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Abstract

This paper proposes a general formulation of the kinetostatic model of articulated
wheeled rovers that move on rough terrains. Differential kinematic model is used to
control the generalized trajectory of the robot, composed of position and posture
parameters. These posture parameters have been optimized in order to provide
high stability and traction performance, during motion on irregular ground surface.
Numerical simulation and experimental results, carried out on a hybrid wheeled-
legged robot, show the validity of the approach presented in this paper.
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1 Introduction

Autonomous robotic rovers have many potential applications, including space
exploration, agriculture, defense, demining. Rovers such as Sojourner [1], Shrimp
[2], Nomad [3] are articulated multibody structure permitting a passive adap-
tation to ground surface. Whereas, new kinematics of rovers like SRR [4],
Gofor [5] or Lama [6] use an active suspension allowing control of some atti-
tude parameters of the robot. These articulated wheeled systems differs from
walking machines in the sense that wheeled systems maintain the contact con-
tinuously with the ground surface and velocity transmission is mainly ensured
by rolling on the ground surface. High mobility systems such as Azimut [7],
Hylos [8], Workpartner [9], Athlete [10] combining both rolling and crawling,
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inherits both advantages of wheeled and walking systems, i.e. the velocity for
the first one and the ground clearance for the second.

Numerous works are related with the motion analysis of articulated wheeled
systems. Kinematic analysis of motion on flat surface are developed by [11]
and [12]. A classification of those systems, based on steering systems including
omnidirectional wheels, are proposed in [13]. Those works are based on ideal
rolling and no-side slip assumptions. Kinematics of a system composed of 2
wheels linked by an axle, evolving on 3D surface, is studied by [14] and [15].
This study proposes to use a variable length axle to prevent side slip. The
rolling kinematic of a torus wheel on uneven continuous surface is investigated
in [16] and the authors propose to use a passive joint allowing a lateral degree
of freedom in order to overcome slippage. A methodology for developing a
motion kinematics over rough ground and including various slip is proposed
in [17].

This paper proposes a general kinetostatic formulation of quasi-static motion
of articulated wheeled rovers. This formulation could include non-ideal contact
conditions (rolling slip, side-slip, discontinuous contact, contact deformation).
The method used here is based on the principle of velocities composition that
allows to determine the velocity equations which link operational and joint pa-
rameters. The principle of virtual work is used to derive equilibrium equation
and force transmission equation which connect contact forces, joint torques
and the gravitational force. These models are applied to the motion control
of a wheeled-legged rover based on the decoupling of the posture and the
trajectory parameters.

Section 2 will present first a general formulation of velocity and forces trans-
mission of wheeled-legged rover (WLR). Then in section 3, those models are
applied to our experimental platform composed of four wheel-legs, and are
solved in their inverse form which is convenient for the decoupled control
of both the posture adjustment and the path following tasks. The section 4
discusses about the definition of the posture as a function of soil surface pa-
rameters. Finally, the section 5 presents the posture control applied to our
experimental platform.

2 General kineto-static formulation of WLR

2.1 Kinematic parameters of the system

This section deals with kineto-static modelisation of systems having legs ended
with wheels. The kinematic parameters are depicted in Fig. 1. The different
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frames are:

• R0 = (O, x0, y0, z0) the reference ground frame,
• Rp = (G, xp, yp, zp) the main platform frame,
• Ri

c = (Pi, ti, li, ni) the contact frame of the ith wheel.

x
Rp
z

y

�

Pi

Ci

Rci
ti

li

ni
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x0

z0

y0O

G

p

p
p

Fig. 1. Kinematic model

We define the parameters vector qt = (xt, θt
i, χt

i) such as:

• xt = (ρt, φt) is the vector of platform parameters with respect to ground
frame, where ρt = (x, y, z) denotes the vector of position parameters and
φt = (ϕ, ψ, θ) denotes the vector of the usual consecutive yaw(θ), pitch(ψ)
and roll(ϕ) angles;

• θi is the vector of the ith leg joint parameters;
• χt

i = (γi, ϑi) is the ith vector of wheel’s parameters, where γi is the steering
angle and ϑi the rolling angle (the wheel spinning rotation rate will be
denoted ωi = ϑ̇i that is a classical notation).

We denote Θi the vector of joint parameters of the ith wheel-leg:

Θt
i = (θt

i, χt
i)

Then, if we consider a system composed of n wheel-leg kinematic chains, the
vector of the robot parameters can be written as:

qt = (xt, Θt
1, ..., Θt

n)

2.2 Wheel ground contact geometry

The contact area between the ground and wheel could have a complex geom-
etry depending, firstly, on the flexibility of the ground and, secondly, on their
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geometry. Fig. 2 gives a generic approached form of the contact area between
a cylindrical flexible wheel on a soft ground. For this study, we consider a
simplified geometry.

For each ith wheel, we denote:

• Ci is the center of the wheel,
• yi the unit axis of the wheel spinning motion,
• Pi the center point of the contact area,
• and Ri

c = (Pi, ti, li, ni) the associated contact frame.

Where the contact frame is defined as follow: ni is the contact normal vector,
ti is the longitudinal vector and li = ni × ti is the lateral vector (see Fig.2).
The vector ti is the projection of vector yi on the contact plane which depends
on the system kinematic configuration:

ti =
yi × ni

|yi × ni|

The center point of the contact area Pi is defined as a projection of the center
of the wheel on the mean contact plan. It depends only on the wheel radius
ri and the contact normal:

−−→
CiPi = ri

−→ni

������������

������������
�����

li

ti

yi

ni

Pi

Ci

R ic

zi

Fig. 2. Definition of the wheel-ground contact frame

2.3 Differential kinematic model of the system

Wheeled vehicles are non-holonomic system, differential kinematic equations
are not explicitly integrable, they will then be established using the velocity
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relations between the articulated rigid bodies. These equations assume perma-
nent contacts but not necessary ideal rolling with the ground, i.e. the wheels
could slip in both longitudinal (ti) and lateral (li) directions of the contact
plane.

For each wheel in contact with the ground, the closed-loop velocity equation
is obtained by means of the velocity composition principle:

−→
V (Pi,R

i
ω/R0) =

−→
V (Pi,R

i
ω/R

i
l
) +

−→
V (Pi,R

i
l
/Rp) +

−→
V (Pi,Rp/R0) (1)

where Ri
ω = (Ci, x

i
ω, y

i
ω, z

i
ω) is the frame attached to the ith wheel and Ri

l =
(Ci, xi, yi, zi) is the frame attached to the end of the ith leg mechanism (see
Fig. 3).

•
−→
V i
s =

−→
V (Pi,R

i
ω/R0) is the sliding velocity of the contact point Pi;

•
−→
V i
x =

−→
V (Pi,Rp/R0) is the velocity of Pi due to platform motion with respect

to the ground;

•
−→
V i
θ =

−→
V (Pi,R

i
l
/Rp) is the velocity of Pi due to leg’s motion with respect to

the platform;

•
−→
V i
χ =

−→
V (Pi,R

i
ω/R

i
c) is the wheel circumferential velocity with respect to the

leg.

x
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Fig. 3. Detail of the wheel-leg associated frames

2.3.1 Platform motion

First,
−→
V i
x (the velocity of the contact point due to platform motion with

respect to the ground) is expressed in the platform frame Rp:

[
vix

]

Rp

= Rtρ̇ + ω × pi (2)

where pi is the position of the contact point in the platform frame and (ρ̇, ω)
forms the platform twist. Let us remind that ρ̇ is the velocity of the center
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of the platform expressed in the ground frame R0 and ω is the rotation rate
vector of the platform expressed in the platform frame Rp.

R is the rotation matrix between the platform frame and the ground, obtained
by 3 successive rotations along ~z, ~y, ~x and respectively parametrized by θ, ψ,
ϕ angles:

R = R(φ) =




CθCψ −SθCϕ + CθSψSϕ SθSϕ + CθSψCϕ

SθCψ CθCϕ + SθSψSϕ −CθSϕ + SθSψCϕ

−Sψ CψSϕ CψCϕ




(3)

with Cθ = cos(θ), Sθ = sin(θ), etc.

The rotation rate vector of the platform ω can be computed as function of
the time-derivative of orientation angles of the platform φ̇ = (ϕ̇, ψ̇, θ̇)t. This
relation is given in matrix form as follow:

ω = Tφ φ̇ (4)

with

Tφ(φ) =




1 0 −Sψ

0 Cϕ CψSϕ

0 −Sϕ CψCϕ




(5)

Then, Equation (2) can be rewriting as function only of ρ̇ and φ̇:
[
vix

]

Rp

= Rtρ̇ − p̃iTφφ̇ (6)

where p̃i is the skew matrix corresponding to the cross-product operation,
which lead to following equation in matrix form:

[
vix

]

Rp

=
[
Rt −p̃iTφ

]



ρ̇

φ̇


 = Liẋ (7)

where ẋ is the platform velocity twist with respect to the ground frame R0

and Li is called locomotion matrix with a 3 × 6 dimensions.

In these equations, the vector pi depends on leg parameters θi, the wheel
radius ri and the normal contact ni:

pi = ri − ri ni (8)

where ri =
[−−→
GCi

]

Rp

is the position of the center of the wheel expressed in the

platform frame and is obtained from the kinematic model of the leg.
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2.3.2 Leg motion

−→
V i
θ, the velocity of the contact point Pi due to leg motion with respect to the

platform, is expressed by classical serial chain differential kinematic model:

[
viθ

]

Rp

= [ ṙi ]Rp
= Jiθθ̇i (9)

In this equation, Jiθ is the classical jacobian matrix of the serial chain:

Jiθ =
∂ri
∂θi

=
[
z1 × a1 . . . zj × aj . . . zm × am

]

Rp

where zj are the joint axes and aj the vector connecting each joint center to
the platform reference point.

2.3.3 Wheel-leg loop closure equation

The vectorial equation of each loop closure condition, introduced in (1), is
then expressed by its projection in the associated local contact frame Ri

c:

[
vis

]

Ri
c

=
[
viχ

]

Ri
c

+
[
viθ

]

Ri
c

+
[
vix

]

Ri
c

(10)

So, the wheel circumferential velocity
−→
V i
χ which is only function of the wheel

spinning velocity ωi and the longitudinal vector ti, can be expressed in the
local contact frame as:

[
viχ

]

Ri
c

= −r ωi [ti]Ri
c
= −r ωi (1, 0, 0)t

Then, each loop closure condition given in the equation (10) is expressed by
its projection on the local contact frame Ri

c:

[
vis

]

Ri
c

= Rt
i Li ẋ + Rt

i J
i
θ θ̇i − r ωi (1, 0, 0)t (11)

Ri is the rotation matrix of the ith contact frame Ri
c with respect to platform

frame Rp:

Ri =




| | |

ti li ni

| | |




Rp

where ni is the normal contact vector expressed in the platform frame, ti is
computed from the leg kinematic parameters, and li = ni × ti.
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The projection in the contact frame allows to express directly the sliding
condition in the contact. We denote vis the relative velocity in the ith contact:

vis =
[
vis

]

Ri
c

= (sit, s
i
l, s

i
n)

t (12)

where:

• sit expresses the longitudinal slippage,
• sil expresses the lateral slippage,
• sin could represent contact deformation velocity in the normal direction or

the contact detachment velocity.

2.3.4 Differential kinematic model of the full system

From this point, it is supposed that all velocities equations are expressed by
their projection in the contact frame Ri

c of each wheel-leg chain. And finally,
we obtain the velocity equation for the all system composed of n wheel-leg
chains:

L(x,Θ,n) ẋ + J(Θ,n) Θ̇ = vs (13)

with

L =




Rt
1 L1

Rt
2 L2

...

Rt
n Ln




3n×6

J =




J1 0 . . . 0

0 J2 0

...
. . .

0 0 Jn




3n×nm

Θ =




θ1

χ1

θ2

χ2

...

θn

χn




nm×1

vs =




v1
s

v2
s

v3
s

...

vns




nm×1

Ji =




Rt
i J

i
θ




−r

0

0







3×m

and assuming that all chains have the same degree of freedom m.

One can notice that the Jacobian matrix Ji of each wheel-leg chain depends
on the normal vectors of wheel-ground contacts ni.
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2.4 Quasi-static model of the system

We denotes f t = (f t
1, f

t
2, ..., f

t
n) with fi = (f it , f

i
l , f

i
n)

t the vector of contact
force components. We will use the principle of virtual power to determine
the static equation assuming a virtual velocity field (ẋ∗, Θ̇

∗

,V∗

s) which must
satisfies kinematic equation (13).

Let us denote w the 6 × 1 wrench vector that balances all the external forces
applied to the system (including gravitational and inertial forces), expressed
at the platform center of gravity. We denote τ the vector of actuator torques
applied on joints. The total power developed by external forces, contact forces
and joint torques is:

P ∗ = −wtẋ∗ + τ tΘ̇
∗

− f tV∗

s

= −wtẋ∗ + τ tΘ̇
∗

− f t(Lẋ∗ + JΘ̇
∗

)

= (−wt − f tL)ẋ∗ + (τ t − f tJ)Θ̇
∗

(14)

The principles of virtual power states that:

P ∗ = 0 ∀(ẋ∗, Θ̇
∗

) ⇔





−Ltf = w

Jtf = τ
(15)

These equations assumes that the total mass of the system is concentrated on
the platform. The second equation should be corrected by adding ws which is
the generalized force due to the weight of wheel-leg parts and associated to Θ̇

parameters:
Jtf = τ + ws (16)

The system has a high degree of static indeterminacy i.e. scalar equilibrium
equations are less than unknown contact forces. This indeterminacy is due
to in one part to external contact with the environment (frictional contacts
with 3 unknown force components at each contact) and in the another part
to internal redundant actuation (for example all wheels are in general driven
in off-road application). The resolution of this model gives the contact load
distribution which are important for determining the traction torque applied
to the wheel. In order to solve this model, we have to add relationships or as-
sumptions generally on contact forces. Waldron [18] proposes to use the zero
interaction principle to raise the static indeterminacy, based on a equiprojec-
tivity of tangential contact forces. This principle establishes that all tangential
contact forces work in the same direction to propel the vehicle. The second
way to overcome the indeterminacy is to use tyre-terrain models as the magic
formula for on-road vehicle [19] or terramechanics relations for off-road ones
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[20]. Those models express relationships between contact force components,
slippage parameters and mechanical properties of the ground.

2.5 Grasping analogy

We denote G = −Lt, then in the case of ideal rolling, equation (13) becomes:

Gtẋ = JΘ̇ = v (17)

and equations (15) become :

τ = Jtf

w = Gf
(18)

This kineto-static duality can be summarized as for grasping system as shown
in Fig. 4.

ș& v x&
J t

G

Ĳ f w

t
J G

velocities
domain

forces 
domain

H

t
H

joint contact task

Fig. 4. Velocities and forces transmission in locomoting-grasping systems

3 Inverse velocity model of the robot Hylos

In this section, we will focus on the particular kinematics of Hylos robot. Then,
we will use pure rolling assumption in order to compute the inverse velocity
model which will be used in the posture control loop. As the jacobian J is not
square, the inverse kinematic model can be given by using the Moore-Penrose
inverse matrix J+:

Θ̇ = −J+Lẋ (19)

This solution is generally used for redundant system. However, it is not adapted
for our locomotion system. For example, in case of motion on flat horizontal
plane, this solution will give greater importance to the legged locomotion.
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Here, we will propose a method which separate horizontal motion parameters
(x, y, θ) from attitude ones (z, ϕ, ψ) .

Fig. 5. Hylos robot

3.1 Hylos kinematics

Hylos robot, illustrated in Fig. 5, is approximately 70 cm long and its mass is
about 12 kg. It is composed by four legs (n = 4), each one has two revolute
joints with parallel axes and is ended by a driven and steered cylindrical wheel.
Leg joints are actuated by means of ball screws and pantographic mechanisms.
Thus, each wheel-leg has 4 degrees of freedom (m = 4) and the system has at
all m× n = 16 degrees of freedom actuated by DC motors.

For each wheel-leg, we denote αi and βi the first two joint parameters, γi and
ϑi respectively the steering angle and the wheel rolling angle:

θi = (αi, βi)
t and χi = (γi, ϑi)

t −→ Θi = (αi, βi, γi, ϑi)
t

L2

L1

�i
�i

i

�i

Fig. 6. CAD view of one wheel-leg
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In the particular case of the Hylos robot design, the kinematic model of each
leg corresponds to the classical 2 dof serial manipulator model:

ri =





xi = ±Lx/2 + L1 cosαi + L2 cos(αi + βi)

yi = ±Ly/2

zi = L1 sinαi + L2 sin(αi + βi)

(20)

where Lx and Ly are geometric parameters of the platform (Fig. 9), L1 and
L2 are the lengths of the two leg segments (Fig. 6).

The jacobian matrix of each leg can be easily obtained by expressing the
time-derivative of the previous equation:

Jiθ =




L1 sinαi + L2 sin(αi + βi) L2 sin(αi + βi)

0 0

L1 cosαi + L2 cos(αi + βi) L2 cos(αi + βi)




(21)

3.2 Hylos mobility analysis

Ideal rolling assumption deals with non-slippage condition in wheel-ground
contact. The inverse kinematic problem consists of determining the joint ve-
locity for a given desired operational trajectory. The operational parameters
should be defined as function of the general mobility of the system, which will
be first investigated in this section.

The non slippage condition leads to:

Lẋ + JΘ̇ = 0 or Aq̇ = 0 (22)

with A = [L J ] and q̇t = (ẋt, Θ̇
t
).

An ideal rolling contact is equivalent to an instantaneous spherical joint lo-
cated in the contact point, so it can be approached as a 3 dof joint. Then we
obtain a structure with 18 bodies (including ground) and 20 joints with 28
dof at all. The general Gruebler mobility index is:

mg = 28 − 6(20 − 18 + 1) = 10 (23)

This mobility index can also be computed from equation (22) as it is the
difference between the 12 equations and the 22 (=6+16) velocity parameters.

However, this general index does not consider the rank of the kinematic equa-
tions system and the geometry of joint axes. The real mobility index i.e. the
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number of independent time-derivative parameters in the equation (22) can
be defined as:

mr = dim(q) − rank(A) (24)

The Fig. 7 depicts real kinematic mobility index as function of contact nor-
mals and rover configurations. For a general configuration of the robot and
the ground, this mobility is equal to 10, i.e. all equations in (22) are indepen-
dents. However, some particular configurations exhibit higher mobility (11 or
12), where the rank of matrix A is equal to (11 or 10). In these cases, mobility
increases and represents a partial internal mobility of the steering axes where
the joint velocities become independents of all other vehicle velocity parame-
ters. In theses configurations, the additional mobilities seem to be located in
the steering axes which are in theses cases collinear to the contact normals.

mr = 12 mr = 11 mr = 11

mr = 10 mr = 10 mr = 10

Fig. 7. Mobility for some cases as function of contact planes and of configurations

3.3 Velocity space reduction

As said in the previous section, the velocity parameter of the steering axis is
independent of other velocity parameters when the steering axis is collinear
to the contact normal. This configuration introduces a singularity in the Ja-
cobian matrix as the steering axis passes through the contact point. For other
configurations (mainly depending of the caster angle between the steering axis
and the contact normal), the column of Ji, of equation (13), associated to the
steering rate γ̇i is almost null which leads to an ill-conditioned matrix. Fur-
thermore, the called caster angle (Fig. 8) must be as small as possible in order
to keep the contact area on the rolling tread of the cylindrical wheel during
steering. Then, this column of the jacobian matrix and the associated time-
derivative rate will be removed in the following development. In parallel to
this, we will split velocity equations in two groups:

13



• The first one corresponds to other kinematic constraint i.e. longitudinal
non-slippage condition tt

iv
i
s = 0 and permanent contact condition nt

iv
i
s = 0,

• The second one corresponds to lateral slippage constraints ltiv
i
s = 0.

xi

������������

z i ni

Fig. 8. Wheel caster angle

The first group can be written as:

SxLẋ + (SxJSt
u)(Su Θ̇) = 0 (25)

where Sx is a reduction matrix selecting equations along the ti and ni axis:

Sx =







1 0 0

0 0 1


 0

. . .

0




1 0 0

0 0 1







8×12

and Su a selection matrix eliminating γ̇i parameters and the associated column
in the jacobian matrix J:

Su =






I2 0 0

0 0 1


 0

. . .

0



I2 0 0

0 0 1







12×16

where Ik is the k × k identity matrix.

The second group can be written as:

SγLẋ + (SγJSt
u)(Su Θ̇) = 0 (26)
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where Sγ is a reduction matrix selecting equations along the li axis:

Sγ =




[
0 1 0

]
03×1

. . .

03×1

[
0 1 0

]




4×12

This separation allows the resolution of the inverse differential kinematic prob-
lem. First, we will solve the first group by computing the reduced command
vector u = Su Θ̇ = (α̇1, β̇1, ω1, ..., α̇4, β̇4, ω4) for a given desired twist compo-
nents of the platform. Then, in a second phase, we will compute the steering
angle γi for each wheel that provides the desired motion direction of the plat-
form.

3.4 Computing joint rates

The 12 joint velocities u = (α̇i, β̇i, ωi, ...) are computed by using the reduced
velocity model on equation (25), for a given desired platform velocity ẋ. A
basic kinematic analysis shows that the system is redundant as there is 12
joints velocities and 8 independent velocity equations. So, there is an infinite
set of solutions for u that produces a desired motion ẋ. Thus, we propose to
define a new operational vector ξt = (xt, et) of dimension 10 based on the 6
platform parameters and 4 new internal parameters e = (e1, e2, e3, e4)

t which
are the half wheelbases. They are defined for each wheel-leg as the position of
the wheel center with respect to the platform frame and projected along the
longitudinal axis of the platform xp: ei = xtpri (Fig. 9).

p
p

p

Fig. 9. The 7 posture parameters: 3 for the platform and 4 additional half-wheelbases
parameters
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By writing the differential equations for each kinematic wheel-leg chain, ė

could be written as function of the command vector u. We denote ui =
(α̇i, β̇i, ωi)

t the part of u corresponding to the ith wheel-leg, and we obtain:

ėi = Jie




α̇i

β̇i

ωi




= Jie ui (27)

This equation expresses the motion of the wheel contact points along xp axis. It
is function only of legs joint rates (without the wheel rate). It could be simply
deduced from the wheel-leg Jacobian matrix Jiθ defined in equation (21) by
considering its projection along xp:

Jie = [ L1 sinαi + L2 sin(αi + βi) L2 sin(αi + βi) 0 ]
1×3

Then ė is written in matrix form as function of u:

ė = Je(Θ)u with Je(Θ) =




J1
e 0 0 0

0 J2
e 0 0

0 0 J3
e 0

0 0 0 J4
e




4×12

(28)

Thus, equations (25) and (28) can be concatenated in matrix form to obtain
the following state velocity equation:




SxL 08×4

04×6 I4






ẋ

ė


 +



SxJSt

u

Je


 u = 0 (29)

And finally this equation is rewritten as:

L̃ξ̇ + J̃u = 0 (30)

with

L̃ =




SxL 08×4

04×6 I4




12×10

and J̃ =



SxJSt

u

Je




12×12

J̃ is a regular square 12x12 matrix (except some singular cases not studied in
this paper), then:

u = −
(
J̃−1L̃

)
ξ̇ (31)
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3.5 Computing the steering angles

Each equation of the second group (26) could be solved separately in order
to give the steering angles which are compatibles with the desired platform
velocity ẋ and the other internal velocities θ̇ computed in the last section.
Assuming that the lateral contact vector li is collinear to the wheel axis (i.e.
no camber angle), we show easily from equation (26) that:

tan γi =
νi
µi

(32)

with

νi = vy + ωz xi − ωx zi

µi = (vx + ωy zi − ωz yi + ẋi) sin(αi + βi) + ...

(vz + ωx yi − ωy xi + żi) cos(αi + βi)

(33)

and v = (vx, vy, vz)
t et ω = (ωx, ωy, ωz)

t are platform twist parameters in the

local frame, then v = Rtρ̇, ω = Tφφ̇.

For a classical wheeled system moving on a plane, the steering angle is related
directly to the lateral velocity of the platform vy and its yaw rate ωz. This is
observed in the numerator of the later equation. However, the term −ωx zi is
not usual. In fact, roll platform reconfiguration −ωx needs a roll motion with
a non-null steering angle. This motion coupling is illustrated in Fig. 10.

Fig. 10. Rolling motion needs steering the wheels to prevent side-slippage

4 Posture control of Hylos based on velocity model

4.1 Posture definition

As it was previously demonstrated, when assuming that lateral non-slippage
conditions are satisfied by controlling the suitable steering angles at each con-
tact, the system has 10 independent velocity parameters. There are 8 velocity
equations (25) for 18 velocity parameters (6 for the platform and 12 for joints
including legs and wheel’s roll). In the operational space, the 10 parameters
correspond to 3 parameters (x, y, θ) of the platform horizontal trajectory and
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7 posture parameters. These posture parameters correspond to 3 platform
attitude parameters (z, φ, ψ) and 4 internal parameters (e1, e2, e3, e4) defined
previously by the half wheelbases of each contact.

The posture parameters vector π is defined as:

π = (ϕ, ψ, zg, e1, e2, e3, e4)
t

where zg = z − zs is the rover elevation relative to the local terrain altitude
(zs), thus zg can also be defined as the rover ground clearance. Furthermore,
zs is considered to be locally constant which means that żs ≈ 0.

4.2 Posture optimisation

The problem of posture optimization could be treated by considering vari-
ous performance criteria as stability, traction, energy consumption... These
criterion could be expressed as function of contact force components (normal
component and tangential ones). However, it is difficult to estimate contact
normal vectors and thus to carry out a real-time efficient optimization of con-
tact force distribution. Moreover, the adaptation of the posture as function of
the local contact normals could develop excessive energy consumption without
a real increase of the global performance. Furthermore, this posture adapta-
tion has some response delay and could be efficient only for very slow robot
motion.

One obvious posture vector could be defined by a constant attitude of the
platform (zero pitch and roll angles and a nominal ground clearance zg) and
a constant nominal wheelbases en:

πn = (0, 0, zg,
en
2
,
en
2
, −

en
2
, −

en
2

)t

This posture is a good compromise: it preserves stability, ground clearance
and force transmission from actuators to contacts. Furthermore, zero attitude
angles of the platform provide stabilized video with horizon captured by the
embedded vision system.

4.3 Posture configuration on a sloping terrains

Another way to define a global performance criteria for the desired posture is
to consider what we call the equal-distribution of contact vertical loads. We
define an average contact plane computed from the four contact points which
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Fig. 11. Slope angles of the average contact plane

are estimated quite easily from joint encoders and a 2-axes inclinometer sensor.
The problem is then reduced to finding an optimal posture on a slopping
ground defined by two parameters: ηs the maximum slope angle and θs the
robot yaw angle relative to the slope direction (Fig. 11).

As the gauge of the robot (lateral distance between wheels) remains constant,
an equal-distribution of loads between left and right contacts requires a zero
roll angle of the platform (Fig. 11). However, the system is redundant in
its sagittal plane causing the equal load distribution between front and rear
contacts to have an infinite set of solutions. We notice that the solution of zero
pitch angle set up the joint legs near their singularities or their joint limits,
whereas assessing the platform longitudinal axis parallel to the slope gives
better solutions of joint leg configuration close the nominal one.

Assuming this constraint, the horizontal wheelbases must be equal in order
to give the same load between front and left. Another constraint raised by
the steering system is that the steering axis of the steered wheels should be
normal to the plane, in order to keep the contact on the rolling tread of the
wheel. We denotes ψ′ the slope angle along the robot longitudinal direction,
which could be expressed by:

ψ′ = arcsin (cos(θs) sin(ηs)) (34)

Angles ηs, θs are estimated from the direct kinematic model and from measured
roll and pitch angle of the platform. By choosing a desired ground clearance
zg and a nominal wheelbase en, the desired posture which gives equal vertical
load distribution is:

πs = ( 0, ψ′, zg,
en

2
− | zg | tanψ′, en

2
− | zg | tanψ′,

− en

2
+ |zg| tanψ′, − en

2
+ | zg | tanψ′)t

(35)
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Fig. 12. Posture of equal distribution of contact loads for different configurations
on a slope

Those postures are represented in Fig. 12 for a slope with a maximal angle of
ηs = 30◦ and for different values of the yaw angle θs = {0◦, 45◦, 90◦}.

Those postures could be corrected in order to decrease the caster angle of the
steering axis (relatively the slope normal), as represented in Fig. 13 where only
the front steering wheels would be used to steer the robot. This is to ensure
that the contact remains on the rolling tread of the tyre for high steering angle
value.

Fig. 13. Posture correction as function of the manoeuvrability constraint

20



4.4 Posture control

When the robot crosses an irregular surface, it must maintain its posture
around a desired posture πd. We use a classical feedback linearization control
law for the posture control:

π̇ = Kπ (πd − π) (36)

where Kπ is a diagonal positive matrix.

Let us remind that as the ground elevation is considered to be locally constant
żs ≈ 0. So, we have the following relation żg = ż and the posture variation is:

π̇ = (ϕ̇, ψ̇, ż, ė1, ė2, ė3, ė4)
t

Then, we can compute the platform posture velocity by using the following
equations: 




vz = −ż + ωy

∑
i
xi

4
− ωx

∑
i
yi

4
≃ −ż

ωx = ϕ̇− θ̇ sinψ ≃ ϕ̇

ωy = ψ̇ cosϕ+ θ̇ cosψ sinϕ ≃ ψ̇ cosϕ

The first equation assumes that the projection of the contact center on the
horizontal plane is closer the one of the platform center. In the two other
equations, we neglect the effect of yaw velocity θ̇. Those posture parameters
and the other velocities parameters (vx , vy , θ̇)

t (given by path tracking control)
are used in the inverse velocity model which has to compute from equations
(31, 32) the actuator velocity inputs (except for steering actuators, which
have position low-level control). One must notice that those equations require
the knowledge of normals ni at each contact. The equation (11) shows that
tangential vector ti can be determined from the measure of the system velocity
parameters, including platform parameters and joint ones (α̇i, β̇i). However,
measuring the 3 components of the instantaneous linear velocity is not simple.
In our experiment, we make an estimation of contact normals from the average
contact plane.

The Fig. 14 describes the general schema of the control system. This controller,
based on the inverse velocity model, is divided in two parts. The main idea,
is to be able to decouple the posture control and the trajectory control.

First, the posture controller, as presented previously, computes the reconfigu-
ration velocities π̇ in order to reach a desired posture πd, using measurements
from inclinometers and joint sensors. The current posture π is obtained from
this measures by solving the direct kinematic model.
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Fig. 14. General control schema

Secondly, the trajectory controller aims to computes the following platform
velocities components ẋt = (ẋ, ẏ, θ̇)t. They correspond to the horizontal ve-
locities of the robot projected in the reference frame R0 and its yaw rate.
These velocities can be computed using a trajectory controller. This part is
not detailed in this paper. For the evaluation of the posture control which is
presented in the next paragraph, we will use a simple open-loop control of the
trajectory. The platform velocities ẋt are directly computed by differentiating
the trajectory input xt(t) with respect to time.

Then, this two control velocities vectors (π̇ and ẋt) are combined to form the
state velocity vector ξ̇ which is then used to solve, through the inverse velocity
model, the joint velocities applied to the robot. The steering angles γ are then
obtained by solving the non-holonomic constraints (32).

Furthermore, our model supposes that wheel-soil contacts are maintained con-
tinuously. This function is guaranteed by adding a correction term in the con-
trol law:

sin = Kf (f
i
n − f i0) (37)

where sin is the contact detachment velocity introduced in equation (12), f in
is contact normal force measured by means of 3 axis force sensor which is
integrated on each leg, f i0 is the reference value of the ith wheel contact force
along normal axis and Kf is a positive matrix. The set of force reference values
of all wheels f i0 are computed from the force balance equation (see Eq. (15)).
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4.5 Evaluation of the posture control algorithm

In the experiment, the robot moves straightforward at a speed of 0.08 m/s
with heading angle θ = 0o on an asymmetric irregular terrain. The Fig. 15
shows the evolution of the rover on an irregular asymmetrical ground profile,
with a posture reconfiguration. The rover successes the crossing of this ground
surface with very good stability margin, whereas it was not able to cross this
surface in pure rolling mode (without reconfiguring legs) since a lateral tip-over
has been noticed.

Fig. 15. Hylos crossing an asymmetrical terrain profile with a constant absolute
posture

The desired posture consists in keeping the platform horizontal with a null
pitch and roll angles (φ = ψ = 0) and in maintaining constant the ground
clearance zg end the half wheelbase ei. The measured pitch and roll angles
are plotted in Fig. 16. The maximum deviation of pitch and roll errors are
respectively 3o and 4o using the posture control law. So, these experiments
show the ability of the control algorithm to maintain a certain posture with
a small error on pitch and roll angles when evolving on an unknown irregular
terrain.
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Fig. 16. Evolution of the controlled pitch and roll angles of the rover evolving on
irregular terrain
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The applicability of the posture control algorithm has also been evaluated for
a generic path on uneven terrain (not only a straightforward path). This eval-
uation was done using dynamics simulation. The Fig. 17 shows the evolution
of the robot when is following a complex path.

Fig. 17. Simulation of the rover evolving on a irregular terrain and following a curved
path

In this simulation, the robot trajectory is controlled through a simple open
loop controller. The desired vehicle velocity (ẋ, ẏ, θ̇)t are computed from the
given trajectory and applied to the system in coordination with the posture
controller. In this case, this velocity term (ẋ, ẏ, θ̇)t is combined with the pos-
ture reconfiguration velocity term π̇ = (ϕ̇, ψ̇, ż, ė1, ė2, ė3, ė4)

t to form the
full state velocity ξ̇. Then, the equations (31) and (32) are used to compute
the joint velocity u and the steering angles γi.
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Fig. 19. Evolution of the steering angles

The desired trajectory and the real one followed by the robot are represented
in the Fig. 18, while the evolution of the steering angle of each wheel-leg
is depicted in the Fig. 19. These results show that the inverse differential
kinematic model proposed in this paper allows to control simultaneously both
the posture parameters of the robot and its horizontal position xt = (x, y, θ)t,
in spite of the drift noted on the trajectory really followed by the robot.

In this simulation, the trajectory is driven with an open-loop control. The
corresponding velocities are computed by using the derivative of the reference
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trajectory xt(t). Since we use a simple open-loop control, the real trajectory
deviates from the reference trajectory. This error can be reduced by consider-
ing a more sophisticated close-loop trajectory control. In spite of this point,
these results show the ability of our control schema to perform a control of
the robot posture while evolving on irregular terrain at a specified velocity.

5 Conclusion

This paper develops an original kineto-static formalism which characterizes the
motion of a wheeled-legged robot on 3D ground surface. The model is used
to control the posture of the robot and its static stability. This model has
been evaluated with dynamic simulations and with experiments on a physical
prototype. Results show the validity of the model and the feasibility of this
approach. The model is a generic one and could be used for any articulated
rover with active suspensions. It assumes continuous contact with the ground
and not necessarily pure rolling. Slippage velocities can be introduced easily
in the model if they are correctly estimated. This velocity model can be used
also for internal or external parameters estimation such as contact normals,
6D platform trajectory. Future works will consider the integration of more
sophisticated close-loop control for the trajectory tracking.
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A Notations

Frames definition

R0 = (O, x0, y0, z0) Reference ground frame

Rp = (G, xp, yp, zp) Main platform frame

Ri
c = (Pi, ti, li, ni) Contact frame of the ith wheel

Ri
l = (Ci, xi, yi, zi) Frame attached to the end of the ith leg mechanism

Ri
ω = (Ci, x

i
ω, y

i
ω, z

i
ω) Frame attached to the ith wheel

Kinematic parameters

ρt = (x, y, z) position of the platform frame with respect to (w.r.t.) the
ground

φt = (ϕ, ψ, θ) orientation angles of the platform frame w.r.t. the ground
(roll, pitch and yaw angles, respectively)

θi vector of the ith leg joint parameters

χt
i = (γi, ϑi) vector of the ith wheel’s parameters

xt = (ρt, φt) vector of the platform parameters

Θt
i = (θt

i, χt
i) vector of joint parameters of the ith wheel-leg

qt = (xt, θt
i, χt

i) aggregated vector of the robot parameters

γi steering angle of the ith wheel

ϑi rolling angle of the ith wheel

υi caster angle of the ith wheel

ri radius of the ith wheel

pi position of the contact point of the ith wheel w.r.t. the
platform frame

R = R(ϕ, ψ, θ) rotation matrix of the platform frame w.r.t. the ground
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Velocity model

ρ̇ velocity of the center of the platform expressed in the ground frame

ω rotation rate vector of the platform expressed in the platform frame

ωi spinning rotation rate of the ith wheel ωi = ϑ̇i

Tφ coupling matrix between ω and φ̇

Li locomotion matrix associated to the motion of the ith wheel-leg

Jiθ jacobian matrix of the ith leg

vis vector of the relative velocity in the ith contact

sit longitudinal slippage of the ith wheel

sil lateral slippage of the ith wheel

sin contact deformation velocity in the normal direction

L locomotion matrix of the full system

J jacobian matrix of the full system

Θ aggregated vector of the wheel-legs parameters

Vs aggregated vector of the wheel-soil slippage parameters

Static model

fi vector of the ith wheel contact force expressed in Ri
c

f aggregated vector of all wheel contact forces

w total wrench vector of all external forces applied to the system

τ vector of actuator torques applied on wheel-leg joints

Hylos specific notations

αi, βi joint angles of the ith leg of the robot Hylos

L1, L2 length of each leg’s links of the robot Hylos

Lx, Ly geometric parameters of the main platform of Hylos
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Inverse velocity model

ei half wheelbase of the ith wheel-leg

e vector of the all half wheelbases

Jie jacobian matrix associated to the ith wheelbase rate ėi

Je jacobian matrix associated to the vector of wheelbase rates ė

ξ vector of operational parameters ξt = (xt, et)

u control input vector of the controller

Sx, Su, Sγ selection matrices

L̃ augmented locomotion matrix of the controllable system

J̃ augmented jacobian matrix of the controllable system

zg rover ground clearance

π vector of the posture parameters π = (ϕ, ψ, zg, e1, e2, e3, e4)
t

xt vector of the platform position parameters used in trajectory
control xt = (x, y, θ)t
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