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ABSTRACT

In this paper, we present an interactive algorithm for segmen-

tation of color images. The user first draws some scribbles

into regions that must be discriminated, and the segmentation

is then automatically obtained. The segmentation is based

on the computation of geodesic distances within color mono-

genic signal (CMS) fields. An important difference with state-

of-the-art methods is that scribbles, which are often segments,

are sample pixels picked up by the user. It results in a much

more user-friendly segmentation process. Experimental re-

sults and comparisons with recent methods show the effec-

tiveness of the approach.

Index Terms— Interactive Segmentation, Clifford Alge-

bra, Color Monogenic Signal, Geodesic Distances

1. INTRODUCTION

Interactive segmentation of images have become very popu-

lar in recent years, and many different approaches have been

proposed. The growing interest in interactive segmentation

is mainly due to the high subjectivity of the process of seg-

mentation. Depending on the user, on the image, the desired

result may drastically differ. Interactive segmentation offers

the appealing property of allowing a user to give additional

information regarding the object of interest. One of the po-

tential applications is to extract an object (foreground) from

the background, although the number of classes is not limited

to two.

In this paper, the approach is based on the use of points

drawn on the image by the user. However, contrary to the vast

majority of state-of-the-art approaches [1, 2, 3], the method

does not need segments of pixels. Indeed, selecting sample

points is generally enough to obtain a convenient segmenta-

tion, as illustrated in Figure 1, where two points are sufficient

to obtain the segmentation. Our approach is based on a new

representation of color images through the color monogenic

signal (CMS), which carry both color and structure informa-

tion. With the help of angular and norm values of this signal, a

weight for each pixel is built, and is used to compute geodesic

Fig. 1. User scribbles for background/foreground discrimina-

tion with the proposed method (left: white/red points) and a

recent method [1] (right: blue/green segments).

distances. The comparison of distances allows to segment the

image into two regions, the foreground and the background.

2. INTERACTIVE GEODESIC SEGMENTATION

AND COLOR MONOGENIC SIGNAL

2.1. Geodesic distance

Let x and y be two pixels of an image I lying in Ω, and

γ(x,y) a parameterized path between the two pixels. Then,

the geodesic distance between x and y is given by

d(x,y) = inf
γx,y

∫ 1

0

W (γx,y(p))‖γ
′
x,y(p)‖dp (1)

where γ′
x,y(p) ∈ R

2 is the derivative of γx,y(p), and W de-

fines the weight for each γx,y(p). Consequently, when one

uses geodesic distance, the most important step is to effi-

ciently set the weights. However, in practice, another issue

has to be considered: the computational efficiency. In this

paper, we follow the approach of [1], that uses the approach

proposed in [4] to compute (1) in linear time. It is based on

the resolution of the non-linear Eikonal equation, which is

a particular case of the Hamilton-Jacobi equations where H



is reduced to ‖∇u(x)‖ − F (x), x ∈ Ω, where u(x) is the

shortest time needed to travel from the boundary of Ω to x

with time cost F (x). A first numerical solution was provided

in [5], called here after under the generic term fast marching

methods. The complexity of this approach, as well as some

other methods subsequently proposed is O(N log(N)), N be-

ing the number of grid points. These techniques are based on

upwind numerical schemes. In this paper, we use a novel im-

plementation of the fast marching algorithm proposed in [4],

based on untidy priority queues, which provides a solution in

linear time (O(N) complexity). Therefore, it is useable in an

interactive application such as semi-automatic segmentation.

Geodesic segmentation uses (1) to label pixels by selecting

the minimum distance with the foreground or the background.

Let Sl the set of seeds with label foreground (F ) or back-

ground (B). The distance to the closest seed of each label is

computed by

Dl(x) = min
s∈Sl

d(s,x) (2)

Finally, the pixel x is labelled as foreground if DF < DB ,

and background otherwise.

2.2. Color Monogenic Signal (CMS)

In [6], Demarcq et. al introduce a novel representation for

color images called the color monogenic signal. Based on the

construction of the analytic and monogenic signal in Clifford

algebras, the authors use the Dirac equation in the Clifford al-

gebra R5,0 as a generalization of the Cauchy-Riemann equa-

tions in order to construct the CMS. A brief description of ba-

sic concepts is given in the following section. Given an image

I in a color space Ω, say e.g. the CIE Lab color space, such

that I(x, y) = (L(x, y), a(x, y), b(x, y)), the color mono-

genic signal f is a vector of R5,0 and reads as following

f(x, y, τ) = A1e1 +A2e2 +A3e3 +A4e4 +A5e5

with







































A1 = hP ∗ hx
R ∗ a(x, y) + hP ∗ hx

R ∗ b(x, y)
+ hP ∗ hx

R ∗ L(x, y)
A2 = hP ∗ hy

R ∗ a(x, y) + hP ∗ hy
R ∗ b(x, y))

+ hP ∗ hy
R ∗ L(x, y)

A3 = hP ∗ a(x, y)
A4 = hP ∗ b(x, y)
A5 = hP ∗ L(x, y)

and























hP (x, y, τ) =
τ

2π(x2 + y2 + τ2)3/2

hx
R(x, y) =

x

2π(x2 + y2)3/2

hy
R(x, y) =

y

2π(x2 + y2)3/2

The term hP is the 2D Poisson kernel and acts as low-pass

filter on the image. The term hR is the Riesz kernel and gives

an information about the structure in the image. As the reader

can see, the color monogenic signal carries both color and

structure information in a multiscale way, but it holds other

properties as well. The color monogenic signal can be written

in a polar form with respect to a unitary chosen vector V and

is given by the so-called geometric product

χ(V ) = fV

The norm of χ(V ) gives the amplitude AV of the CMS

A
V
= |χ(V )| = |fV | = |f ||V | = |f |

and the angle between f and V is given by ϕ
V
= atan

| 〈fV 〉2 |

〈fV 〉0
where 〈fV 〉0 and 〈fV 〉2 denote the scalar and bivector part

respectively (see [6] for more details). Finally, the polar rep-

resentation of the CMS is obtained by χ(V ) = A
V
eBϕ

V ,

where B = 〈fV 〉2 /| 〈fV 〉2 | is a unitary bivector which

squares to minus one and thus can be assimilated to the

complex number i.

2.3. Setting the geodesic map W

Setting properly the basis of the computed color monogenic

signal is a very important step. Depending on the origin of

the colorimetric space (CIE Lab in our method), two similar

colors may not be distinguished although the user specifies

that one belongs to the foreground and the other to the back-

ground. Consequently, we propose to translate the origin by

a local optimization procedure. More precisely, for each seed

point s ∈ Sl we compute an origin as follows. The initial

position of the origin Ol is given by the weighted barycenter

of the seed points belonging to Sl and one of the seed points

sj that does not belong to Sl. Then, the angles between the

seed sj and all the seeds of Sl are computed and combined

through a conjunctive operation (here the product):

max
N(Ol)

(

∏

s∈Sl

(
−→
Ols,

−−→
Olsj)

)

, (3)

where N(Ol) is the neighborhood of the origin Ol. The ori-

gin moves into the direction of maximum angle. This step

is repeated until convergence, i.e. there are no greater values

in the neighborhood of the origin. Here, the neighborhood is

3-dimensional, and is composed of all points at unit L1 dis-

tance in R
3. Once the different origins are obtained, one can

compute their representation through the CMS using χ(V ).
Therefore, for each seed, there is a corresponding CMS rep-

resentation characterized by its angles and its norms.

More formally, given nF seeds fi for the foreground ΩF

and nB seeds bj for the background ΩB , a new origin Oi be-

tween each fi (resp. bj) and (b1, ..., bnB
) (resp. (f1, ..., fnF

))
is obtained. In each new coordinate system with origin Oi =
(c1, c2, c3), a color c = (a, b, L) becomes c̃ = (a − c1, b −
c3, L − c3) and the color monogenic signal is computed in

this setting. The next step is devoted to use the properties of



the polar representation χ(V ) with V = fi, i.e. the ampli-

tude A
V

and the angle ϕ
V

are used. In order to exploit these

information for finding pixels with same color and structure,

several functions are introduced. For each pixel in the image,

DV = |A
V
− |V || measures the length difference between

the two norms A
V

and |V |. A normalized field for angle rep-

resentation is also obtained with ΦV = 1 − cosϕ
V

, which is

the angular distance to the reference vector V . Afterwards,

the two measures are combined in a disjunctive way in order

to obtain a small response only when both angular distances

and length differences are small. In this paper, we use the

probabilistic sum g(x, y) = x + y − xy. The combined in-

formation is carried in MV = g(DV ,ΦV ). This scheme is

repeated for each fi and finally, the minimum over all fi is

taken

mF = min
V=fi

(MV )

Then, the same process is applied with background seeds, and

we obtain

mB = min
V=bj

(MV )

These two functions are used to define the foreground weighted

map in the geodesic method as WF =
mF

mF +mB
. Once the

minimum paths for each pixel and each seed are obtained, the

classification is made by using (2) for the foreground and the

background. Following the first segmentation, a refinement is

possible by adding information coming from the user. To do

so, the map W must be modified. Starting from a new point

sl, a new signal, and a new origin are computed, giving a new

component Msl . The map W is then updated as follows

Wl =
m̃l

m̃F + m̃B
, where

{

m̃l = (1− α)Msl + αml

m̃k 6=l = mk 6=l

The weighting term α is arbitrary chosen, and is set in this

paper to α = 1/(N + 0.2), where N is the number of inter-

actions of the user.

3. EXPERIMENTAL RESULTS

3.1. Protocole

In order to evaluate the approach, we use the 151 images as

in [2], i.e. 49 images from the GrabCut dataset [7], 99 images

from the PASCAL VOC’09 segmentation challenge [8], and

3 images coming from the alpha-matting repository [9]. Eval-

uating interactive segmentation is a difficult task. It may be a

qualitative opinion as in [1], or based on a fixed set of seeds

[7]. However, the latter supposes that the user has already de-

scribed the shape of the object with an uncertain area around

the edges of the objects. Therefore it does not evaluate the

real objective of interactive segmentation based on scribbles.

In [2], the authors proposed a more convenient evaluation cri-

teria by evaluating the effort (i.e. the number of user interac-

tions) required to segment an image. However, the methods

are evaluated in a interval of overlap scores A = [85, 98],

where the overlap score is defined by O =
c ∩ cgt
c ∪ cgt

, c being

the segmentation result and cgt the ground truth. Therefore,

poor performances with a low number of user interaction is

not penalized by their evaluation measure. In this paper, we

adopt a slight variation of their quality evaluation by consider-

ing the mean performance obtained starting from the first user

interaction. This setting is used because a user might prefer

to obtain results (even with an overlap score lower than 85)

with a few number of points, instead of adding many points

for a small improvement. Therefore, this evaluation is not

adapted to point-based segmentation methods, but we adopt

it for comparison purpose. In order to take into account all

user interactions, we compute the normalized area under the

curve (AUC)

AUC =
1

N

∫ N

0

O(t)dt

where N is the number of strokes, and t denotes the user in-

teractions. Due to the normalization, the best achievable AUC

is 100%, and the larger the better.

3.2. Results and comparisons

First, we give in Figure 2 two original images with their

weight maps, their DF maps. We compare our results with

Fig. 2. From left to right: segmented images with the strokes,

weight map W and geodesic distances DF .

two recent methods. The first one (GSCseq, [2]) is based

on the combination of star-convexity constraints with the

Boykov Jolly (BJ) energy formulation [10]. Results reported

by the authors outperform the results obtained by Random

Walks [11], so that we focus on the GSC method and its

initial approach BJ. The second one (SP-LIG, [1]) is purely

based on geodesics without prior on shapes, like the proposed

method. Therefore, our work is more related to this method,

and a special study of their relative performance is carried

on. We use the robot script from [2] to evaluate the effort of

the user to obtain a segmentation. Originally, the evaluation

starts with 3 background scribbles and 1 foreground scribble

that have been manually selected. However, since our ap-

proach relies on points, the evaluation is not well adapted.

Consequently, samples points are selected through a k-means



Normalized AUC

Method N = 10 N = 20

GSCseq [2] 83.75% 89.89%

Geodesic Segmentation (SP-LIG)[1] 79.70% 85.65%

BJ [10] 70.94% 78.45%

CMS Geodesic Segmentation 84.31% 89.61%

Table 1. Area under the curves for the ten and twenty first

user interactions.

Fig. 3. Normalized overlap scores as a function of the number

of strokes.

algorithm in the scribbles to define the seeds. In the experi-

ments, a reasonable number N = 10 user interactions and a

larger number N = 20 user interactions are considered. We

give in Table 1 the area under the curves obtained on the 151

images with GSCseq, Geodesic Segmentation (SP-LIG) and

BJ methods. As can be seen, the proposed method is better

than all other methods when N = 10 strokes are consid-

ered, while GSCseq performs better when the user has drawn

N = 20 scribbles. The results confirm that our method al-

lows to obtain satisfying results with a few number of points.

Additionally, it does not include any prior on the shape of

the objects to be extracted. Although our method provides a

lower score in the case of N = 20, it remains competitive

with GSCseq. Consequently, adding shape priors such as

star-convexity in GSCseq would increase the performance on

the whole dataset. Considering the purely geodesic approach

[1], closely related to our approach, one can see that the CMS

geodesic segmentation allows to obtain better results. This is

mainly due to the new representation of color images given by

the CMS. Detailed overlap curves for all methods are plotted

in Figure 3.

4. CONCLUSION

In this paper, a new method of interactive segmentation of
color images is presented. This method is based on the dual
use of the color monogenic signal representation of color im-

ages and geodesic distances. The main advantage of our con-
tribution is the number of strokes needed for segmentation,
therefore giving an easy and intuitive tool for interactive seg-
mentation. Although our method does not outperform the
GSC method for a large number of strokes, it remains com-
petitive with it, and outperforms older methods. The method
has the appealing property of obtaining satisfying results with
a few number of points. For the end-user, this property may
be crucial when choosing his processing software. Among the
perspectives we have in mind, we want to study the benefits
of adding star-convex shapes prior [2] into the proposed ap-
proach. Additionally, we want to work on a method allowing
realistic composition of two images, where luminance infor-
mation of the background is taken into account for foreground
inlaying.
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