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Abstract

This paper investigates the social optimum in network games of
strategic substitutes and identifies how network structure shapes op-
timal policies. First, we show that the socially optimal profile is ob-
tained through a combination of two opposite network effects, gen-
erated by the incoming and the outgoing weighted Bonacich cen-
trality measures. Next, three different policies that restore the so-
cial optimum are derived, and the implications of the predecessor(s)-
successor(s) relationship between the agents on each policy instrument
are explored. Then, the link between optimal taxes and the density
of the network is established.
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1 Introduction

This paper investigates the social optimum in a strategic game played on
a directed network, where players’ actions are strategic substitutes to their
neighbors’ actions. This class of games, pioneered among others by Ballester
et al. (2006), encompasses various well-known games including the volun-
tary contribution of public goods (Bramoullé and Kranton, 2007; Bloch and
Zenginobuz, 2007; Allouch, 2012). The main contributions of this present
paper are (i) to elaborate a structural formula which expresses the socially
optimal profile of actions as a combination of two opposite centrality mea-
sures, (ii) to derive three different policies that restore optimality and (iii)
to highlight the prominent role of network structure on optimal taxes.

In network games of strategic substitutes, equilibrium analysis has tradi-
tionally been the primary research subject and great efforts have been made
to increase our understanding of equilibrium behaviors and outcomes. Equi-
librium existence has been well studied by several authors (Bramoullé and
Kranton, 2007; Corbo et al., 2007; Bloch and Zenginobuz, 2007; Ballester
and Calvé-Armengol, 2010; Le Breton and Weber, 2011), sufficient condi-
tions on network structure that guarantee the uniqueness of the Nash equi-
librium have been derived (Ballester et al., 2006; Corbo et al., 2007; Bloch
and Zenginobuz, 2007; Ballester and Calvé-Armengol, 2010; Bramoullé et
al., 2011), and the unique Nash equilibrium profile has been characterized in
terms of the Bonacich centrality vector (Ballester et al., 2006; Corbo et al.,
2007; Ballester and Calvé-Armengol, 2010; Tlkilic, 2010). More recent contri-
butions have been exploring non-linear versions of the problem (Bramoullé
et al., 2011; Allouch, 2012).

By contrast, welfare analysis has not been investigated so much, although
this subject is crucial to understanding the upper bounds on the network’s
performance. A natural question already considered in the literature has
been to identify the Nash equilibrium maximizing social welfare. In par-
ticular, positive and negative effects of removing a player (Ballester et al.,
2006), adding a new link (Bramoullé and Kranton, 2007; Bramoullé et al.,
2011) or changing the intensity of a link (Bloch and Zenginobuz, 2007) have
been analyzed. Despite these attempts, the question of how to reach the
Nash equilibrium that leads to the highest overall welfare deserves further
investigations.

This present work brings a detailed answer to this question. The focus
here is on interior social optima and some intuitions on how the analysis
would be affected by relaxing this focus are presented. The agents, arranged
in a weighted directed network, consume simultaneously a good that is rival
and non-excludable along the directed links (e.g., irrigation water). They



benefit only from their action, but their marginal costs, strictly positive and
increasing in the action of consumption, depend both on their own action
and on the action of their direct predecessors.!

The next section introduces the model and provides some equilibrium
results that we use for the welfare analysis. We establish a necessary and
sufficient condition for a unique interior Nash equilibrium in pure strategies,
whenever such an equilibrium exists (Proposition 1). After that, we remind
the structural formula found by Ballester and Calvé-Armengol (2010) which
expresses the unique equilibrium profile in terms of the incoming Bonacich
centrality measure (Proposition 2).

Section 3 examines the social optimum by adopting a standard utilitarian
approach. We find that any interior social optimum can be expressed as a
combination of the incoming and the outgoing Bonacich centrality measures
(Proposition 3). This result directly extends to weighted utilitarian welfare
functions (Remark 1) and admits a simple formulation when cost functions
are quadratic (Remark 2). It appears that any interior Nash equilibrium may
be interpreted as a specific social optimum (Proposition 4). Then, we discuss
the case of corner or partially-corner social optima (Remark 3).

In Section 4, we establish three different policies that restore optimality:
the optimal quotas program (Proposition 5), the optimal tax plan on benefits
(Proposition 6) and the optimal tax plan on costs (Proposition 7). In each
case, the network matters, i.e., the optimal intervention involves generally
different rates at each site throughout the network. The revenues generated
by these policies are compared, and it appears, since the cost of action is
elastic, that the highest revenue is always produced by a tax plan on marginal
benefits.

Section 5 discusses the relationship between the optimal tax rates and
the density of the network. We find structural bounds, in terms of degree
centrality, on the optimal tax rates (Proposition 8), and we show these tax
rates can be located around the spectral radius of the network adjacency
matrix (Proposition 9). Then, it is shown that the optimal tax rate is uniform
if and only if the vector of marginal benefits is an eigenvector of the adjacency
matrix (Proposition 10). In that case, the optimal uniform tax rate is actually
the spectral radius of the network adjacency matrix and reflects therefore
precisely the density of the network. Finally, we show how our results simplify
with particular network structures (Remark 4).

In the rest of the paper, we will adopt the following notations. The
superscript T stands for the transpose of a vector or a matrix. All vectors

IThe strict convexity of the cost functions reflects the exhaustible feature of the good
that is consumed by the agents.



are column vectors, and are denoted by lowercase bold letters, e.g., v. We
reserve the use of uppercase bold letters for matrices, e.g., M. By M;. we
denote the k™ row-vector of M. We reference the spectral radius of matrix
M by p(M). Finally, let I stand for the identity matrix and 1 for the vector
of ones.

2 Framework

2.1 Model

There are N individuals connected through a network summarized in the
adjacency matrix € = [wy] with wy > 0 (and wi = 0, by convention).? Let
a € RY denote the vector of actions (or efforts) of individuals. The utility
of individual [ is

Ui (Q,a) = pa; — q <al + Z wklak)

kik£l

where ¢; is an increasing twice differentiable strictly convex cost function
and p; denote individual marginal benefits. We assume that ¢; (0) < p; <
q) (00) for all I, and we denote by q the profile of costs functions. The
strategy of utility-maximizing actions involves a simultaneous-move game.
This allows us to find Nash equilibria of the game G (€2, p, q) by solving the
linear complementarity problem (LCP)?

*

I+Q7)a > a
a>»ao
AT[(I+QNa-a] = 0

where & is the equilibrium profile and af = (¢))~" (p) > 0 for all I. We
may call af agent ’s equilibrium peak and for ease of exposition, we write
a* = (q) " (p).

Using this formulation, Ballester and Calvé-Armengol (2010) shows that
G (2, p,q) admits a unique Nash equilibrium whenever the spectral radius
of the network adjacency matrix p(£2) is small enough.? If the network is

2We may refer to wy; as the weight of the link from k to [.

3See Cottle et al. (1992) for a comprehensive treatment devoted to the LCP. See Corbo
et al. (2007), Ballester and Calvé-Armengol (2010) or Tlkilig (2010) for the application of
LCP to the problem of finding Nash equilibria in network games.

4The spectral radius of a network adjacency matrix is a standard measure of the network
deunsity. The higher the spectral radius, the denser is the network. See Cvetkovi¢ et al.
(1997).



undirected, the adjacency matrix is symmetric and a sharper condition has
been established by Bramoullé et al. (2011).° In fact, at the root of the
uniqueness problem is the matrix I+€2. The following result, which highlights
the crucial role played by this matrix in directed networks, elaborates a
necessary and sufficient condition for a unique interior Nash equilibrium,
whenever such an equilibrium exists.

Proposition 1. Let G (Q,p,q) be a network game. Assume there exists an
interior Nash equilibrium. Then, G (2, p,q) admits a unique interior Nash
equilibrium if and only if I + € is invertible.

Proof. Let & be an interior Nash equilibrium. Then, & is solution of the LCP

(I + QT) a > a*
a > o0
a'[I+QM)a-a] = 0
which is equivalent to
I+QM)a = a
a > 0

Assume I + € is invertible. So (I+ Q)" = (I+€7) is invertible. Then,
a=(1+Q7) a

is the unique solution of the above LCP.

(Only if). Let & be an interior Nash equilibrium. Assume I + € is not
invertible. So (I+€)7 is not invertible. There exists @ # 0 such that
(I+9Q)"a = 0 or equivalently, a" (I+ €) = 0. There exists a > 0 small
enough such that

0<<a+oa

and
(A+aa) (I+Q) = a
= a
= a

so (a+ aﬁ)T is an interior Nash equilibrium. Thus, there exists two interior
Nash equilibria. O

SBramoullé et al. (2011) show that G (€2,p,q) admits a unique Nash equilibrium
whenever the lowest eigenvalue of the network adjacency matrix is high enough. That
is, there is a unique equilibrium whenever the network is sufficiently tight (or sparse).
However, this result does not hold when the network is directed (because in that case, the
adjacency matrix is asymmetric and its eigenvalues are generally complex numbers).



2.2 Characterization of the unique equilibrium

For a network adjacency matrix €2, let

a-ont =3 @)

be well-defined and nonnegative. Therefore, its kl-entries count the total
weight of all directed paths® in the network, beginning at player [ and ending
at player k. Let us introduce the Bonacich centrality measure.

Definition 1 (Bonacich, 1987). Let © be a network adjacency matrix. If
(I — QT)_l exists and is nonnegative, the vector

b (2,1)=(1-27)'1
is called the incoming weighted Bonacich centrality measure” applied to 1.

Following this definition, let
b, (2,1) = (1+07) "1

be the alternate incoming weighted Bonacich centrality measure applied to 1,
provided that (I + QT) ! exists. If p(Q) < 1, we have the following algebraic
identity:

o [e.e]
b (2,1) = (@N)"1-> ()" 1.

k=0 k=0
Then, its [-entry measures the difference between (i) the total weight of even
length directed paths® that end at player [ in the network and (ii) the total
weight of odd length directed paths that end at him. Moreover, the alternate
incoming weighted Bonacich can be recovered from the incoming weighted
Bonacich of the squared adjacency matrix, i.e.,

b, (2,1)= (I-27)b (2%1)

Ballester and Calvé-Armengol (2010) shows that & = (I— Q) b~ (2%, a%)
whenever the equilibrium is unique and interior. Then, a is given by the al-
ternate incoming weighted Bonacich centrality measure applied to the profile

of equilibrium peaks.

6The total weight of a directed path is the sum of the weights of its links.

"See, for instance, Ballester et al. (2006), Corbo et al. (2007), Ballester and Calvé-
Armengol (2010) or Ilkili¢ (2010) for the generalization of the Bonacich centrality to
weighted networks.

8The length of a directed path is the number of links that compose the path.



Proposition 2 (Ballester and Calvé-Armengol, 2010). Let G (2, p,q) be a
network game, and (I + QT)_l exists. Assume the Nash equilibrium profile
1s interior. Then,

&= by, (2a) = by (2,(d) " (9).

Proposition 2 entails that the equilibrium action of a player is positively
related with the weight of even length directed paths and negatively related
with the weight of odd length directed paths that end at him.® The actions of
players who have a directed path of even length between them are strategic
complements, whereas their actions are strategic substitutes if there is a
directed path of odd length between them.

3 Social Optimum

To characterize the socially optimal profile of actions, we adopt a standard
utilitarian approach. Given €2, the maximum social welfare, SW, can be
determined by solving,

SW(,p,q) = max Z [Plaz —Q (az + Z wkl%)] :
=

EikAl

We say a profile is socially optimal for a given network if, and only if, there
is no other profile that leads to a strictly higher social welfare.

For all [, g; is strictly convex and therefore, U, is strictly concave. Then,
W is a strictly concave function so there always exists a unique socially
optimal profile a € ]Rf . At social optimum, we have the following first order
conditions:

Vl, C~Ll >0 = P — ql' (ZL[ + Z wkldk> - Z wqu;- <C~L] + Z wij&i> = 0,

k:k#l jig#l IRES]

91Tt is well-known that Proposition 2 is not only valid for the case of no inactive agents (or
free riders). Let’s take a unique equilibrium with inactive agents & and let C' = {7 : 4; > 0}.
Consider the subnetwork obtained by deleting all the inactive agents, and let Qcx ¢ be
its corresponding adjacency matrix. The subvector ¢ consisting of all the active agents
in the original game is also a Nash equilibrium for the subgame obtained. Moreover,
there are no inactive agents in this subgame, hence 4¢ can be expressed as a function of
the incoming Bonacich centrality measure of the subnetwork obtained after deleting the
inactive agents, provided that I 4+ Q¢ ¢ is invertible, i.e.,

ac =b,, (QCX07 (@) (Pc)) ;

where pc denote the subvector of marginal benefits obtained after deleting all the inactive
agents in the original game.



otherwise a; = 0.

Definition 2. Let € be a network adjacency matrix. If (I — Q)" exists and
is nonnegative, the vector

b (1) =1I-Q) "1
is called the outgoing weighted Bonacich centrality measure applied to 1.

Following this definition, let
bh(Q.1) = (1+9) "1

be the alternate outgoing weighted Bonacich centrality measure applied to 1,
provided that (I 4 €)' exists. By definition,

b/ (£2,1) =b,,(27,1).

alt

Therefore, its l-entry measures the difference between (i) the total weight of
even directed paths that begin at player [ in the network and (ii) the total
weight of odd directed paths that begin at him.

It appears that the socially optimal profile of game G (€2,p,q) can be
expressed as the alternate incoming weighted Bonacich centrality measure
applied to a function of the alternate outgoing weighted Bonacich centrality
measure applied to the profile of marginal benefits.

Proposition 3. Let G (2,p,q) be a network game, and (I + Q)" exists.
Assume the social optimum is interior. Then,

a=b_, (Q ()™ (b, (€2, P))) )

and

SW(@.p.a) = [ —a () (b (2.9)),)]

Proof. Since a; > 0 for all [, at social optimum we have the following first
order conditions:

Vl, P — q{ (EL[ + Z wkldk> - Z wqu; <C~L, + Z wij&i) =0.
k:k+#l Jig#l R

Let e; = ¢ (sz + D iz wij&i) for all j. Then, the first order conditions may
be written:

Vi, pp=e+ Z wije; = (I+Qe), = (1+Q), e.
J:g#l



In matrix notation,

p=I+9Q)e.

Since I 4+ € is invertible, we obtain
e=(1+Q) "p.

We have specified e; = ¢; (dj + D i wijdi> for all j. Thus,

'QN

Vi (4) " (e) =a;+ Y wia; = (I+Q7)
d1i]

j.

Hence,
(@) " (e) = (I+Q")4,

and therefore,
a=1+Q7) (@) @) =1+Q") (@) (1+9Q 'p).
[

At social optimum, the incoming weighted Bonacich centrality measure
that determines the equilibrium profile (see Proposition 2) is counterbalanced
by the outgoing weighted Bonacich centrality vector. While at equilibrium,
the action of a player depends only upon how he is impacted by the actions
of all his direct and indirect predecessors, Proposition 3 indicates that the
socially optimal action of a player also reflects how he impacts the actions of
all his direct and indirect successors.

Remark 1 (Weighted utilitarian welfare functions). More generally, the util-
itarian welfare function could be weighted, reflecting the interest of the
social planner for the various players with respect to their location. Let

a = (aq,...,ay) >> 0 be social weights and consider the welfare function
Z Q [pzal —Q (al + Z Wklak>] :
! k:kAl

Then, the social optimum is given by
~ _ n—1 1 +
a= balt Q’ (q ) a balt (97 ap) )

where (i)l = ail for all [.



Remark 2 (Quadratic costs). Assume ¢;(a;) = %a;f for all [ with ¢; > 0. Then,

a=by, (265 (22))
where (%) = ’Cill for all [. Since the incoming and outgoing weighted Bonacich
centrality measures are linear transformations, the social optimum is also a
linear transformation of marginal benefits. In particular, if ¢; = ¢ for all [,
then

- 1 n

a= Z balt (97 balt (Qv p)) :

The interior socially optimal profile of game G (2, p, q) can be interpreted
as a Nash equilibrium of another game with modified equilibrium peaks. It
is the alternate incoming weighted Bonacich centrality measure applied to
the profile of efficient peaks a*, which may itself be expressed in terms of the
alternate outgoing weighted Bonacich centrality measure applied to p, i.e.,

a=b (,a),

alt

where

a'=(q) " (bl (2.p)).
Following the proof of Proposition 1, a is therefore the unique solution of the
linear problem given by

It follows that any interior Nash equilibrium can be interpreted as a social
optimum with a specific “price” system.

Proposition 4. Let G (2,p,q) be a network game, and (I + Q)" exists.
Assume there is an interior Nash equilibrium, i.e., & >> 0, then a is an
interior social optimum of the network game G (2, P, q) where p = (I+ Q) p.

Proof. Since a; > 0 for all [, at equilibrium the following first order conditions

are satisfied:
VI, p=gq (dl + Z wkldk) -

bkl

Hence, for all [,

p=10+Q), = p+ > wyp;
ja#

= q (dl + 2 wkl&k> + > wiyg; (dj + > wijdi)

keik Al il Qi)

10



and these conditions are precisely the first order conditions for an interior
social optimum. O

Remark 3 (Corner and partially-corner social optima). Consider a social op-
timum where some agents are inactive. Let C' = {i : a@; > 0} and NC its
complement. Then, the first order conditions of social welfare maximization
for the active agents are: VI € C|

n—q (dl + Z Wkldk> - Z Wi (dj + Z wijdi>—

k:k#lkeC ji3#EljeC 1:11#£jieC
/ ~
E WigQy <O + E whgah> = 0.
g:9#£l,geNC h:h#g,heC

Let e; = ¢, (.) for all i. We note ec (resp. enc) the subvector of e obtained
after deletion of all the inactive (resp. active) agents. In matrix notation,
the first order conditions for the active agents write

pc — (I+ Qcxe)ec — Qeoxne ene =0,

where pe denote the subvector of marginal benefits obtained after deletion
of all the inactive agents, Qcxc the adjacency matrix of the subnetwork
obtained after deletion of all the inactive agents, and Q¢ yo the (possibly
rectangular) submatrix of €2 consisting of rows with all the active agents and
columns with all the inactive agents. Assuming that I+ Qg is invertible,
and letting ac be the subvector of socially optimal actions consisting of all
the active agents (then, ayc = 0), we obtain

ac = by, <QC><07 () (b (QC><0715))> ;

where
P = pc — Qoxne enc-
Therefore, ac is a fixed point (since p is a function of a¢).

4 Optimality-restoring policies

4.1 Optimal quotas

We introduce individual action quotas in order to restore the social optimum
in games with substitutabilities. The utility of an agent is then given by

Ui (2, a) = par — q (al + ) wklak) ;

k:k Al

11



with a; < k; for all [, where k; is agent [’s action quota. As it turns out,
the vector of optimal quotas is actually the socially optimal profile, and
is expressed as a combination of the incoming and the outgoing alternate
weighted Bonacich centrality measures.

Proposition 5. Let G (2,p,q) be a network game, and (I + Q)_l exists.
Assume the social optimum is interior, then the optimal quota vector is

k=3a=h, (Q (@) (b (€2, P))) :

Proof. Since a; > 0 for all [, at social optimum we have the following first
order conditions:

Vl, P — q; (ZL[ + Z wkldk> - Z wqu;- (&j + Z wij&i> = 0.

Kkl il iit]

Then, by strict convexity of the cost functions, p;—g; (dl + > ik » wkldk> > 0.

Now, we show that the socially optimal profile a is also the Nash equilib-
rium of a game where each player is constrained to exert an action at most
equal to his socially optimal level. Given 2 and a_;, an agent /’'s maximiza-
tion program is:

max pya; — qla + Z oy
! Kkl

s.t. a € [O,dl] .

By assumption, U; (2,a_;,a;) = pa; — q (al + Ek:k# )\szbk> is a strictly
concave utility function and

U/ (Qa,a)=p—q (az + ) wkldk> :
ik
Then, for a; = a;, we have
U (,8)=p —q <5ll + Z wkl&k> >0
k:k#l

because a is the socially optimal profile of game G (€2,p,q). Since U; is
strictly concave and U; (€2,a) > 0, a; = @& is player I’s best reply. By
Proposition 3, we obtain the result. O]

12



4.2 Optimal taxes

We now investigate how taxes can be used to restore optimality. We dis-
tinguish between taxes on (marginal) benefits and taxes on costs. First, we
introduce the optimal tax plan on benefits. The utility of a player is then
given by

U (Q,a)=p(l—71)a—q <al + Z Wklak) :

k:kAl
where 7; is agent I’s tax rate on benefits. The following result shows that
the optimal tax rate imposed to a player is negatively related with his outgo-
ing weighted Bonacich centrality measure applied to the vector of marginal
benefits. Therefore, the optimal tax plan on benefits to achieve the social
optimum involves generally different tax rates at each site throughout the
network.

Proposition 6. Let G (2,p,q) be a network game, and (I + Q)_l exists.
Assume the social optimum is interior. Then, the optimal tax rate on benefits

1S
p— (bl (2, p)),
b '

Proof. Since a; > 0 for all [, at social optimum we have the following first
order conditions:

Vi, pi—q (dz + Z Wkldk> - Z Wiz (dj + Z Wij&i) = 0.

k:k+#l Jig#l 1]

Vi, 7, =

Let 7; = ]% Zj:#l Wi q; (sz + Zi:i# wij&i) for all [. The first order conditions

1
may be written:

Vi, p(1—m)=gq (51 + Z Wkldk> .

Then, the socially optimal profile a is also a Nash equilibrium of a game
where, for all [,

U(Qa)=p(1l-m)a—q <al + Z wkl&k) -

k:k#l

Let e; = q} (&j + Zm#j wij&i) for all j. Then,

1 1
= — Z W€ = — Ql.e.
b

Vl, T —
P

13



Since e = (I+ Q)" p (see the proof of Proposition 3), it follows that

1 . 1 .
w,nzgsna+mlp:§49u+mlp%
l 1

Finally, we note that
QI+Q '=1-1+9"

SO
by — (b;—lt (Q7p))l

yzi

T =
]

Following Proposition 6, the higher the outgoing weighted Bonacich cen-
trality of a player, the lower is his optimal tax rate on benefits. Then, the
optimal tax rate imposed to a player is positively related with the weight
of odd length directed paths and negatively related with the weight of even
length directed paths that begin at him, where directed paths that end at 7 in
the network are weighted by p;. In other words, the optimal tax plan reflects
both the marginal damages and the marginal benefits a player produces on
other players at the socially optimal profile.'?

Next, we introduce the optimal tax plan on costs. The utility of a player
is then given by

U (Q,a) = pa— (L+ 1) q (al + ) wkl%) .

where t; is agent [’s tax rate on costs. The following result shows that there
is a direct relationship between the optimal tax plan on benefits and the
optimal tax plan on costs.

Proposition 7. Let G (2, p,q) be a network game, and (I+ Q)™ ewists.
Assume the social optimum is interior. Then, the optimal tax rate on costs

’ by — (b:lt (Qv p))l
(b;rlt (Q,p))l ‘

10Remind that the actions of players who have a directed path of even (resp. odd)
length between them are strategic complements (resp. substitutes). Therefore, the higher
the total weight of even length directed paths that begin at a player, the higher marginal
benefits this player brings to other players in the network, and the lower is his optimal
tax rate. Moreover, the higher the total weight of odd length directed paths that begin at
a player, the higher marginal damages this player inflicts to other players in the network,
and the higher is his optimal tax rate.

Vi, & =

14



Proof. Let us deduce the optimal tax level from Proposition 6. First note
that a Nash equilibrium is an ordinal property, so we may consider instead
the utility functions

1 1
Vi(Q,a) = 1 Uy (2,a) = 1 ma; — q <al + Z Wklak> ~

+1 +14 P

So in order to obtain a as a Nash equilibrium we may choose t such that

1
1+

Vi y =1-7 1
so according to Proposition 6, a can be decentralized. The optimal tax rate
on costs is therefore

VL El _ T _ b — (b;—lt (Q7p))l

L=7 (bl (2,p)),

4.3 Policy revenues comparison

The implementation of a policy based on optimal taxes will encourage players
to choose the socially optimal profile and will generate a tax revenue for the

social planner. Let
T, =Y phi
1

and

T, = Zfz% <5Lz + Z Wkldk) = Z 1 il%l Q <5lz + Z wkl&k)
I

k:k#£l l k:k£l

denote, respectively, the tax revenue generated by a tax plan on benefits and
by a tax plan on costs. Then,

I (&l D wkl&k)
aipr (1 —7)

q
T,-T,=> #pd |1 -
l

According to the first order conditions of the decentralized Nash equilibrium
in Proposition 6 we have:

Vi, p(1—7)=gq (dl + Z Wkldk> ;
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SO

dlqll(al+zk:k;él Wkl&k)

T, -1, = Y Tm [1 _ (@ g i) ]
l

where
g <5Ll + D kskrd wklak>

qQ (dz + Zk:k;ﬁl szdk)

denotes the cost elasticity of action. Since ¢; is strictly convex and positive for
all , the cost of action is elastic, i.e., & > 1. Then, T}, =T}, > 0 and therefore,
the highest tax revenue is always generated by a tax plan on benefits. That
is,

g =

T,>T,>0="T,

since an optimal quota policy will generate no revenue for the social planner,
i.e., Tk =0.

5 Optimal taxes and network density

We establish structural bounds on the optimal tax rates. It appears that
the well-known inequalities relating the spectral radius and the maximal and
minimal row sum of a matrix is appropriate to localize the optimal tax rates.!!

Proposition 8. Let G (2, p,q) be a network game, and (I+ Q)™ ewists.
Assume the social optimum is interior. Then, the optimal tax rates satisfy

S(Q) < i < S(Q)
where s(€2) = ming Y, wy, S(Q) = maxy >, wi.

Proof. We shall proove the first inequality. The second can be obtained
similarly. Let us write VI, b; = (bé;flt (€, p)) , as a shorthand. We have,

b b 1
min—l1§—<

Lo P minp

1Gee Theorem 2.2.35 p.37 in Berman and Plemmons (1994), that states p(Q) €
[5(€2), S(€2)]. where s(£2) = miny >, wi and S(Q) = maxy, Y, W

b
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since I + € > 0, by composition, it comes

b b 1
mlml(I—i—Q)l <I+9)2 < I+Q)b

DI — min; p;

_ 1
" min; p; p.

Taking the minimum componentwise over [, we have

minﬁ 1+s(Q)]<1
LoD

thus

. bl —1

min — < [1 + s(Q)] .
Lop

Now since (2 — +=%) is decreasing on (0, 1] we have for all [,

i _1-b/m > 1= [L+s()]™
bi/pi [1+s(Q)]"

and the first inequality is obtained.
Finally, the second can be obtained starting from
b 1

. b
max— 1> — >
L P maxgp

= s(Q)

b.

By composition by I+ €2, it comes

b
max — (I+ Q)1 >
Lopi max; py

Then, taking the maximum componentwise, we have
b b _
mlax—l 14+5(Q)>1 mlax—l >[1+ 5!
b D

so for all [,
-1
i< 1-[1 +S(Q_)]1
[1+5()]

= 5(9).

Proposition 8 provides bounds on the optimal tax rates in terms of the
weighted out-degree measure.'? It entails that the optimal tax rate imposed to

1286e Freeman (1978) for a review and clarification of research on centrality measures for
unweighted networks. See Barrat et al. (2004) for the generalization of degree centrality

to weighted networks.
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a player would never be less than the minimal weighted out-degree and never
be higher than the maximal weighted out-degree of the network. Moreover,
these tax rates can be located around the spectral radius of the adjacency
matrix. Thus, they can not be all located below or all located above the
spectral radius. In fact, the tax rates are centered on the spectral radius.

Proposition 9. Let G (2,p,q) be a network game, and (I + Q)_l exists.
Assume the social optimum is interior. Then, the optimal tax rates satisfy
the following inequalities

tmin S P(Q) S Emax

where tpi, = ming{t;} and tpa = max;{f;}.

Proof. From Proposition 7, we have for all [ that

A pr— (b:lt (va))z

tmin = S 2?max
(b;_lt (€, p))l

or equivalently
(1+ fin) (B, (2.9)), < 21 < (1 + fae) (b5, (2.D)),
Since I+ © is nonnegative,
(14 Zin) P < T+ )P < (14 Tax) P

SO
tminp S Qp S tmaxp'

Then, by Theorem 2.1.11 p.28 in Berman and Plemmons (1994), since
p >> 0 we have

tmin S /)(Q) S Emax-
O

Since p(€2) measures the density of the network, Proposition 9 entails
that the denser the network, the higher might be the maximal optimal tax
rate. Conversely, the tighter the network, the lower might be the minimal
optimal tax rate. Moreover, if p(©2) = 0, there exists [ such that ; = 0.
If p(Q) > 0, there exists [ such that #; > 0. Hence, whenever the optimal
tax rate is uniform, it must coincide with the spectral radius p(€2). The
next proposition elaborates a necessary and sufficient condition for uniform
optimal tax rates.
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Proposition 10. Let G (2, p,q) be a network game, and (I + Q)" ewists.
Assume the social optimum is interior. If the optimal tax rate is uniform,
then p is an eigenvector of €.

Conversely, if p is an eigenvector of € and ty, its associated eigenvalue,
then t, > 0 and ty, is the uniform optimal tax rate.

Moreover, the optimal uniform tax rate is given by t = t, = p(£2).

Proof. Assume the optimal tax rate is uniform, i.e., VI, #; = t. Then,

pi— (b, (2p)),

' (bl (@p), vl
= (1+1)b (Qp) = p
= (1+1)p =  (I+9Q)p
= tp = Qp

(Conversely). If € = 0, then 0, the unique eigenvalue, is clearly an
optimal uniform tax rate. If €2 # 0, assume p is an eigenvector of € and let
tp € be its associated eigenvalue. Since t,p = 2p, £ > 0 and p >> 0, for
some [, top; > 0, thus t, > 0. Following the same lines than in the previous
statement, we obtain

— (b}, (2 .
Vl, tp:pl ( alt( 7p))l =1

(b:u (Q) P))l

which is the optimal tax rate.

(Moreover). If p is an eigenvector of €2, then by Corollary 2.1.12 p.28 in
Berman and Plemmons (1994), p corresponds to p(§2) since p >> 0. So,
tp = p(9). u

If a game with substitutabilitics admits an optimal tax rate which is

uniform, then the denser (resp. the tighter) the network, the higher (resp.
the lower) is the optimal tax rate. But, generically, p is not an eigenvector of
Q2. Then, Proposition 10 highlights the low probability for the optimal tax
rate to be uniform.
Remark 4 (Sub-stochastic matrices). Assume €2 has constant rowsums (i.e.,
all agents have the same weighted out-degree) smaller than 1, that is s(Q2) =
S(Q) = p(2) < 1 and that there is a market pricep > 0, thatisp = pl. Leta
be the interior social optimum. Then, since 1 is an eigenvector corresponding
to p(2), the optimal tax is uniform and equals p(£2) and

&= by (2.(d) 7 (bl (2.)) = by (Q (q)! (ﬁ;)(ﬂ) 1)) .
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If, qi(a;) = $af for all [ with ¢ > 0, then,

p _
———b
c[l+p(Q)]

Moreover, when €2 is doubly sub-stochastic, i.e., {2 has constant rowsums
and columnsums, that is s(Q2) = S(2) = s(Q7) = S(QT) = p(Q) (e.g., N is
symmetric) then,

a= (€2,1).

% 1

c[l+ p(£2)]

Hence, individual action is increasing in p, decrecasing in ¢ and also with
respect to the density of the network through p(£2). One may note also
that all individuals have the same optimal action, no matter their specific
locations in the network.

a=

6 Conclusion

This paper brings a social welfare analysis to games with substitutabilities.
It is worth noting that this work presents similarities with the literature on
the river sharing problem initiated by Ambec and Sprumont (2002).

In particular, Ni and Wang (2007) have explored the implications of the
upstream-downstream relationship between the agents on cost sharing meth-
ods when the river carries pollutants, and they show how the structure of
a river network can shape cooperative behaviors within a group. Although
we have not used the metaphor of polluted water flows to describe the net-
work!®, our work contributes to this literature by showing the implications
of the predecessor(s)-successor(s) relationship between the agents on policy
instruments, such as taxes and quotas, to achieve the social optimum when
players do not cooperate.

Then, a useful direction for further research would be to investigate how
to restore optimality in network games of strategic substitutes when players
cooperate. In this regard, the definition of rights owned by the agents is
crucial, but the optimal policies designed in this paper raise issues as to the
how property rights might be defined when players are connected through a
directed network. A further issue for investigation is how to redistribute the
revenue generated by taxes. Finally, it would also be pertinent to test the
robustness of our results to more general specifications of preferences. The
case of additive utility functions could be a reasonable first step towards this
goal.

I3Note, however, that river networks are weighted directed acyclic networks, and are
only one particular case of the networks we consider in this paper.
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