
HAL Id: hal-00732987
https://hal.science/hal-00732987v1

Submitted on 17 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Evaluation of Load Balancing in
Hierarchical Architecture for Grid Computing Service

Middleware
Abderezak Touzene, Al-Yahai Sultan, Hussien Almuqbali, Abdelmadjid

Bouabdallah, Yacine Challal

To cite this version:
Abderezak Touzene, Al-Yahai Sultan, Hussien Almuqbali, Abdelmadjid Bouabdallah, Yacine Challal.
Performance Evaluation of Load Balancing in Hierarchical Architecture for Grid Computing Service
Middleware. International Journal of Computer Science Issues, 2011, 8 (2), pp.213-223. �hal-00732987�

https://hal.science/hal-00732987v1
https://hal.archives-ouvertes.fr

 Performance Evaluation of Load Balancing in Hierarchical

Architecture for Grid Computing Service Middleware

Abderezak Touzene
1
, Sultan Al-Yahai

1
, Hussien AlMuqbali

1
, Abdelmadjid Bouabdallah

2
,

Yacine Challal
2

1
Department of Computer Science

Sultan Qaboos University,

P.O. Box 36, Al-Khod 123, Sultanate of Oman
{touzene, sultan@squ.edu.om}

2
Royallieu Research Center

University of Technology Compiegne

P.O. Box 20529, Compiegne, France
{bouabdal, ychallal@hds.utc.fr}

Abstract: - In this paper we propose a new architecture for grid computing service which allows grid

users with limited resources to do any kind of computation using grid shared hardware and/or

software resources. The term limited resouces includes disk or diskless workstrations, Palmtops or

any mobile devices. The proposed grid computing service takes into account both hardware and

software requierements of the user computing task, along with some quality of service. On other hand

our grid system needs to maximize the overall system throughput, minimize the user responce time,

and allows a good grid resources utilization. On this aspect we propose an adaptive task allocation

and load balancing algorithm to achieve the desired goals. We have developed a simulation model

using NS2 to evaluate the performance of our grid system. We have also conducted some experiments

on our a test-bed prototype. The performance evaluation measures confirm the good quality of our

proposed architecture and load balancing algorithm.

Key-Words: - Grid computing, Web-based applications, Load balancing, Performance evaluation.

1 Introduction
Computer users, professionals or none

professionals, spend their time browsing the Internet

or doing any of their daily routine office work (non

computing tasks). Many computers are most of the

time idle or underutilized. On the other hand there

are an increasing number of computing applications

that need a huge computing power, which cannot be

afforded by a single institution. However, grid

computing is a method based on collecting the

power of many computers, in order to solve large-

scale problems, the parallel processing aspect. In

other hand, it offers to independent grid computing

services users to share hardware and software grid

resources. The grid-computing infrastructure will

provide users with almost unlimited computing

power on demand along with a desired quality of

service.

Grid computing has emerged as an important new

field, distinguished from conventional distributed

computing by its focus on large-scale resource

sharing, innovative applications, and, in some cases,

high-performance orientation. Traditional

distributed systems can use Grid technologies to

achieve resource sharing across institutional

boundaries. Grid technologies complement rather

than compete with existing distributed computing

technologies [1]. Grid computing is intended to

provide on-demand access to computing, data and

services. In the near future Grid systems will offer

computing services as simply as browsing web

pages nowadays [2].

In this paper we propose a new Grid infrastructure

focusing on the Grid Computing Services (GCS). In

our approach we take into consideration as much as

possible all the required design issues and features

of Grid systems as defined in the literature. The

objective of our work is to build a Grid computing

service system that allows users to submit their

computing tasks simply by having access to our

Grid Computing Service Web Site (GCSWS). The

Grid user may specify along with the submitted task

the necessary hardware/software resources needed

by the task and any desired quality of service, such

as response time or other performance parameters.

The minimum requirement to use our grid

computing service is only having access to Internet.

Indeed the "plumbing" for grid computing is

essentially in place: we already have large-scale

networks of distributed computers, connected by

reliable networks using data communication

protocols TCP/IP that is the standard and widely

used protocol. The challenges in grid computing

therefore lie in developing the software to drive the

grid [2].

Another objective of our grid computing service is

to save users to buy powerful computers or

expensive software (compilers or other tools); all

these resources are available in our Grid system.

Further more our system will enable users with low

memory devices like palmtops or mobile phones to

do computation on our behalf provided they have

access to Internet. On other hand our grid system

needs to maximize the overall system throughput,

minimize the user responce time, and allow good

grid resources utilization. On this aspect we propose

a scheduling algorithm which allow task allocation

and an adaptive load balancing to achieve the

desired goals.

This paper is organized as follows: Section 2

presents the background and related work. Section

3 presents the layered structure of our grid system

and the fault tolerance issues in each layer. In

section 4, we present our analytical model and the

load-balancing algorithm. In section 5, we present

both a simulation model some experimental results

on our test-bed GCS. Section 6 concludes the

paper.

2 Backgrounds and Related Works
From the definition of grid computing [3], we can

see the following keywords, which summarize Grid

computing: distributed resources, resource sharing,

transparent remote access, infinite storage, and

computing power. There are many research

problems in the grid. In Condor [4][5], Grid

computing service is based on cycle-scavenging

strategy that uses the idle workstation model.

Condor migrate the tasks when the owner of the

machine starts using it. In our GCS, task allocation

is based on the current load of the workstations

participating in the grid. Once a new workstation

joins the grid it fixes its share of CPU utilization to

be allocated to Grid computing service. There is no

need to do task migration, Grid tasks and

workstation owner tasks run in pseudo parallel using

the CPU scheduler of the workstation. This solution

reduces the cost and implementation complexity of

task migration mechanism. In Condor there is no

load balancing. Tasks distribution is based on a

MatchMaker module: Each resource advertises its

properties and each task advertises its requirement

and then the MatchMaker performs the matching

and ranks them. The resource with the highest rank

is selected. In this paper we focus on load

balancing, resources management and fault

tolerance problems.

Load balancing: more difficult to achieve in Grid

systems than in traditional distributed computing

environment because of the heterogeneity and the

dynamic nature of the grid. Many papers have been

published recently to address this problem. Most of

the studies present only centralized schemes [6] [7].

On the other hand, some of those proposed

algorithms are extensions of load balancing

algorithms for traditional distributed systems. All of

them suffer from significant deficiencies, such as

scalability problems when we talk about the

centralized approaches in [8]. A triggering policy

based on the endurance of a node reflected by its

current queue length is used in [8]. The authors

tried to include the communication latency between

two nodes during the triggering processes on their

model, but lacks including the cost of the actual task

transfer. In our model we also consider the node

load or saturation level and we do consider the

communication task transfer cost. We propose an

adaptive load-balancing algorithm, which takes into

consideration both computing, and network

heterogeneity to deliver a maximum throughput for

our Grid system.

Resource Managements: Different approaches

have been proposed in the literature [9]. Our

approach is based on multiple resource manager

agents, each one is responsible to track and collect

information on its pool of workers in the Grid

system. The resource manager agents may

cooperate in order to achieve performance. Our

GCS system is heterogeneous in its nature from all

point of views: different machines speed; different

Grid Computation Service

Grid Resource Monitoring Task

Task Allocation & Load balancing

Web Service Task Submission

operating systems; different network technologies

and speed.

Fault Tolerance: Grid systems are by nature large

in the scale, faults may occur any where any time.

The purpose of fault tolerance is to increase the

reliability, availability and dependability of a

system. Solutions for fault tolerance exist for the

traditional distributed systems. We propose simple

grid adapted solutions to deal with faults, taking into

consideration the “when/where” faults occurrence.

We thus tackle the faults at different layer in our

architecture.

3 GCS Architecture
GCS is a Grid computing service that allows users

to submit their computing tasks along with

indication of the required hardware or software

resources. They can also submit any desired Quality

of Service (QoS). The GCS system allocates tasks to

the available resources and then executes the tasks.

After task execution, GCS will reply to the user and

send back the results. We identify four main steps

in a GCS:

Task Submission Mechanism: The task

submission process needs to be as simple as possible

and it should be accessible to the maximum number

of clients. The best approach for task submission is

through web site, using their favorite web browsers.

This submission mechanism is also suitable for

mobile devices like laptops and mobile phones.

Task Allocation Mechanism: GCS needs to

allocate the computation task to one of the available

resources. This may involve task transfer between

different components of the GCS system. It may

also involve message exchange (such as load

balancing information).

Task Execution Mechanism: After GCS allocates

the task to suitable resources, then the task needs to

be executed. The resource will perform the required

execution (compilation may be needed) and then it

will prepare the result file to be sent back to the

client.

Results Return Mechanism: After the execution of

the tasks, clients need to be notified whether their

tasks have been executed correctly or there were

some problems. If the tasks were executed correctly

the results will be sent back to the clients. The best

approach to display the results is using the Internet

browser itself. We propose the following a layered

architecture as shown in Figure 1.

Fig. 1 GCS layered architecture

Web Service Task Submission Layer: Grid users

submit their tasks to the Grid system through the

GCS web site using their favorite web browser. Our

aim is to make access to the Grid like browsing

internet. The only requirement for the user to access

the Grid is to have internet access and a web

browser. In this layer, we deal with user tasks

submission and their requirements (resources and

quality of service information).

 Our Grid system has many access points where

users can submit their tasks. To minimize the user’s

response time, tasks might be directed to an

appropriate Grid entry using mirror web site

mechanisms. Each Grid entry point is called a Grid

Agent Manager (GAM). A GAM is responsible of a

dynamic pool of workers. The Web information

service layer offers to the clients some information

about statistics, and some information about the

expected response time based on the actual overall

load of the grid system. Information about load and

availability can grid be collected from the below

layer. The Web service layer may decide which

GAM to direct the client task based on the grid load

and the desired user quality of service.

For the fault tolerant aspects: Our grid system has

many access points, where users can submit their

tasks, then faults can occur in any one of these

access points. This kind of failures could be

tolerated by redirecting the user request to any other

access point. Fault discovery at this level is

implemented using a connection failure timeout

mechanism. Another kind of failure the user may

experience is sending a task for computation and

getting no reply to the request. This layer deals also

with task resubmission mechanism by example in

this case resend the task to another access point.

Grid Resource Monitoring Layer: Our grid

system is composed of many hardware and software

resources. It is by nature heterogeneous from all

aspects: network technologies in different

computing sites and different operating systems for

the computing workstations even within the same

site. To fully utilize the resources, we need to

monitor those resources to know which one is

underutilized and which one is overloaded.

Monitoring functions are provided by the Grid

resource monitoring layer. The GAMs are the

building blocks of this resource monitoring layer.

Resource tracking and monitoring is based on

distributed mechanisms where workers in a given

pool reports to their GAM the status of their

resources if any significant change has been noticed

since the last report. For example if there is an

important change in the CPU utilization or other

hardware resources, a change of status is reported to

the parent GAM. In our implementation we are

using Network Weather Service NWS (for the Unix

based resources) [10], and we developed our own

tracker tool for the windows-based resources. The

parent GAM publishes all information about the

resources of its pool at the web service layer.

GAMs in the Grid system may interact and

exchange information to achieve load balancing

operations.

Task Allocation and Load Balancing Layer: In

this layer we consider two levels of load balancing,

and we propose a load balancing algorithm which

works similarly for both levels. The lower level of

load balancing consists of the GAM, which

distributes the users tasks (load) received from the

above layer to the receptor workers of its pool. A

worker is declared as a receptor if its CPU

utilization is below a given threshold. The load

balance strategy is to distribute uniformly the load

on the receptor workers. The higher level load

balancing is performed at the GAMs level.

Whenever a GAM sees that its workers have

reached their saturation level (overloaded) and the

incoming arrival rate is high, the GAM may decide

to direct the over-flow incoming tasks rate to

another GAM on the Grid system. In fact the GAMs

exchange information about processing availability

of their pools. The extra-load at any GAM will be

distributed uniformly to other receptor GAMs. A

receptor GAM is a GAM with receptor workers.

The load balancing algorithm and the fault tolerance

issues are discussed in more detailed in section 4.

Grid Service Computation Layer: This layer is

the lowest layer and it is mainly responsible to

perform tasks computation. It consists also in

updating the status of the hardware and software

resources at a given computing unit. In this layer,

some statistics on the usage of the resources are

computed as an example: the average task size,

average task execution time are continuously

calculated and updated at the GAM levels.

Information such as average task execution time is

an important parameter in our model, it can be use

to determine the computing capacity (number of

task per unit of time) at a given computing node and

thus the computing availability in a given pool of

workers.

Failures can occur in this layer, a worker may fail or

simply the owner of the worker machine shuts it

down. Each GAM monitors the tasks that have been

sent for execution. It set a timeout parameter for

each of them. After passing the timeout, it will

resend them to other workers.

4 Load Balancing
In this paper we present an adaptive, distributed and

sender initiator load balancing algorithm in a Grid

environment. Our algorithm takes into account the

processing capacity of the nodes and the

communication cost during the load balancing

operation. The class of problem we address is:

computation-intensive and totally independent tasks

with no communication between them. A task is a

user source program written in any programming

language. The user program needs to be compiled

first then executed.

 Load Balancing Model:

We start by giving some definitions and concepts

useful for our load balancing model. We define a

pool of worker as a group of computing nodes

willing to participate in the grid system. The pool is

dynamically configured, in which some nodes may

join or leave the group at any time. As mentioned

earlier the pool is managed by a Grid Agent

Manager. Grouping the nodes might be based on the

type of nodes such as nodes of a cluster of

computers, supercomputer machine, or simply just

nodes interconnected via the same physical network

or sub-network. We define the following

parameters of our model:

 Task: A task is defined as a source code

written in any programming language (or in

bytecode). In our model we consider that a

task consists of a number of instructions

(TNI). In general it is not possible to know

a priori the exact task execution time until it

is executed on a specific worker (it is

machine dependant). We define the Task

Size (TS) as the storage size in byte of the

task file.

 Processing Capacity (PC): Number of

tasks per second (similar to the measure

used in [11]) the worker can process at full

load. This can be calculated using the CPU

speed (Instruction per second) and assuming

an average task (TNI).

 Load (L): CPU utilization of the node

(given by NWS [10] and our Window-based

tool).

 Actual Processing Capacity (APC):
Actual processing capacity of the system,

LPCAPC
 Grid Processing Capacity (GPC): the

maximum processing capacity

(tasks/seconds) at “Grid threshold”

utilization. We assume that the CPU is

shared between the node owner tasks and

the grid tasks. In our model the node owner

is the one who decides what will be the

share of CPU (percentage) he/she delegates

to the GCS. This share is what we call “Grid

threshold” utilization.

 Available Grid Processing Capacity

(AVGPC): The number of tasks/seconds

the node can perform until it reaches its

maximum allowed grid processing capacity

GPC. In other words, the additional load

which can be offered for grid computations.

APCGPCAVGPC
In fact this formula is conservative because the

actual load L in APC is a shared load between the

owner tasks and the grid tasks. This will always

ensure the agreed upon node’s share utilization.

Example: stPC /500 , %30L . If the grid

threshold is 80%, then:

stxAPC /15030.0500 , stxGPC /40080.0500 , and the

available processing capacity :

stAVGPC /250150400 .

Workers Level Load Balancing

Each GAM is managing one pool of workers. The

GAM receives the submitted tasks and stores them

in a queue. It checks the current status of its pool

and distributes the tasks between the workers

according to their loads. Under utilized workers

(only) report their load status to their managers

waiting for new tasks to be executed on them. This

will reduce the number of messages to be exchanged

between the manager and its workers. The manager

keeps the workers load status on a list.

The tracking of the resources is event driven and not

periodical to minimize message exchange between

the GAMs and their workers. In the pool, only

underutilized workers will report their available

processing capacity AVGPC and only when they

notice a significant change in their values. Those

workers will be called receptors.

The GAM distributes the received tasks between the

receptors according to their reported AVGPC to

maximize the throughput of the group. If N is the

number of received tasks at a given GAM, we

define the following parameters:

Total Processing Capacity (TPC) of the pool: is the

summation of the processing capacities of the pool's

members.

n

i
iPCTPC

1
)(.

Total Available Processing Capacity (TAPC) of the

pool: is the summation of the available processing

capacities of the receptors in the group.

n

r
rAVGPCTAPC

1
)(

.

Receptor Share (sharer(i)): is the number of tasks

to be given to receptor i.

N
TAPC

AVGPC
share

ir

ir .
)(

)(

Example: If manager GAM1 received 200 tasks

and it has three underutilized (receptors) workers r1,

r5 and r7 with AVGPC of 250, 300, 140 tasks/sec

respectively, then:
sec/690140300250 tasksTAPC

taskssharer 72200.
690

250
)1(

taskssharer 87200.

690

300
)5(

taskssharer 41200.
690

140
)7(

GAMs Level Load Balancing

Let us now focus on the GAMs interconnection

structure and explain how the interaction between

the GAMs of the grid helps to maximize the overall

throughput or what we call GAMs level load

balancing. We propose to arrange the GAMs of the

Grid according to a logical ring (backbone) to help

each others as shown in Figure 2. Logical ring

structure has been selected because it is the most

popular backbone and many distributed algorithms

(synchronization, election, communication) have

been proven to be efficient and simple to implement

using the ring structure.

Fig. 2: GAMs arrangement on a ring

Ring structure and precisely the token ring mutual

exclusion algorithm is used to ensure that only one

load balance operation at a given GAM can be

initiated a any time. Having more than one load

balance operation at a time may induce information

inconsistency and then wrong load balance

operations. Exchanging information between the

GAMs of the Grid uses a token message (privilege)

to be circulated on the ring. The token message

contains the global view of the Grid system. This

token message contains the following information

about each GAM:

 Manager ID: the communication address

of the manager.

 Total Available Processing Capacity TAPC

of the GAM.

 Status: the status of the pool, which can be

one of the following:

 - Neutral (N): Pool under normal load.

 - Receiver (R): Available TAPC is high

 (pool is under-utilized), ready to receive

 new tasks and thus increase the throughput.

 - Sender (S): Small TAPC and the pool is

overloaded. Need to transfer some load to other

pools to help.

Example: A sample of the token message could be

the following:

From this token message, we can see that GAM M1

is Receiver. The total available processing capacity

of the pool is 500 tasks/sec. On the other hand GAM

M3 is a Sender. It has an overload of 400 tasks/sec.

Load Balancing Operation:

Some GAMs may receive much more requests than

others. When a GAM keeps receiving tasks when its

pool of workers is overloaded, the GAM queues up

the requests and waits for the token message in

order to check if any GAMs are ready to help (status

Receiver). When an overloaded GAM (Sender)

receives the token message it performs the

following steps:

1. Calculates the share: (number of tasks) to

be delegated to other pools depending on

the Total Available Processing Capacity of

that pool and on the speed of the link

connecting this GAM with the other GAMs.

In our model we take into account the

communication cost to send tasks form

GAM to GAM. We will discuss this matter

in more details in the next section.

2. Modify the token message: It will modify

both the status and TAPC of the Receptor

GAMs as well as its own values. Since the

token message is seen and modified by only

one manager, then we ensure the

consistency of the information inside the

message. In fact, the token received at any

GAM gives the privilege (mutual exclusion)

to the token holder if it is sender to initiate

the load balancing operation. The update of

the TAPC and the Status of the receivers

GAM within the token message is necessary

to reflect the load changes after the load

balance operation is performed.

3. Send that share: Amount of tasks to be

transferred to the Receptors managers.

Receptor Manager deals with the tasks as if

they are external tasks.

4. Pass the token: to the next GAM in the

ring.

Calculating the GAMs share: Since each GAM is

connected to another GAM using probably different

type of network (different network speed) and each

GAM may has a different total available processing

capacity TAPC, then when a GAM manager of an

overloaded pool need to distribute the extra tasks to

the other GAM, it needs to take into consideration

both factors Receptor TAPC and also link speed

from the sender GAM and the Receptor GAMs.

Pools with high processing capacities and fast

network connection should get more tasks than

pools with low processing capacities and slow

network connection. We express the network speed

or capacity in terms of number of task transferred

per second (tasks/sec) [13].

GAM M1 M2 M3 M4

Status R N S R

TAPC 500 0 400 250

Fig. 3: Network cost example

For each Receptor GAM we need to calculate the

load share that it will receive from the Sender GAM

depending on its reported APC and its network

connection speed (network speed between the

sender and the receiver). The load that can be

received at a receiver GAM is the minimum

between its reported APC and the network link

capacity.

)_,min(_ CapacityNWTAPCofferedAPC .

Then we can define, the Grid Total Available

Processing Capacity (GTAPC) as the sum of the

APC_offered for all the Receiver GAMs:

rec

d(rec)APC_offereGTAPC

and then we can calculate the share for each receiver

GAM as,

tasksN
GTAPC

iofferedAPC
share

irec
.

)(_
)(

Example: If GAM M1 in Figure 3 has N=1000

unprocessed tasks, and the following token

information, then it will distribute the load as

follows:

 M2 can offer up to 700 tasks/sec, but since

we can transfer a maximum of 200 tasks/sec

over the link connecting M1 and M2, then

M2 can only supply 200 tasks/sec.

 M3 can offer up to 550 tasks/sec, and since

the link can offer that amount then M3 can

supply the 550 tasks/sec.

 M4 can offer up to 600 tasks/sec, and since

the link can offer that amount then M4 can

supply the 600 tasks/sec.

sec/1350600550200 tasksGTAPC

taskssharegam 1491000.
1350

200
)2(

taskssharegam 4071000.
1350

550
)3(

taskssharegam 4441000.
1350

600
)4(

After updating the token message by GAM1, the

updated message which will be passed to GAM2 is:

Fault Tolerance at Resource Management and

Load Balancing Layer

The main role of the managers GAMs in our

architecture is to receive the tasks and distribute

them among the available workers in the pool

according to the proposed load balancing algorithm.

A GAM node could be a powerful machine in terms

of processor speed, memory and hard disk. On the

other hand, there is no special requirement on the

GAM node. In case of failure any node in the pool

can take this temporary role until the original

manager is repaired. Faults in this layer can be

detected by:

 Low utilized workers: In case of failure,

when any of the low utilized workers try to

report their utilization status to their

manager, one of those workers will detect

the manager failure.

 GAM Predecessor in the ring: When it

sends the token message to the next GAM,

it can detect the failure by getting a timeout

connection error.

Manager GAM1 GAM2 GAM3 GAM4

Status S R R R

TAPC 1000 700 550 600

Manager GAM1 GAM2 GAM3 GAM4

Status N R N R

TAPC 0 500 0 350

 Overloaded GAM: Whenever it tries to send

some of its load to that manager, it can

detect the fault.

Whenever one of the workers detects the failure, it

starts an election to elect a new manager. The

election is based on the classical Bully algorithm,

and then the node with the lowest utilization wins

the election and it will send a victory message for

other nodes in the pool. Sending this message is not

costly operation since the pool is in the same LAN.

Since our architecture is based on a logical ring

structure, then the problem of lost token exists in

case of failure. To overcome this problem,

whenever new manager is elected it should

regenerate a new token message to replace the old

one.

Regenerating new message will solve the lost token

problem but will introduce another problem which

is duplicated tokens in the ring. This problem can

happen when the old token is not yet lost and a new

token has been regenerated. Duplicate tokens can

cause information inconsistency if one sender GAM

is using the old token and another sender manager

starts using the new token. But as soon as the

manager using the old token try to send to the

failing manager and there is time out reply, then it

should understand that there is a failing manager

and it should discard this token and wait for the new

token which will soon come.

5 Performance Evaluation of our GCS
In this section we present some experimental results

conducted on our GCS prototype, which has been

implemented using Java RMI system. We also

provide a simulation model , which helped us to

study the behavior of our GCS under different

system parameters: varying the workers CPU speed

and varying the network bandwidth between the

GAMs.

 5.1 GCS Experimental Results

We have implemented our grid system using Java

RMI technology. The choice for Java RMI

technology to implement grid computing services is

the object of another paper. We just summarize our

findings by the fact that all the grid services defined

as a standard in [2], either they are supported in Java

RMI technology or might be implemented simply.

Our prototype Grid system is composed of 8 GAM

single-processor Leo Presario Workstations. Each

node (GAM) has a single 900 MHZ Pentium III

processor with 128 MP RAM and 40 GB IDE Disk.

These nodes are connected by an 8-port Myrinet

switch. On the other hand, these nodes are

connected with Ethernet LAN network to their pool

of workers. In our prototype we use 24

workstations (workers) running under RedHat9

Linux operating system, with kernel version 2.4.20-

8.

Test Task: During these experiments, we have used

a task that performs 25x25 matrix multiplication.

The task starts by creating two 25x25 matrices, and

then performs the multiplication. Our test task is

written using java. Each worker needs to compile

and then execute the task.

 Worker Level’s Load Balancing Evaluation

Our objective in this set of experiments is to

measure the quality of our load balancing algorithm

GAM worker (worker level). During this set, we

will measure the user response time and the system

throughput.

 Uniform Load Distribution Experiment:
We use one GAM with 12 workers in the

pool with no load balancing algorithm.

 Load Distribution Experiment: Same

configuration as in the previous but with

load balancing.

 Double the number of Workers

Experiment: We use one GAM with 24

workers in the pool. The manager is using

the proposed load balancing algorithm to

distribute the tasks.

Figure 4 represents the user response time for the

different experiments for evaluating the load

balancing at worker level. It shows clearly the

benefit of having our load balancing algorithm

compared to the version without load balancing

(NOLB). In other hand, we can also see the good

performance of our algorithm when we double the

number of workers(1M_24W_LB), the response

time is reduced to almost half.

Response time For worker level load balancing evaluation

4.34 4.88
7.24

13.09
18.43 20.52

29.17

39.9

5.87 7.81
13.18

27.14

36.87

43.55

50.63

80.25

7.07
12.12

18.56

43.82

52.72

70.54

90.93

130.94

0

20

40

60

80

100

120

140

25 50 100 250 300 350 450 550

Input Rate (task/sec)

R
e
s
p

o
n

s
e

t
i
m

e

(
s
e
c
)

1M_24W_ LB

1M_12W_ LB

1M_12W_No LB

Fig. 4: Worker level load balancing

GAMs Level’s Load Balancing Evaluation

 Unbalanced Load Traffic: In this

experiment, we use three GAMs. Each

GAM manages a pool of eight workers. In

this experiment, the load is directed to only

one GAM (unbalanced load traffic).

 Balanced Load Traffic: In this experiment

we, use three managers. Each GAM

manages a pool of 8 workers. In this

experiment, we consider different load rates

directed (independently) to three GAMs

(balanced load traffic).

Response time For GAM level load balancing evaluation

6.4 5.92
7.33

14.98

19.07

24.25

32.13

41.2

6.42 5.77
7.06

14.02

18.02

22.16

29.13

40.03

0

5

10

15

20

25

30

35

40

45

25 50 100 250 300 350 450 550

Input rate (task/sec)

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

3M_8W_unBalc

3M_8W_Balc

Fig. 5: GAMs level load balancing

Figure 5 shows that directing the load independently

to three GAMs gives better results than directing the

load to one GAM only. These results are expected

because it will reduce the communication cost due

to tasks transfer between GAMs. We can see clearly

that after the rate 250 tasks/sec the two curves are

separated and this correspond exactly to the

saturation rate for the target GAM. Beyond this

saturation rate the GAM starts to direct the overflow

rate to other GAMs and hence the communication

cost effect starts. Note also that the difference

between these two curves is small because

communication between GAMs uses the full duplex

Myrinet switch that provides 2+2 Gigabit/sec.

5.2 Simulation Results Using NS2

The objective of the simulation is to study the

performance of our GCS and the load balancing

algorithm under different workers speed and

different network bandwidth between GAMs. We

carried out simulations using NS2. We considered a

topology with 3 GAMs, where each GAM manages

a pool of 8 workers. Figure 6 illustrates this

topology.

Fig. 6: NS2 scenario

We assumed that tasks submission to our Grid

Computing Service follows a Poisson law with

parameter λ which corresponds to the arrival rate of

the tasks to the system. We supposed also that the

number of instructions in a task, and hence the

task’s execution duration follows an exponential

distribution with parameter μ, which corresponds to

the average execution duration of a task.

Impact of the input rate:

In a first stage, we were interested in evaluating the

impact of the input rate (tasks per second) on the

performance of GCS. We considered two cases: in a

first case we submitted the tasks to the same GAM

(unbalanced arrival of tasks into the system). In the

second case, we distributed the arrival of the tasks

uniformly over the three GAMs of the system.

Figure 7 illustrates the response time of the system

with respect to the input rate. We notice that the

system behaves better when the tasks arrival is

uniform over the three GAMs. Indeed, this

minimizes the communication delays due to load

balancing at the GAM level.

Fig.7: Average response time of GCS with

respect to input rate.

Figure 8 illustrates the output rate of the system

with respect to the input rate. We notice again the

difference in output rates due to communication

delays between GAMs. We remark that at 110

tasks/s the system reaches the saturation point and

its output rate becomes constant.

Fig. 8: Output rate (tasks/s) with respect to input

rate.

Impact of the GAMs’ links bandwidth:

In a second stage, we were interested in evaluating

the impact of the bandwidth between GAMs. Figure

9 illustrates the average response time with respect

to the available bandwidth between GAMs. We

notice that, when the available bandwidth between

Token

GAM

Task

Worker
Hello

Workers

GAMs exceeds 1.5Gbps, the communication delays

between GAMs become negligible in conformance

with our experimental measures.

Fig.9: Response time with respect to bandwidth

between GAMs

6. Conclusion

We presented a new layered architecture for

implementing Grid computing services. We

proposed an adaptive two level load balancing

algorithm, which minimizes the overall tasks

response time and maximize the grid system

throughput. The experimental and the simulation

results show the good efficiency of our load

balancing algorithm on our prototype Grid system.

In our future work we investigate the security

aspects and an analytical model to measure

performance of our GCS.

References:

[1] I. Foster, C. Kesselman, S. Tuecke. The

Anatomy of the Grid: Enabling Scalable

Virtual Organizations. International J.

Supercomputer Applications, 15(3), 2001.

[2] I. Foster, C. Kesselman, J. Nick, and S.

Tuecke, The Physiology of the Grid: An Open

Grid Services Architecture for Distributed

Systems Integration. Open Grid Service

Infrastructure WG, Global Grid Forum, June

22, 2002.

[3] T. DeFanti and R. S. Teleimmersion. The

Grid: blueprint for a New Computing

Infrastructure, In Foster, I. and Kesselman,

C.eds. Morgan Kaufmann, 1999,131-155.

[4] Douglas Thain, Todd Tannenbaum, and Miron

Livny, "Condor and the Grid", in Fran Berman,

Anthony J.G. Hey, Geoffrey Fox, editors, Grid

Computing: Making The Global Infrastructure

a Reality, John Wiley, 2003. ISBN: 0-470-

85319-0

[5] Jim Basney and Miron Livny, Managing

Network Resources in Condor, Proceedings of

the Ninth IEEE Symposium on High

Performance Distributed Computing (HPDC9),

Pittsburgh, Pennsylvania, August 2000, pp 298-

299 .

[6] H.A.James and K.A.Hawick. Scheduling

Independent Tasks on Metacomputing

Systems. Proc. ISCA 12th Int. Conf. on

Parallel and Distributed Computing Systems

(PDCS-99). Fort Lauderdale, USA, March

1999.

[7] V. Subramani, R. Kettimuthu, S. Srinivasan

and P.Sadayappan, Distributed Job Scheduling

on Computational Grid Using Multiple

Simultaneous Requests. Proc. of 11-th IEEE

Symposium on High Performance Distributed

Computing (HPDC 2002), July. 2002.

[8] M. Arora, S.K.Das and R. Biswas. A De-

Centralized Scheduling and Load Balancing

Algorithm for Heterogeneous Grid

Environments. ICPP Workshops 2002: 499-

505.

[9] T.K. Apostolopoulose, G. C.Oikonomou. A

scalable, Extensible framework for grid

management. IASTED international conference

Feb. 2004, Austria.

[10] R. Wolski. Experiences with Predicting

Resource Performance On-line in

Computational Grid Settings. ACM

SIGMETRICS Performance Evaluation Review,

Volume 30, Number 4, pp 41-49, March, 2003.

[11] G. Shao, F. Berman, R. Wolski. Master/Slave

Computing on the Grid. In Proceedings of the

9th Heterogeneous Computing Workshop,

(Cancun, Mexico, 2000), 3-16.

