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Abstract: - In this paper we propose a new architecture for grid computing service which allows grid 

users with limited resources to do any kind of computation using  grid shared hardware and/or 

software resources.  The term limited resouces includes  disk or diskless workstrations, Palmtops or 

any mobile devices.  The proposed grid computing service takes into account both hardware and 

software requierements of the user computing task, along with some quality of service.  On other hand 

our grid system needs to maximize the overall system throughput, minimize the user responce time, 

and allows a good grid resources utilization. On this aspect we propose an adaptive  task allocation 

and load balancing algorithm  to achieve the desired goals. We have developed a simulation model 

using NS2 to evaluate the performance of our grid system. We have also  conducted some experiments 

on our a test-bed prototype. The performance evaluation measures  confirm the  good  quality of our 

proposed architecture and  load balancing algorithm. 
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1 Introduction 
Computer users, professionals or none 

professionals, spend their time browsing the Internet 

or doing any of their daily routine office work (non 

computing tasks).  Many computers are most of the 

time idle or underutilized.  On the other hand there 

are an increasing number of computing applications 

that need a huge computing power, which cannot be 

afforded by a single institution.  However, grid 

computing is a method based on collecting the 

power of many computers, in order to solve large-

scale problems, the parallel processing aspect. In 

other hand, it offers to independent grid computing 

services users to share hardware and software grid 

resources.  The grid-computing infrastructure will 

provide users with almost unlimited computing 

power on demand along with a desired quality of 

service.   

Grid computing has emerged as an important new 

field, distinguished from conventional distributed 

computing by its focus on large-scale resource 

sharing, innovative applications, and, in some cases, 

high-performance orientation.  Traditional 

distributed systems can use Grid technologies to 

achieve resource sharing across institutional 

boundaries. Grid technologies complement rather 

than compete with existing distributed computing 

technologies [1].  Grid computing is intended to 

provide on-demand access to computing, data and 

services. In the near future Grid systems will offer 

computing services as simply as browsing web 

pages nowadays [2].    



In this paper we propose a new Grid infrastructure 

focusing on the Grid Computing Services (GCS).  In 

our approach we take into consideration as much as 

possible all the required design issues and features 

of Grid systems as defined in the literature.   The 

objective of our work is to build a Grid computing 

service system that allows users to submit their 

computing tasks simply by having access to our 

Grid Computing Service Web Site (GCSWS).  The 

Grid user may specify along with the submitted task 

the necessary hardware/software resources needed 

by the task and any desired quality of service, such 

as response time or other performance parameters.  

The minimum requirement to use our grid 

computing service is only having access to Internet.  

Indeed the "plumbing" for grid computing is 

essentially in place: we already have large-scale 

networks of distributed computers, connected by 

reliable networks using data communication 

protocols TCP/IP that is the standard and widely 

used protocol. The challenges in grid computing 

therefore lie in developing the software to drive the 

grid [2]. 

Another objective of our grid computing service is 

to save users to buy powerful computers or 

expensive software (compilers or other tools); all 

these resources are available in our Grid system.  

Further more our system will enable users with low 

memory devices like palmtops or mobile phones to 

do computation on our behalf provided they have 

access to Internet. On other hand our grid system 

needs to maximize the overall system throughput, 

minimize the user responce time, and allow good 

grid resources utilization. On this aspect we propose 

a scheduling algorithm which allow task allocation 

and an adaptive load balancing to achieve the 

desired goals.  

This paper is organized as follows: Section 2 

presents the background and related work.  Section 

3 presents the layered structure of our grid system 

and the fault tolerance issues in each layer.  In 

section 4, we present our analytical model and the 

load-balancing algorithm.  In section 5, we present 

both a simulation model some experimental results 

on our test-bed GCS.  Section 6 concludes the 

paper. 

 

 

2  Backgrounds and Related Works  
From the definition of grid computing [3], we can 

see the following keywords, which summarize Grid 

computing: distributed resources, resource sharing, 

transparent remote access, infinite storage, and 

computing power.  There are many research 

problems in the grid.  In Condor [4][5], Grid 

computing service is based on cycle-scavenging 

strategy that uses the idle workstation model. 

Condor migrate the tasks when the owner of the 

machine starts using it. In our GCS, task allocation 

is based on the current load of the workstations 

participating in the grid. Once a new workstation 

joins the grid it fixes its share of CPU utilization to 

be allocated to Grid computing service. There is no 

need to do task migration, Grid tasks and 

workstation owner tasks run in pseudo parallel using 

the CPU scheduler of the workstation. This solution 

reduces the cost and implementation complexity of 

task migration mechanism.  In Condor there is no 

load balancing. Tasks distribution is based on a 

MatchMaker module: Each resource advertises its 

properties and each task advertises its requirement 

and then the MatchMaker performs the matching 

and ranks them. The resource with the highest rank 

is selected.  In this paper we focus on load 

balancing, resources management and fault 

tolerance problems.  

Load balancing: more difficult to achieve in Grid 

systems than in traditional distributed computing 

environment because of the heterogeneity and the 

dynamic nature of the grid.  Many papers have been 

published recently to address this problem. Most of 

the studies present only centralized schemes [6] [7]. 

On the other hand, some of those proposed 

algorithms are extensions of load balancing 

algorithms for traditional distributed systems. All of 

them suffer from significant deficiencies, such as 

scalability problems when we talk about the 

centralized approaches in [8].  A triggering policy 

based on the endurance of a node reflected by its 

current queue length is used in [8].  The authors 

tried to include the communication latency between 

two nodes during the triggering processes on their 

model, but lacks including the cost of the actual task 

transfer.  In our model we also consider the node 

load or saturation level and we do consider the 

communication task transfer cost. We propose an 

adaptive load-balancing algorithm, which takes into 

consideration both computing, and network 

heterogeneity to deliver a maximum throughput for 

our Grid system.   

Resource Managements: Different approaches 

have been proposed in the literature [9].  Our 

approach is based on multiple resource manager 

agents, each one is responsible to track and collect 

information on its pool of workers in the Grid 

system.  The resource manager agents may 

cooperate in order to achieve performance.  Our 

GCS system is heterogeneous in its nature from all 

point of views: different machines speed; different 
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operating systems; different network technologies 

and speed. 

Fault Tolerance: Grid systems are by nature large 

in the scale, faults may occur any where any time. 

The purpose of fault tolerance is to increase the 

reliability, availability and dependability of a 

system. Solutions for fault tolerance exist for the 

traditional distributed systems.  We propose simple 

grid adapted solutions to deal with faults, taking into 

consideration the “when/where” faults occurrence. 

We thus tackle the faults at different layer in our 

architecture. 

 

 

3 GCS Architecture  
GCS is a Grid computing service that allows users 

to submit their computing tasks along with 

indication of the required hardware or software 

resources. They can also submit any desired Quality 

of Service (QoS). The GCS system allocates tasks to 

the available resources and then executes the tasks. 

After task execution, GCS will reply to the user and 

send back the results.  We identify four main steps 

in a GCS: 

Task Submission Mechanism: The task 

submission process needs to be as simple as possible 

and it should be accessible to the maximum number 

of clients. The best approach for task submission is 

through web site, using their favorite web browsers. 

This submission mechanism is also suitable for 

mobile devices like laptops and mobile phones.   

Task Allocation Mechanism: GCS needs to 

allocate the computation task to one of the available 

resources. This may involve task transfer between 

different components of the GCS system. It may 

also involve message exchange (such as load 

balancing information). 

Task Execution Mechanism: After GCS allocates 

the task to suitable resources, then the task needs to 

be executed. The resource will perform the required 

execution (compilation may be needed) and then it 

will prepare the result file to be sent back to the 

client.   

Results Return Mechanism: After the execution of 

the tasks, clients need to be notified whether their 

tasks have been executed correctly or there were 

some problems. If the tasks were executed correctly 

the results will be sent back to the clients. The best 

approach to display the results is using the Internet 

browser itself. We propose the following a layered 

architecture as shown in Figure 1.    

 

 

 

 

 

 

 

 

 

 

Fig. 1 GCS layered architecture 

 

 

Web Service Task Submission Layer: Grid users 

submit their tasks to the Grid system through the 

GCS web site using their favorite web browser.  Our 

aim is to make access to the Grid like browsing 

internet. The only requirement for the user to access 

the Grid is to have internet access and a web 

browser. In this layer, we deal with user tasks 

submission and their requirements (resources and 

quality of service information). 

 Our Grid system has many access points where 

users can submit their tasks. To minimize the user’s 

response time, tasks might be directed to an 

appropriate Grid entry using mirror web site 

mechanisms. Each Grid entry point is called a Grid 

Agent Manager (GAM).  A GAM is responsible of a 

dynamic pool of workers.  The Web information 

service layer offers to the clients some information 

about statistics, and some information about the 

expected response time based on the actual overall 

load of the grid system.   Information about load and 

availability can grid be collected from the below 

layer.  The Web service layer may decide which 

GAM to direct the client task based on the grid load 

and the desired user quality of service. 

For the fault tolerant aspects: Our grid system has 

many access points, where users can submit their 

tasks, then faults can occur in any one of these 

access points. This kind of failures could be 

tolerated by redirecting the user request to any other 

access point. Fault discovery at this level is 

implemented using a connection failure timeout 

mechanism.  Another kind of failure the user may 

experience is sending a task for computation and 

getting no reply to the request. This layer deals also 



with task resubmission mechanism by example in 

this case resend the task to another access point.   

Grid Resource Monitoring Layer: Our grid 

system is composed of many hardware and software 

resources. It is by nature heterogeneous from all 

aspects: network technologies in different 

computing sites and different operating systems for 

the computing workstations even within the same 

site. To fully utilize the resources, we need to 

monitor those resources to know which one is 

underutilized and which one is overloaded. 

Monitoring functions are provided by the Grid 

resource monitoring layer. The GAMs are the 

building blocks of this resource monitoring layer.  

Resource tracking and monitoring is based on 

distributed mechanisms where workers in a given 

pool reports to their GAM the status of their 

resources if any significant change has been noticed 

since the last report. For example if there is an 

important change in the CPU utilization or other 

hardware resources, a change of status is reported to 

the parent GAM.  In our implementation we are 

using Network Weather Service NWS (for the Unix 

based resources) [10], and we developed our own 

tracker tool for the windows-based resources.  The 

parent GAM publishes all information about the 

resources of its pool at the web service layer.  

GAMs in the Grid system may interact and 

exchange information to achieve load balancing 

operations.   

 

Task Allocation and Load Balancing Layer: In 

this layer we consider two levels of load balancing, 

and we propose a load balancing algorithm which 

works similarly for both levels. The lower level of 

load balancing consists of the GAM, which 

distributes the users tasks (load) received from the 

above layer to the receptor workers of its pool. A 

worker is declared as a receptor if its CPU 

utilization is below a given threshold.  The load 

balance strategy is to distribute uniformly the load 

on the receptor workers.  The higher level load 

balancing is performed at the GAMs level. 

Whenever a GAM sees that its workers have 

reached their saturation level (overloaded) and the 

incoming arrival rate is high, the GAM may decide 

to direct the over-flow incoming tasks rate to 

another GAM on the Grid system. In fact the GAMs 

exchange information about processing availability 

of their pools.  The extra-load at any GAM will be 

distributed uniformly to other receptor GAMs.   A 

receptor GAM is a GAM with receptor workers.  

The load balancing algorithm and the fault tolerance 

issues are discussed in more detailed in section 4. 

Grid Service Computation Layer: This layer is 

the lowest layer and it is mainly responsible to 

perform tasks computation. It consists also in 

updating the status of the hardware and software 

resources at a given computing unit.  In this layer, 

some statistics on the usage of the resources are 

computed as an example:  the average task size, 

average task execution time are continuously 

calculated and updated at the GAM levels.  

Information such as average task execution time is 

an important parameter in our model, it can be use 

to determine the computing capacity (number of 

task per unit of time) at a given computing node and 

thus the computing availability in a given pool of 

workers.    

Failures can occur in this layer, a worker may fail or 

simply the owner of the worker machine shuts it 

down. Each GAM monitors the tasks that have been 

sent for execution. It set a timeout parameter for 

each of them. After passing the timeout, it will 

resend them to other workers. 

 

 

4 Load Balancing  
In this paper we present an adaptive, distributed and 

sender initiator load balancing algorithm in a Grid 

environment. Our algorithm takes into account the 

processing capacity of the nodes and the 

communication cost during the load balancing 

operation. The class of problem we address is: 

computation-intensive and totally independent tasks 

with no communication between them.   A task is a 

user source program written in any programming 

language.  The user program needs to be compiled 

first then executed. 

 

 Load Balancing Model: 

We start by giving some definitions and concepts 

useful for our load balancing model. We define a 

pool of worker as a group of computing nodes 

willing to participate in the grid system.  The pool is 

dynamically configured, in which some nodes may 

join or leave the group at any time.  As mentioned 

earlier the pool is managed by a Grid Agent 

Manager. Grouping the nodes might be based on the 

type of nodes such as nodes of a cluster of 

computers, supercomputer machine, or simply just 

nodes interconnected via the same physical network 

or sub-network.  We define the following 

parameters of our model:  

 Task: A task is defined as a source code 

written in any programming language (or in 

bytecode). In our model we consider that a 

task consists of a number of instructions 

(TNI).  In general it is not possible to know 



a priori the exact task execution time until it 

is executed on a specific worker (it is 

machine dependant).    We define the Task 

Size (TS) as the storage size in byte of the 

task file. 

 Processing Capacity (PC): Number of 

tasks per second (similar to the measure 

used in [11]) the worker can process at full 

load.  This can be calculated using the CPU 

speed (Instruction per second) and assuming 

an average task (TNI).  

 

 Load (L): CPU utilization of the node 

(given by NWS [10] and our Window-based 

tool).  

 Actual Processing Capacity (APC): 
Actual processing capacity of the system, 

LPCAPC    
 Grid Processing Capacity (GPC): the 

maximum processing capacity 

(tasks/seconds) at “Grid threshold” 

utilization. We assume that the CPU is 

shared between the node owner tasks and 

the grid tasks.  In our model the node owner 

is the one who decides what will be the 

share of CPU (percentage) he/she delegates 

to the GCS. This share is what we call “Grid 

threshold” utilization.   

 Available Grid Processing Capacity 

(AVGPC): The number of tasks/seconds 

the node can perform until it reaches its 

maximum allowed grid processing capacity 

GPC. In other words, the additional load 

which can be offered for grid computations. 

APCGPCAVGPC    
In fact this formula is conservative because the 

actual load L in APC is a shared load between the 

owner tasks and the grid tasks.  This will always 

ensure the agreed upon node’s share utilization. 

 

Example: stPC /500 , %30L . If the grid 

threshold is 80%, then: 

stxAPC /15030.0500  , stxGPC /40080.0500  , and the 

available processing capacity :  

stAVGPC /250150400  . 

 

 

Workers Level Load Balancing  

Each GAM is managing one pool of workers. The 

GAM receives the submitted tasks and stores them 

in a queue. It checks the current status of its pool 

and distributes the tasks between the workers 

according to their loads. Under utilized workers 

(only) report their load status to their managers 

waiting for new tasks to be executed on them. This 

will reduce the number of messages to be exchanged 

between the manager and its workers. The manager 

keeps the workers load status on a list.  

The tracking of the resources is event driven and not 

periodical to minimize message exchange between 

the GAMs and their workers.  In the pool, only 

underutilized workers will report their available 

processing capacity AVGPC and only when they 

notice a significant change in their values. Those 

workers will be called receptors.  

The GAM distributes the received tasks between the 

receptors according to their reported AVGPC to 

maximize the throughput of the group. If N is the 

number of received tasks at a given GAM, we 

define the following parameters: 

Total Processing Capacity (TPC) of the pool: is the 

summation of the processing capacities of the pool's 

members.   
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i
iPCTPC

1
)( . 

Total Available Processing Capacity (TAPC) of the 

pool: is the summation of the available processing 

capacities of the receptors in the group. 
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Receptor Share (sharer(i) ): is the number of tasks 

to be given to receptor i.  

N
TAPC

AVGPC
share

ir

ir .
)(
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Example: If manager GAM1 received 200 tasks 

and it has three underutilized (receptors) workers r1, 

r5 and r7 with AVGPC of 250, 300, 140 tasks/sec 

respectively, then: 
sec/690140300250 tasksTAPC   

taskssharer 72200.
690

250
)1( 

 
taskssharer 87200.

690

300
)5( 

  

taskssharer 41200.
690

140
)7( 

 
 

 

GAMs Level Load Balancing  

Let us now focus on the GAMs interconnection 

structure and explain how the interaction between 

the GAMs of the grid helps to maximize the overall 

throughput or what we call GAMs level load 

balancing. We propose to arrange the GAMs of the 

Grid according to a logical ring (backbone) to help 

each others as shown in Figure 2. Logical ring 

structure has been selected because it is the most 

popular backbone and many distributed algorithms 

(synchronization, election, communication) have 

been proven to be efficient and simple to implement 

using the ring structure.  



 
 

Fig. 2: GAMs arrangement on a ring 

 

Ring structure and precisely the token ring mutual 

exclusion algorithm is used to ensure that only one 

load balance operation at a given GAM can be 

initiated  a any time.  Having more than one load 

balance operation at a time may induce information 

inconsistency and then wrong load balance 

operations.  Exchanging information between the 

GAMs of the Grid uses a token message (privilege) 

to be circulated on the ring. The token message 

contains the global view of the Grid system. This 

token message contains the following information 

about each GAM: 

 Manager ID: the communication address 

of the manager. 

 Total Available Processing Capacity TAPC 

of the GAM. 

 Status: the status of the pool, which can be 

one of the following:   

            - Neutral (N): Pool under normal load. 

            - Receiver (R): Available TAPC is high  

              (pool is   under-utilized), ready to receive    

              new tasks and thus increase the throughput. 

            - Sender (S): Small TAPC and the pool is 

overloaded. Need to transfer some load to other 

pools to help. 

Example: A sample of the token message could be 

the following: 

 

 

 

 

 

 

 

From this token message, we can see that GAM M1 

is Receiver. The total available processing capacity 

of the pool is 500 tasks/sec. On the other hand GAM 

M3 is a Sender. It has an overload of 400 tasks/sec. 

 

 

Load Balancing Operation: 

Some GAMs may receive much more requests than 

others. When a GAM keeps receiving tasks when its 

pool of workers is overloaded, the GAM queues up 

the requests and waits for the token message in 

order to check if any GAMs are ready to help (status 

Receiver). When an overloaded GAM (Sender) 

receives the token message it performs the 

following steps: 

1. Calculates the share: (number of tasks) to 

be delegated to other pools depending on 

the Total Available Processing Capacity of 

that pool and on the speed of the link 

connecting this GAM with the other GAMs.  

In our model we take into account the 

communication cost to send tasks form 

GAM to GAM.   We will discuss this matter 

in more details in the next section.  

2. Modify the token message: It will modify 

both the status and TAPC of the Receptor 

GAMs as well as its own values. Since the 

token message is seen and modified by only 

one manager, then we ensure the 

consistency of the information inside the 

message.  In fact, the token received at any 

GAM gives the privilege (mutual exclusion) 

to the token holder if it is sender to initiate 

the load balancing operation. The update of 

the TAPC and the Status of the receivers 

GAM within the token message is necessary 

to reflect the load changes after the load 

balance operation is performed.   

3. Send that share: Amount of tasks to be 

transferred to the Receptors managers. 

Receptor Manager deals with the tasks as if 

they are external tasks. 

4. Pass the token: to the next GAM in the 

ring. 

 

Calculating the GAMs share: Since each GAM is 

connected to another GAM using probably different 

type of network (different network speed) and each 

GAM may has a different total available processing 

capacity TAPC, then when a GAM manager of an 

overloaded pool need to distribute the extra tasks to 

the other GAM, it needs to take into consideration 

both factors Receptor TAPC and also link speed 

from the sender GAM and the Receptor GAMs. 

Pools with high processing capacities and fast 

network connection should get more tasks than 

pools with low processing capacities and slow 

network connection. We express the network speed 

or capacity in terms of number of task transferred 

per second (tasks/sec) [13].   

GAM M1 M2 M3 M4 

Status R N S R 

TAPC 500 0 400 250 



 
Fig. 3: Network cost example 

 

For each Receptor GAM we need to calculate the 

load share that it will receive from the Sender GAM 

depending on its reported APC and its network 

connection speed (network speed between the 

sender and the receiver). The load that can be 

received at a receiver GAM is the minimum 

between its reported APC and the network link 

capacity.   

 

)_,min(_ CapacityNWTAPCofferedAPC  . 

Then we can define, the Grid Total Available 

Processing Capacity (GTAPC) as the sum of the 

APC_offered for all the Receiver GAMs:   

            

rec

d(rec)APC_offereGTAPC                                                                      

and then we can calculate the share for each receiver 

GAM as,  

           

tasksN
GTAPC

iofferedAPC
share

irec
.
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Example: If GAM M1 in Figure 3 has N=1000 

unprocessed tasks, and the following token 

information, then it will distribute the load as 

follows: 

 

 

 

 

 

 

 

 M2 can offer up to 700 tasks/sec, but since 

we can transfer a maximum of 200 tasks/sec 

over the link connecting M1 and M2, then 

M2 can only supply 200 tasks/sec. 

 M3 can offer up to 550 tasks/sec, and since 

the link can offer that amount then M3 can 

supply the 550 tasks/sec. 

 M4 can offer up to 600 tasks/sec, and since 

the link can offer that amount then M4 can 

supply the 600 tasks/sec. 

sec/1350600550200 tasksGTAPC 

 

taskssharegam 1491000.
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taskssharegam 4071000.
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taskssharegam 4441000.
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After updating the token message by GAM1, the 

updated message which will be passed to GAM2 is: 

 

 

 

 

 

 

 

 

 

Fault Tolerance at Resource Management and 

Load Balancing Layer 

The main role of the managers GAMs in our 

architecture is to receive the tasks and distribute 

them among the available workers in the pool 

according to the proposed load balancing algorithm. 

A GAM node could be a powerful machine in terms 

of processor speed, memory and hard disk. On the 

other hand, there is no special requirement on the 

GAM node. In case of failure any node in the pool 

can take this temporary role until the original 

manager is repaired.  Faults in this layer can be 

detected by: 

 Low utilized workers:  In case of failure, 

when any of the low utilized workers try to 

report their utilization status to their 

manager, one of those workers will detect 

the manager failure. 

 GAM Predecessor in the ring: When it 

sends the token message to the next GAM, 

it can detect the failure by getting a timeout 

connection error. 

Manager GAM1 GAM2 GAM3 GAM4 

Status S R R R 

TAPC 1000 700 550 600 

Manager GAM1 GAM2 GAM3 GAM4 

Status N R N R 

TAPC 0 500 0 350 



 Overloaded GAM: Whenever it tries to send 

some of its load to that manager, it can 

detect the fault.  

Whenever one of the workers detects the failure, it 

starts an election to elect a new manager. The 

election is based on the classical Bully algorithm, 

and then the node with the lowest utilization wins 

the election and it will send a victory message for 

other nodes in the pool. Sending this message is not 

costly operation since the pool is in the same LAN. 

Since our architecture is based on a logical ring 

structure, then the problem of lost token exists in 

case of failure. To overcome this problem, 

whenever new manager is elected it should 

regenerate a new token message to replace the old 

one.  

Regenerating new message will solve the lost token 

problem but will introduce another problem which 

is duplicated tokens in the ring. This problem can 

happen when the old token is not yet lost and a new 

token has been regenerated. Duplicate tokens can 

cause information inconsistency if one sender GAM 

is using the old token and another sender manager 

starts using the new token. But as soon as the 

manager using the old token try to send to the 

failing manager and there is time out reply, then it 

should understand that there is a failing manager 

and it should discard this token and wait for the new 

token which will soon come. 

 

 

5 Performance Evaluation of our GCS 
In  this section we present some experimental results 

conducted on our GCS prototype, which has been 

implemented using Java RMI system.  We  also 

provide a simulation model , which helped us to 

study the behavior of our GCS under different 

system parameters: varying the workers CPU speed 

and varying the network bandwidth between the 

GAMs. 

 

 5.1 GCS Experimental  Results 

We have implemented our grid system using Java 

RMI technology.  The choice for Java RMI 

technology to implement grid computing services is 

the object of another paper.  We just summarize our 

findings by the fact that all the grid services defined 

as a standard in [2], either they are supported in Java 

RMI technology or might be implemented simply.  

Our prototype Grid system is composed of 8 GAM 

single-processor Leo Presario Workstations. Each 

node (GAM) has a single 900 MHZ Pentium III 

processor with 128 MP RAM and 40 GB IDE Disk. 

These nodes are connected by an 8-port Myrinet 

switch.  On the other hand, these nodes are 

connected with Ethernet LAN network to their pool 

of workers.  In our prototype we use 24 

workstations (workers) running under RedHat9 

Linux operating system, with kernel version 2.4.20-

8.  

Test Task: During these experiments, we have used 

a task that performs 25x25 matrix multiplication. 

The task starts by creating two 25x25 matrices, and 

then performs the multiplication. Our test task is 

written using java. Each worker needs to compile 

and then execute the task.  

 

 

 Worker Level’s Load Balancing Evaluation  

Our objective in this set of experiments is to 

measure the quality of our load balancing algorithm 

GAM worker (worker level). During this set, we 

will measure the user response time and the system 

throughput. 

 Uniform Load Distribution Experiment: 
We use one GAM with 12 workers in the 

pool with no load balancing algorithm.  

 Load Distribution Experiment: Same 

configuration as in the previous but with 

load balancing.  

 Double the number of Workers 

Experiment: We use one GAM with 24 

workers in the pool. The manager is using 

the proposed load balancing algorithm to 

distribute the tasks.  

 

Figure 4 represents the user response time for the 

different experiments for evaluating the load 

balancing at worker level.  It shows clearly the 

benefit of having our load balancing algorithm 

compared to the version without load balancing 

(NOLB).  In other hand, we can also see the good 

performance of our algorithm when we double the 

number of workers(1M_24W_LB), the response 

time is reduced to almost half.   
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Fig. 4: Worker level load balancing  

 

 

GAMs Level’s Load Balancing Evaluation 

 

 Unbalanced Load Traffic: In this 

experiment, we use three GAMs. Each 

GAM manages a pool of eight workers. In 

this experiment, the load is directed to only 

one GAM  (unbalanced load traffic). 

 Balanced Load Traffic: In this experiment 

we, use three managers. Each GAM 

manages a pool of 8 workers. In this 

experiment, we consider different load rates 

directed (independently) to three GAMs 

(balanced load traffic).  
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Fig. 5:  GAMs level load balancing 

 

Figure 5 shows that directing the load independently 

to three GAMs gives better results than directing the 

load to one GAM only. These results are expected 

because it will reduce the communication cost due 

to tasks transfer between GAMs. We can see clearly 

that after the rate 250 tasks/sec the two curves are 

separated and this correspond exactly to the 

saturation rate for the target GAM. Beyond this 

saturation rate the GAM starts to direct the overflow 

rate to other GAMs and hence the communication 

cost effect starts.  Note also that the difference 

between these two curves is small because 

communication between GAMs uses the full duplex 

Myrinet switch that provides 2+2 Gigabit/sec. 

5.2 Simulation Results Using NS2       

The objective of the simulation is to study the 

performance of our GCS and the load balancing 

algorithm under different workers speed and 

different network bandwidth between GAMs.  We 

carried out simulations using NS2. We considered a 

topology with 3 GAMs, where each GAM manages 

a pool of 8 workers. Figure 6 illustrates this 

topology. 



 

Fig. 6: NS2 scenario 

 

We assumed that tasks submission to our Grid 

Computing Service follows a Poisson law with 

parameter λ which corresponds to the arrival rate of 

the tasks to the system. We supposed also that the 

number of instructions in a task, and hence the 

task’s execution duration follows an exponential 

distribution with parameter μ, which corresponds to 

the average execution duration of a task. 

 

 

Impact of the input rate: 

In a first stage, we were interested in evaluating the 

impact of the input rate (tasks per second) on the 

performance of GCS. We considered two cases: in a 

first case we submitted the tasks to the same GAM 

(unbalanced arrival of tasks into the system). In the 

second case, we distributed the arrival of the tasks 

uniformly over the three GAMs of the system. 

Figure 7 illustrates the response time of the system 

with respect to the input rate. We notice that the 

system behaves better when the tasks arrival is 

uniform over the three GAMs. Indeed, this 

minimizes the communication delays due to load 

balancing at the GAM level. 

 
Fig.7: Average response time of GCS with 

respect to input rate. 

 

Figure 8 illustrates the output rate of the system 

with respect to the input rate. We notice again the 

difference in output rates due to communication 

delays between GAMs. We remark that at 110 

tasks/s the system reaches the saturation point and 

its output rate becomes constant. 

 
Fig. 8: Output rate (tasks/s) with respect to input 

rate. 

 

Impact of the GAMs’ links bandwidth: 

In a second stage, we were interested in evaluating 

the impact of the bandwidth between GAMs. Figure 

9 illustrates the average response time with respect 

to the available bandwidth between GAMs. We 

notice that, when the available bandwidth between 

Token 

GAM 

Task 

Worker 
Hello 

Workers 



GAMs exceeds 1.5Gbps, the communication delays 

between GAMs become negligible in conformance 

with our experimental measures. 

 
Fig.9: Response time with respect to bandwidth 

between GAMs 

 

6. Conclusion 

We presented a new layered architecture for 

implementing Grid computing services.   We 

proposed an adaptive two level load balancing 

algorithm, which minimizes the overall tasks 

response time and maximize the grid system 

throughput. The experimental and the simulation 

results show the good efficiency of our load 

balancing algorithm on our prototype Grid system. 

In our future work we investigate the security 

aspects and an analytical model to measure 

performance of our GCS. 
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