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UWB channel modeling for objects evolving in
impulsive environnements
Nourddine Azzaoui and Laurent Clavier, Member, IEEE

Abstract—We consider channel modeling issues in the context
where communicating objects are evolving in impulsive environ-
ments. It was shown recently that α-stable random processes
are attractive solution for representing the ultra wide band
communication channel in relatively large spatial areas. In
this paper, we consider the α-stable channel modeling in an
evolutionary context where the model features depend on spatial
locations. We introduce a methodological approach consisting of
two parametric and non parametric components: the latter can
be seen as black box model to describe the spatial evolution and it
can be learned from historical observations of the transfer func-
tion. The other component concerns the frequency dependence
and has an auto-regressive structure.

INTRODUCTION

One important difficulty of statistical channel modeling
(especially when ultra wide band (UWB) is considered) resides
in its ability to represent the time and environment evolutions.
This channel variability is obvious when it comes to model
mobiles and rapidly changing environments. In order to make
realistic simulations, it is necessary to adapt the existing
models to such situations. Indeed, statistical models, even
those taking into account rare events (α-stable models), are not
sufficient to describe the complexity of the channel behavior
in all circumstances. Another challenge for developing real
world applications is the fact that the specification of a such
model needs a large measurement campaign and usually takes
a lot of time to estimate the model parameters. For the next
generation communication systems, (as WSN, inter vehicles,
...), time evolution can be slow or fast and nodes will change
their position and interact with different communication in-
frastructures. They must be able to learn their environments
autonomously, especially channel models of the medium in
which they evolve. Due to the models complexity and possible
fast evolution, this task is quasi impossible for the end user,
especially low complexity sensor nodes.

The idea of this work is to give a general model that can
adapt to the rapid change of the environment and learned
from a limited number of measurements. For this purpose
our proposed model must, from one hand, describe the space
dependence of the channel transfer function and, on the other
hand, the model variation with frequency. From this last point
of view many works described this frequency dependence as
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parametric model: we cite for instance Ghassemzadeh [1] who
uses a second-order autoregressive model AR(2) for frequency
response generation of the UWB indoor channel. The work
in this paper is an on going contribution, it presents the
theory behind the model and solutions for space and frequency
channel evolution in section I and some mathematical tools to
estimate the parameters (section II) and validate the model
(section III). Further investigations is needed to validate this
approach. We also assume that the channel is accurately
represented by an α-stable model as we proposed in [2].

I. THE EVOLUTIONARY CHANNEL MODEL

The main idea of the evolutionary model comes from
the fact that transfer functions measured at two contiguous
places will be strongly dependent; it will be weakly dependent
when the distance increases between two measurements. For
the mathematical formulation let us denote Hx the transfer
function at a position x. We postulate that the dependence
will have a memory of length p. This space dependence can
be formulated using conditional expectations as follows:

Hx+1 = f(Hx, . . . ,Hx−p) + Υ, (1)

where f is an unknown function not depending on the location
and Υ = Hx+1−E (Hx+1 |Hx, . . . ,Hx−p). Equation (1) can
be seen as a black-box model which does not support any a
priori about the environment. One of its main advantages is
the fact that it can be learned (estimated non parametrically
using kernel techniques) from historical observations collected
by a given node. In order to understand the frequency depen-
dence we present the model for observed transfer functions at
w1, . . . , wn, as the following:

po
s

p


Hp+1(w1) = f(Hp(w1), . . . ,H1(w1)) + Υp(w1)

...
...

Hp+1(wn) = f(Hp(wn), . . . ,H1(wn)) + Υp(wn)

... ...
...

po
s

x


Hx+1(w1) = f(Hx(w1), . . . ,Hx−p(w1)) + Υx(w1)

...
...

Hx+1(wn) = f(Hx(wn), , . . . ,Hx−p(wn)) + Υx(wn)

Index p denotes the length of the dependence, consequently,
the number of samples that nodes has to store in order to start
its estimation. For different positions x and x′, we suppose
that vectors Υx and Υx′ are pairwise independent. Since the
function f has captured all the intrinsic spatial influence,
it makes more sense to suppose that Υ depends only on



frequencies. Inspired from works in [1], we suppose that for
a fixed position, the internal frequency dependence of Υ may
be described by an autoregressive scheme.

Υx(wi) =

q∑
k=1

θkΥx(wi−k) + εx,i (2)

In order to take into account the impulsive nature and the
α-stable model [2], we suppose that errors εx,i’s are i.i.d.
symmetric α-stable white noises.

The main difficulty in the black-box model (1) arises when
we try to estimate the non parametric function f which will
be seriously affected when p becomes large; this is known as
the curse of dimensionality. In order to overcome such an in-
convenience we will suppose that, instead of (Hx, . . . ,Hx−p),
the transfer function Hx+1 depends on a linear combination
of this vector. This reduce f to a real function and hence its
estimation is facilitated. This will lead to the following:

Hx+1(wi) = f(

p∑
k=0

ηkHx−k(ωi)) +

q∑
k=1

θkΥx(wi−k) + εx,i (3)

To resume, f represents the space dependence, the coefficient
θk the frequency linear dependence and εx,i the unpredictable
variations. This model is very general and will allow the use
of powerful mathematical tools known in literature as semi
parametric single index partially linear model. They have been
largely studied in literature we cite among others [3], [4], [5],
[6]... For compatibility with the semi-parametric formalism
we rearrange the observed transfer functions as follows: we
begin by taking N = nm where n is the number of positions
and m is the number of observed frequencies. For every x =
1, . . . , n−1, for every i = 1, . . . ,m we take s = (x−1)m+ i
and we denote:

Ys = Hx+1(wi),

Us = [Hx(wi), . . . ,Hx−p(wi)]†,
Vs = [Υx(wi−1), . . . ,Υx(wi−q) ]†,

Xs = [U†s , V
†
s ]†,

εs = εx,i

where † states for matrix transpose. This will lead to the
conventional semi parametric single index model notations:

Ys = X†sθ + f(X†sη) + εs (4)

where θ = (0p+1, θ1, . . . , θq) and η = (η0, . . . , ηp, 0q)
and 0p is zeroes vector in Rp.

Motivation for using (4) for independent data analysis
can be found in [5], [6], [7]. Many indications suggest the
use of semi-parametric models (4); for example two transfer
functions are presented in Fig. 1. Figures Fig. 2 and Fig. 3
illustrate the space and frequency dependence. The autoregres-
sive scheme was also noticed in [1] and confort our proposal.

II. STATISTICAL ESTIMATION AND MODEL SPECIFICATION
FOR THE EVOLUTIONARY MODEL

In this paper, we will address the estimation problem in the
α-stable case and introduce consistent estimators of unknown
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Fig. 1. Examples of measured transfer functions between 57-59 GHz and
down converted between 1-3 GHz at two different locations. More details on
the measurement setup can be found in [2], [8].
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Fig. 2. Spatial dependence structure in observed transfer functions. The
distance between x and x+1 is 2.5mm. Two different locations in the computer
room are considered.
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Fig. 3. Frequency dependence structure in observed transfer functions. The
frequency step is 5 MHz.

model (4) features; the mode of convergence and the quality
of the estimators will be detailed in further works.

A. Estimation in semi parametric single index models
Consider a semi-parametric single-index model of the form:

Ys = X†sθ + f(X†sη) + εs, s = 1, 2, . . . N, (5)

where both θ and η are vectors of unknown parameters. The
real function f(·) is unknown defined on R and is supposed
to be twice differentiable. The random variables {εs} are a
sequence of errors with E[εs | Xs] = 0. A huge amount of
works about such models have been introduced in literature
especially when the errors are random variables with finite
second order moments; for more details see for instance [5]
and [7]. However no works have been done in the case of
infinite variance errors. In this paper we suppose that the
εs’s are i.i.d. α-stable centered variables with a fixed scale
parameter σ.

In order to estimate the unknown parameters η,θ and the
function f involved in (5), we introduce the following notation:

f1η (u) = E[Ys | X†sη = u], (6)

f2η (u) = E[Xs | X†sη = u], (7)

This decomposition is inspired from the conditional decom-
position f(u) = E[Ys −X†sθ | X†sη = u] which leads easily
to the formula:

f(u) = f
1η (u)− (f

2η (u))†θ (8)

Let K be a kernel function i.e. a non negative even probability
density (for example the gaussian kernel K(x) = 1√

2π
e−

x2

2 ).
From the conditional expectation given in (6) we propose a
kernel estimation inspired from the Nadarya-Watson estima-
tion techniques. We first estimate f1η (·) by:

f̂1η (u) =

N∑
s=1

Kh(X†sη − u)Ys

N∑
s=1

Kh(X†sη − u)

where Kh(·) = K( ·h ) and h is a bandwidth parameter.
Similarly we estimate the function f

2η (·) by:

f̂2η (u) =

N∑
s=1

Kh(X†sη − u)Xs

N∑
s=1

Kh(X†sη − u)

For a complete estimation of the function f we will need an
estimate of the parameters η and θ. For this purpose we use
the following notations:

Y sη = Ys − f̂1η (X†sη),

Xsη = Xs − f̂2η (X†sη),

Let us consider the least-squares sum :

SN (θ,η;h) =

N∑
s=1

(Y sη −X
†
sηθ)2

The estimation idea consist in minimizing SN (θ,η, h) over
(θ,η, h). We first remark that, for a fixed (η, h), the least
squares estimator of θ can be deduced using classical linear
regression techniques, it is given by:

θ̂(η, h) =

(
N∑
s=1

XsηX
†
sη

)+ N∑
s=1

XsηY sη, (9)

where ( . )+ denotes matrix pseudo-inverse. We then estimate
(η, h) by (η̂, ĥ) through minimizing,

ŜN (η, h) =

N∑
s=1

(Y sη −X
†
sηθ̂(η, h))2 (10)

Inspired from the equation (8), we propose the nonparametric
estimator of f(·) by using estimates of f1η and f2η:

f̂(u) = f̂1η̂(u)− (f̂2η̂(u))†θ̂(η̂, ĥ). (11)

On the other hand, when the errors scale parameter σ is
unknown, it can be estimated using the fractional lower
moments technique as follows:

σ̂ = Cα(ρ)

(
1

N

N∑
s=1

∣∣∣Y sη̂ −X†sη̂θ̂(η̂, ĥ)
∣∣∣ρ) 1

ρ

(12)

for every 1 < ρ < α and Cα(ρ) is an universal constant
depending only on α and ρ, it is given by:

Cα(ρ) =

(
α
√
π Γ(−ρ2 )

2ρ+1 Γ( 1+ρ
2 ) Γ(−ρα )

) 1
ρ



The mode of convergence and the consistency of these esti-
mators was studied in the second order case, the reader find a
detailed overview in literature; see for instance [7]. In this last
work a central limit theorem type result was established for
all estimators. We believe that similar results may be proven
for the α-stable process and will be similar to the generalized
central limit theorem context.

III. MODELS ADEQUACY AND HYPOTHESIS TESTING

In this section we present statistical techniques to test the ad-
equacy of semi parametric models of type (4). Recently, semi-
parametric approach has been used for model specification
tests in the case of finite variance processes. We will proceed
by analogy to second order works, we focus on partially
linear or single-index scheme against a general non-parametric
form. We concentrate on parametric specification testing of the
conditional mean function defined for u ∈ Rp+q+1 by:

m(u) = E[Ys | Xs = u)]

A. Testing for single-index regression

In this subsection we focus on the particular case of (4)
without the linear regression component. The test purpose is to
see if transfer functions evolutions can be reduced to the space
evolution, not considering the frequency dependency (H0).
Somehow it can be seen as a test for spatial stationarity of
transfer functions. We thus look at testing the null hypothesis
of single index modeling against a class of non parametric
functions:

(H0) : m(x) = f(x†η),

(H1) : m(x) = f(x†η) + ∆(x) for all x ∈ Rp+1,

where f(·) is an unknown function on R, η is a vector of
unknown parameters and ∆ is any regular function defined
on Rp+1. Under the null hypothesis (H0) we have given
techniques to estimate η in section II. In the single index
particular case the estimate of f(·) will be simplified and is
given by:

f̂(X†sη) =

N∑
t=1

YtK(
(Xs −Xt)†η

h
)

N∑
u=1

K(
(Xs −Xu)†η

h
)

,

with K(·) being a kernel function defined on R. Consequently,
from (10) the parameter η is then estimated by minimizing:

η̂ = arg min
(η,h)

N∑
s=1

(Ys − f̂(X†sη))2

As we have supposed that the errors εs’s are α-stable i.i.d. cen-
tered random variables, then by the generalized central limit
theorem it is more convenient to approximate the estimated
errors Ŷs = Ys − f̂(X†s η̂) by a centered symmetric α-stable
distribution with estimated scale parameter σ̂:

σ̂ = Cα(ρ)

(
1

N

N∑
s=1

∣∣∣Ŷs∣∣∣ρ)
1
ρ

By analogy with the second order case and for compatibility
with infinite variance we suggest the test statistic:

L =

N∑
s=1

|Ŷs|

σ̂

Many improvements are still needed in the case of stable
variables, including the asymptotic distribution and robustness
of the statistic L. For the hypotheses testing in the case of
second order semi parametric models one can find a rich
literature in [9], [4], [10] and references within.

B. Testing for partially linear single-index model

It is a natural extension of the single index model to situa-
tions where the linear regression component may be suitable
for modeling the inherent studied phenomenon. The following
test evaluates if the dependency on space and frequency is
sufficient (H0) or if it would be more accurate to take some
more phenomena into account, for instance some non linear
dependency in frequency.

(H0) : m(x) = x†θ + f(x†η)

(H1) : m(x) = x†θ + f(x†η) + ∆(x),

for all x ∈ Rp+q+1. This test problem has been studied for the
second order case by [5], [6]. With the same reasoning as in
the single index model and by using the estimation techniques
under the hypothesis (H0) presented in section II, we propose
the test statistic:

L =

N∑
s=1

|Ŷ s|

σ̂

where Ŷ s = Ys−X†s θ̂− f̂(X†s η̂), the quantities θ̂, η̂, f̂(·) and
σ̂ are respectively the consistent estimators given in (9), (10),
(11) and (12). One of the main issues to evaluate the models
compatibility is to examine the power and the size tests :

α = P(L > lα | such that H0 ”holds” )

β = P(L > lα | such that H1 ”holds” )

where lα will be tabulated from the distribution of L. It should
be noted that the estimator presented here must be extensively
studied for asymptotic properties and robustness.

CONCLUSION AND PERSPECTIVES

In this paper we have introduced a methodological approach
that adapts semi-parametric techniques to the context of spatial
ultra wide band channel modeling. Our approach may be seen
as a general-purpose framework for the modeling of the spatial
evolution of the channel transfer functions described by an α-
stable random process. Extensive simulations on real data must
be performed to evaluate the adequacy of the proposed model
in the context of indoor and outdoor configurations and this
paper only presents the general framework.
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