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Stroboscopic averaging for the nonlinear Schrödinger
equation

F. Castella∗, Ph. Chartier†, F. Méhats‡ and A. Murua§

September 17, 2012

Abstract

In this paper, we are concerned with an averaging procedure, – namely Stroboscopic
averaging [SVM07, CMSS10] –, for highly-oscillatory evolution equations posed in a
(possibly infinite dimensional) Banach space, typically partial differential equations (PDEs)
in a high-frequency regime where only one frequency is present. We construct a high-
order averaged system whose solution remains exponentially close to the exact one over
long time intervals, possesses the same geometric properties (structure, invariants, . . . ) as
compared to the original system, and is non-oscillatory. We then apply our results to the
nonlinear Schrödinger equation on the d-dimensional torus Td, or in Rd with a harmonic
oscillator, for which we obtain a hierarchy of Hamiltonian averaged models. Our results
are illustrated numerically on several examples borrowed from the recent literature.

Keywords: highly-oscillatory evolution equation, stroboscopic averaging, Hamiltonian
PDEs, invariants, nonlinear Schrödinger.

MSC numbers: 34K33, 37L05, 35Q55.

1 Introduction

In this text we consider general, highly-oscillatory evolution equations, posed in a Banach
space X , of the form

d

dt
uε(t) = gt/ε (uε(t)), uε(0) = u0 ∈ X, t ∈ [0, T ], (Pε)

where (θ, u) 7→ gθ(u) is P -periodic in θ, smooth in θ ∈ T (T denotes the torus R/(PZ)),
smooth in u ∈ X , and it is assumed that the above problem is well-posed on a fixed time
interval [0, T ] independent of ε → 0. This is a high-frequency system, with one frequency.
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It is posed in an infinite-dimensional setting. The question we address is that of high-order
averaging. In other words, we look for approximations of uε(t), say vε(t), such that vε(t)
is close to uε(t) over [0, T ] (in some sense we detail below) to within O(εn+1) where n is
arbitrary large, and such that vε(t) satisfies an autonomous evolution equation of the form
dvε(t)/dt = G[n](vε(t)), say, where the fast variable t/ε has been averaged out. Note that
for analytic convenience, the whole discussion below is actually developed for a rescaled time
variable. We consider indeed the following rescaled version of (Pε),

d

dt
uε(t) = εgt(u

ε(t)), uε(0) = u0 ∈ X, t ∈ [0, T/ε], (Qε)

where the unknown is still denoted uε. The problem is now assumed to be well-posed on the
long time interval [0, T/ε], the nonlinearity is rescaled by ε, and the question is to approxi-
mate uε over [0, T/ε]. The typical example we have in mind is that of nonlinear PDE’s in a
high-frequency regime, where only one frequency is present, and the averaged effect of the os-
cillations in the nonlinearities is to be computed at high order. We fully treat at the end of this
text the case of the nonlinear Schrödinger equation on the torus Td, or on Rd with a harmonic
potential.

To be a bit more technical, the purpose of high-order averaging is, setting the error term
O(εn+1) to zero in order to fix the ideas, to find a periodic, near-identity and smooth change
of variable Φε

θ, together with a flow Ψε
t , the flow map of an autonomous differential equation

on X , such that the solution of the original equation (Qε) takes the composed form

uε(t) = Φε
t ◦Ψε

t (u0).

We refer e.g. to Lochak-Meunier [LM88] or Sanders-Verhulst [SVM07] for textbooks on these
issues. The point is, such a form completely separates the dependence of uε(t) upon the fast,
periodic variable θ (through a given and smooth change of unknown), and the dependence of
uε(t) upon the slow variable t (through the flow of a given and autonomous vector field). The
factorized form uε(t) = Φε

t ◦ Ψε
t (u0) is somehow analogous to the two-scale expansions (or

WKB expansions as well – see [Wen26, Kra26, Bri26] on that point), where uε(t) is sought
in the two-scale form uε(t) = U ε(θ, t)

∣∣
θ=t

as is more usual in the context of high-frequency
PDE’s. The present factorized form yet involves a deeper structure (beyond the mere separation
of a fast periodic variable and a slow variable). This is one aspect we investigate. Besides, in the
particular case of stroboscopic averaging, which is the framework we retain here, we impose
that the near-identity mapping Φε

θ satisfies Φε
θ=0 = Id (the other, actually more standard,

normalisation consists in imposing at variance a vanishing mean value, namely
∫
T Φε

θ dθ = 0).
One interest of stroboscopic averaging relies, amongst others, in the fact that periodicity readily
provides Φε

θ=nP = Id, for all n ∈ Z, i.e. the change of variables Φε
θ reduces to identity at any

multiple of the fast period, and we have uε(t) = Ψε
t (u0) at these times (called stroboscopic

times). The more crucial interest of stroboscopic averaging is, it allows to preserve the structure
of the original problem along the averaging process, as already pointed out in Chartier et al.
[CMSS10, CMSS]. This is a second aspect we investigate here.

Traditionally, the flow Ψε
t and the change of variables Φε

θ are sought by performing power
expansions in ε, setting the Ansatz Φε

θ(u) = Id + εΦ
(1)
θ (u) + ε2Φ

(2)
θ (u) + · · · , and so on,

and identifying like powers of ε, while separating the fast variable θ and the slow variable t
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as well. This leads to a hierarchy of equations, so-called homological equations, that is to be
solved iteratively. It allows to reconstruct in parallel the change of unknown Φε

θ and the flow
Ψε
t . In the present one-frequency context, this procedure goes back to the work of Perko in the

finite-dimensional case [Per69], who gives general analytic formulae at any order, as well as
an elegant iterative procedure.

One key aspect of the present work is, we do not expand the various unknowns in ε (nor
do we separate θ and t at once). We actually identify a new, closed equation on the change of
variables Φε

t . We show how to solve this equation using a fixed point procedure in an analytic
framework, taking advantage of the fact that the – to be inverted – nonlinear relation is an ε-
perturbation of the identity. This equation, called transport equation in the sequel (see (2.8))
is a nonlinear transport equation, with nonlocal nonlinearities. It is fully nonlinear in that the
transport term involves derivatives of the unknown Φε

t with respect to u ∈ X . We circumvent
this latter difficulty by requiring analytic regularity, which allows to absorb the higher order
derivatives. Eventually, we show that this boils down to requiring g (in (Qε)) is analytic with
respect to u, an assumption that turns out to be naturally satisfied in the PDE context associated
with the present considerations. We show in passing that Φε

t is unique in some sense, so that,
for instance, the n-th order Taylor expansion of Φε

t in ε necessarily coincides with the formulae
provided by any formula given by any other perturbative method, provided Φε

0 is the identity
map (stroboscopic averaging). Once the change of variables Φε

t is obtained, we show that the
flow Ψε

t is easily reconstructed. The final result we establish in that direction is, general high-
order averaging may be achieved, with error terms of size O(e−c/ε) for some c > 0. Note
that the transport equation, whose importance is pointed out here, plays a role that is somehow
similar to the so-called singular equation of geometric optics, in the context of high-frequency
hyperbolic PDE’s (see [JMR95]).

It is furthermore interesting to note that we require only continuity of the mapping (θ, u) 7→
gθ(u) with respect to θ, in complete agreement with previous works of Neishtadt [Nei84] or
Chartier et al. [CMSS10] in the finite-dimensional context. In the presence of several non-
resonant frequencies, analyticity with respect to θ becomes a necessary assumption (see for
instance [Sim94, CMSS12] for the finite-dimensional case) and the extension of the present
work to this situation would probably raise no serious difficulty, under a similar assumption of
analyticity on θ. This comes in sharp contrast with the Magnus expansion that we outline in
Section 5 with the specific aim of deriving explicit formulae for the high-order averaged vector
fields: an averaging technique based on Magnus series is by essence strictly restricted to the
one-frequency situation.

A second key aspect of the present work is, we prove that the so-obtained stroboscopic
averaging preserves the structure of the original equation. For instance we show that the au-
tonomous flow Ψε

t is symplectic whenever the original oscillatory problem has a Hamiltonian
structure. In the similar spirit, we show that the autonomous flow Ψε

t possesses an invariant as
soon as the original oscillatory problem does.

Finally, we apply our results to general nonlinear Schrödinger equations (NLS) in a high-
frequency regime. We show that, up to a simple and standard filtering procedure, the obtained
results apply directly. They provide a hierarchy of models that approximate the original equa-
tions to within arbitrary order, and whose precise analytic expression may be explicitely com-
puted. These models essentially possess the same structure (invariants, Hamiltonian structure)
than the original one.
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Averaging as developed in this paper constitutes in our view an alternative to other exist-
ing techniques, amongst which stand most prominently Birkhoff’s forms and more recently
Modulated Fourier Expansions. Birkhoff’s forms technique has been elaborated in the con-
text of infinite dimensional systems by Bambusi [Bam03, Bam05, BG06, Bam08], Bourgain
[Bou96, Bou07], Colliander [CKS+10] and Grébert [GVB11, GT12], to mention just a few
authors. It is based on successive non-linear changes of variables which gradually transform
the system into its final normal form. Modulated Fourier expansions have been introduced in
the finite dimensional context by Hairer and Lubich [HL00], and later on extended to some
Hamiltonian PDEs (long-time behaviour of solutions to the semi-linear Klein-Gordon equa-
tion [CHL08b], cubic Schrödinger equations with small initial data (or small nonlinearity)
[GL10]). The approach has the advantage of a possible application to numerical discretiza-
tions of the original equation (see for instance [CHL08a]), in contrast with the approach via
nonlinear coordinate transformations bringing the equation to a normal form. Note that unlike
the situation we consider, most of the papers quoted above deal with the case of non-resonant
frequencies. Finally, we wish to stress the fact that efficient numerical methods, which use
only the original equations, can be built upon the existence of an averaged vector field (see
[CCMSS11, CMSS10] for the ODE case): this will be the subject of another paper by the same
authors.

Our first main theorem (Theorem 2.7), an averaging result in an abstract Banach space, is
stated in Subsection 2.3, once preliminary assumptions have been settled in Subsection 2.1 and
ideas sustaining stroboscopic averaging outlined in Subsection 2.2. The remaining of Section 2
is devoted to technical proofs and intermediate theorems, with the exception of Subsection 2.5
which is concerned with the linear case, where expansions are shown to converge (in contrast
with the general non-linear case). Geometric aspects are dealt with in Section 3: invariants in
Subsection 3.2 (see Theorem 3.7) and the more involved situation of Hamiltonian equations
in the context of Hilbert spaces in Subsection 3.1 (see Theorem 3.5). Section 4 considers the
instanciation for NLS of Theorems 2.7, 3.5 and 3.7. In the NLS context, Theorem 4.2 can
be considered as the main input of this article. Finally, Section 5 is devoted to the explicit
computation of the averaged vector fields with aid of formal Magnus expansions and Section 6
presents numerical illustrations of the behavior of some specific solutions to NLS described in
the literature and interpreted “in the light of stroboscopic averaging”.

2 High-order averaging in a Banach space

Let X a real Banach space, equipped with the norm ‖ · ‖X . We consider the following highly-
oscillatory evolution equation, posed in X , namely

d

dt
uε(t) = ε gt (uε(t)) , u(t) ∈ X, (2.1)

uε(0) = u0, u0 ∈ X,

where the initial datum u0 is given. Here the function

(θ, u) ∈ T×X 7→ gθ(u) ∈ X
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is given, smooth with respect to u ∈ X , smooth and periodic1 in θ ∈ T. We actually require
u 7→ gθ(u) to be real analytic in a sense we define later. We refer to Assumption 2.3 below for
the precise hypotheses.

Our aim is to compute high-order (in ε) approximations of the solution uε(t) to (2.1), on
time intervals of size O(1/ε). We therefore readily introduce the following basic assumption.

Assumption 2.1 The Cauchy problem (2.1) is uniformly well-posed in the following sense.
There exist

T > 0, ε∗ > 0, and a bounded open subset K ⊂ X,

such that, for all ε ∈]0, ε∗], the problem (2.1) admits a unique solution uε ∈ C1([0, T/ε], X),
uε(t) remaining in K for all t ≤ T/ε.

The above assumption freezes the meaning of the quantities T , ε∗ and K throughout the
remaining part of Section 2.

2.1 Preliminaries

The analysis we present in this paper heavily relies on the use of analytic functions: this allows,
ultimately, to derive optimal error estimates with remainder terms of the form O(exp(−c/ε))
(for some c > 0). It also allows to point out the intrinsic structures involved in the analysis.

For that reason, given the real Banach space X , we introduce the complexification of X ,
defined as

XC = {U := u+ iũ, (u, ũ) ∈ X2}.

We denote u = <(U) ∈ X and ũ = =(U) ∈ X the real and imaginary parts of U . The space
XC is a Banach space when endowed with the norm

‖U‖XC := sup
λ∈C∗

‖<(λU)‖X
|λ|

.

If X is a Hilbert space, it is more convenient to equip XC with the Hermitian norm associated
to the complex scalar product

(u+ iũ, v + iṽ)XC
= (u, v)X + (ũ, ṽ)X + i ((ũ, v)X − (u, ṽ)X) .

Note that for u ∈ X , we have ‖u‖XC = ‖u‖X .
Now, given any ρ > 0, we consider the open enlargement of K in XC given by

Kρ = {u+ ũ : (u, ũ) ∈ K ×XC, ‖ũ‖XC < ρ}.

We define analytic functions on Kρ as follows.

Definition 2.2 (Analytic functions on a Banach space – see [PT87] )
Consider a continuous function (θ, u) ∈ T × Kρ 7→ fθ(u) ∈ XC. The map fθ is said to

1Here and below, ”periodic” refers to “P -periodic”, and the normalisation that we retain is such that T is the
torus R/(PZ)
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be analytic on Kρ ⊂ XC whenever it is continuously differentiable on Kρ , i.e. there exists a
continuous map

T×Kρ → L(XC)

(θ, u) 7→ (∂ufθ)(u)

where L(XC) is the set of bounded linear maps from XC to XC, which satisfies

∀u ∈ Kρ, ∃δ > 0, ∀h ∈ XC with ‖h‖XC ≤ δ,
sup
θ∈T
‖fθ(u+ h)− fθ(u)− (∂ufθ)(u)h‖XC = o(‖h‖).

When (θ, u) 7→ fθ(u) is a bounded analytic function on T×Kρ, we denote

‖f‖ρ = sup
(θ,u)∈T×Kρ

‖fθ(u)‖XC .

Analytic functions in the sense of Definition 2.2 share many of the properties of standard an-
alytic functions from C to C. For instance, if fθ is analytic on Kρ, Cauchy’s formula holds.
Indeed, whenever 0 < δ < ρ, for any u and ũ such that u ∈ Kρ−δ and ũ ∈ XC with
‖ũ‖XC = 1, for any µ ∈ C with |µ| < δ, one has

fθ(u+ µũ) =
1

2iπ

∫
|ξ|=δ

fθ(u+ ξũ)

ξ − µ
dξ.

This allows to use Cauchy’s estimates in a neighborhood of any point u ∈ Kρ. For instance,
given 0 < δ < ρ, one can estimate the norm of the first derivative ∂ufθ as

‖∂uf‖ρ−δ ≤
1

δ
‖f‖ρ. (2.2)

This comes from the relation (∂ufθ)(u)ũ =
d

dµ
fθ(u+ µũ)

∣∣∣∣
µ=0

=
1

2iπ

∫
|ξ|=δ

fθ(u+ ξũ)

ξ2
dξ,

which implies, in passing, that ∂ufθ is also analytic in the sense of Definition 2.2, as a function
from Kρ to L(XC).

We are now ready to state the assumptions on gθ in (2.1) required by our analysis.

Assumption 2.3 The function (θ, u) 7→ gθ(u) isC0 and periodic in θ. Besides, (θ, u) 7→ gθ(u)
is real-analytic in u, in the following sense. There exist

R > 0, CK > 0,

such that for all θ ∈ T, u 7→ gθ(u) is analytic on K2R in the sense of Definition 2.2, while
(θ, u) 7→ gθ(u) is bounded by CK on T×K2R, i.e.

‖g‖2R = sup
(θ,u)∈T×K2R

‖gθ(u)‖XC ≤ CK .

The above assumption defines once for all the quantities R and CK throughout the remain-
ing part of Section 2.
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2.2 The equations of stroboscopic averaging

As explained in the introduction, ideally, the purpose of high-order averaging is to find a peri-
odic, near-identity, and smooth change of variable Φε

θ,

(θ, u) ∈ T×K 7→ Φε
θ(u) ∈ X

together with a flow Ψε
t , the flow map of an autonomous differential equation with smooth

vector field Gε on X , written as

d

dt
Ψε
t (u0) = εGε (Ψε

t (u0)) , (2.3)

and such that the solution of the original equation (2.1) takes the composed form2

uε(t) = Φε
t ◦Ψε

t (u0). (2.4)

Besides, in the framework of stroboscopic averaging that we retain here, we impose that the
near-identity mapping Φθ satisfies

Φε
θ=0 = Id.

Let us now formally seek the equations satisfied by Φε
θ and Ψε

t . By differentiating both
sides of (2.4) w.r.t. t and using (2.3) we readily get

∂Φε
t

∂t
(Ψε

t (u0)) + ε
∂Φε

t

∂u
(Ψε

t (u0))Gε (Ψε
t (u0)) = ε gt (Φε

t ◦Ψε
t (u0)) . (2.5)

Considering (2.5) for u0 = Ψ−t(u) and replacing t by θ ∈ T (as gt and Φε
t are periodic with

respect to t) we obtain

∂Φε
θ

∂θ
(u) + ε

∂Φε
θ

∂u
(u)Gε(u) = ε gθ (Φε

θ(u)) . (2.6)

Let us formally solve the equation (2.6). To that aim, we introduce the (standard) notation
for averages with respect to the variable θ, namely, for (θ, u) ∈ T × X 7→ fθ(u) ∈ X , the
average 〈f〉 : X → X denotes the mapping

〈f〉 (u) :=
1

P

∫
T
fθ(u) dθ.

Firstly, and with this notation at hand, taking averages in θ on both sides of (2.6) eliminates
the first term ∂θΦ

ε
θ owing to periodicity, so that we obtain

∂〈Φε〉
∂u

(u) Gε(u) = 〈g ◦ Φε〉 (u) .

Assuming for the time being that the linear operator v 7→ ∂〈Φε〉
∂u

(u) v is invertible for any u,
we get

Gε(u) :=

(
∂〈Φε〉
∂u

(u)

)−1

〈g ◦ Φε〉 (u). (2.7)

2Stricto sensu, we have frozen the initial datum u0 up to now, and relation (2.4) only holds for this value of u0.
Needless to say, averaging aims at establishing such a factorization whenever u0 belongs to some open set.
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In other terms, we have here derived the value of the vector field Gε (hence that of Ψε
t ).

Secondly, inserting previous relation in equation (2.6), we are led to the relation

∂Φε
θ

∂θ
(u) + ε

∂Φε
θ

∂u
(u)

(
∂〈Φε〉
∂u

(u)

)−1

〈g ◦ Φε〉 (u) = ε gθ ◦ Φε
θ(u), (2.8)

i.e., in an integral version,

Φε
θ(u) = u+ ε

∫ θ

0

(
gξ ◦ Φε

ξ(u)−
∂Φε

ξ

∂u
(u)

(
∂〈Φε〉
∂u

(u)

)−1

〈g ◦ Φε〉 (u)

)
dξ. (2.9)

This is a closed equation on Φε
θ, though nonlinear and nonlocal.

In our perspective, there remains to solve equation (2.9) for Φε
θ. Once this is done, the

autonomous vector fieldGε and the associated flow Ψε
t are immediately deduced along formula

(2.7), and the averaging procedure is complete.

We now need to turn the above formal computations into a rigorous analytic procedure.
In particular, the question arises whether the main equation (2.9) possesses a solution in the
class of periodic smooth functions. It is known, see e.g. counter-examples constructed in
[Nei84, CMSS12], that in general, the answer is negative: equation (2.8) can only be solved up
to an error term of size O(exp(−c/ε)) for some c > 0. Accordingly, our aim in the sequel is
to exhibit such a (quasi-) solution, and to prove that it provides a rigorous averaging procedure
to within O(exp(−c/ε)) small terms.

2.3 Main result: averaging to within exponentially small remainder terms

It is useful to introduce the following nonlinear operator. Given any periodic and smooth
mapping (θ, u) ∈ T ×Kρ 7→ ϕθ(u) with invertible partial derivative ∂u〈ϕ〉, we associate the
mapping (θ, u) ∈ T×Kρ 7→ Λ(ϕ)θ(u) defined as

Λ(ϕ)θ(u) = gθ ◦ ϕθ(u)− ∂ϕθ
∂u

(u)

(
∂〈ϕ〉
∂u

(u)

)−1

〈g ◦ ϕ〉 (u). (2.10)

We also introduce the nonlinear, nonlocal operator Γε which associates to ϕθ the mapping
(θ, u) ∈ T×Kρ 7→ Γε(ϕ)θ(u) defined as

Γε(ϕ)θ(u) = u+ ε

∫ θ

0
Λ(ϕ)ξ(u) dξ. (2.11)

Remark 2.4 Note that if ϕθ is periodic, then Λ(ϕ)θ has zero average, hence Γε(ϕ)θ is periodic
as well, and our definitions make sense.

With this notation at hand, the basic equation of averaging (2.9) reads, in its integral form,

Φε
θ(u) = Γε(Φε)θ(u), (2.12)

a fixed point equation that we solve below by considering iterates (Γε)k, k = 0, 1, . . . , n.
Equivalently, the equation of averaging (2.8) reads, in its differential form,

∂θΦ
ε
θ(u) = εΛ(Φε)θ(u), (2.13)
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with Φε
θ=0(u) = u. At this point, we thus consider the sequence of functions

Φ
[0]
θ = Id, Φ

[k+1]
θ = Γε(Φ[k])θ, k = 0, 1, 2, . . . , n, (2.14)

together with the vector fields

G[k](u) :=

(
∂〈Φ[k]〉
∂u

(u)

)−1

〈g ◦ Φ[k]〉(u). (2.15)

In addition, we introduce the following terms occuring in the expansion of G[k], for k ≥ 0,
namely

Gk+1(u) =
1

k!

dkG[k]

dεk

∣∣∣∣∣
ε=0

(u). (2.16)

Remark 2.5 By construction (this will be justified rigorously in Theorem 2.13), for all n, k ≥
0,

1

k!

dkG[n+k]

dεk

∣∣∣∣∣
ε=0

(u) = Gk+1(u).

For the convenience of the reader, we now sum up the notations used later on in Section 2:

• ε0 := R
8CKP

, ε1 := ε0/2, ε2 = ε0 min
(

1
28 ,

ε0P
T

)
,

• C0 = 16CK , C1 = 2CK , η = 2/ε0,

• rn := R
n+1 , Rk = 2R− krn for k = 1, . . . , n− 1, so that R0 = 2R and Rn+1 = R.

Lemma 2.6 Given n ∈ N, the maps Φ
[k]
θ (u) and Gk+1(u) for 0 ≤ k ≤ n+ 1 are well-defined

for any ε ∈ C with |ε| ≤ ε0/(n + 1), they are C1 in θ ∈ T, analytic in u for u ∈ KRk , and
analytic in ε for |ε| < ε0/(n + 1). Moreover, the following estimate holds true for any ε ∈ C
such that (n+ 1)|ε| < ε0, namely

‖Φ[k] − Id‖Rk ≤
rn
2
. (2.17)

From now on, let us fix µ such that 0 < µ < 1. Then, for 0 < ε < µε2, define the integer
nε ∈ N∗ as (nε + 1) = bµ/(ηε)c and denote

G̃ε(u) = G̃[nε](u), with G̃[n](u) =
n∑
k=0

εkGk+1(u), (2.18)

where the vector fields Gk+1(u) are defined in (2.16).

Theorem 2.7 For 0 < ε < min(ε∗, µε2), let (nε + 1) = bµ/(ηε)c. Consider Φ̃ε
θ = Φ

[nε]
θ

defined in Lemma 2.6 and G̃ε defined by (2.18). Then the following holds:
(i) The solution uε(t) of (2.1) satisfies

∀t ∈ [0, T/ε], uε(t) = Φ̃ε
t (U(t)). (2.19)

9



where U(t) is the solution of the (quasi-autonomous) equation

dU

dt
= ε G̃ε(U) + εRεt (U), (2.20)

where (θ, u) 7→ Rεθ(u) is periodic and smooth in θ, analytic on KR, and admits the upper
bound

‖Rε‖R ≤
4CK

(1− µ)µ2
exp

(
−µ| log(µ)|

η ε

)
. (2.21)

(ii) Introduce Ψ̃ε
t the t-flow of the autonomous differential equation

dU

dt
= εG̃ε(U). (2.22)

If in addition, µ ≤ 1/2, then the solution uε(t) to the original initial value problem (2.1) is
exponentially close to the factorized form Φ̃ε

t ◦ Ψ̃ε
t (u0), i.e. we have

∀t ∈ [0, T/ε],
∥∥∥uε(t)− Φ̃ε

t ◦ Ψ̃ε
t (u0)

∥∥∥
XC
≤ 12Rµ−2 exp

(
−µ| log(µ)|ε0

4ε

)
. (2.23)

(iii) If T = +∞ in Assumption 2.1 and µ ≤ 1/2, then (2.19) holds for all t > 0, and (2.23)
holds on [0, T̃ /ε1+α], for any T̃ > 0 and any 0 < α < 1, provided

0 < ε < min
(
ε∗,

µε0

28
,

(
µε2

0P

T̃

) 1
1−α )

.

2.4 Technical proofs and intermediate Theorems

In this Subsection, we give the technical details of the proof of Theorem 2.7 and state a few in-
termediate results which are of interest by their own in specific contexts (fixed-order truncation,
non-expanded version of the vector field).

2.4.1 Two basic lemmas

To begin with, the next lemma gives sufficient conditions for the quantities Λ(ϕ) and Γε(ϕ) to
be well-defined in a clean analytic fashion.

Lemma 2.8 Let 0 < δ < ρ ≤ 2R. Assume that the function (θ, u) ∈ T×Kρ 7→ ϕθ(u) ∈ XC
is analytic in the sense of Definition 2.2, and that ϕθ is a near-identity mapping, in that

‖ϕ− Id‖ρ ≤
δ

2
.

Then, the following holds.
(i) The mapping ∂u〈ϕ〉−1 is well-defined and analytic on Kρ−δ, and it satisfies

‖∂u〈ϕ〉−1‖ρ−δ ≤ 2.

(ii) The mappings (θ, u) ∈ T×Kρ−δ 7→ Λ(ϕ)θ(u) and (θ, u) ∈ T×Kρ−δ 7→ Γε(ϕ)θ(u)
are well-defined and analytic, and they satisfy, for any |ε| ≥ 0,

‖Λ(ϕ)‖ρ−δ ≤ 4CK and ‖Γε(ϕ)− Id‖ρ−δ ≤ 4CK P |ε|.
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Proof of Lemma 2.8. From the assumption ‖ϕ − Id‖ρ ≤ δ/2 and the Cauchy estimate (2.2)
applied to fθ(u) = ϕθ(u)− u, we get

‖∂uϕ− Id‖ρ−δ ≤
1

δ
‖ϕ− Id‖ρ ≤

1

2
.

Consequently, using Neumann series, we obtain

‖∂uϕ‖ρ−δ ≤
3

2
and ‖(∂u〈ϕ〉)−1‖ρ−δ ≤

∞∑
k=0

‖∂u〈ϕ〉 − Id‖kρ−δ ≤ 2.

Now, for θ ∈ T, u ∈ K, ũ ∈ XC with ‖ũ‖XC < ρ− δ, one has

‖ϕθ(u+ ũ)− u‖XC ≤ ‖ϕ− Id‖ρ−δ + ‖ũ‖XC <
δ

2
+ ρ− δ < ρ ≤ 2R.

Hence ϕθ(Kρ−δ) ⊂ K2R and, by Assumption 2.3, we recover ‖g ◦ϕ‖ρ−δ ≤ CK together with
‖〈g ◦ ϕ〉‖ρ−δ ≤ CK . Eventually, we obtain

‖Λ(ϕ)‖ρ−δ ≤ 4CK .

Integration in θ next provides ‖Γε(ϕ) − Id‖ρ−δ ≤ 4CK P |ε|. Besides, by composition theo-
rems, the functions Λ(ϕ)θ and Γε(ϕ)θ are analytic on Kρ−δ in the sense of Definition 2.2.

�

Lemma 2.8 shows that, starting from a function (θ, u) ∈ T×K2R 7→ ϕθ(u) ∈ XC, we can
consider iterates (Γε)k (ϕ)θ at the cost of a gradual thinning of their domains of analyticity,
provided ε is small enough. In order to estimate the “convergence” of this sequence, we also
establish the following contraction property.

Lemma 2.9 Let 0 < δ < ρ ≤ 2R and consider two periodic, near-identity mappings (θ, u) ∈
T×Kρ 7→ ϕθ(u) and (θ, u) ∈ T×Kρ 7→ ϕ̂θ(u), analytic on Kρ and satisfying

‖ϕ− Id‖ρ ≤
δ

2
and ‖ϕ̂− Id‖ρ ≤

δ

2
.

Then the following estimates hold true whenever |ε| ≥ 0, namely

‖Λ(ϕ)− Λ(ϕ̂)‖ρ−δ ≤
C0

δ
‖ϕ− ϕ̂‖ρ and ‖Γε(ϕ)− Γε(ϕ̂)‖ρ−δ ≤

C0 P |ε|
δ
‖ϕ− ϕ̂‖ρ.

Proof of Lemma 2.9. For the sake of brevity, let us denote Aθ(u) = ∂uϕθ(u) and Âθ(u) =
∂uϕ̂θ(u). We have

‖Λ(ϕ)− Λ(ϕ̂)‖ρ−δ ≤ ‖g ◦ ϕ− g ◦ ϕ̂‖ρ−δ
+ ‖A‖ρ−δ ‖〈A〉−1‖ρ−δ ‖〈g ◦ ϕ− g ◦ ϕ̂〉‖ρ−δ
+ ‖A‖ρ−δ ‖〈A〉−1 − 〈Â〉−1‖ρ−δ ‖〈g ◦ ϕ̂〉‖ρ−δ
+ ‖A− Â‖ρ−δ ‖〈Â〉−1‖ρ−δ ‖〈g ◦ ϕ̂〉‖ρ−δ

11



Proceeding as in Lemma 2.8, we get ‖A‖ρ−δ ≤ 3
2 , together with ‖〈A〉−1‖ρ−δ ≤ 2, and sim-

ilarly for Â. Besides, using the relation 〈A〉−1 − 〈Â〉−1 = 〈A〉−1〈Â − A〉〈Â〉−1, a Cauchy
estimate provides

‖〈A〉−1 − 〈Â〉−1‖ρ−δ ≤ ‖〈A〉−1‖ρ−δ‖〈Â〉−1‖ρ−δ‖A− Â‖ρ−δ ≤
4

δ
‖ϕ− ϕ̂‖ρ.

Finally, whenever u ∈ Kρ−δ, since ‖ϕ − Id‖ρ ≤ δ/2 and similarly for ϕ̂, we recover in
particular ϕθ(u) ∈ Kρ−δ/2 and ϕ̂θ(u) ∈ Kρ−δ/2. We deduce

‖〈g ◦ ϕ̂〉‖ρ−δ ≤ CK

and
‖g ◦ ϕ− g ◦ ϕ̂‖ρ−δ ≤ ‖∂ug‖ρ−δ/2 ‖ϕ− ϕ̂‖ρ−δ ≤

2CK
δ
‖ϕ− ϕ̂‖ρ−δ .

Collecting all terms, we have

‖Λ(ϕ)− Λ(ϕ̂)‖ρ−δ ≤
(

2CK
δ

+
6CK
δ

+
6CK
δ

+
2CK
δ

)
‖ϕ− ϕ̂‖ρ

and the corresponding bound for Γε is obtained by integration in θ. �

2.4.2 Existence and uniqueness of quasi-solutions to (2.8) with polynomial remainder

In this section we exhibit (quasi-) solutions to the equations of averaging that we have pointed
out, namely equation (2.8) or equivalently (2.9) or (2.12) for the mapping Φε

θ and equation (2.7)
for the autonomous vector field Gε. The exhibited functions are only quasi-solutions, in that
the corresponding equations are only solved to within a polynomial error term of sizeO(εn+1)
for any n ≥ 0. We begin with the proof of Lemma 2.6.

Proof of Lemma 2.6. The function Φ
[0]
θ = Id is clearly analytic in the sense of Definition 2.2 on

KR0 , analytic for all ε, smooth in θ, and clearly satisfies (2.17). Assume now that, for an integer
k ≤ n, the function Φ

[k]
θ is analytic onKRk , analytic in ε for |ε| < ε0/(n+1), smooth in θ, and

satisfies (2.17). Then, according to Lemma 2.8 with ρ = Rk and δ = R
n+1 = rn, the function

Φ
[k+1]
θ is well-defined by (2.14), analytic on KRk+1

and satisfies for 0 ≤ |ε| < ε0/(n+ 1) the
estimate

‖Φ[k+1] − Id‖Rk+1
≤ 4CK P |ε| <

4CK P ε0

n+ 1
=

R

2(n+ 1)
=
rn
2
.

As a composition of analytic functions, it is furthermore analytic in ε again for |ε| < ε0/(n+1).
Smoothness in θ is also clear. This finishes the induction argument for Φ[k]. By definition
(2.15), G[k] is then also analytic in KRk and so is Gk+1, defined by (2.16). �
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We are now in position to establish the existence of quasi-solutions to (2.8).

Theorem 2.10 [Existence of quasi-solutions to (2.8)] For n ∈ N, consider the sequence of
functions

Φ
[0]
θ = Id, Φ

[k+1]
θ = Γε(Φ[k])θ, k = 0, . . . , n,

and the associated sequence of defects (δ
[k]
θ )k=0,...,n, defined as

εδ
[k]
θ (u) :=

∂Φ
[k]
θ

∂θ
(u)− εΛ(Φ[k])θ(u) (2.24)

=
∂Φ

[k]
θ

∂θ
(u) + ε

∂Φ
[k]
θ

∂u
(u)

(
∂〈Φ[k]〉
∂u

(u)

)−1

〈g ◦ Φ[k]〉(u)− εgθ ◦ Φ
[k]
θ (u).

Then, the following holds true:
(i) The mappings Φ

[n]
θ and δ[n]

θ are C1 in θ, analytic on respectively KR+rn and KR, and
analytic in ε ∈ C whenever |ε| < ε0/(n+ 1).

(ii) The mappings Φ
[n]
θ and δ[n]

θ satisfy the following estimates for all |ε| < ε0/(n+ 1)

‖Φ[n] − Id‖R+rn ≤ rn
2
, (2.25)

‖δ[n]‖R ≤ C1 (η(n+ 1)|ε|)n . (2.26)

(iii) For all θ ∈ T, the mapping u 7→ Φ
[n]
θ (u) has an inverse defined on KR with values in

KR+rn . This inverse (Φ[n])−1 is analytic. Moreover, we have ‖(Φ[n])−1‖R−rn ≤ R.

Remark 2.11 In other words, the n-th iterate Φ
[n]
θ satisfies equation (2.8) up to a remainder

term of size C1(η(n+ 1))n|ε|n+1.

Proof of Theorem 2.10. Statement (i) and estimate (2.25) are obvious consequences of Lemma
2.6, up to a possible singularity at ε = 0 which is ruled out by estimate (2.26), which we now
prove. On the one hand, by differentiation of Φ

[n]
θ = Γε(Φ[n−1])θ, we recover for n ≥ 1

εδ
[n]
θ = ε

(
Λ(Φ[n−1])θ − Λ(Φ[n])θ

)
.

Hence, the contraction property stated in Lemma 2.9 yields with δ = rn and ρ = R+ δ = Rn.

|ε|‖δ[n]‖R ≤
C0 |ε|
rn
‖Φ[n] − Φ[n−1]‖Rn =

1

P

C0 P |ε|
rn

∥∥∥Γε
(

Φ[n−1]
)
− Γε

(
Φ[n−2]

)∥∥∥
Rn

≤ 1

P

(
C0 P |ε|
rn

)2 ∥∥∥Γε
(

Φ[n−2]
)
− Γε

(
Φ[n−3]

)∥∥∥
Rn−1

≤ . . .

≤ 1

P

(
C0 P |ε|
rn

)n
‖Φ[1] − Φ[0]‖R1 .

On the other hand, by definition of Φ
[1]
θ , we have ‖Φ[1] − Φ[0]‖R1 ≤ 2|ε|P CK . This proves

(2.26).
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As for Statement (iii), it is clear that if we take u1, u2 ∈ KR such that Φ
[n]
θ (u1) = Φ

[n]
θ (u2),

we have

‖u1 − u2‖XC ≤ ‖∂uΦ[n] − Id‖R ‖u1 − u2‖XC ≤
1

rn
‖Φ[n] − Id‖R+rn ‖u1 − u2‖XC

≤ 1

2
‖u1 − u2‖XC

so that u1 = u2. As for the existence part, given (u, ũ) ∈ K ×XC with ρ := ‖ũ‖XC < R, we
consider the sequence vk defined by

v0 = u+ ũ ∈ KR , vk+1 = vk − Φ
[n]
θ (vk) + u+ ũ.

Firstly, whenever vk ∈ K(R+ρ+rn)/2, we have

‖vk+1 − u‖XC ≤ ρ+ ‖Φ[n]
θ − Id‖R+rn <

R+ ρ+ rn
2

,

from which we deduce by induction that the whole the sequence (vk)k∈N belongs toK(R+ρ+rn)/2.
Moreover, we may write

‖vk+1 − vk‖XC = ‖(Φ[n]
θ − Id)(vk)− (Φ

[n]
θ − Id)(vk−1)‖XC

≤ ‖∂uΦ[n] − Id‖(R+ρ+rn)/2 ‖vk − vk−1‖XC ≤
1

1 + (R− ρ)/rn
‖vk − vk−1‖XC ,

hence the sequence vk converges towards some v ∈ K(R+ρ+rn)/2 ⊂ KR+rn . If ρ < R−rn, we

have furthermore ‖v‖ < R. The analyticity of (Φ
[n]
θ )−1 is a direct consequence of the Inverse

Function Theorem. �

Remark 2.12 From the definition of the sequence (Φ
[k]
θ )k=0,··· ,n+1, it can be inductively in-

ferred that, if u belongs to KR ∩X and ε ∈ R, then Φ
[n]
θ (u), G[n](u) and δ[n]

θ (u) belong to X
as well.

The next Theorem establishes that the first n terms in the expansions of Φ
[n]
θ in powers of

ε, are independent of the construction used (a similar property naturally holds also for G[n]).
This validates the fact that equations (2.8) and (2.7) are “canonical” in some sense.

Theorem 2.13 [Uniqueness of quasi-solutions to (2.8)] Fix n ∈ N and consider a function
(θ, u) 7→ Φ̂θ(u), which is C1 in θ ∈ T, analytic on KR+rn , analytic in ε for |ε| < ε0/(n+ 1),
and satisfies

Φ̂0 = Id, ‖Φ̂− Id‖R+rn ≤
rn
2
. (2.27)

Assume that the defect associated with Φ̂θ, defined as

εδ̂θ(u) :=
∂Φ̂θ

∂θ
− εΛ

(
Φ̂
)
θ
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satisfies, for all |ε| < ε0/(n + 1), the estimate ‖δ̂‖R ≤ Ĉ |ε|n for some constant Ĉ > 0
independent of ε. Then we necessarily have, whenever |ε| < ε0/(4(n+ 1)), the estimate

‖Φ̂− Φ[n]‖rn ≤ C3(n) |ε|n+1,

where Φ
[n]
θ is the function defined in Theorem 2.10 andC3(n) = P

(
2Ĉ + 20CK (η (n+ 1))n

)
.

Proof of Theorem 2.13. The result stems from successive applications of the contraction
Lemma 2.9. First, by Lemma 2.8 and starting from (2.27) and (2.17), we have for any k ≤ n,

‖ (Γε)k (Φ̂)− Id‖R+rn−krn ≤
rn
2
, ‖ (Γε)k (Φ[n])− Id‖R+rn−krn ≤

rn
2
, (2.28)

where we used the fact that 4CK P |ε| ≤ rn
2 . These estimates allow for the application of

Lemma 2.9 and we get, for all for k ≤ n,

‖ (Γε)k+1 (Φ̂)− (Γε)k (Φ̂)‖R−krn ≤
(
C0 P |ε|
rn

)k
‖Γε(Φ̂)− Φ̂‖R ≤

1

2k
‖Γε(Φ̂)− Φ̂‖R

and similarly for Φ[n], where we have used C0 P |ε|/rn ≤ 1/2. Summation provides

‖ (Γε)n+1 (Φ̂)− Φ̂‖rn ≤
n∑
k=0

‖ (Γε)k+1 (Φ̂)− (Γε)k (Φ̂)‖rn ≤ 2 ‖Γε(Φ̂)− Φ̂‖R, (2.29)

and similarly for Φ[n]. On the other hand, using (2.28) and applying again n + 1 times the
contraction Lemma 2.9, we obtain

‖ (Γε)n+1 (Φ̂)−(Γε)n+1 (Φ[n])‖rn ≤
(
C0 P |ε|
rn

)n+1

‖Φ̂−Φ[n]‖R+rn ≤
(
C0 P |ε|
rn

)n+1

rn,

(2.30)
where the last inequality uses (2.27) and the similar estimate for Φ[n]. Finally, from estimate
(2.29) on Φ̂ and the similar bound on Φ[n], and from (2.30), we deduce

‖Φ̂− Φ[n]‖rn
≤ ‖Φ̂− (Γε)n+1 (Φ̂)‖rn + ‖Φ[n] − (Γε)n+1 (Φ[n])‖rn + ‖ (Γε)n+1 (Φ̂)− (Γε)n+1 (Φ[n])‖rn

≤ 2‖Φ̂− Γε(Φ̂)‖R + 2‖Φ[n] − Γε(Φ[n])‖R + C0P

(
C0 P

R
(n+ 1)

)n
|ε|n+1 (2.31)

≤ 2Ĉ P |ε|n+1 + 2C1P (η(n+ 1)|ε|)n ε+ C0P

(
C0 P

R
(n+ 1)

)n
|ε|n+1,

where we have used

Φ
[n]
θ − Γε(Φ[n])θ = ε

∫ θ

0
δ

[n]
ξ dξ, and Φ̂θ − Γε(Φ̂)θ = ε

∫ θ

0
δ̂ξ dξ,

together with estimate (2.26) on δ[n] and the assumption on δ̂. Gathering the various constants
gives the result. �
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2.4.3 Proof of Theorem 2.7

Up to now, we have obtained a collection of mappings Φ
[n]
θ which produce a defect in equation

(2.8) (or (2.13)) that is of size O((n + 1)n εn+1). By optimizing the choice of the parameter
n, we now produce a mapping Φ[nε] associated with a defect of order O(exp(−c/ε)) for some
c > 0.

Proof. Part (i). Since (nε + 1)ε ≤ µ
η = µε0

2 < ε0, Theorem 2.10 applies with n = nε and we
have that

∂θΦ̃
ε
θ(u) = ε gθ ◦ Φ̃ε

θ(u)− ε ∂uΦ̃ε
θ(u)G[nε](u) + ε δ

[nε]
θ (u),

whenever u ∈ KR ⊂ KR+rnε . Therefore, introducing the exact solution U(t) of the equation

dU(t)

dt
= ε

(
G̃ε(U(t)) +Rεt (U(t))

)
, U(0) = u0,

with Rεt (u) = G[nε](u) − G̃ε(u) −
(
∂uΦ̃ε

t (u)
)−1

δ
[nε]
t (u), the function uε(t) := Φ̃ε

t (U(t))

clearly satisfies uε(0) = u0 together with

duε

dt
(t) = ε (gt ◦ Φ̃ε

t )(U(t))− ε ∂uΦ̃ε
t (U(t)) ·G[nε](U(t)) + ε δ

[nε]
t (U(t))

+ ε ∂uΦ̃ε
t (U(t)) ·

(
G[nε](U(t))−

(
∂uΦ̃ε

t (U(t))
)−1

δ
[nε]
t (U(t))

)
= ε (gt ◦ Φ̃ε

t )(U(t)) = ε gt(u
ε(t)),

as desired. Hence uε(t) coincides for any time t ∈ [0, T/ε] with the solution of (2.1). Now, on
the one hand, Theorem 2.10 and the choice of nε ensure that the defect δ[nε]

θ satisfies

‖δ[nε]‖R ≤ C1 (η(nε + 1)ε)nε ≤ C1µ
nε ,

and on the other hand, the analyticity of G[nε] w.r.t. ε and Cauchy’s formulae allow to write for
all u ∈ KR and δ := ε0

2(nε+1) , the estimate

‖G[nε](u)− G̃ε(u)‖XC =

∥∥∥∥∥∥
∑

k≥nε+1

εk

k!

dkG[nε]

dεk

∣∣∣∣∣
ε=0

(u)

∥∥∥∥∥∥
XC

≤
∑

k≥nε+1

εk

k!

k!

δk
sup
|ε|<δ
‖G[nε](u)‖XC ≤

(ε/δ)nε+1

1− (ε/δ)
sup
|ε|<δ
‖G[nε]‖R ≤ C1

µnε+1

1− µ
,

where we have used
∥∥∥(∂u〈Φ[nε]〉

)−1
∥∥∥
R
≤ 2 to bound3 G[nε] on KR by C1 and |ε|/δ ≤ µ. To

conclude, it remains to write

‖R‖R ≤ ‖G[nε] − G̃ε‖R +

∥∥∥∥(∂uΦ[nε]
)−1

∥∥∥∥
R

∥∥∥δ[nε]
∥∥∥
R

≤ (2− µ)C1

1− µ
µnε ≤ (2− µ)C1

(1− µ)µ2
exp

(
−µ| log(µ)|

ηε

)
,

3This stems from Lemma 2.8-(i) together with the known estimate ‖Φ[nε] − Id‖R+rnε
≤ rnε/2 (where rnε =

R/(nε + 1)), as established in Theorem 2.10.
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where we have used 0 < µ < 1 and nε ≥ (µ/(η|ε|))− 2.

Parts (ii) and (iii). Let Ψ̃ε
t be the flow of the autonomous equation

dU

dt
= ε G̃ε(U).

There exists T1 > 0 such that Ψ̃ε
t (u0) is well-defined for all 0 ≤ t ≤ T1/ε, given that G̃ε is

analytic on KR, hence Lipschitz continuous on any Kρ with ρ < R. Now, we have, on the one
hand,

duε(t)

dt
= εgt(u

ε(t))

and, on the other hand with ũε(t) = Φ̃ε
t ◦ Ψ̃ε

t (u0)

dũε(t)

dt
= εgt(ũ

ε(t))− ε
(
∂uΦ̃ε

t ◦ (Φ̃ε
t )
−1
)

(ũε(t)) ·
(
Rεt ◦ (Φ̃ε

t )
−1
)

(ũε(t))

as long as ũε and (Φ̃ε
t )
−1(ũε(t)) remain in KR. If L = CK

R denotes a Lipschitz constant for g
on KR, a variant of Gronwall Lemma then gives

‖uε(t)− ũε(t)‖XC ≤
3

2
‖Rε‖R

eεLt − 1

L
≤ 6R

µ2(1− µ)
e
εLt−µ| log(µ)|

εη := M(t, ε, µ)

where we have used the bound ‖∂uΦ̃ε
t − Id‖R ≤ 1/2.

Now we recall that, by assumption of the Theorem, uε(t) exists and belongs to K for
0 < ε < ε∗ and 0 ≤ t ≤ T/ε1+α (for Part (ii), we have α = 0 and, for Part (iii), we have 0 <
α < 1). In particular, choosing ε < µε2 with ε2 small enough so thatM(T/ε, ε, µ) ≤ R−rnε ,
ensures that ũε and (Φ̃ε

t )
−1(ũε(t)) remain in KR whenever t ≤ T/ε1+α (hence T1 ≥ T/εα).

Now we claim that, with the choice

0 < ε < min
(
ε∗,

(
µε2

0P

T

) 1
1−α

,
µε0

28

)
, (2.32)

(which means 0 < ε < min(ε∗, µε2) in the case α = 0), we obtain estimate (2.23).

Proof of the claim. For ε1−α ≤ µ | log(µ)|
2ηLT = µε2

0| log(µ)|2PT , we have eεLt−
µ| log(µ)|

εη ≤ e−
µ| log(µ)|

2εη

on [0, T/ε1+α], so that for all 0 ≤ t ≤ T/ε1+α

M(t, ε, µ) ≤ 6R

µ2(1− µ)
e
−µ| log(µ)|

2εη .

The quantity M(T/ε1+α, ε, µ) is then bounded by R/2 ≤ R − rnε (note that, by definition of
nε and ε2, we have nε ≥ 1) if furthermore

ε < µ
ε0

4

− log(µ)

log
(

12
µ2(1−µ)

) .
Imposing for instance that 0 < µ < 1/2, a combined bound on ε is given by (2.32), a condition
under which

∀t ∈ [0, T/ε1+α], ‖uε(t)− ũε(t)‖XC ≤ 12Rµ−2 e−
µ| log(µ)|ε0

4 ε .

This proves the claim and the proof of Theorem 2.7 is complete. �
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2.5 The linear case

In this section, we consider the particular case

gθ(u) ≡ Aθu,

where Aθ is a bounded linear operator on X . In this case, it turns out the change of variable
solution of (2.8) can be exactly constructed, due to the fact that our iterative procedure actually
converges. Let us prove this statement. Naturally, Assumption 2.3 is replaced here by the
following assumption.

Assumption 2.14 The map θ 7→ Aθ ∈ L(X) is continuous and P -periodic.

The initial value problem reads

d

dt
uε(t) = εAt u

ε(t), uε(t) ∈ X, (2.33)

uε(0) = u0, u0 ∈ X.

We denote by ‖ · ‖L(X) the operator norm on X and the space C(T,L(X)) is equipped with
the norm

‖Φ‖ = sup
θ∈T
‖Φθ‖L(X) = sup

(θ,u)∈T×X, ‖u‖X=1
‖Φθ‖X .

In the present linear setting, Theorem 2.7 takes the following form.

Theorem 2.15 [Exact averaging in the linear case] Consider uε(t) the solution of (2.33) and
denote εl = 1

α(3
2 −
√

2), with α =
∫
T ‖Aθ‖L(X)dθ. Then for all 0 ≤ ε < εl, there exists a map

θ 7→ Φε
θ ∈ L(X), such that

(i) The function Φε
θ is P -periodic and C1 in θ, and satisfies Φθ=0 = Id.

(ii) For all θ ∈ T, the operator Φε
θ is invertible in L(X).

(iii) For all u0 ∈ X , the solution of (2.33) admits the factorized form

∀t ∈ R+ uε(t) = Φε
t e

εtGε u0,

where Gε ∈ L(X) is defined by

Gε = 〈Φε〉−1〈AΦε〉. (2.34)

Proof of Theorem 2.15. In the linear framework, equation (2.8) becomes

dΦε
θ

dθ
+ εΦε

θ〈Φε〉−1〈AΦε〉 = εAΦε
θ, or equivalently Φε

θ = Γε(Φε)θ,

where the nonlinear map Γε acts on the set of functions in C(T,L(X)) which are invertible for
all θ, and is defined for any such function Φ by

Γε(Φ)θ = Id + ε

∫ θ

0

(
AξΦξ − Φξ〈Φ〉−1〈AΦ〉

)
dξ. (2.35)
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We introduce the sequence Φ
[0]
θ = Id, with Φ

[n+1]
θ = Γε(Φ[n])θ for all n ∈ N. We claim

that this sequence is well-defined for all n ∈ N, with the following estimate

‖Φ[n] − Id‖ < d∗ :=
1

2
− εα−

√
ε2α2 − 3εα+

1

4
. (2.36)

Note that the term ε2α2 − 3εα + 1
4 is positive due to the assumption ε < εl. We now prove

(2.36) by induction (it clearly holds true in the case n = 0). Assume the claim is proved for
some n, and set dn := ‖Φ[n] − Id‖. From the fact that 0 < ε < εl, and from the induction
assumption, we first deduce dn < d∗ <

1
2 + εα ≤ 2 −

√
2 < 1. Then, by Neumann series,

we deduce that Φ
[n]
θ is invertible for all θ, and that (Φ

[n]
θ )−1 ∈ C(T,L(X)). In particular,

Φ
[n+1]
θ = Γε(Φ[n])θ is well-defined. Moreover, from (2.35), we estimate

‖Γε(Φ[n])− Id‖ ≤ ε ‖Φ[n]‖

(
1 +

‖Φ[n]‖
1− ‖Φ[n] − I‖

)∫
T
‖Aθ‖L(X)dθ,

from which we deduce dn+1 ≤ 2εα
1 + dn
1− dn

. Since d∗ is the smallest root of d(1−d)−2εα(1+

d), thanks to the assumption 0 < ε < εl, a direct analysis of the function f(d) = 2εα1+d
1−d

shows that 0 ≤ d ≤ d∗ implies 0 ≤ f(d) ≤ f(d∗) = d∗. Consequently dn+1 ≤ f(dn) < d∗
and (2.36) is proved.

To prove the Theorem, there only remains to prove that the Lipschitz constant of Γε is
less than one on the domain {Φ s.t. ‖Φ − Id‖ ≤ d∗}. To do so, we take Φ ∈ C(T,L(X))
and Φ̂ ∈ C(T,L(X)) satisfying ‖Φ − Id‖ < d∗ and ‖Φ̂ − Id‖ < d∗. As before, we readily
deduce that for all θ ∈ T, both operators Φθ and Φ̂θ are invertible on X , with inverse operators
satisfying ‖Φ−1‖ ≤ 1/(1− d∗) and ‖Φ̂−1‖ ≤ 1/(1− d∗). Hence, as in Lemma 2.9, we write

‖Γε(Φ)− Γε(Φ̂)‖ ≤ εP 〈‖A(Φ− Φ̂)‖L(X)〉+ εP‖Φ‖ ‖Φ−1‖ 〈‖A(Φ− Φ̂)‖L(X)〉

+ εP‖Φ‖ ‖Φ−1 − Φ̂−1‖ 〈‖AΦ̂‖L(X)〉+ εP‖Φ− Φ̂‖ ‖Φ̂−1‖ 〈‖AΦ̂‖L(X)〉

≤ εα
(

1 + ‖Φ‖ ‖Φ−1‖+ ‖Φ‖ ‖Φ̂‖ ‖Φ−1‖ ‖Φ̂−1‖+ ‖Φ̂‖ ‖Φ̂−1‖
)
‖Φ− Φ̂‖

≤ εα
(
1 + ‖Φ‖ ‖Φ−1‖

) (
1 + ‖Φ̂‖ ‖Φ̂−1‖

)
‖Φ− Φ̂‖

≤ 4εα

(1− d∗)2
‖Φ− Φ̂‖.

Introducing d∗, the largest root of d(1− d)− 2εα(1 + d), we now observe (using d∗d∗ = 2εα
and d∗ + d∗ = 1− 2εα) that

4εα

(1− d∗)2
<

4εα

(1− d∗)(1− d∗)
= 1.

Convergence of the sequence Φ[n] in C(T,L(X)) follows, and the Theorem is easily deduced.
�
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3 Geometric aspects

One of the advantages of stroboscopic averaging is that it preserves the geometric properties of
the initial equation. In this spirit, we now prove that stroboscopic averaging preserves both the
Hamiltonian structure and the invariants of the original equation (if any).

3.1 Preservation of the Hamiltonian structure

We assume here that X is a Hilbert space, i.e. the norm ‖ · ‖X stems from a real scalar product
(·, ·)X . Moreover, for further application to the case of the nonlinear Schrödinger equation, we
assume that X is a dense subspace continuously embedded in some ambient Hilbert space Z,
with real scalar product (·, ·)Z . The dual space X ′ is then identified through the duality given
by the scalar product (·, ·)Z . In practice, the workspace X will be a Sobolev space Hs(Rd)
(for some ”large” s > 0) and the ambient space Z will be L2(Rd), so that the dual space X ′ is
H−s(Rd).

In this context, we introduce the following notions.

Definition 3.1 The vector field (θ, u) 7→ gθ(u) in Assumption 2.3 is said to be Hamiltonian
if there exists a bounded invertible linear map J : X → X , skew-symmetric with respect to
〈·, ·〉Z , and a function (θ, u) 7→ Hθ(u) analytic in the sense of Definition 2.2, such that

∀(θ, u, v) ∈ T×K ×X, (∂uHθ)(u) v = (Jgθ(u), v)Z . (3.1)

A smooth map (θ, u) 7→ Φθ(u) is said to be symplectic if

∀(θ, u, v, w) ∈ T×K ×X2, (J∂uΦθ(u)v , ∂uΦθ(u)w)Z = (Jv,w)Z .

Remark 3.2 Recall that this definition can be also written gθ(u) = J−1∇uHθ(u), where the
gradient is taken with respect to the scalar product (·, ·)Z and is defined by

∀(θ, u, v) ∈ T×K ×X2, (∇uHθ(u), v)Z = ∂uHθ(u) v.

Moreover, the two following classical properties hold true. First, if (θ, u) 7→ gθ(u) is Hamilto-
nian, then

∀(u, v, w) ∈ K ×X2 (J∂ugθ(u)v, w)Z = (v, J∂ugθ(u)w)Z .

Second, if f1 and f2 are Hamiltonian, with Hamiltonian respectively given by F1 and F2, then
the Lie-Jacobi bracket

f(u) = [f1(u), f2(u)] = ∂uf1(u)f2(u)− ∂uf2(u)f1(u)

is also Hamiltonian, with Hamiltonian given by the Poisson bracket

F (u) = {F1, F2} (u) = (Jf1(u), f2(u))Z .
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Definition 3.3 An analytic vector field f (depending on ε) is said to be Hamiltonian up to an
εk+1 perturbation if there exists an analytic function F such that

∀(u, v) ∈ K ×X, (∂uF )(u) v = (Jf(u), v)Z +O
(
εk+1‖v‖X

)
.

A smooth map (θ, u) 7→ Φθ(u) (depending on ε) is said to be symplectic up to an εk+1 pertur-
bation if

∀(θ, u, v, w) ∈ T×K×X2, (J∂uΦθ(u)v , ∂uΦθ(u)w)Z = (Jv,w)Z+O(εk+1‖v‖X ‖w‖X).

We now establish that whenever (θ, u) 7→ gθ(u) is Hamiltonian, the associated averaged
vector field G[n] obtained in Theorem 2.10 is Hamiltonian as well, up to an εn+1 perturbation.
Prior to that, we state the following lemma.

Lemma 3.4 Under the assumptions of Theorem 2.10 and provided (θ, u) 7→ gθ(u) is Hamil-
tonian, suppose that Φ

[n]
θ is symplectic up to an εk+1 perturbation term, with 0 ≤ k ≤ n, i.e.

that for all (θ, u) ∈ T×K and v, w ∈ X(
J∂uΦ

[n]
θ (u)v, ∂uΦ

[n]
θ (u)w

)
Z

= (Jv,w)Z +O(εk+1‖v‖X ‖w‖X). (Sk)

Then G[n] is Hamiltonian up to an εk+1 perturbation term. More precisely, we have, for all
u ∈ K,

G[n](u) = J−1∇uH [n](u) +O(εk+1), (Hk)
with Hamiltonian

H [n](u) =
〈
H ◦ Φ[n+1](u)

〉
− 1

2ε

〈(
J∂θΦ

[n+1](u) , Φ[n+1](u)
)
Z

〉
. (3.2)

Proof of Lemma 3.4. We first compute ∂uH [n](u) when u ∈ K. We define for convenience

H [n]
a (u) :=

〈
H ◦ Φ[n+1](u)

〉
and H

[n]
b (u) := − 1

2ε

〈(
J∂θΦ

[n+1](u) , Φ[n+1](u)
)
Z

〉
,

so thatH [n](u) = H
[n]
a (u)+H

[n]
b (u). On the one hand, using that gθ is Hamiltonian (according

to Definition 3.1). For any u ∈ K and v ∈ X , we recover

∂uH
[n]
a (u) v

=
〈
∂uHθ

(
Φ[n+1](u)

) (
∂uΦ[n+1](u)

)
v
〉

= −
〈(

g
(

Φ[n+1](u)
)
, J∂uΦ[n+1](u) v

)
Z

〉
.

On the other hand, computing ∂uH
[n]
b and next using an integration by parts in θ, we have

∂uH
[n]
b (u) v

= − 1

2εP

∫
T

((
J∂u∂θΦ

[n+1]
θ (u) v , Φ

[n+1]
θ (u)

)
Z

+
(
J∂θΦ

[n+1]
θ (u) , ∂uΦ

[n+1]
θ (u) v

)
Z

)
dθ

=
1

2εP

∫
T

((
J∂uΦ

[n+1]
θ (u) v , ∂θΦ

[n+1]
θ (u)

)
Z
−
(
J∂θΦ

[n+1]
θ (u) , ∂uΦ

[n+1]
θ (u) v

)
Z

)
dθ

=
1

εP

∫
T

(
∂θΦ

[n+1]
θ (u) , J∂uΦ

[n+1]
θ (u) v

)
Z
dθ.
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These results eventually provide the relation

∂uH
[n](u) v = −

〈(
g ◦ Φ[n+1](u)− 1

ε
∂θΦ

[n+1](u) , J∂uΦ[n+1](u)v

)
Z

〉
. (3.3)

The right-hand-side of (3.3) may now be simplified. From the very construction of G[n+1] and
Φ[n+1] we have

∂θΦ
[n+1]
θ (u)+ε∂uΦ

[n+1]
θ (u)

(
∂u〈Φ[n+1]〉(u)

)−1
〈g◦Φ[n+1]〉(u)−εgθ ◦Φ

[n+1]
θ (u) = O(εn+2)

and G[n+1](u) :=
(
∂u〈Φ[n+1]〉(u)

)−1 〈g ◦ Φ[n+1]〉(u), for any (θ, u) ∈ T×K. Here the term
O(εn+2) is meant in the sense of functions that are analytic in u, with value in X (or XC),
see Theorem 2.10. This provides, by picking up v ∈ X and taking the scalar product with
J∂uΦθ(u) v, the relation(

gθ ◦ Φ
[n+1]
θ (u)− 1

ε
∂θΦ

[n+1]
θ (u) , J∂uΦ

[n+1]
θ (u)v

)
Z

=
(
∂uΦ

[n+1]
θ (u)G[n+1](u) , J∂uΦ

[n+1]
θ (u) v

)
Z

+O(εn+1‖v‖X).

Hence, taking the average in θ, and using (3.3) yields in any circumstance

∂uH
[n](u) v = −

〈(
∂uΦ[n+1](u)G[n+1](u) , J∂uΦ[n+1](u) v

)
Z

〉
+O(εn+1‖v‖X). (3.4)

This is where assumption (Sk) is used. It provides, using k + 1 ≤ n+ 1,(
∂uΦ

[n]
θ (u)G[n](u) , J∂uΦ

[n]
θ (u) v

)
Z

=
(
G[n](u) , Jv

)
Z

+O(εk+1‖v‖X).

Inserting this identity in (3.4) and using the fact that Φ[n+1] = Φ[n] +O(εn+1) and G[n+1] =
G[n] +O(εn+1) (see Theorem 2.13) gives

∂uH
[n](u) v =

(
JG[n](u) , v

)
Z

+O(εk+1‖v‖X).

The proof of the lemma is complete. �

Lemma 3.4 allows to establish the

Theorem 3.5 [Stroboscopic averaging preserves the Hamiltonian structure]
Under the assumptions of Theorem 2.10 and assuming that gθ is Hamiltonian, for all n ∈ N, the
functions Φ

[n]
θ and G[n] are respectively symplectic and Hamiltonian up to εn+1-perturbation

terms, namely for all (θ, u) ∈ T×K, v, w ∈ X , we have (here H [n] is defined by (3.2)),(
J∂uΦ

[n]
θ (u)v , ∂uΦ

[n]
θ (u)w

)
Z

= (Jv , w)Z +O(εn+1‖v‖X ‖w‖X), (3.5)

G[n](u) = J−1∇uH [n](u) +O(εn+1). (3.6)
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Remark 3.6 Consider the truncated Hamiltonian

H̃ [n](u) =

n∑
k=0

εk

k!

dkH [n]

dεk

∣∣∣∣∣
ε=0

(u). (3.7)

A direct consequence of Theorem 3.5, and of the smoothness of H [n] and G[n] in ε, is that the
truncated averaged vector field defined by (2.18) is exactly Hamiltonian, namely

G̃[n](u) = J−1∇uH̃ [n](u).

(both functions are n-th order polynomials in ε and coincide to withinO(εn+1)). This equality
holds in the strong sense of X-valued functions.

Proof of Theorem 3.5. By construction, Φ
[n]
θ (u) = u+O(ε), so that (S0) and (H0) (as denoted

in Lemma 3.4) hold. Now, assume that (Sk) holds for some 0 ≤ k ≤ n − 1. By Lemma 3.4,
we know that (Hk) holds. Consider the flow Ψ

[n]
t associated to the vector field εG[n], which is

defined for all t ∈ [−P, P ], at least for small ε:

∀u ∈ K, ∂tΨ
[n]
t (u) = εG[n] ◦Ψ

[n]
t (u), Ψ

[n]
0 (u) = u.

We claim that

∀v, w ∈ X,
(
J∂uΨ

[n]
t (u)v, ∂uΨ

[n]
t (u)w

)
Z

= (Jv,w)Z +O(εk+2‖v‖X ‖w‖X). (3.8)

In order to prove (3.8), let us differentiate the left-hand side of this equation. By using the
antisymmetry of J , we get

d

dt

(
J∂uΨ

[n]
t (u)v, ∂uΨ

[n]
t (u)w

)
Z

= −ε
(

(∂uG
[n] ◦Ψ

[n]
t (u)) ∂uΨ

[n]
t (u)v, J∂uΨ

[n]
t (u)w

)
Z

+ ε
(
J∂uΨ

[n]
t (u)v, (∂uG

[n] ◦Ψ
[n]
t (u)) ∂uΨ

[n]
t (u)w

)
Z

Besides, by differentiatingHk, we obtain, for all v, w ∈ X ,(
∂uG

[n](u)w, v
)
Z

= −∂2
uH

[n](u) (J−1v, w) +O(εk+1‖v‖X‖w‖X),

thus, by symmetry of ∂2
uH

[n],

d

dt

(
J∂uΨ

[n]
t (u)v, ∂uΨ

[n]
t (u)w

)
Z

= ε∂2
uH

[n] ◦Ψ
[n]
t (u)

(
∂uΨ

[n]
t w, ∂uΨ

[n]
t v
)

− ε∂2
uH

[n] ◦Ψ
[n]
t (u)

(
∂uΨ

[n]
t w, ∂uΨ

[n]
t v
)

+O(εk+2‖v‖X‖w‖X)

= O(εk+2‖v‖X‖w‖X).

Integrating this equation yields (3.8). Now, for all (θ, u) ∈ T × K, denote χt(u) = Φ
[n]
t ◦

Ψ
[n]
t (u). By Theorem 2.10 and (3.1), we have

∂tχt(u) = (∂tΦ
[n]
t ) ◦Ψ

[n]
t (u) + ε(∂uΦ

[n]
t ) ◦Ψ

[n]
t (u) G[n] ◦Ψ

[n]
t (u)

= εJ−1∇Ht(χt(u)) +O(εn+1),
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so that the map χt is quasi-symplectic, i.e., proceeding as for Ψ
[n]
t , we have

∀v, w ∈ X, (J∂uχt(u)v, ∂uχt(u)w)Z = (Jv,w)Z +O(εn+1‖v‖X ‖w‖X). (3.9)

Finally, since Ψ
[n]
t is the flow of an autonomous equation, one has Φ

[n]
t = χt ◦ Ψ

[n]
−t so, from

(3.8) and (3.9), one gets (Sk+1). An induction argument finishes the proof. �

3.2 Preservation of the invariants

Assume that the solution of (2.1), associated with the field (θ, u) 7→ εgθ(u), admits an invari-
ant. More precisely, assume that the smooth functionQ : T×X → R, which possibly depends
on ε, satisfies

Qt(u
ε(t)) ≡ Q0(u0).

For instance, in the framework of Hilbert spaces X ⊂ Z presented in Section 3.1 and consid-
ering the nonlinear Schrödinger equation, the quantity Q(u) = ‖u‖2Z is an invariant provided
(gθ(u), u)Z = 0 whenever u ∈ Z. The question is whether the averaged field G[n] possesses
Qθ as an (almost) invariant as well. It turns out that the answer is positive, and the proof is
strikingly simple. The crucial fact is that Qθ ◦ Φθ is (almost) independent of θ, while Q0 is an
(almost) invariant of the averaged system, up to small perturbation terms.

Before going on, let us make the invariance assumption more precise. Differentiating the
relation Qt(uε(t)) ≡ Q0(u0) provides

∂θQθ(u) + ε ∂uQθ(u)gθ(u) = 0, (3.10)

whenever (θ, u) = (t, uε(t)). In the sequel, we shall require that this relation actually holds
true for any θ ∈ T and any u ∈ K.

Theorem 3.7 [Stroboscopic averaging preserves the invariants]
Under the assumptions of Theorem 2.10, assume that the function (θ, u) ∈ T×X 7→ Qθ(u) ∈
R is an invariant of the field εgθ, in that (3.10) holds for any (θ, u) ∈ T × K. Assume that
(θ, u) 7→ Qθ(u) is analytic on Kρ for some 0 < ρ ≤ R.
Then, for all n ∈ N, the change of variable Φ

[n]
θ and the averaged vector field G[n] satisfy,

whenever u ∈ K, θ ∈ T,

Qθ(Φ
[n]
θ (u)) = Q0(u) +O(εn+1), and (∂uQ0)(u) G[n](u) = O(εn). (3.11)

In particular, we have (d/dt)Q0(Ψ
[n]
t (u0)) = O(εn+1), whenever t ∈ [0, T/ε].

Remark 3.8 If the invariant Qθ does not depend on ε, then, from G[n+1] − G̃[n] = O(εn+1)
and remarking that G̃[n] is a polynomial of degree n in ε, one deduces from (3.11) that we have

(∂uQ0)(u) G̃[n](u) = 0,

so that Q0 is exactly preserved by the autonomous equation (2.22).
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Proof of Theorem 3.7. Relation (2.24), written in the form

∂θΦ
[n]
θ (u) + ε∂uΦ

[n]
θ (u)G[n](u) = εgθ ◦ Φ

[n]
θ (u) +O(εn+1),

provides after premultiplying by (∂uQθ) ◦Φ
[n]
θ and using the fact that Q is an invariant of εgθ,

the relation

(∂uQθ) ◦ Φ
[n]
θ (u) ∂θΦ

[n]
θ (u) + ε∂u(Qθ ◦ Φ

[n]
θ )(u) G[n](u)

= ε
(
∂uQθ ◦ Φ

[n]
θ

)
(u)

(
gθ ◦ Φ

[n]
θ

)
(u) +O(εn+1)

= − (∂θQθ) ◦ Φ
[n]
θ (u) +O(εn+1),

whenever u ∈ K. Note that the termO(εn+1) is meant in he sense of analytic functions, which
means in the ‖.‖ρ′ norm, whenever 0 < ρ′ < ρ, say. Therefore, we arrive at

∂θ

(
Qθ ◦ Φ

[n]
θ

)
(u) + ε∂u

(
Qθ ◦ Φ

[n]
θ

)
(u) G[n](u) = O(εn+1). (3.12)

In particular, taking averages on both sides yields

∂u

〈
Q ◦ Φ[n]

〉
(u) G[n](u) = O(εn). (3.13)

The Theorem now comes from an induction argument. Assume that, for some k < n, and
for all θ ∈ T, we have Qθ ◦Φ

[n]
θ (u) = Q0(u) +O(εk+1). Note that this property is clearly true

when k = 0 since Φ[n] = Id +O(ε) and since Qθ(u) = Q0(u) +O(ε) by integrating (3.10).
It comes Qθ ◦ Φ

[n]
θ = Q0 + O(εk+1) = 〈Q ◦ Φ[n]〉 + O(εk+1), hence after differentiation

∂u(Qθ ◦ Φ
[n]
θ ) = ∂u〈Q ◦ Φ[n]〉+O(εk+1), and eventually we recover in (3.13)

∂u(Qθ ◦ Φ
[n]
θ )(u) G[n](u) = O(εn + εk+1).

This provides in (3.12)
∂θ(Qθ ◦ Φ

[n]
θ )(u) = O(εn+1 + εk+2),

which, by integration in θ, provides Qθ ◦ Φ
[n]
θ = Q0 ◦ Φ

[n]
0 + O(εk+2) = Q0 + O(εk+2),

whenever k < n. The recursion is complete. �

4 Application to the nonlinear Schrödinger equation

In this section, we apply the results of Sections 2 and 3 to the nonlinear Schrödinger (NLS)
equation, written as

i∂tψ
ε(t, x) = (Aψε)(t, x) + εf

(
|ψε(t, x)|2

)
ψε(t, x), t ≥ 0, ψε(t, ·) ∈ X, (4.1)

ψε(0, x) = ψ0(x) ∈ X.

Here f is a real-analytic function. We set Z = L2(Ω) where Ω ⊂ Rd is open, and A :
D(A) ⊂ Z → Z is a linear unbounded self-adjoint operator with dense domain D(A) ⊂ Z.
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We assume A is of the form A = −∆x +V (x), for some potential V (x). We also assume A is
non-negative, which allows to take fractional powers of A thanks to the functional calculus for
self-adjoint operators. Lastly, we set

X = {u ∈ Z s.t. (1 +A)s/2u ∈ Z},

for some s ≥ 1 (to have a bounded energy, see (4.12) below), i.e. X is chosen in the Sobolev
scale induced by A (with the obvious norm). We assume that X ⊂ L∞(Ω) continuously, and
we also assume that X is an algebra (i.e. ‖uv‖X . ‖u‖X ‖v‖X whenever u and v belong to
X), to deal with the nonlinear term f(|ψ|2)ψ.

The first key assumption is, we assume A has compact resolvent. This imposes both mild
regularity assumptions on the potential V (x), and (more importantly) compactness in the vari-
able x (typically Ω is bounded, or Ω = Rd with V (x) → +∞ as |x| → ∞ to cut-off large
values of x). Compactness of the resolvent of A ensures that the spectrum of A is discrete.

The second key assumption on A, and actually the most restrictive one, is

the spectrum of A is a subset of λN for some λ > 0. (4.2)

In other words, while the Stone theorem ensures that the propagator exp(iθA) is well-defined
as a strong group of unitary operators on Z whenever θ ∈ R (this is due to the fact that A
is self-adjoint), we are here assuming that θ 7→ exp(iθA) is periodic (with period 2π/λ). In
general, when A has compact resolvent, the function θ 7→ exp(iθA) is almost-periodic only,
in that it entails an infinite, countable, number of independent frequencies.

A last, more technical, functional analytic assumption is in order, to deal with the nonlinear
term f(|ψ|2)ψ in (4.1). Namely, we need a tame estimate, in that for any smooth and nonlinear
function G : C → C satisfying G(0) = 0, there exists a nondecreasing C1 function CG :
R+ → R+ such that, for all u ∈ X , we have

‖G(u)‖X ≤ CG (‖u‖L∞) ‖u‖X . (4.3)

This statement completes and refines the assumed fact that X is an algebra.
Under all these assumptions, the local in time existence of strong solutions to (4.1), for any

fixed value ε > 0, is standard, see for instance [Car08, CH98, Caz03], and it becomes feasible
to deal with averaging issues in this equation.

Note that two paradigms are covered by our analysis.

Case 1: NLS on the d-dimensional torus. Let Tda = [0, a]d, with a > 0. We consider the
equation

i∂tψ
ε(t, x) = −∆xψ

ε(t, x) + εf
(
|ψε(t, x)|2

)
ψε(t, x), t ≥ 0, (4.4)

ψε(0, x) = ψ0(x), x ∈ Tda,

with periodic boundary conditions. In this case we set A = −∆x with domain D(A) ={
u ∈ H2(Tda) s.t. u|xj=0 = u|xj=a for j = 1, . . . , d

}
, where H2 is the usual Sobolev space

{u(x) ∈ L2 s.t. ∆xu(x) ∈ L2}. The operator A : D(A) → Z = L2(Tda;C) is self-adjoint
non-negative with compact resolvent, the embedding D(A) ⊂ Z is dense, and the spectrum
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of A is σ(A) =
{

(2π/a)2|k|2 = (2π/a)2 (k2
1 + · · ·+ k2

d) ; k ∈ Zd
}
⊂ (2π/a)2N. We take

ψ0 ∈ X , where we set X = Hs(Tda;C), for some s > d/2, and Hs is the Sobolev space of
periodic functions associated with the norm ‖ · ‖Hs defined by

‖u‖2Hs = ‖(1−∆)s/2u‖2L2 = ad
∑
k∈Zd

(
1 + (2π/a)2|k|2

)s |uk|2, (4.5)

where we write u(x) =
∑
k∈Zd

uk e
i(2π/a)k·x whenever u ∈ L2.

In that context, the tame estimate (4.3) is clear, since the assumption s > d/2 immediately
ensures, for any smooth G : C→ C with G(0) = 0, the estimate

‖G(u)‖Hs ≤ CG (‖u‖L∞) ‖u‖Hs , (4.6)

for some nondecreasing function CG : R+ → R+. The constraint s > d/2 also ensures that X
is an algebra. �

Case 2: the Gross-Pitaevskii equation. Take ω > 0. We consider the equation

i∂tψ
ε(t, x) =

(
−∆x + ω2|x|2 − dω

)
ψε(t, x) + εf

(
|ψε(t, x)|2

)
ψε(t, x), t ≥ 0, (4.7)

ψε(0, x) = ψ0(x). x ∈ Rd.

In this case we set A = −∆ + ω2|x|2 − dω, with domain D(A) =
{
u ∈ L2(Rd) s.t. Au ∈

L2(Rd)
}

=
{
u ∈ H2(Rd) : |x|2u ∈ L2(Rd)

}
. The operator A : D(A) → Z = L2(Rd;C)

is self-adjoint non-negative with compact resolvent, the embedding D(A) ⊂ Z is dense, and
the spectrum of A is σ(A) = {2kω ; k ∈ N} = 2ωN. We take ψ0 ∈ X where we set
X = Σs(Rd;C), for some s > d/2, and Σs is the space {u ∈ Hs(Rd) s.t. |x|su ∈ L2(Rd)},
associated with the norm

‖u‖Σs = ‖(1−∆ + ω2|x|2 − dω)s/2u‖L2 . (4.8)

The following crucial equivalence of norms holds (see e.g. [BACM08])

‖u‖Σs ∼ ‖u‖Hs + ‖|x|su‖L2 . (4.9)

This ingredient immediately provide the desired tame estimate (4.3) in the present context.
Indeed, taking G as in (4.3) we have

‖G(u)‖X ≤ C (‖G(u)‖Hs + ‖|x|sG(u)‖L2) (for some constant C > 0)

≤ C
(
CG (‖u‖L∞) ‖u‖Hs +

(
max

|u|≤‖u‖L∞
|G′(u)|

)
‖|x|su‖L2

)
(we use (4.6))

≤ C
(
CG (‖u‖L∞) + max

|u|≤‖u‖L∞
|G′(u)|

)
‖u‖X .

The same argument shows that X is an algebra. �
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The well-posedness of the Cauchy problem for (4.1) can be formulated as follows.

Proposition 4.1 Let ψ0 ∈ X . Then, for all ε > 0, there exists T εmax ∈]0,+∞] and a unique
maximal solution ψε ∈ C([0, T εmax[, X) to (4.1). This solution is maximal in the sense that

if T εmax < +∞, then lim sup
t→T εmax

‖ψε(t)‖L∞ = +∞.

Moreover, for all κ > 1, there exists Tκ > 0 such that for any ε > 0 we have T εmax > Tκ/ε,
and

∀t ∈ [0, Tκ/ε] , ‖ψε(t)‖X ≤ κ‖ψ0‖X . (4.10)

Furthermore, one has the following conservation laws, valid whenever t < T εmax,

‖ψε(t)‖2L2 = ‖ψ0‖2L2 (conservation of mass), (4.11)
1

2
(Aψε(t), ψε(t))L2 +

ε

2

∫
F
(
|ψε|2

)
(t, x)dx (4.12)

=
1

2
(Aψ0, ψ0)L2 +

ε

2

∫
F
(
|ψ0|2

)
dx, (conservation of energy),

where F (u) =

∫ u

0
f(v)dv.

Proof of Proposition 4.1. We refer to [Car08] for the proof of the existence and uniqueness
result for fixed ε > 0, as well as the proof of the standard relations (4.11) and (4.12). We only
prove here the a priori estimate (4.10). Without loss of generality, we assume ψ0 6= 0. Let
κ > 1 and define

T εκ = εmax (T < T εmax s.t. ∀t ∈ [0, T ], ‖ψε(t)‖X ≤ κ‖ψ0‖X) .

Let us prove the existence of Tκ independent of ε such that T εκ ≥ Tκ. The Duhamel formulation
of (4.1) provides

ψε(t) = e−itAψ0 − iε
∫ t

0
e−i(t−τ)Af

(
|ψε(τ)|2

)
ψε(τ)dτ.

Hence, using the fact that exp(−itA) is unitary on X , which comes from the definition of the
space X and its associated norm, and from the unitarity of exp(−itA) on Z, we have

‖ψε(t)‖X ≤ ‖ψ0‖X + ε

∫ t

0

∥∥f (|ψε(τ)|2
)
ψε(τ)

∥∥
X
dτ

≤ ‖ψ0‖X + ε

∫ t

0
Cf̃ (‖ψε(τ)‖L∞) ‖ψε(τ)‖X dτ

≤ ‖ψ0‖X + ε

∫ t

0
Cf̃ (c0‖ψε(τ)‖X) ‖ψε(τ)‖X dτ,

where Cf̃ is the nondecreasing function in (4.3) associated to f̃(u) = f(|u|2)u and c0 is the
norm of the continuous embedding X ⊂ L∞. As a consequence, whenever t ≤ T εκ/ε we
recover

‖ψε(t)‖X ≤ ‖ψ0‖X + εCf̃ (c0κ‖ψ0‖X)

∫ t

0
‖ψε(τ)‖X dτ,
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and the Gronwall lemma asserts, whenever 0 ≤ t ≤ T εκ/ε, the estimate

‖ψε(t)‖X ≤ ‖ψ0‖X eT
ε
κ Cf̃ (c0κ‖ψ0‖X).

This in turn ensures
T εκ ≥ Tκ :=

log κ

Cf̃ (c0κ‖ψ0‖X)
. (4.13)

�

Let us now put the NLS equation (4.1) under the form (2.1). To this aim, we first pass to

canonical coordinates setting qε = <(ψε), pε = =(ψε). The unknown yε(t) =

(
pε(t)
qε(t)

)
∈

Z × Z satisfies

∂ty
ε(t) = J−1Ayε(t) + εf(yε(t)2)J−1yε(t), yε(0) = u0 :=

(
=(ψ0)
<(ψ0)

)
, (4.14)

where we have denoted yε(t)2 := pε(t)2 +qε(t)2 and J =

(
0 1
−1 0

)
. We also make a slight

abuse of notation, in that we denoteAyε ≡
(
Apε

Aqε

)
, which makes the operatorA self-adjoint

on Z = L2×L2. In the same spirit, we denote in the sequel ‖yε(t)‖2Z ≡ ‖pε(t)‖2Z +‖qε(t)‖2Z ,
and similarly for the X-norm. An obvious computation shows

eθJ
−1A =

(
cos(θA) − sin(θA)
sin(θA) cos(θA)

)
,

hence eθJ
−1A is a group of isometries on Z × Z and on X ×X . Moreover, assumption (4.2)

shows θ → eθJ
−1A is periodic (with period 2π/λ). Consider now the function

uε(t) = e−tJ
−1Ayε(t). (4.15)

Inserting (4.15) in (4.14) immediately yields

∂tu
ε(t) = εgt (uε(t)) , uε(0) = u0, (4.16)

provided we define, whenever u ∈ X ×X ,

gθ(u) := J−1e−θJ
−1Af

(
(eθJ

−1Au)2
)
eθJ

−1Au. (4.17)

As desired, equation (4.16) is of the form (2.1) considered in the previous paragraphs. In
order to apply the results we obtained in the previous sections, there remains to check that
the nonlinear function gθ acting on the Banach space X ×X satisfies Assumptions 2.1 (well-
posedness of the problem on a fixed times interval of size O(1/ε)) and 2.3 (analyticity of gθ).
We also prove that gθ is Hamiltonian, in the sense of Definition 3.1.

Assumption 2.1 holds true. Take any κ > 1 and any ψ0 ∈ X , ψ0 6= 0. The precise constraints
on these two choices are made precise later. Proposition 4.1 and the fact that ‖uε(t)‖X =
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‖yε(t)‖X imply in any circumstance that ‖uε(t)‖X ≤ κ‖ψ0‖X whenever t ≤ Tκ/ε, hence
Assumption 2.1 holds true, where ε∗ > 0 can be chosen arbitrarily and we may take T = Tκ
as well as (recall that κ− 1 > 0)

K = {u ∈ X ×X : ‖u‖X < (2κ− 1)M} (where ‖ψ0‖X = M). (4.18)

�

Assumption 2.3 holds true. Periodicity of gθ in θ is obvious, thanks to assumption (4.2). Now,
take R0 < Ra, where Ra is the radius of analyticity of the function f and denote f̃(z) =
f(z2)z. The function f̃ is clearly analytic and bounded for |z| <

√
R0. On the other hand,

take c0 as the norm of the (assumed) continuous embedding X ⊂ L∞. We clearly have

∀u ∈ XC, ‖u‖L∞C ≤ c0‖u‖XC .

With these observations in mind, we choose the parameters M = ‖ψ0‖X > 0, R > 0, and
κ > 1, such that

M <

√
R0

c0
, and (2κ− 1)M + 2R ≤

√
R0

c0
. (4.19)

For all u ∈ K2R, where K is given by (4.18), one has clearly ‖u‖L∞C ≤ c0‖u‖XC <
√
R0, so

that for all x ∈ Ω, the quantity u(x) belongs to the domain of analyticity of f̃ . Hence one may
write, for any function h ∈ X such that ‖h‖XC (hence ‖h‖L∞C ) is small enough, the relation

f̃(u(x) + h(x))− f̃(u(x))− ∂uf̃(u(x))h(x) =

∫ 1

0
(1− t)∂2

uf̃(u(x) + th(x))h(x)2 dt,

and the assumed fact that X is an algebra, together with the fact that f̃ is here computed in
a fixed subset of its domain of analyticity, allows to upper bound the right-hand-side as an
o(‖h‖XC). Hence the function u 7→ f̃(u) is analytic on K2R in the sense of Definition 2.2.
Moreover, we remark that for all θ ∈ T and u ∈ K2R,∥∥∥eθJ−1A u

∥∥∥
L∞C

≤ c0

∥∥∥eθJ−1A u
∥∥∥
XC

= c0 ‖u‖XC
<
√
R0.

Hence, by standard composition theorems, the function gθ defined by (4.17) is analytic onK2R

(we use that eθJ
−1A and J−1 are bounded and linear on XC). Finally, we have, for all θ ∈ T,

u ∈ K2R,

‖gθ(u)‖XC = ‖J−1 ◦ e−θJ−1A ◦ f̃ ◦ eθJ−1A(u)‖XC

= ‖f̃ ◦ eθJ−1A(u)‖XC ≤ CK := max
|z|≤
√
R0

|f̃(z)|.

We have proved that gθ satisfies Assumption 2.3. �

The vector field gθ is Hamiltonian. If J is the above defined matrix and if F is defined as

F (u) =

∫ u

0
f(v)dv, it is clear that J is skew-symmetric with respect to the scalar product on

Z × Z, and one can check the identity

gθ(u) = J−1∇uHθ(u), where Hθ(u) :=
1

2

∫
F
(

(eθJ
−1Au)2

)
(x)dx. (4.20)

In other words, gθ is Hamiltonian in the sense of Definition 3.1. �
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As a consequence of all these considerations, the results of Sections 2 and 3 can be applied
in this context. We summarize these results in the following Theorem. For simplicity, we
identify the initial complex-valued function ψε(t) and the function yε(t). Similarly, we also
identify uε(t) = etJ

−1Ayε(t) and e−itAψε(t).

Theorem 4.2 Let M , κ, R and T := Tκ be chosen as above. There exists ε0 > 0, a function
Gε(u), analytic in u ∈ X , and a function Φε

θ(u), analytic in u ∈ X , continuously differentiable
and periodic in θ ∈ T with Φε

0 = id, such that the following holds.
For all ψ0 ∈ X such that ‖ψ0‖X ≤ M , the unique maximal solution to (4.1) given by

Proposition 4.1 satisfies

sup
0≤t≤T

ε

∥∥∥ψε(t)− e−itAΦε
t

(
ψ̃ε(t)

)∥∥∥
X
≤ C exp

(
−C

−1

ε

)
, (4.21)

for someC > 0 independent of ε and ofψ0, while ψ̃ε ∈ C1([0, T/ε], X) solves the autonomous
equation

∂ψ̃ε

∂t
= εGε(ψ̃ε), ψ̃ε(0) = ψ0. (4.22)

Moreover, the autonomous equation (4.22) is Hamiltonian, i.e. there exists a real-analytic
function Hε(u) such that Gε(u) = J−1∇Hε(u).

Lastly, the following two conservation laws are satisfied. For all t ≤ T/ε, we have the
exact conservation of mass

‖ψ̃(t)‖2L2 = ‖ψ0‖2L2 (4.23)

and the almost conservation of energy

1

2

(
Aψ̃ε(t), ψ̃ε(t)

)
L2

+
ε

2

∫
F
(
|ψ̃ε|2

)
(t, x)dx

=
1

2
(Aψ0, ψ0)L2 +

ε

2

∫
F
(
|ψ0|2

)
dx+O

(
e−C/ε

)
. (4.24)

Proof of Theorem 4.2. Due to the fact that the original Schrödinger equation may be put under
the form ∂tu

ε(t) = ε gt(u
ε(t)) as in (4.16), this Theorem is a direct consequence of Theo-

rem 2.7, of Theorem 3.5 and of Theorem 3.7, provided we set Gε = G̃[nε] and Φε
θ = Φ

[nε]
θ

(and nε is as in Theorem 2.7). In that context, the Hamiltonian Hε is the function H̃ [nε] given
according to Remark 3.6. Lastly, the original equation (4.16) preserves the mass ‖u‖2L2 as well
as the filtered energy

Qθ(u) :=
1

2
(Au, u)L2 +

ε

2

∫
F
(

(eθJ
−1Au)2

)
(x)dx

=
1

2
(Au, u)L2 + εHθ(u). (4.25)

Hence the exact mass conservation (4.23) is a consequence of Theorem 3.7 and of Remark
3.8, since the mass invariant does not depend on ε. Besides, the almost conservation of energy
(4.24) is a consequence of Theorem 3.7, recalling that the O(εn) in this Theorem naturally
becomes an O(e−C/ε) given the optimal choice n = nε of the integer n. �
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Remark 4.3 Surprisingly enough, one also deduces from this result a new almost invariant
for the initial problem (4.1). Indeed, the invariance of Qθ under the autonomous evolution
equation (4.22), when writen in the form ∂uQ0(u)Gε(u) = O(e−C/ε) (see (3.11)), provides
∂uQ0(u)J−1∇uHε(u) = O(e−C/ε). The point is, Q0 coincides with the Hamiltonian of the
original Schrödinger equation (4.1). Hence, reading the above almost invariance in the reverse
order ∂uHε(u)J−1∇uQε0(u) = O(e−C/ε) immediately provides

∀t ≤ T/ε, Hε(ψε(t)) = Hε(ψ0) +O
(
e−C/ε

)
.

Remark 4.4 In dimension d = 1, we consider the Schrödinger equation (4.1) with initial
datum ψ0 ∈ X = {u ∈ Z s.t. (1 + A)1/2u ∈ Z}. In other words, we choose s = 1 in
the above notation. In that case, it is known that for ε small enough, the solution of (4.1) is
global in time and uniformly bounded in X . Therefore Theorem 2.7-part (iii) applies and the
estimates of Theorem 4.2 hold true on longer time intervals [0, T

ε1+α
], for any α ∈]0, 1[.

Note in passing that the global existence of ψε(t) in that case comes from the following
simple argument. Consider a pair M > 0, κ > 1. We claim that there exists ε(M,κ) such
that, if ‖ψ0‖X ≤ M and ε ≤ ε(M,κ), then the solution is global, with ‖ψε(t)‖X ≤ κM for
all t ≥ 0. To prove the claim, denote

Cκ,M = max
‖u‖X≤2κM

∫
|F (|u|2)|dx <∞ and ε(M,κ) =

(κ2 − 1)M2

2Cκ,M
.

Here we used the embedding X ⊂ L∞ to have Cκ,M < +∞. Recalling that ‖ψε‖2X =
(ψε, ψε)L2 + (Aψε, ψε)L2 in the present case (s = 1), the conservation laws (4.11) and (4.12)
give, as long as ‖ψε(t)‖X ≤ 2κM and provided ε ≤ ε(M,κ), the estimate

‖ψε(t)‖2X ≤ ‖ψ0‖2X + 2εCκ,M ≤M2 + 2εCκ,M ≤ κ2M2.

This immediately implies that the solution ψε(t) ∈ X exists for all times.

5 Computing explicitely the averaged vector field

5.1 A formal Magnus expansion for non-linear time-dependent vector fields

In this subsection, we very briefly expose the form of Magnus expansion and a way to compute
it. We refer the further interested reader to [BCOR10] and to the Appendix section of this paper
for an elementary proof. Prior to stating the result, we introduce the following notation: Given
two time-dependent vector fields (t, u) 7→ ft(u) and (t, u) 7→ gt(u) we write h = f C g for
the vector field defined by

ht(u) =

∫ t

0
[fτ (u), gt(u)] dτ =

∫ t

0

(
∂fτ (u)

∂u
gt(u)− ∂gt(u)

∂u
fτ (u)

)
dτ. (5.1)

Theorem 5.1 (Magnus) Given the differential equation (2.1), there exists a formal vector field

εGε(u) = εG1(u) + ε2G2(u) + ε3G3(u) + · · · (5.2)
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such that, for arbitrary initial value u0, the solution uε(t) of (2.1) and the (formal) solution
U(t) of the initial value problem

d

dt
U = εGε(U), U(0) = u0, (5.3)

(formally) coincide at t = P . The terms Gi in (5.2) are given by

Gi(u) =
1

P

∫ P

0
R

[i]
t (u) dt, (5.4)

where the time-dependent vector fields R[i]
t (u) are uniquely determined by requiring that

εRεt (u) = εR
[1]
t (u) + ε2R

[2]
t (u) + ε3R

[3]
t (u) + · · · (5.5)

satisfies the equation

ε g = εRε +
ε2

2
Rε CRε +

ε3

3!
Rε C (Rε CRε) +

ε4

4!
Rε C (Rε C (Rε CRε)) + · · · (5.6)

It is worth noticing that the use of the same notations for Gε (as compared to Subsection 2.2)
and for the corresponding terms of its expansion, G1, G2 and so on, is no coincidence. As a
matter of fact, denoting χε0,t the solution operator of (2.1) (i.e. writing as χε0,t(u0) the solution
uε(t) of (2.1) with initial condition uε(0) = u0), it is possible to define the change of variables
Φε
t of Subsection 2.2 as follows:

Φε
t (U) =

(
χε0,t ◦Ψε

−t
)

(U).

Now, as soon as (t, u) 7→ gt(u) is P -periodic in t, one has for all u0 and all n ∈ Z the relation
Ψε
nP (u0) = χε0,nP (u0), and this implies that (t, U) 7→ Φε

t (U) is P -periodic in t. In conclusion,
this shows that the vector field Gε obtained by Magnus expansion coincides (at least formally)
with the vector field obtained in Subsection 2.2 and further, in a form which is more amenable
to geometric considerations 4.

To conclude this subsection, we now give explicitly the first terms of Gε:

R[1] = g, G1 = 〈g〉,
R[2] = −1

2 g C g, G2 = −1
2

〈∫ t
0 [gτ (u), gt(u)] dτ

〉
,

R[3] = 1
12 g C (g C g) + 1

4 (g C g)C g, · · ·

5.2 Expressions of the averaged vector fields in terms of Fourier coefficients

We first note that whenever the system is Hamiltonian, i.e. whenever gθ(u) = J−1∇uHθ(u),
then, in accordance with Theorem 3.5, G1 and G2 are also Hamiltonian with Hamiltonians H1

and H2 given by

H1(u) =
1

P

∫ P

0
Hs(u)ds, (5.7)

H2(u) = − 1

2P

∫ P

0

∫ s2

0
{Hs1(u), Hs2(u)}ds1ds2.

4Though as already mentioned in introduction, sticked to the one-frequency situation.
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where {·, ·} denotes the Lie-Poisson bracket on X . Later in this section, we consider the
nonlinear Schrödinger equation (4.1) with f(z) = zp, A = −∆x (See Section 4) and the
additional multiplicative term γ(x)

i∂tψ
ε(t, x) = −∆xψ

ε(t, x) + ε γ(x) |ψε(t, x)|2p ψε(t, x), x ∈ [0, a]d, t ≥ 0,

and write its solution in terms of the Fourier coefficients ξk(t)

ψε(t, x) =
∑
k∈Zd

eiωk·xξk(t) where ω =
2π

a
.

In order to conveniently and concisely write down various terms occurring in the sequel, we
first introduce, for µ ∈ N∗, super multi-indices K = (K1, . . . ,Kµ) ∈ (Zd)µ and denote

• σ1(K) =
∑µ

j=1(−1)j+1Kj ∈ Zd,

• σ2(K) =
∑µ

j=1(−1)j+1|Kj |2 ∈ Z,

• (uv)K = uK1vK2uK3 · · · vKµ for even µ and (uv)K = uK1vK2uK3 · · ·uKµ for odd µ,

• (vu)K = vK1uK2vK3 · · ·uKµ for even µ and (vu)K = vK1uK2cK3 · · · vKµ for odd µ.

Equation (4.1) is then formally equivalent to the infinite dimensional system

∀n ∈ Zd, iξ̇n(t) = ω2|n|2ξn(t) + ε
∑

K∈(Zd)2p+1

γ(σ1(K)−n)(ξξ̄)K(t)

where we have defined
∀k ∈ Zd, γk =

1

ad

∫
Tda
γ(x)eiωk·xdx.

This system which can be put in Hamiltonian form by introducing the conjugate variables
ηn(t) = ξ̄n(t):

∀n ∈ Zd,

{
ξ̇n(t) = −i ∂H∂ηn (ξ, η)

η̇n(t) = i ∂H∂ξn (ξ, η)
,

with
H(ξ, η) = ω2

∑
k∈Zd
|k|2ξkηk +

ε

p+ 1

∑
K∈(Zd)2p+2

γσ1(K) (ξη)K.

Now, filtering out the main oscillations by changing the variables ξn(t) = e−iω
2|n|2tun(t) and

ηn(t) = eiω
2|n|2tvn(t), we obtain the non-autonomous Hamiltonian system

∀n ∈ Zd,

{
u̇n(t) = −iε∂Ht∂vn

(u, v)

v̇n(t) = iε∂Ht∂un
(u, v)

with
Hθ(u, v) =

1

p+ 1

∑
K∈(Zd)2p+2

γσ1(K) e
−iω2σ2(K)θ (uv)K
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In this setting, the Poisson bracket pf two Hamiltonian functions F1 and F2 reads

{F1, F2} = −i
∑
p∈Zd

(∂F1

∂up

∂F2

∂vp
− ∂F2

∂up

∂F1

∂vp

)
,

so that one has
d

dt
F (ξ(t), η(t)) = {F,H}(ξ(t), η(t)).

The term H1 is obtained easily and is of the form

H1(u, v) =
1

(p+ 1)

∑
K∈(Zd)2p+2, σ2(K)=0

γσ1(K) (uv)K. (5.8)

Now, the Poisson bracket of Hs and Ht may be computed according to the following steps

∂Hs

∂uk
=

∑
K∈(Zd)2p+1

γ(σ1(K)−k) e
iω2(σ2(K)−|k|2)s (vu)K,

∂Ht

∂vk
=

∑
L∈(Zd)2p+1

γ(σ1(L)−k)e
−iω2(σ2(L)−|k|2)t (uv)L,

{Hs, Ht} = 2
∑

K ∈ (Zd)2p+1,

L ∈ (Zd)2p+1,

k ∈ Zd

γ(σ1(K)−k)γ(σ1(L)−k) sin
(
ω2(σ2(K)s− σ2(L)t+ |k|2(t− s))

)
(vu)K(uv)L

We thus have to evaluate expressions of the form

I(α, β) =
ω2

2π

∫ 2π
ω2

0

∫ s

0
(sin(ω2(αs− βt))dtds

for (α, β) = (σ2(K)− |K|2, σ2(L)− |K|2) ∈ Z2. This gives

I(0, 0) = 0, I(α, 0) =
1

ω2α
for all α 6= 0, I(0, β) =

1

ω2β
for all β 6= 0,

I(α, α) =
−1

ω2α
for all α 6= 0, I(α, β) = 0 for all α 6= 0, β 6= 0, α− β 6= 0.

Hence, H2 = A+B + C with

A = −ω−2
∑

(K,L) ∈ (Zd)2p+1 × (Zd)2p+1,

k ∈ Zd, σ2(K) = |k|2, σ2(L) 6= |k|2

γ(σ1(K)−k)γ(σ1(L)−k)
(vu)K(uv)L
σ2(L)− |k|2

,

B = −ω−2
∑

(K,L) ∈ (Zd)2p+1 × (Zd)2p+1,

k ∈ Zd, σ2(K) 6= |k|2, σ2(L) = |k|2

γ(σ1(K)−k)γ(σ1(L)−k)
(vu)K(uv)L
σ2(K)− |k|2

,

C = ω−2
∑

(K,L) ∈ (Zd)2p+1 × (Zd)2p+1,

k ∈ Zd, σ2(K) = σ2(L) 6= |k|2

γ(σ1(K)−k)γ(σ1(L)−k)
(vu)K(uv)L
σ2(L)− |k|2

.
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6 Numerical experiments

In this section, we present numerical simulations of some specific solutions to NLS found in
the recent literature in order to illustrate these examples in the light of stroboscopic averaging.
Stroboscopic averaging gives access not only to the first order averaged model, which is often
the only model described explicitely in the literature, but also to higher order approximations,
which may carry some interesting physical information, as it will be seen on these examples.

6.1 A problem of Grébert and Villegas-Blas [GVB11]

In what follows, we briefly derive the first averaged model and simulate a problem considered
by B. Grébert and C. Villegas-Blas in [GVB11], which involves a cubic nonlinearity |ψ|2ψ
multiplied by an inciting term of the form 2 cos(2x) . More precisely we consider the following
Cauchy problem (Example 1)

i∂tψ
ε = −∆ψε + 2ε cos(2x)|ψε|2ψε, t ≥ 0, ψε(t, ·) ∈ Hs(T2π)

ψ(0, x) = cosx+ sinx.

Classical arguments based on the conservation of the energy imply that this problem has a
unique global solution in all Sobolev spaces Hs(T2π) for s ≥ 0 (see [GVB11] for details and
references therein). Writing the solution in Fourier ψε(t, x) =

∑
k∈Z ξk(t)e

ikx, Grébert and
Villegas-Blas prove the following result.

Theorem 6.1 For ε small enough, one has for all |t| ≤ ε−9/8 the following estimates:

|ξ1(t)|2 =
1 + sin(2εt)

2
+O(ε1/8),

|ξ−1(t)|2 =
1− sin(2εt)

2
+O(ε1/8).

The estimate for |ξ1(t)|2 + |ξ−1(t)|2 implies that all the energy remains essentially on the two
Fourier modes +1 and −1, while estimates for |ξ1(t)|2 and |ξ−1(t)|2 account for the energy
exchange between these two modes (named “beating effect” in [GVB11]). We have here a =
2π, p = 1, d = 1 and ω = 1, while the coefficients γk, k ∈ Z, read

γk =
1

2π

∫ 2π

0
2 cos(2x)eikxdx = δk−2 + δk+2

with δn = 1 if n = 0 and δn = 0 otherwise. The Hamiltonian H1 given by (5.8) is thus of the
form

H1(u, v) =
1

2

∑
(k, l,m, n) ∈ Z4,

k − l +m− n = ±2,

k2 − l2 +m2 − n2 = 0

ukvlumvn.

The proof of Theorem 6.1 in [GVB11] relies on a careful analysis of interactions between
modes in the system corresponding toH1 and we do not reproduce it here. Instead, we illustrate
it by simulating:
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Figure 1: Example 1 with the Strang splitting method and the Stroboscopic Averaging Method.

– The original system integrated by Strang splitting with tiny stepsizes (see left of Fig. 1).

– The original system integrated by the Stroboscopic Averaging Method (SAM) which is
presented in [CMSS10, CCMSS11] (see right of Fig. 1). Without getting into intricate
details of this method, let us point out that it simulates the autonomous equation (2.22).

– The first order averaged system corresponding to εH1 (see left of Fig. 2).

– The second order averaged system corresponding to εH1 + ε2H2, (see right of Fig. 2).

In all figures, we represent (in logarithmic scale) so-called actions |ξk|, for modes k = ±1,±3,
±5, ±7. Modes ±1 are of order O(1) and one can observe on all pictures the beating effect
between these two modes: all four pictures corroborate estimates of Theorem 6.1, which are
based on the first order averaged system. The nonlinear energy is also represented and is well
conserved by the four numerical methods. Meanwhile, higher-order averaged systems exhibit
other interesting “beating” effects not yet investigated, which can be observed thanks to the
Stroboscopic Averaging Method (SAM) or through their direct simulation.

Indeed, one can observe of the left of Fig. 1 that modes ±3,±5 are of order O(ε), modes
±7 of order O(ε2), and that all these modes are highly oscillating, thus difficult to analyse.
In contrast, high oscillations have been filtered out by the SAM (Fig. 1 right): the simulated
equation on the right is the non-stiff equation (2.22)

dU

dt
= εG̃ε(U) = εG1(U) + ε2G2(U) + ε3G3(U) + · · · ,

amenable to much more efficient numerical method (see [CCMSS11]). Note that both solutions
(left and right) on Figure 1 coincide at stroboscopic times 2πn, n ∈ N.

The equations simulated on Figure 2, left and right, are truncated versions of this averaged
equation, respectively

dU

dt
= εG1(U) and

dU

dt
= εG1(U) + ε2G2(U).
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We observe that Fig. 2 left and Fig. 2 right coincide up to terms of orderO(ε) (i.e. only modes
±1 are correctly simulated by the first order averaged model), while Fig. 2 right and Fig. 1
right coincide up to terms of order O(ε2) (i.e. only modes ±1,±3,±5 are correctly simulated
by the second order averaged model).
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Figure 2: Example 1, first and second order averaged models.

6.2 A problem of Grébert and Thomann with quintic nonlinearity [GT12].

Our second example (Example 2) is the following problem considered by Grébert and Thomann
in [GT12], involving a quintic nonlinearity |ψ|4ψ:

i∂tψ
ε = −∆ψε + ε|ψε|4ψε, t ≥ 0, ψε(t, ·) ∈ H1(T2π) (6.1)

ψ(0, x) =
√
κ0 e

ix +

√
κ0

2
e−ix +

√
κ0 e

5ix +

√
1− κ0

2
e7ix (6.2)

with κ0 = 0.24. Thanks to energy conservation, they show that there exists a global solution
ψε(t, ·) ∈ H1(T2π) provided the initial value lies itself in H1(T2π). Moreover, if this initial
value is chosen in such a way that its non-zero Fourier modes belong to a specific resonant
set, then the solution exhibits periodic exchanges of energy. We state this result below in the
specific case of a resonant set made of modes −1, 1, 5, and 7:

Theorem 6.2 There exist P̃ > 0, ε̃0 > 0 and a 2P̃ -periodic function κ : R →]0; 1[ such that
if 0 < ε < ε0, the solution to (6.1) satisfies for all 0 ≤ t ≤ ε−3/2

ψε(t, x) =
∑

k=−1,1,5,7

ξj(t)e
ikx + ε1/4q1(t, x) + ε3/2tq2(t, x)

with

|ξ5(t)|2 = 2|ξ−1(t)|2 = κ(εt), |ξ1(t)|2 = 2|ξ7(t)|2 = 1− κ(εt),
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Figure 3: Example 2, beating effect between modes 1, 5 ,7 and -1.
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Figure 4: Example 2 with the Strang splitting method and the Stroboscopic Averaging Method.

and where for all s ∈ R, ‖q1(t, ·)‖Hs(T2π) ≤ Cs for all t ≥ 0, and ‖q2(t, ·)‖Hs(T2π) ≤ Cs for
all 0 ≤ t ≤ ε−3/2.

Figure 3 presents (in linear scale) the evolution of the square of the actions |ξ1|2, |ξ−1|2, |ξ5|2,
|ξ7|2 obtained by the Strang splitting method: the predicted energy exchange between modes
1, −1, 5 and 7 is clearly observed, in full agreement with Theorem 6.2.

On Figure 4, we represent (in logarithmic scale) the evolution of actions |ξk| for k ∈
{±1,±3,±5,±7} obtained by Strang’s method (left) and by the SAM (right). The same ob-
servations as for Example 1 can by formulated. As a matter of facts, modes 3, −3, −5 and
−7 are of order O(ε) and entail high oscillations. Those are filtered (see the right picture) by
the high-order averaging process developed in this paper (actually, the SAM used here is exact
up to O(ε6) only, a sufficient accuracy here) and this sheds new light on an interesting smooth
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macroscopic behavior at order O(ε).

6.3 A problem of Carles and Faou in two dimensions [CF12].

Our Example 3 is the problem considered by Carles and Faou in [CF12] (see also [Fao12]). It is
the following nonlinear Schrödinger equation involving a cubic nonlinearity |ψ|2ψ and posed
in the two-dimensional torus T2

2π = [0, 2π]× [0, 2π]:

i∂tψ
ε = −∆ψε ± ε|ψε|2ψε, t ≥ 0, ψε(t, ·) ∈ H1(T2

2π) (6.3)

ψε(0, x) = 1 + 2 cos(x1) + 2 cos(x2). (6.4)

Carles and Faou describe energy exchanges between the actions, as a cascade: high modes
become significantly large at a time that depends on the mode and which is increasing with the
size of the mode. Their analysis relies again on the careful study of the first order averaged
system. Note that a related result is stated by Colliander et al. in [CKS+10].

In [CF12] Figure 1, this energy cascade is numerically illustrated by a direct simulation of
the system using Strang splitting. We reproduce this experiment on Figure 5 left. As observed
above, higher-order modes {|ξk|, k ≥ 2} are highly oscillatory and it is not obvious to distin-
guish on this graph first-order effects from higher- order (in ε) effects. To complete the picture,
we show, on the right of Figure 5, the results obtained by the SAM: a smooth macroscopic
behavior appears distinctly, though more complex than what the first averaged model suggests
on Figure 6.
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Figure 5: Example 3 with the Strang splitting method and the Stroboscopic Averaging Method.
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Figure 6: Example 3, first order averaged model.

Appendix

In this section, we give an elementary proof of Magnus expansion which does not make use of
Lie-operators. The proof is indeed a direct consequence of the following

Proposition 6.3 Given a vector field (t, u) 7→ gt(u), there exist unique (formal) series

V ε
s,t(u) =

∑
i≥1

εi−1 V
[i]
s,t(u), W ε

t (u) =
∑
i≥1

εi−1W
[i]
t (u), (6.5)

such that

V ε
0,t(u) = 0, W ε

0 (u) = 0 and V ε
1,t(u) = gt(u), (6.6)

and satisfying the following requirement: for all u0, there exists z(s, t) = u0 +
∑

i≥1 ε
i zi such

that {
∂
∂tz(s, t) = ε V ε

s,t(z(s, t)), z(s, 0) = u0,

∂
∂sz(s, t) = εW ε

t (z(s, t)), z(0, t) = u0.
(6.7)

The W [i]’s are given by

W
[i]
t (u) =

∫ t

0
R[i]
τ (u) dτ, (6.8)

where the R[i]’s and the V [i]’s are determined by

ε V ε
s,· = (εs)Rε +

(εs)2

2
Rε CRε +

(εs)3

3!
Rε C (Rε CRε) + · · · , (6.9)

and where Rεt (u) =
∑

i≥1 ε
i−1R

[i]
t (u).
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Recall that given two vector fields ft(u) and gt(u) the notation h = f C g is defined by (5.1).
One can then readily check for arbitrary u0 that, z(1, t) = uε(t) is the unique solution of (2.1),
that U(t) = z(t/P, P ) is the solution of the i.v.p.

d

dt
U(t) =

ε

P
W ε
P (U(t)), U(0) = u0,

and finally that Gε(U) := 1
PW

ε
P (U) owing to uε(P ) = z(1, t) = U(P ).

Proof of Proposition 6.3. Assume for the moment that the series in (6.5) satisfy (6.6) and (6.7).
Deriving respectively the first and second equation in (6.7) w.r.t. respectively s and t, we arrive
at

∂sV
ε
s,t(u)− ∂tW ε

t (u) = ε
(
∂uW

ε
t (u)

)
V ε
s,t(u)− ε

(
∂uV

ε
s,t(u)

)
W ε
t (u) (6.10)

evaluated at (s, t, u) = (s, t, z(s, t)), where z(s, t) is the unique solution of (6.7) corresponding
to an arbitrary initial value u0. This implies that (6.10) must actually hold for arbitrary (s, t, u).
Now, by considering

Rεt (u) = ∂tW
ε
t (u), (6.11)

condition (6.10) can be rewritten as

∂sV
ε
s,· = Rε + εRε C V ε

s,· (6.12)

which leads to (6.9), taking into account that V ε
0,t(u) ≡ 0. We finally have that (6.5), (6.6) and

(6.7), imply (6.9) with (6.8).
Assume now conversely that a pair (V ε,W ε) as in (6.5) satisfies (6.6), (6.8) and (6.9). The

R[i]’s are then clearly uniquely determined by equation (6.9) with s = 1, so that the W [i]’s
are also uniquely determined by (6.8). It remains to show that the pair (V ε,W ε) satisfies
requirement (6.7). Indeed, let z(s, t) = u0 +

∑
i≥1 ε

i zi(s, t) be the unique solution of the first
equation of (6.7). Since ∂tz(0, t) = ε V ε

0,t(z(0, t)) = 0, we get that z(0, t) = u0, and we only
need to prove by induction on i, that for all i ≥ 1,

∂sz(s, t) = εW ε
t (z(s, t)) +O(εi).

Clearly, this holds true for i = 1. Assume that it holds true for a given i ≥ 1. By derivation
with respect to s of the first equation of (6.7) and use of the induction hypothesis, we get

∂2
t,sz(s, t) = ε(∂sV

ε
s,t)(z(s, t)) + ε

(
∂uV

ε
s,t(z(s, t))

)
∂sz(s, t)

= ε(∂sV
ε
s,t)(z(s, t)) + ε2

(
∂uV

ε
s,t(z(s, t))

)
W ε
t (z(s, t)) +O(εi+1),

= ε(∂tW
ε
t )(z(s, t)) + ε2

(
∂uW

ε
t (z(s, t))

)
V ε
s,t(z(s, t)) +O(εi+1),

where we used (6.10) (which can indeed be deduced from (6.9) through (6.12)). Finally, since
∂sz(s, 0) ≡ 0, we get

∂sz(s, t) = ε

∫ t

0

(
(∂τW

ε
τ )(z(s, τ)) + ε∂uW

ε
τ (z(s, τ))V ε

s,τ (s, τ, z(s, τ))
)
dτ +O(εi+1)

= εW ε
t (z(s, t))− εW ε

0 (z(s, 0)) +O(εi+1)

= εW ε
t (z(s, t)) +O(εi+1).

�
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[Bri26] L. Brillouin. La mécanique ondulatoire de Schrödinger; une méthode générale
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