
hmin(W ) = hmin(V ).

Suppose that V gen ∩W 6= ∅, and let us check that the image of β is contained in
DMG(W ). Take Φ ∈ DMG(V ) and h ∈ ∆G(W ). Let β(Φ) = ∧•Cχ ⊗ Φ. We have
to consider three cases :

(1) If h = hmin(W ), then Φ and β(Φ) belong to 〈R−∞(G/Hmin(W ))〉 =
〈R−∞(G/Hmin(V ))〉.

(2) If hmin(W )  h ⊂ gχ, then ∧•V/V h = ∧•W/W h and ∧•W/W h ⊗ β(Φ) =

β(∧•V/V h ⊗ Φ) = 0.

(3) If h * gχ, then V/V h = W/W h ⊕ Cχ. We get then ∧•W/W h ⊗ β(Φ) =

∧•V/V h ⊗ Φ = 0.

We have proved that β(Φ) ∈ DMG(W ).
Suppose now that V gen ∩W = ∅, and let us check that β is the zero map. Let

h := hmin(W ) ∈ ∆G(V ). We have V/V h = Cχ since h * gχ, and by definition we

have β(Φ) = ∧•Cχ ⊗ Φ = ∧•V/V h ⊗ Φ = 0 for any Φ ∈ DMG(V ). �

11Says hmin wih corresponding group Hmin = exp(hmin).
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Let IDM : DMG(V )′ →֒ DMG(V ) be the inclusion. If V gen ∩W 6= ∅, we have the
following commutative diagram

0 // K0
Gχ

(T∗
GχW

gen,Gχ)

��

J // K0
G(T

∗
GV

gen)

��

R // K0
G(T

∗
GW

gen)

��

// 0

0 // DMGχ(W )′

��

IndGGχ // DMG(V )′

IDM

��

∧•
Cχ // DMG(W )′

��

// 0

0 // DMGχ(W )
IndGGχ // DMG(V )

∧•
Cχ // DMG(W ),

and if V gen ∩W = ∅, we have the other commutative diagram

0 // K0
Gχ

(T∗
GχW

gen,Gχ)

��

J // K0
G(T

∗
GV

gen)

��

// 0

0 // DMGχ(W )′

��

IndGGχ // DMG(V )′

IDM

��

// 0

0 // DMGχ(W )
IndGGχ // DMG(V ) // 0.

In both diagrams, all the horizontal sequences are exact, and except for IDM, we
know that all the vertical arrows are isomorphisms. It is an easy exercise to check
that in both cases IDM must be an isomorphism.

5.7. Decomposition of K0
G(T

∗
GV ) ≃ DMG(V ). Let V be a real G-module such

that V g = {0}. Let J be an invariant complex structure on V . Let W ⊂ Ĝ be the
set of weights: χ ∈ W if Vη := {v ∈ V | g · v = η(g)v} 6= {0}. The differential of

η is denoted iη̄ with η̄ ∈ g∗. Let W := {η̄ | η ∈ W} : it is the set of infinitesimal
weights for the action of g on V .

Let ∆G(V ) be the finite set formed by the infinitesimal stabilizer of points in V .
For a subspace h ⊂ g, we see that h ∈ ∆G(V ) if and only if h⊥ ⊂ g∗ is generated
by h⊥ ∩W .

Any vector v ∈ V decomposes as v =
∑

η vη with vη ∈ Vη. The subalgebra

gv that stabilizes v is equal to ∩vη 6=0 ker(η̄) = (
∑

vη 6=0Rη̄)
⊥. For a subspace h ⊂

∆G(V ), we see that the subspace V h := {v | h ⊂ gv} is equal to ⊕η̄∈h⊥Vη and

Vh := {v | h = gv} is the subspace (V h)gen formed by the vectors v :=
∑
η̄∈h⊥ vη

such that
∑
vη 6=0Rη̄ = h⊥.

We have V/V h ≃
∑
η̄ /∈h⊥ Vη. Following Section 4, we consider a collection γ :=

{γh ∈ h, h ∈ ∆G(V )} such that (V/V h)γh = {0}. We look at the H-transversally
elliptic symbol Thomγh(V/V

h) on V/V h. Since the action of H is trivial on V h,
the following map

K0
G(T

∗
G(V

h)gen) −→ K0
G(T

∗
G((V

h)gen × V/V h))

σ −→ σ ⊙ Thomγr(V/V
h)

is well defined. We can compose the previous map with the push-forward morphism
K0
G(T

∗
G((V

h)gen × V/V h)) → K0
G(T

∗
GV ): let us denote Sh

γ the resulting map.
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We can now state Theorem 4.4 in our linear setting.

Theorem 5.15. The map

Sγ := ⊕h S
h
γ :

⊕

h∈∆G(V )

K0
G(T

∗
G(V

h)gen) −→ K0
G(T

∗
GV )

is an isomorphism of R(G)-modules.

Now we can translate the previous decomposition through the index map. For

h ∈ ∆G(V ), we consider the element [∧•V/V h]−1
γh ∈ R−∞(G) which is equal to the

G-index of Thomγh(V/V
h) (see Definition 3.10 and Proposition 3.6).

We need first the following

Lemma 5.16. The product by [∧•V/V h]−1
γh defines a map from DMG(V

h) into

FG(V ).

Proof. Since the symbol Thomγh(V/V
h) is H-transversally elliptic, the projection

πh : g∗ → h∗ is proper when restricted to the infinitesimal support Supp(Ω) of Ω :=

[∧•V/V h]−1
γh

. Let Φ ∈ 〈R−∞(G/H)〉: the image of Supp(Φ) by πh is finite. It is now

easy to check that for any χ ∈ Ĝ the set {(χ1, χ2) ∈ Supp(Ω)×Supp(Φ) |χ1+χ2 = χ}

is finite: the product [∧•V/V h]−1
γh ⊗ Φ is well-defined.

Let Φ ∈ 〈R−∞(G/H)〉. For any a ∈ ∆G(V ) we have the ‘mother” formula12

(48) ∧•V/V a ⊗ [∧•V/V h]−1
γh ⊗ Φ = ∧•V h/V h+a ⊗ [∧•V a/V h+a]−1

γh ⊗ Φ

which is due to the isomorphisms V/V a ≃ V/(V h + V a) ⊕ V h/V h+a, V/V h ≃
V/(V h + V a)⊕ V a/V h+a, and the relation

∧•W ⊗ [∧•W ]−1
γ = 1

that holds for any G-module such that W γ = {0}.
Note that for any a, h ∈ ∆G(V ) we have the equivalence V h+a = V h ⇐⇒ a ⊂ h.

Suppose now that Φ ∈ DMG(V
h) and consider the product Ω := [∧•V/V h]−1

γh
⊗Φ ∈

R−∞(G). If a ⊂ h, we have

∧•V/V a ⊗ Ω = [∧•V a/V h]−1
γh

⊗ Φ ∈ 〈R−∞(G/A)〉

since [∧•V a/V h]−1
γh

∈ 〈R−∞(G/A)〉 and Φ ∈ 〈R−∞(G/H)〉 ⊂ 〈R−∞(G/A)〉. In the

other hand, if a * h, we have ∧•V/V a ⊗ Ω = 0 since ∧•V h/V h+a ⊗ Φ = 0.

We have proved that Ω = [∧•V/V h]−1
γh

⊗ Φ belongs to FG(V ). �

The map

Sγ :
⊕

h∈∆G(V )

DMG(V
h) −→ FG(V )

12See formula (2) in [9].
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defined by Sγ(⊕hΦh) :=
∑

h∈∆G(V )[∧
•V/V h]−1

γh
⊗Φh satisfies the following commu-

tative diagram

⊕
hK

0
G(T

∗
G(V

h)gen)
Sγ //

⊕hIndex
G

V h

��

K0
G(T

∗
GV )

IndexGV

��⊕
hDMG(V

h)
Sγ // FG(V ).

Since Sγ and the index maps IndexGV h , Index
G
V are isomorphisms we recover the

following theorem of de Concini-Procesi-Vergne [9].

Theorem 5.17. The map Sγ is an isomorphism of R(G)-modules.

6. Appendix

6.1. Appendix A. Let G be a compact abelian Lie group, and let χ : G → U(1)
be a surjective morphism. We want to prove that the sequence

(49) 0 −→ R−∞(Gχ)
IndGGχ
−→ R−∞(G)

∧•
Cχ

−→ R−∞(G)

is exact. Note that the induction map IndGGχ : R−∞(Gχ) → R−∞(G) is the dual

of the restriction morphism R(G) → R(Gχ). Hence the injectivity of IndGGχ will
follows from the classical

Lemma 6.1. Let H be a closed subgroup of a compact abelian Lie group G. The
restriction R(G) → R(H) is onto.

Proof. Let θ be a character of H . For any L1-function φ : G→ C, we consider the
average φ̃(g) =

∫
H
φ(gh)θ(h)−1dh : we have then

(50) φ̃(gh) = φ̃(g)θ(h) for any (g, h) ∈ G×H.

Let us choose φ such that φ̃ 6= 0. For any character χ : G → C, we consider the
function

φ̃χ(t) :=

∫

G

φ̃(tg)χ(g)−1dg.

We have φ̃χ = (φ̃, χ)χ where (φ̃, χ) =
∫
G φ̃(g)χ(g)

−1dg ∈ C. It is immediate that

(50) gives that φ̃χ(h) = (φ̃, χ)θ(h) for h ∈ H . Hence the restriction of χ to H is

equal to θ when (φ̃, χ) 6= 0. By a density argument, we know that such χ exists. �

Now we want to prove that Image(IndGGχ) = ker(∧•Cχ). The inclusion

Image(IndGGχ) ⊂ ker(∧•Cχ) comes from the fact that ∧•Cχ = 0 in R(Gχ).

For the other inclusion, we consider Φ :=
∑

µ∈Ĝm(µ)Cµ ∈ ker(∧•Cχ). We have

the relation Φ ⊗ Cχ = Φ, which means that m(µ + χ) = m(µ) for all µ ∈ Ĝ. Let

π : Ĝ → Ĝχ be the restriction morphism. Thanks to Lemma 6.1, we know that π

is surjective, and we see that for θ ∈ Ĝχ, π
−1(θ) is of the form {kχ + θ′, k ∈ Z}.
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For θ ∈ Ĝχ, we denote n(θ) ∈ Z the integer m(µ) for µ ∈ π−1(θ). We have then

Φ =
∑

µ∈Ĝ

m(µ)Cµ =
∑

θ∈Ĝχ

∑

µ∈π−1(θ)

m(µ)Cµ =
∑

θ∈Ĝχ

nθ
∑

k∈Z

Ckχ+θ′

= IndGGχ


 ∑

θ∈Ĝχ

nθCθ


 .

6.2. Appendix B. This section is devoted to the proof of Proposition 3.15. Let
V be equipped with the complex structure J := Jβ . The class Thom±β(V ) ∈
K0
G(T

∗
GV ) are represented by the symbols Cl(ξ ± β(x)) : ∧+V −→ ∧−V . Since

−Thom±β(V ) is represented by−Cl(ξ+β(x)) : ∧−V −→ ∧+V , the class Thom−β(V )−
Thomβ(V ) is represented by the symbol

τ(x, ξ) : ∧•V → ∧•V

defined by τ(x, ξ) = Cl(ξ) ◦ ǫ− Cl(β(x)), where ǫ(w) = (−1)|w|w. We consider the
family τs(x, ξ) = (sId+Cl(ξ))◦ ǫ−Cl(βs(x)), s ∈ [0, 1], where βs = sJ+(1−s)β.
Note that βs is invertible for any s ∈ [0, 1].

Lemma 6.2. The family τs, s ∈ [0, 1] is an homotopy of transversally elliptic sym-
bols.

Thanks to the last lemma, we know that τ = τ1 inK0
G(T

∗
GV ). Since Support(τ1)∩

T∗
GV ⊂ T∗

G(V \{0}), the restriction τ ′ := τ1|V \{0} is a G-transversally elliptic sym-

bol on V \{0}, and the excision property tells us that j!(τ
′) = τ1 = τ in K0

G(T
∗
GV ).

For (x, ξ) ∈ T∗(V \ {0}), the map τ ′(x, ξ) : ∧•V → ∧•V is given by

τ ′(x, ξ) = (Id + Cl(ξ)) ◦ ǫ− Cl(Jx).

Let S be the sphere of radius one of V . We work with the isomorphism S×R ≃
V \ {0}, (y, t) 7→ ety. Let C = S ×R×C be the trivial complex vector bundle. Let
H → S × R be the vector bundle defined by H(y,t) := (Cy)⊥ ⊂ TyS. We use the
isomorphism of vector bundle

φ : H⊕ C −→ T(S × R)

defined by φ(y,t)(ξ
′ ⊕ a+ ib) = (ξ′ + bJ(y), a) ∈ TyS×TtR. Through φ the bundle

map Cl(ξ) : ∧+V → ∧−V for ξ ∈ TxV becomes

Cl(y,t)(ξ
′ ⊕ z) : (∧Hy ⊗ ∧C)+ → (∧Hy ⊗ ∧C)−

Through φ, the vector field x 7→ Jcx becomes the section of C given by (y, t) 7→
eti, and the morphism τ ′ is defined as follows: for (y, t) ∈ S×R, and ξ′⊕z ∈ Hy⊕C,
the map τ ′(y,t)(ξ

′ ⊕ z) : ∧Hy ⊗ ∧C→ ∧Hy ⊗ ∧C is defined by

τ ′(y,t)(ξ
′ ⊕ z) = (Id + Cl(ξ′ ⊕ z)) ◦ ǫ− etCl(i).

Let Az,ξ′ = Cl(ξ′ ⊕ z) and B = Cl(i) be the maps from (∧Hy ⊗ ∧C)+ into
(∧Hy ⊗∧C)−. The matrix of τ ′(y,t)(ξ

′ ⊕ z) relatively to the grading of ∧Hy ⊗∧C is

(
Id A∗

z,ξ′ + etB∗

Az,ξ′ − etB −Id

)
.
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Let us consider the deformation of τ ′ in a family

σs :=

(
Id sA∗

z,ξ′ + etB∗

Az,ξ′ − etB −Id

)
, s ∈ [0, 1].

Lemma 6.3. The family σs, s ∈ [0, 1] is an homotopy of transversally elliptic
symbols.

The symbol σ0 :=

(
Id etB∗

Az,ξ′ − etB −Id

)
is clearly clearly homotopic to

σ2 :=

(
Id 0

e−tB Id

)
σ0

(
Id 0

−e−tB Id

)

=

(
0 etB∗

Az,ξ′ − (et − e−t)B 0

)

Since the morphism etB : (∧H ⊗ ∧C)− → (∧H ⊗ ∧C)+ is always invertible, its
class vanishes. Hence we have

[τ ′] = [σ0] = [σ2] = [Az,ξ′ − (et − e−t)B] in K0
G(T

∗
G(S × R)).

We are now working with the morphism σ3 : (∧H ⊗ ∧C)+ → (∧H ⊗ ∧C)− defined
by

σ3(ξ
′ ⊕ z) = Cl(ξ′) + Cl(z − (et − e−t)i).

Since et−e−t

t > 0 on R, we can deform the term z− (et−e−t)i in t+ iRe(z) without
changing the intersection of the support with T∗

G(S × R).
Finally we have proved that Thom−β(V ) − Thomβ(V ) is represented on S × R

by the morphism Cl(ξ′) +Cl(t+ iRe(z)) : (∧H⊗∧C)+ → (∧H⊗∧C)− which is by
definition equal to σV

∂
⊙ Bott(TR) = i!(σ

V
∂
).

We finish this section with the proofs of the deformation Lemmas. For the family
τs(x, ξ) = (sId + Cl(ξ)) ◦ ǫ− Cl(βs(x)), we have

(τs(x, ξ))
∗τs(x, ξ) =

(
s2 + ‖ξ − βs(x)‖2 −2sCl(βs(x))

2sCl(βs(x)) s2 + ‖ξ + βs(x)‖2

)

Then det(τs(x, ξ)) = 0 if and only if

(s2 + ‖ξ − βs(x)‖2)(s2 + ‖ξ + βs(x)‖2) = 4s2‖βs(x)‖2

which is equivalent to the equality (s2+‖ξ‖2+‖βs(x)‖2)2 = 4s2‖βs(x)‖2+4(ξ, βs(x))2.
If ξ /∈ Rβs(x), we have (ξ, βs(x))2 < ‖ξ‖2‖βs(x)‖2, and then

(s2 + ‖ξ‖2 + ‖βs(x)‖2)2 < 4(s2 + ‖ξ‖2)‖βs(x)‖2

which gives (s2 + ‖ξ‖2 − ‖βs(x)‖2)2 < 0 which is contradictory. Then det(τs(x, ξ))
= 0 if and only if ξ ∈ Rβs(x) and s2 + ‖ξ‖2 − ‖βs(x)‖2 = 0. If furthermore
ξ ∈ T∗

GV |x, then
13 ξ = 0. We have proved that Support(τs) ∩ T∗

GV is equal to
the compact set {(x, ξ) | ξ = 0 and s2 − ‖βs(x)‖2 = 0}. So s ∈ [0, 1] → τs is an
homotopy of transversally elliptic symbols.

13It is due to the fact that (βs(x), β(x)) > 0 when x 6= 0.



ON THE STRUCTURE OF K
∗
G(T∗

GM) 37

For the family14 σs :=

(
Id sA∗ + etB∗

A− etB −Id

)
, we have

(σs)
∗σs =

(
ρ+ Id (1− s)A∗ + 2etB∗

(1− s)A+ 2etB ρ−(s)Id

)

with ρ+ = 1 + ‖ξ′‖2 + ‖z − eti‖2 and ρ−(s) = 1 + ‖sξ′‖2 + ‖sz + eti‖2. We check
easily that ((1 − s)A∗ + 2etB∗)((1− s)A+ 2etB) = ρ(s)Id with

ρ(s) = ‖(s− 1)ξ′‖2 + ‖(s− 1)z + 2eti‖2.

Finally det(σs) = 0 if and only if ρ(s) = ρ−(s)ρ+. In other words, (y, t; ξ′ ⊕ z)
belongs to the support of σs if and only if

‖(s−1)ξ′‖2+‖(s−1)z+2eti‖2 =
(
1 + ‖sξ′‖2 + ‖sz + eti‖2

) (
1 + ‖ξ′‖2 + ‖z − eti‖2

)
.

Let us suppose now that ξ′ ⊕ z ∈ T∗
G(S × R). It imposes Im(z) = 0, and

the last relation becomes (s − 1)2Θ + 4e2t =
(
1 + e2t + s2Θ

) (
1 + e2t +Θ

)
with

Θ = ‖ξ′‖2 + ‖z‖2. It is easy to see that the last relation holds if and only if
t = Θ = 0. Finally we have proved that

Support(σs) ∩T∗
G(S × R) = {(y, t; ξ′ ⊕ z) | t = 0, ξ′ = 0, z = 0} ,

and then σs, s ∈ [0, 1] defines an homotopy of transversally elliptic symbols.
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