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Université Lille 1 - Sciences et Technologies
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This paper focuses on the classification of colour textures acquired by single-sensor
colour cameras. In such cameras, the Colour Filter Array (CFA) makes each photosensor
sensitive to only one colour component, and CFA images must be demosaiced to estimate
the final colour images. We show that demosaicing is detrimental to the textural informa-
tion because it affects colour texture descriptors such as Chromatic Co-occurrence Matrices
(CCMs). However, it remains desirable to take advantage of the chromatic information
for colour texture classification. This information is incompletely defined in CFA images,
in which each pixel is associated to one single colour component. It is hence a challenge
to extract standard colour texture descriptors from CFA images without demosaicing.

We propose to form a pair of quarter-size colour images directly from CFA images with-
out any estimation, then to compute the CCMs of these quarter-size images. This allows
us to compare textures by means of their CCM-based similarity in texture classification or
retrieval schemes, with still the ability to use different colour spaces. Experimental results
achieved on benchmark colour texture databases show the effectiveness of the proposed
approach for texture classification, and a complexity study highlights its computational
efficiency.

Key Words: Colour texture image, CFA demosaicing, Texture classification,
Texture retrieval, Chromatic co-occurrence matrix, Colour space.

1. INTRODUCTION

Closely related to appearance-based object recognition, the problem of texture
classification is a major field of low-level vision research. It is associated to various
kinds of applications in visual inspection [1, 2, 3, 4], in medical [5], satellite [6], or
multi-spectral [7, 8] image analysis, among many others. It consists in grouping
a set of images or regions that represent textures into classes, by means of their
similarity . This is a particular case of the more general problem of texture retrieval,
whose goal is to retrieve the most similar target images to an input test image.

For this purpose, the textures are characterized by descriptors that are com-
pared by means of a similarity measure. Among the various families of texture
descriptors proposed in the literature, we focus on statistical descriptors, which
are among the most investigated ones. Several experiments have indeed proved
the efficiency of these descriptors in texture classification, due to their ability to
describe any kind of texture. This family encompasses first-order (e.g., histograms)
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and second-order descriptors (e.g., local binary patterns [9], co-occurrence matri-
ces [10, 11], interplane sum- and difference-histograms [7]), as well as descriptors of
higher orders (e.g., run-length matrices [12]).

Palm [11] has shown that classification based on colour analysis outperforms
that based on the luminance information only: colour information is worth be-
ing used together with texture information to serve as cues in a texture classifier.
The colour characterizing each pixel is represented in a three-dimensional colour
space (e.g., RGB) by a vector whose coordinates are colour component levels. Tex-
ture descriptors should then describe both the spatial arrangement of the colour
component levels in the image plane and their distribution in a colour space. To
characterize colour textures, we opt for the chromatic co-occurrence matrices in-
troduced by Palm [11], since they are precisely able to capture spatial relationships
within a single colour component and between different colour components.

Several studies (e.g., [13, 14]) show that the choice of the colour space used
to code colours impacts the texture classification accuracy. Hence, we need to
carefully choose the colour space with respect to the application. However, these
studies assume that colour information is well represented by the colour images, and
neglect the impact of the acquisition device on texture characterization quality. Yet,
colour images are often estimated by demosaicing from raw images (also known as
Colour Filter Array (CFA) images), since the most widespread colour cameras are
equipped with one single sensor [15]. Such colour estimation may degrade both the
informational relevance of the texture descriptors and the relevance of the selected
colour space, in comparison with images acquired by three-sensor cameras.

Several works deal with CFA data enhancement before demosaicing. For in-
stance, the CFA image may be processed to improve rendering [16] or to remove
noise [17, 18]. But to our best knowledge, the literature reports no work that uses
directly the CFA data to achieve texture classification. In this paper, we propose
to avoid the demosaicing step and to use the colorimetric content of the CFA image
for texture comparison. From this CFA image, we cannot directly represent colours
in several colour spaces. So, we form new colour images without any demosaicing.
These new images can be converted into different colour spaces. Then, they can be
described by chromatic co-occurrence matrices for texture comparison.

The rest of the paper is organized as follows. First, we give some background
information about texture comparison thanks to chromatic co-occurrence matrices.
Then, we propose an original texture comparison scheme which analyses the CFA
images acquired by single-sensor colour cameras. Finally, experimental results are
presented to assess the relevance of our approach before conclusions are drawn.

2. BACKGROUND OF COLOUR TEXTURE COMPARISON

In this section, we first recall some properties of the various colour spaces that
have been used in colour texture comparison. Then, we present how chromatic
co-occurrence matrices are generally extracted from a colour image representing a
texture. In the last subsection, we describe how these descriptors can be compared
thanks to dedicated similarity measures.
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2.1. Colour spaces

Images acquired by three-sensor cameras are generally coded with the colour
space RGB. Several other colour spaces exist, which are mostly defined by col-
orimetry. Considering various colour spaces is interesting, since each of them owns
specific properties, and it is well-known that the choice of a given colour space
impacts the accuracy of colour texture classification [13]. To study this influence,
we propose to code the image colours in various spaces.

Let us quickly review the main existing colour spaces. Busin et al. [19] propose
to group them into four families, with respect to their definitions and properties:

• The primary spaces are based on the trichromatic theory, according to which
any colour can be formed by mixing an appropriate amount of three primary
colours. The most used primary spaces are the RGB ones, and the standard
space of the International Commission on Illumination (CIE) XY Z, based on
imaginary (virtual) primary colours.

• The luminance–chrominance spaces are based on one colour component repre-
senting the luminance, and on two other components representing the chromi-
nance. The main luminance-chrominance spaces are the television spaces Y IQ
and Y UV , and the CIE perceptually uniform spaces L∗a∗b∗ and L∗u∗v∗.

• The perceptual spaces, like HSV and HSL, try to quantify the subjective
human perception of colour by means of three measures: hue, saturation, and
intensity or lightness.

• The Ohta colour space I1I2I3 is a space of statistically-independent compo-
nents resulting from the principal component analysis of the colours in several
representative images.

To study the influence of the colour space on texture classification results, the
colours of target and test images are coded in one of the above spaces before the
texture descriptors are computed and compared.

2.2. Chromatic co-occurrence matrices

A Chromatic Co-occurrence Matrix (CCM) is a statistical texture descriptor
that can be viewed as a generalization of the grey-level co-occurrence matrix pro-
posed by Haralick [10]. It was introduced by Rosenfeld [20] and taken up by
Palm [11] as a texture descriptor extracted from a colour image. Many studies
have shown the efficiency of CCMs for colour texture classification (see [21], for
instance). Indeed, these descriptors both take into account the colour distribution
of an image and the spatial interactions between the colours of neighbouring pixels.

Let IE be a colour image whose colours are coded in the colour space E =
C1C2C3. This image is composed of three colour component images Ik, k ∈
{C1, C2, C3}, in which each pixel P is characterized by the level Ik(P ) of the colour

component k. The three-component vector IE(P ) =
(

IC1(P ), IC2(P ), IC3(P )
)T

is
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therefore associated with each pixel P . For computation efficiency reasons, the
colour components are generally sub-quantized with q levels before the CCMs are
computed.

The CCM Mk,k′

[IE ] captures the spatial interactions between the colour com-
ponents k and k′ of the pixels in image IE , according to a given neighbourhood Nd.
The cell Mk,k′

[IE ](i, j) of this matrix, 0 ≤ i < q, 0 ≤ j < q, contains the number
of times that a pixel Q whose level is j for the colour component k′, occurs in the
neighbourhood Nd(P ) of a pixel P whose level is i for the colour component k:

Mk,k′ [

IE
]

(i, j) =
∑

P∈IE

∑

Q∈Nd(P )

{

1 if Ik(P ) = i and Ik
′

(Q) = j,
0 otherwise.

(1)

The neighbourhood Nd(P ) used to compute the CCMs is made of the 8 pixels
located at uniform distance (also called infinity-norm distance) equal to d from P
along the four main directions of the image plane (horizontal and vertical directions,
and the two diagonal ones):

Nd(P ) = {Q ∈ IE | ‖PQ‖
∞

= d, θ = 0 (mod π/4)} , (2)

where θ denotes the angle between the horizontal unit vector and the vector PQ
defined by the pixels P and Q. The parameter d is adjusted by the user to fit
the texture granularity at best. Note that, even if different neighbourhoods can be
considered [11], Nd is consistent with that proposed by Haralick [10].

As a measure of the local interaction between pixels computed from the whole
image, a CCM is sensitive to any variation of the image size. To decrease this
sensitivity, a CCM should be normalized by the total number of co-occurrences:

mk,k′

[IE ](i, j) =
Mk,k′

[IE ](i, j)
q−1
∑

a=0

q−1
∑

b=0

Mk,k′

[IE ](a, b)

, (3)

so that all the cells of this normalized CCM mk,k′

[IE ] sum up to 1. In the sequel,
we always refer to normalized CCMs.

The relationships between the levels of neighbouring pixels within any of the
three colour component images Ik are represented by a single-component CCM
mk,k[IE ], k ∈ {C1, C2, C3}. In order to provide information about the spatial
relationships between the colour components, multi-component matrices (namely
mk,k′

[IE ], k 6= k′) must be considered [11]. These matrices contain the number
of pairwise occurrences of levels between different colour components. Because
mk,k′

[IE ] and mk′,k[IE ] are transpose of each other, these matrices contain the same
information, and one of them is enough to describe the co-occurrence information
between the colour components k and k′.

For a given colour image IE and a given neighbourhood Nd, six CCMs are thus
computed:

• three single-component matrices mC1,C1 [IE ], mC2,C2 [IE ], and mC3,C3 [IE ],
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• three multi-component matrices mC1,C2 [IE ], mC1,C3 [IE ] and mC2,C3 [IE ],

otherwise denoted asmk,k′

[IE ], (k, k′) ∈ SE = {(C1, C1), (C2, C2), (C3, C3), (C1, C2),
(C1, C3), (C2, C3)}.

2.3. Comparison of colour textures

Matching a test image IEtest with a target image IEtar is based on a pairwise
comparison between their respective CCMsmk,k′

[IEtest] andmk,k′

[IEtar], (k, k
′) ∈ SE .

Any of the measures examined by Rubner et al. [22] to evaluate the similarity
between histograms can be used to compare CCMs. Indeed, normalized CCMs can
be considered as 2D joint histograms that estimate the joint probability density
function underlying texture patterns [23]. Empirical studies [22, 24] show that
χ2, Jeffrey Divergence (JD) and L1 measures exhibit very similar performance to
compare textures with multidimensional histograms. The Earth Mover’s Distance
(EMD) is a cross-cell distance with interesting properties, and is recognized as
the best similarity measure [22, 25]. We do not retain it here mainly because its
performance in texture classification drastically decreases as the number of cells
increases [22]. Hence, we retain two similarity measures for our experimental tests
(see section 4): the intersection between CCMs (that is one of the simplest similarity
measures) [26] and the Jeffrey divergence between CCMs (that is one of the most
efficient to compare textures) [22].

The intersection between two CCMs, for any pair of colour components (k, k′) ∈
SE , is expressed as:

Inter
(

mk,k′

[IEtest],m
k,k′

[IEtar]
)

=

q−1
∑

i=0

q−1
∑

j=0

min
(

mk,k′

[IEtest](i, j),m
k,k′

[IEtar ](i, j)
)

.

(4)
The similarity measure between the test and target images is the mean of their
pairwise CCM intersections [27]:

SIMI

(

IEtest, I
E
tar

)

=
1

6

∑

(k,k′)∈SE

Inter
(

mk,k′

[IEtest],m
k,k′

[IEtar]
)

. (5)

When the two images IEtest and IEtar share a similar spatial arrangement of colours,
their similarity measure value SIMI is close to 1. Although it does not necessar-
ily mean that the two images contain the same texture, we assume so. On the
other hand, a similarity measure value close to 0 means that the two textures are
significantly different.

The Jeffrey divergence is derived from the Kullback–Leibler Divergence (KLD).
Both can be regarded as agreement measures between two probability density func-
tions. In contrast to KLD, JD is symmetric and presents a better numerical be-
haviour [22]: it is stable when comparing two empirical distributions. The Jeffrey
divergence is expressed as:
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FIG. 1 Classical (top branch) and proposed (bottom branch) approaches for CCM-
based comparison of colour textures.

JD
(

mk,k′

[IEtest],m
k,k′

[IEtar ]
)

=

q−1
∑

i=0

q−1
∑

j=0

[

mk,k′

[IEtest](i, j)× log

(

mk,k′

[IEtest](i, j)

m̄k,k′ (i, j)

)

+mk,k′

[IEtar ](i, j)× log

(

mk,k′

[IEtar ](i, j)

m̄k,k′ (i, j)

)]

, (6)

where m̄k,k′

(i, j) = 1
2

(

mk,k′

[IEtest](i, j) +mk,k′

[IEtar](i, j)
)

. When the two images

contain the same texture, the Jeffrey divergence between their CCMs is close to 0,
whereas it tends to infinity when they are quite different. The similarity between
the two texture images is then defined as:

SIMJ

(

IEtest, I
E
tar

)

=
1

1 + 1
6

∑

(k,k′)∈SE

JD
(

mk,k′

[IEtest],m
k,k′

[IEtar]
) . (7)

3. COLOUR TEXTURE COMPARISON FROM CFA IMAGES

Using various colour spaces for texture comparison requires that colours and
textures are well represented in images. To ensure this at best, colour images should
be acquired by three-sensor colour cameras, in which each sensor is associated with
a colour component R, G, or B. However, most colour texture images are presently
acquired by colour cameras equipped with one single sensor. This sensor acquires
CFA images from which colour images are estimated by demosaicing, as generically
described in the first subsection below.

To compare two colour textures, classical approaches compute the CCMs of
demosaiced images, then estimate the texture similarity according to equation (5)
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or (7) (see figure 1, top branch). In the second subsection, we experimentally
show that colour estimation by demosaicing strongly alters the CCMs, which may
decrease the performance of CCM-based texture classification. To avoid this, we
propose to analyse CFA images in two steps (see figure 1, bottom branch). Two
quarter-size colour images are directly formed from a CFA image (see third subsec-
tion). The fourth subsection describes how to compute CCMs from these quarter-
size images for colour texture comparison, with no demosaicing step and still the
ability to use different colour spaces.

3.1. CFA Image and demosaicing

A colour camera fitted with a single sensor (either CCD or CMOS) incorporates
a colour filter array, which makes each photosensor mainly sensitive to a specific
primary colour. As a result, such a camera forms a CFA image (denoted as ICFA), in
which a single colour componentR, G, or B, is associated to each pixel. We consider
here the most widespread CFA, namely the Bayer CFA. It yields the image ICFA of
figure 2(a), where the notations Rx,y, Gx,y, and Bx,y, express that the respective
colour component is available at the pixel of spatial coordinates (x, y), 0 ≤ x < X ,
0 ≤ y < Y . According to the parity of these spatial coordinates, the single colour
component available at pixel (x, y) in ICFA is:

• the R colour component if x is odd and y is even,

• the G colour component if x and y are of same parity,

• the B colour component if x is even and y is odd.

To obtain a colour image from ICFA, a process called demosaicing is applied.
Presenting demosaicing procedures is beyond the scope of this paper, and the reader
may refer to [28] or [15] for a review; we only explain their common basic principle
below.

To determine the colour
(

ÎR(x, y), ÎG(x, y), ÎB(x, y)
)T

of each pixel P (x, y)

in the demosaiced colour image ÎRGB , the demosaicing process (denoted as D)
generally retains the colour component available at the same location in ICFA, and
estimates the two missing colour components:

ICFA(x, y)
D
−→ ÎRGB(x, y) =























(

ICFA(x, y), ÎG(x, y), ÎB(x, y)
)T

if x is odd and y is even,
(

ÎR(x, y), ICFA(x, y), ÎB(x, y)
)T

if x and y are of same parity,
(

ÎR(x, y), ÎG(x, y), ICFA(x, y)
)T

if x is even and y is odd.

(8)

Each colour component triplet in equation (8) represents an estimated colour. Out

of the three components in ÎRGB(x, y), the one available in ICFA is denoted as
ICFA(x, y), and the missing other two components among ÎR(x, y), ÎG(x, y), and
ÎB(x, y), are estimated by demosaicing.
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G0,0 R1,0 G2,0 R3,0

B0,1 G1,1 B2,1 G3,1

G0,2 R1,2 G2,2 R3,2
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(a) CFA image ICFA

............

...

...

...

...

...G0,0 R1,0 G2,0 R3,0

B0,1 G1,1 B2,1 G3,1

G0,2 R1,2 G2,2 R3,2

B0,3 G1,3 B2,3 G3,3

(b) CFA image blocks

FIG. 2 CFA image from the Bayer colour filter array, and its 2×2 block tile. Each
pixel is artificially coloured with the main spectral sensitivity of the corresponding
selective filter.

3.2. CCM fidelity of demosaiced images

The evaluation of the demosaicing performance generally uses an original colour
image, from which the CFA image is “simulated” by sampling a single colour com-
ponent at each pixel according to the Bayer CFA arrangement of figure 2(a). The
considered demosaicing procedure is applied to this CFA image, and the demosaic-
ing performance is evaluated as a fidelity measure between the demosaiced colour
image and the original one. However, classical fidelity measures, as the Peak Signal-
to-Noise Ratio (PSNR), use pixel-to-pixel colour comparison. So, they may poorly
reflect to which extent the demosaicing procedure affects texture descriptors that
provide information about the relationships between colours of neighbouring pixels.
To quantify how demosaicing specifically degrades the CCMs, we propose to com-
pare the CCMs computed from the demosaiced image and those directly computed
from the original image.

Figure 3 outlines the procedure set up to achieve this comparison. We use the
original colour images of the VisTex texture database [29]. Each original colour
image IRGB is uniformly quantized with q levels (see subsection 4.1 for details) to
obtain IRGB

(q) , from which six CCMs are computed as described in subsection 2.2.

Each original colour image IRGB is also sampled to produce the simulated CFA
image ICFA. The CCMs are computed from the demosaiced colour image ÎRGB,
obtained by applying a highly-efficient demosaicing procedure to the simulated
CFA image. Finally, the normalized CCMs computed from IRGB

(q) and ÎRGB
(q) are

compared using the intersection-based similarity of these images (see equation (5)).
A similarity value close to 1 means that the demosaicing step does not strongly alter
the CCMs, in comparison with those extracted from the original colour image.

Table 1 displays the comparison results obtained on 432 images from the Vis-
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q q

Quantized demos-

aiced image ÎRGB
(q)

Quantized original

colour image IRGB
(q)

Nd Nd

(

Mk,k′
[
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(
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CCM computation
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FIG. 3 Comparison between the CCMs computed from the original colour im-
age IRGB (left branch) and from the corresponding demosaiced image ÎRGB (right
branch).
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TABLE 1: Intersection-based CCM similarity between the original colour image
IRGB
(q) and the demosaiced image ÎRGB

(q) . The values indicate the means and stan-

dard deviations (µ ± σ), when the distance parameter d is set to 2 or 8, for two
demosaicing procedures and five values of the quantization level q.

d = 2 d = 8
q Dubois Lian Dubois Lian

16 0.96± 0.83×10−3 0.96± 0.63×10−3 0.96± 0.83×10−3 0.96± 0.64×10−3

32 0.94± 1.00×10−3 0.94± 0.81×10−3 0.94± 1.03×10−3 0.94± 0.85×10−3

64 0.90± 1.27×10−3 0.91± 1.16×10−3 0.90± 1.36×10−3 0.91± 1.27×10−3

128 0.84± 2.03×10−3 0.84± 2.00×10−3 0.82± 2.26×10−3 0.83± 2.23×10−3

256 0.71± 3.74×10−3 0.72± 3.73×10−3 0.69± 4.04×10−3 0.69± 4.03×10−3

Tex database, for five values of the quantization level q, two values of the distance
parameter d (see equation (2)), and with Dubois’s [30] and Lian et al.’s [31] de-
mosaicing procedures that, in turn, provide the best results with respect to many
fidelity measures [15]. This table shows that, whatever the demosaicing procedure

and distance parameter value, CCMs computed from ÎRGB
(q) differ from those com-

puted from IRGB
(q) . A difference of 4% can already be noticed with the very coarse

quantization using q = 16 levels that keeps only the four most significant bits of
original levels. The difference is all the more significant than the colour compo-
nents are finely quantized, and it reaches about 30% with the original quantization
(q = 256). The very small values of standard deviations indicate that the mean
similarity values are highly representative of the results. Besides, the distance pa-
rameter d hardly influences the CCM fidelity for a given quantization level q. In
the rest of the paper, this parameter is therefore fixed to d = 2.

This study highlights that demosaicing seriously affects the CCM values and,
subsequently, may degrade the results of CCM-based texture classification. When
the classification scheme is applied to texture images acquired by single-sensor
colour cameras, it is therefore desirable to avoid the demosaicing step. The following
is an attempt to use CCMs as colour texture descriptors extracted from CFA images.

3.3. Quarter-size colour images from a CFA image

The Bayer CFA used to form the image of figure 2(a) has a basic pattern of size
2×2 that contains twice more green filters than red or blue ones. The corresponding
CFA image may therefore be considered as a tile of disjoint 2 × 2 blocks, each of
which contains two pixels providing a green level, one pixel providing a red level,
and one pixel providing a blue level (see figure 2(b)). A CFA image ICFA of size
X × Y pixels is tiled with X

2
Y
2 blocks, each one (u, v) being formed of the levels

denoted as G2u,2v, G2u+1,2v+1, R2u+1,2v, and B2u,2v+1 in figure 2, with 0 ≤ u < X
2 ,

0 ≤ v < Y
2 .
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FIG. 4 Formation of two quarter-size colour images from CFA image blocks.
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The colorimetric information contained in a 2× 2 block can be used to charac-
terize a colour. More precisely, the R, G, and B levels in a block can be combined
as the triplet of colour components to characterize the colour of a pixel in a RGB
colour image. Since a block contains two pixels where the green level is available
in the CFA image, we can form two different colours from each block. Considering
the global block tile, this allows us to form two different colour images from a given
CFA image. These images are called quarter-size colour images, since their size is
four times lower than that of the CFA image. The first quarter-size colour image
is denoted as eIRGB, since it contains the green levels available at even spatial

coordinates in ICFA. The second one is similarly denoted as o
...
IRGB, to recall that

it is created from the green levels available at odd spatial coordinates (the extra
diacritic above I is justified later). The colour of each pixel (u, v) of these images,
0 ≤ u < X

2 , 0 ≤ v < Y
2 , is defined in the RGB colour space by (see figure 4):

eIRGB(u, v) =
(

ICFA(2u+ 1, 2v), ICFA(2u, 2v), ICFA(2u, 2v + 1)
)T

, (9)

o
...
IRGB(u, v) =

(

ICFA(2u+ 1, 2v), ICFA(2u+ 1, 2v + 1), ICFA(2u, 2v + 1)
)T

. (10)

In that way, from a CFA image ICFA, we form a pair of quarter-size colour images

composed of an even image eIRGB and an odd one o
...
IRGB .

The definitions of these two quarter-size colour images imply that the sole green

channel differs between them (i.e., eIG 6=o
...
IG), whereas the other two colour channels

are identical (i.e., eIR ≡o
...
IR and eIB ≡o

...
IB). However, considering the green level

ICFA(2u+1, 2v+1) available at odd coordinates in the CFA image, various choices
of (R,G,B) triplets may form the colour of pixel (u, v) in the odd quarter-size colour
image (see figure 5). Indeed, both the upper and lower neighbouring pixels may
provide the red level, and both the left and right neighbouring pixels may provide
the blue level. The four resulting combinations yield four different possibilities for
the odd quarter-size colour image—the even one eIRGB being fixed, since the two
quarter-size images in a pair provide complementary texture information. These
four cases, depicted on figure 5 for the first pixel (u = 0, v = 0), are denoted

as o
...
IRGB (introduced above), o

...
IRGB, o

...
IRGB, and o

...
IRGB. They are respectively

defined by equation (10) and by:

o
...
IRGB(u, v) =

(

ICFA(2u+ 1, 2v), ICFA(2u+ 1, 2v + 1), ICFA(2u+ 2, 2v + 1)
)T

,

(11)

o
...
IRGB(u, v) =

(

ICFA(2u+ 1, 2v + 2), ICFA(2u+ 1, 2v + 1), ICFA(2u+ 2, 2v + 1)
)T

,

(12)

o
...
IRGB(u, v) =

(

ICFA(2u+ 1, 2v + 2), ICFA(2u+ 1, 2v + 1), ICFA(2u, 2v + 1)
)T

.

(13)
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FIG. 5 The four possible (R,G,B) triplets used to form the odd quarter-size colour

image of figure 4(b) (illustration for the first pixel).

Although these last three cases do not strictly correspond any more to the “2×2

block reasoning” used above to introduce o
...
IRGB, they may offer the advantage to

provide more informative CCMs. Indeed, they contain less redundant information

with eIRGB than o
...
IRGB: in addition to the green channel, the red channel of

o
...
IRGB and o

...
IRGB differs from that of eIRGB , whereas the blue channel of o

...
IRGB

and o
...
IRGB differs from that of eIRGB .

In the following, the odd quarter-size colour image is denoted as oIRGB in a

generic way. The image actually used (either o
...
IRGB, o

...
IRGB, o

...
IRGB, or o

...
IRGB)

to compute the CCMs from ICFA is only explicitly specified when needed (e.g.,
when comparing the performances of these four cases for texture classification—see
subsection 4.2).

Unlike demosaiced colour images, the quarter-size colour images eIRGB and
oIRGB do not result from any colour estimation. But, on the other hand, their
size is reduced in comparison with the CFA image. However, we assume that this
pair of quarter-size colour images may be a relevant representation of the texture
information embedded in the associated CFA image. Before this can be shown by
experimental results, let us make clear how these images are used to compare colour
textures.

3.4. Comparison of colour textures from CFA images

As explained above, the CFA image ICFA has a the particular pattern, which
hardly allows us to compute CCMs from it directly and to use other spaces than
RGB for colour coding. That is why we propose to form a pair of quarter-size
colour images eIRGB and oIRGB from ICFA (see equations (9) and (10)–(13)). Once
their colours have been converted from the original RGB space into the colour
space E = C1C2C3, we compute CCMs from eIE and oIE . To describe a texture
represented by a given image ICFA, twelve normalized CCMs are thus computed:
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• six single-component matricesmC1,C1 [eIE ], mC2,C2 [eIE ], mC3,C3 [eIE ], mC1,C1 [oIE ],
mC2,C2[oIE ], and mC3,C3 [oIE ].

• six multi-component matricesmC1,C2 [eIE ], mC1,C3 [eIE ], mC2,C3 [eIE ], mC1,C2 [oIE ],
mC1,C3[oIE ], and mC2,C3 [oIE ].

Since twelve CCMs are now computed, the similarity measures presented in
subsection 2.3 should be adjusted to compare two colour textures from their CFA
images. The intersection-based similarity measure (see equation (5)) becomes:

SIME
I

(

ICFA
test , I

CFA
tar

)

=

1

12

∑

(k,k′)∈SE

Inter
(

mk,k′

[eIEtest],m
k,k′

[eIEtar]
)

+ Inter
(

mk,k′

[oIEtest],m
k,k′

[oIEtar]
)

.

(14)

The similarity measure based on the Jeffrey divergence (see equation (7)) becomes:

SIME
J

(

ICFA
test , I

CFA
tar

)

=

1

1 + 1
12

∑

(k,k′)∈SE

JD
(

mk,k′

[eIEtest],m
k,k′

[eIEtar]
)

+ JD
(

mk,k′

[oIEtest],m
k,k′

[oIEtar]
) .

(15)

Thanks to the proposed pair of quarter-size images, we can compare two CFA
images that are acquired by single-sensor colour cameras, while using several colour
spaces.

4. EXPERIMENTS

This section intends to assess the relevance of the proposed texture represen-
tation from CFA images. This new representation is used for texture comparison
as described above, and is assessed here within two experimental schemes: colour
texture classification and retrieval.

In the first subsection, we present the texture datasets used in these experiments.
We also give an overview of the experimental scheme, and discuss its parameters of
neighbourhood distance and colour component quantization. We then study which
pair of quarter-size images, among the four possible ones presented in subsection 3.3,
should be retained on classification performance bases. In the third subsection,
we present detailed results of texture classification accuracy and texture retrieval
performance. The fourth subsection gives some insights about the computational
complexity of our texture comparison scheme.
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FIG. 6 Examples of VisTex (top row) and Outex (bottom row) colour textures.

4.1. Experimental scheme

For these experiments, we use two well-known colour texture databases, widely
referred to as benchmarks: VisTex [29] and Outex [32]. The used datasets are
the Contrib-TC-00006 and Outex-TC-00013 classification test suites, both avail-
able from the Outex web site [32]. The VisTex dataset contains 54 images of size
512 × 512 pixels, representing natural textured materials and objects (e.g., bark,
clouds, flowers, grass, water) and acquired by various colour cameras under uncon-
trolled conditions. The Outex dataset contains 68 images of size 746× 538 pixels,
representing textured materials (e.g., granite, leather, plastic, seeds, wood) and
acquired by a three-CCD colour camera under the same controlled conditions. All
these RGB images are split into sub-images of size 128 × 128 pixels, which yields
16 (VisTex) and 20 (Outex) images for each texture class. The holdout procedure
states that half of the images are the prototypes of the corresponding class, and
half are used for the tests. Figure 6 illustrates 8 prototypes of different classes in
each dataset.

The computation scheme of CCMs from these colour texture images is outlined
in figure 7. We assume that the original colour images in the two datasets do not
result from any demosaicing. The corresponding CFA images that a single-sensor
camera would have provided are not available in the datasets. Thus, we practically
simulate the CFA image ICFA from its original colour image IRGB, as done in
subsection 3.2. From ICFA, we apply a highly-efficient demosaicing procedure to
compute the demosaiced colour image ÎRGB. From ICFA, we also form the quarter-
size colour images eIRGB and oIRGB (see equations (9) and (10)–(13)).

The demosaiced and quarter-size images are then converted from RGB into an-
other colour space E to produce ÎE , eIE , and oIE . The selected space is the one with
which Mäenpää and Pietikäinen [26] obtain the highest accuracy of texture classi-
fication, namely Ohta colour space I1I2I3 for VisTex images, and the perceptual
colour space HSV for Outex images.

Before computing the CCMs, we apply a uniform colour quantization [26] to

code each colour component with q levels only; this yields ÎE(q),
eIE(q), and

oIE(q).

Since each CCM computed from these quantized images contains only q2 cells,
this allows us to reduce its memory cost and to speed up its computation. Poreb-
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ÎE(q)

])

q×q

(

Mk,k′
[

eIE(q)

])

q×q

(

Mk,k′
[

oIE(q)

])

q×q

CCMsCCMs

(

mk,k′
[
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ski et al. [33] have shown that a coarse quantization may be applied to CCMs before
their relevance gets seriously affected: when q is set to 32 or 64, the analysis of such
reduced-size matrices yields good classification results, while the processing time is
reduced significantly. To study its influence, the parameter q is set to the powers
of 2 from 16 to 256.

The numbers of columns X and of rows Y of ÎE(q) are twice as those of
eIE(q) and

oIE(q). To analyse textures with nearly the same spatial resolution for these different

kinds of images, the neighbourhood distance parameter d (see equation (2)) used

in practice to compute the CCMs from ÎE(q) must be twice as that used to compute

the CCMs from eIE(q) and oIE(q). Besides, due to minor changes on CCM fidelity

whether d is set to 2 or 8 (see table 1), this distance parameter is fixed to 2 to

compute the CCMs from ÎE(q) (and to 1 to compute those from eIE(q) and
oIE(q)).

In short, two sets of CCMs are computed from the simulated CFA image:

• Six CCMs are extracted from the demosaiced colour image ÎE(q) (see subsec-

tion 2.2).

• Twelve CCMs are extracted from the quarter-size colour images eIE(q) and
oIE(q) (see subsection 3.3).

4.2. Selection of the pair of quarter-size images

As explained in subsections 3.3 and 4.1, four different pairs of quarter-size images
(

eIE(q),
o IE(q)

)

, oIE(q) ∈
{

o
...
IE(q),

o
...
IE(q),

o
...
IE(q),

o
...
IE(q)

}

, may be obtained from a CFA image.

We here intend to find which pair provides the best classification results and should
be retained for further experiments.

For each colour space E and each value of q, we apply a 1-NN classifier to
VisTex and Outex datasets using the four different pairs of quarter-size images.
These pairs are then sorted according to their classification accuracies, and we
associate a classification rank (ranging from 1 to 4) to each of them. To obtain
the scores of classification performance of each pair according to each dataset and
CCM similarity measure, we cumulate the classification ranks over the five values of
q previously considered, and over the two colour spaces considered for each dataset.
A given pair is considered as the best one when the number of its first ranks is the
highest (see table 2(a)). To assess the classification performance in depth, we also
compare the total sums of the classification ranks, which have to be as low as
possible (see table 2(b)). Each row in tables 2(a) and 2(b) corresponds to a dataset
and a similarity measure, and its best result is written in bold face. The percentages
to which these ranks correspond are not detailed here to ensure easy readability. But
let us point out that they actually differ very slightly (by less than 0.75%) among

the four different pairs of quarter-size
(

eIE(q),
o IE(q)

)

, oIE(q) ∈
{

o
...
IE(q),

o
...
IE(q),

o
...
IE(q),

o
...
IE(q)

}

,

for given values of q and E .
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TABLE 2: Texture classification performance achieved by CCMs extracted from

different pairs of quarter-size colour images (eI,o I), oI ∈
{

o
...
I,o

...
I,o

...
I,o

...
I
}

. The dis-

tance parameter d is set to 2, and rank values are cumulated over q = 16, 32, 64, 128,
and 256, and over the two colour spaces E considered for each dataset.

(a) Number of first classification ranks. The numbers in each row sum up to more
than 10 (5 values of q × 2 colour spaces) because several pairs equally perform best

in many cases.

Dataset CCM similarity measure o
...
I o

...
I o

...
I o

...
I

VisTex Intersection 5 8 6 6
E ∈ {RGB, I1I2I3} Jeffrey divergence 6 8 8 5

Outex Intersection 5 3 4 2
E ∈ {RGB,HSV } Jeffrey divergence 2 5 6 3

Total number of first classification ranks 18 24 24 16

(b) Sum of the classification ranks.

Dataset CCM similarity measure o
...
I o

...
I o

...
I o

...
I

VisTex Intersection 17 14 15 16
E ∈ {RGB, I1I2I3} Jeffrey divergence 16 12 14 19

Outex Intersection 20 18 21 26
E ∈ {RGB,HSV } Jeffrey divergence 22 21 17 23

Total sum of classification ranks 75 65 67 84
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Table 2(a) shows that the pairs (eI,o
...
I) and (eI,o

...
I) equally perform best the

most times. Table 2(b) allows us to conclude that (eI,o
...
I) is the best quarter-size

image pair for texture classification, therefore retained hereafter. These results

also confirm that other quarter-size images than o
...
IRGB may improve the classifica-

tion performance since they contain less redundant information with eIRGB. This
remains true when these images are converted to other colour spaces.

4.3. Experimental results

4.3.1. Classification accuracy

Tables 3(a) and 3(b) display the classification accuracies of the VisTex and Ou-
tex test images. For each similarity measure (intersection or Jeffrey divergence), the
three columns contain the correct classification rates, according to each kind of im-
ages used to compute the CCMs: the (quantized and converted) demosaiced images

ÎE(q) provided by two highly-efficient procedures (Dubois’s [30] and Lian et al.’s [31]),

and the pair of quarter-size colour images
(

eIE(q),
o
...
IE(q)

)

. For each value of q, each
colour space E , and each similarity measure, the best classification accuracy is writ-
ten in bold face. To highlight the advantage of colour space conversion, we both
display the results obtained with the original colour space RGB and either I1I2I3
or HSV .

By examining these tables, we first note that the rates of correctly classified
images are very close to each other for the CCMs computed from the two kinds of
images, whatever the similarity measure and the colour quantization level.

Except for one case (the VisTex dataset, when q = 64 and with the intersection
as similarity measure), the accuracy obtained with the colour space I1I2I3 or HSV
is always higher than that obtained with RGB. This result shows that using a
relevant colour space instead of RGB improves the classification quality. It also
highlights that extracting quarter-size colour images from the CFA image is an
efficient solution, since this allows us to represent the colorimetric information of
the CFA image in different colour spaces.

Tables 3(a) and 3(b) also show that CCMs extracted from the quarter-size colour
images provide comparable (and even globally better) results with regard to CCMs
extracted from the demosaiced images. Indeed, the resulting accuracy is higher or
equal to that of the best demosaicing procedure (either Dubois’s or Lian et al.’s)
for 28 out of the 40 cases.

4.3.2. Average match percentile

Image retrieval consists in finding the images in a set that are the most similar
to a test image. To achieve each retrieval, a set of Ntar target images is formed
by picking one prototype image (the “true” image) from the same class as the
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TABLE 3: Correct classification rates (%) of VisTex and Outex test images. The
distance parameter d is set to 2.

(a) VisTex dataset (RGB and I1I2I3 colour spaces).

Intersection Jeffrey divergence

CCMs from ÎE(q) CCMs from CCMs from ÎE(q) CCMs from

q E Dubois Lian
(

eIE(q),
o
...
IE(q)

)

Dubois Lian
(

eIE(q),
o
...
IE(q)

)

16
RGB 96.99 96.99 97.69 97.22 97.22 97.45

I1I2I3 98.15 97.92 97.92 98.84 98.61 98.15

32
RGB 97.69 97.22 97.69 97.22 97.45 97.92

I1I2I3 97.92 98.38 98.61 98.38 98.61 98.61

64
RGB 97.22 97.22 98.38 97.45 97.45 98.38

I1I2I3 97.92 98.15 98.15 98.38 98.61 98.61

128
RGB 97.22 96.99 98.15 97.45 97.69 98.38

I1I2I3 98.61 98.38 98.84 98.61 98.61 98.84

256
RGB 97.22 96.99 94.91 96.30 96.76 92.36
I1I2I3 98.84 98.84 98.61 98.61 98.61 98.84

(b) Outex dataset (RGB and HSV colour spaces).

Intersection Jeffrey divergence

CCMs from ÎE(q) CCMs from CCMs from ÎE(q) CCMs from

q E Dubois Lian
(

eIE(q),
o
...
IE(q)

)

Dubois Lian
(

eIE(q),
o
...
IE(q)

)

16
RGB 91.47 91.47 91.62 92.50 92.21 92.79

HSV 92.35 92.06 92.79 93.82 93.97 94.41

32
RGB 92.65 92.79 93.53 93.38 93.38 93.38

HSV 94.26 94.26 94.26 95.00 94.41 94.71

64
RGB 92.94 93.38 93.38 93.53 93.09 93.97

HSV 94.71 94.56 94.56 94.71 95.00 95.00

128
RGB 93.82 94.26 93.97 93.38 93.53 93.53

HSV 94.71 94.85 95.00 94.85 95.00 95.00

256
RGB 93.09 93.38 89.85 93.09 92.94 87.50
HSV 95.15 94.71 94.12 94.85 95.15 94.12
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TABLE 4: AMP (%) for VisTex and Outex datasets. The distance parameter d is
set to 2.

(a) VisTex dataset (RGB and I1I2I3 colour spaces).

Intersection Jeffrey divergence

CCMs from ÎE(q) CCMs from CCMs from ÎE(q) CCMs from

q E Dubois Lian
(

eIE(q),
o
...
IE(q)

)

Dubois Lian
(

eIE(q),
o
...
IE(q)

)

16
RGB 94.89 94.92 95.32 95.23 95.27 95.63

I1I2I3 96.50 96.58 96.22 96.84 96.93 96.81

32
RGB 95.30 95.34 95.76 95.60 95.65 96.04

I1I2I3 96.85 96.97 96.80 97.14 97.24 97.13

64
RGB 95.42 95.48 95.98 95.70 95.75 96.19

I1I2I3 96.89 96.97 97.09 97.18 97.25 97.36

128
RGB 95.55 95.60 96.32 95.77 95.82 96.41

I1I2I3 96.96 97.02 97.24 97.10 97.19 97.44

256
RGB 95.75 95.80 96.68 95.85 95.89 96.39

I1I2I3 96.92 96.99 97.26 97.06 97.15 97.43

(b) Outex dataset (RGB and HSV colour spaces).

Intersection Jeffrey divergence

CCMs from ÎE(q) CCMs from CCMs from ÎE(q) CCMs from

q E Dubois Lian
(

eIE(q),
o
...
IE(q)

)

Dubois Lian
(

eIE(q),
o
...
IE(q)

)

16
RGB 97.17 97.18 97.02 97.37 97.37 97.08
HSV 98.42 98.43 98.65 98.53 98.53 98.71

32
RGB 97.22 97.23 97.17 97.36 97.36 97.30
HSV 98.66 98.68 98.80 98.69 98.71 98.82

64
RGB 97.21 97.21 97.18 97.32 97.32 97.29
HSV 98.70 98.71 98.83 98.70 98.71 98.83

128
RGB 97.20 97.20 97.19 97.31 97.31 97.28
HSV 98.68 98.70 98.82 98.68 98.70 98.82

256
RGB 97.21 97.21 97.20 97.30 97.30 97.21
HSV 98.66 98.69 98.79 98.65 98.67 98.73
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test image, plus all the prototypes of all the other classes. Then, we compute
the similarity to the test image of each of the Ntar target images. The position
of the true image in the sorted list of similarity values is called the rank r. The
match percentile, defined in percentage as MP = 100 × Ntar−r

Ntar−1 , is an indicator of
the retrieval performance. As expected, MP reaches 100% when the true image
is ranked first (perfect retrieval); a value of 99% means that the true image is
more similar to the test image than 99% of the other target images. The global
retrieval performance is assessed by the Average Match Percentile (AMP ) [34] over
all possible true images for a given test image and over all test images in the dataset.

Tables 4(a) and 4(b) display the average match percentile obtained with VisTex
and Outex datasets. In all cases, the AMP provided with the relevant colour space
is higher than that provided with the RGB colour space. This result confirms that
coding the colours in a relevant colour space improves the quality of texture re-
trieval. Besides, the AMP provided by CCMs computed from quarter-size images
is higher than, or equal to that provided by CCMs from demosaiced images for 26
out of the 40 cases. Therefore, we can conclude that the texture retrieval perfor-
mance achieved by quarter-size images formed from the CFA image is comparable
to that of demosaiced images. This sharpens and confirms classification results.

4.3.3. Result summary

Table 5(a) summarizes the classification and retrieval results presented in ta-
bles 3(a)–4(b). It allows the reader to easily compare the performance of the

two schemes, either CCMs extracted from the demosaiced image ÎE(q) or from the

quarter-size image pair
(

eIE(q),
o
...
IE(q)

)

. To give a synthetic view, the number of times
that each scheme performs best, for a given problem, dataset, and similarity mea-
sure, are cumulated over the five values of the quantization parameter q and over
the two colour spaces E considered for the dataset.

Each class is represented by 16 images in VisTex and 20 images in Outex dataset.
A statistical bias could result from the given split of these images into prototype and
test sets during the holdout procedure. To avoid it, we also evaluate classification
accuracies with different prototype and test sets. The available images for each
class is divided into 4 subsets of 4 (VisTex) and 5 (Outex) images. Two subsets
are used as prototypes, and two as test images, which yields C(4, 2) = 6 different
combinations. The same 6 combinations of prototype and test images are used for
the retrieval problem. While tables 3(a)–5(a) are based on the holdout defined in the
original Contrib-TC-00006 and Outex-TC-00013 datasets, table 5(b) summarizes
classification and retrieval performances using all 6 combinations.

The results in table 5(b) are consistent with those in table 5(a). The (6
times) higher number of cases noticeably highlights that Lian et al.’s demosaic-
ing procedure is less detrimental to textural information than Dubois’s, although
intersection-based CCM similarities to the original colour image are very close (see
table 1). But these results mainly confirm that the proposed scheme outperforms
classical CCM-based approaches using demosaiced images for texture classification
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TABLE 5: Summary of the scheme performances in classification and retrieval
problems, given by the number of times that each scheme performs best. The
distance parameter d is set to 2. The ranks are cumulated over q = 16, 32, 64, 128,
and 256, and over the two colour spaces considered for each dataset (a), and also
over the 6 subset combinations of prototype and test images (b). The total numbers
of first ranks sum up to more than the 40 (a) and the 240 (b) cases for each problem,
since the two schemes may equally perform best.

(a) Using the same prototype and test images as for tables 3(a)–4(b).

Problem (per-
Dataset

CCM similarity CCMs from ÎE(q) CCMs from

form. measure) measure Dubois Lian
(

eIE(q),
o
...
IE(q)

)

Classification VisTex Intersection 4 2 7

(correct E ∈ {RGB, I1I2I3} Jeffrey divergence 1 3 8

classification Outex Intersection 3 4 6

rate) E ∈ {RGB,HSV } Jeffrey divergence 3 5 7

Total number of first classification ranks 11 14 28

VisTex Intersection 0 2 8

Retrieval E ∈ {RGB, I1I2I3} Jeffrey divergence 0 2 8

(AMP ) Outex Intersection 3 5 5

E ∈ {RGB,HSV } Jeffrey divergence 5 5 5

Total number of first retrieval ranks 8 14 26

Total number of first ranks for both problems 19 28 54

(b) Using 6 different prototype and test image subsets.

Problem (per-
Dataset

CCM similarity CCMs from ÎE(q) CCMs from

form. measure) measure Dubois Lian
(

eIE(q),
o
...
IE(q)

)

Classification VisTex Intersection 12 21 42

(correct E ∈ {RGB, I1I2I3} Jeffrey divergence 11 21 39

classification Outex Intersection 20 25 24
rate) E ∈ {RGB,HSV } Jeffrey divergence 22 27 25

Total number of first classification ranks 65 94 130

VisTex Intersection 0 13 47

Retrieval E ∈ {RGB, I1I2I3} Jeffrey divergence 0 12 48

(AMP ) Outex Intersection 16 27 31

E ∈ {RGB,HSV } Jeffrey divergence 19 24 30

Total number of first retrieval ranks 35 76 156

Total number of first ranks for both problems 100 170 286
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TABLE 6: Numbers of elementary operations (top rows) and average processing
times (bottom rows) required to compute the CCMs.

CCMs from ÎE(q) CCMs from

Processing step Dubois Lian
(

eIE(q),
o
...
IE(q)

)

1a. Demosaicing 145XY 65XY 0

1b. Quarter-size image
0 0 XY

formation

2. Colour space conversion 15XY 15XY 2× 15X
2

Y
2

3. Colour quantization 3XY 3XY 2× 3X
2

Y
2

4. CCM computation 48XY 48XY 2× 48X
2

Y
2

5. CCM normalization 12q2 12q2 2× 12q2

Total number of
211XY + 12q2 131XY + 12q2 34XY + 24q2

elementary operations

Demosaicing (1a) 64 ms 42 ms 0 ms

Other processing steps (1b–5) 19 ms 19 ms 14 ms

Total average
83 ms 61 ms 14 ms

processing time

and retrieval. The next subsection shows that the proposed scheme using quarter-
size images is fully relevant as far as computational complexity is considered.

4.4. Computational complexity

To complete this experimental section, we propose to compare the computa-
tional complexity required to compare two texture images when using either the
quarter-size image pairs or demosaiced images. This study is based on the number
of elementary operations required by the compared schemes and on their processing
time. The sole elementary operations considered here are arithmetic operations, all
being equally weighted in the complexity estimation. Array indexing (or memory
access) associated with each elementary operation is not taken into account.

4.4.1. CCM computation

Table 6 summarizes the number of elementary operations required to compute
the CCMs from a CFA image ICFA of size X × Y pixels, depending on the tested
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scheme: we either estimate the demosaiced image ÎRGB (classical approach) or form
the pair of quarter-size images (proposed strategy). Then, we perform the colour
space conversion and level quantization before normalized CCMs can be computed.

Dubois’s demosaicing procedure is based on Alleysson et al.’s approach using
frequency selection [35], and is assumed to be similarly complex. It is not easy
to evaluate the computational complexity of such sophisticated algorithms, but
Lian et al. have discussed this topic for several ones [31]. These authors indicate
that 145XY elementary operations are required by the frequency-selection method,
and 65XY operations for their own procedure.

Since the (R,G,B) colour components are coded into most of colour spaces
thanks to a linear transformation [19], we retain the corresponding number of ele-
mentary operations as that of the colour conversion step. It amounts to 3 multipli-
cations and 2 additions for each colour component, requiring a total of 15 operations
by pixel. Colour space conversion hence requires 15XY elementary operations for
the demosaiced image, and only half that number for the two quarter-size images
of size X

2 × Y
2 pixels.

The quantization step of the three colour components requires 3XY elementary
operations for the demosaiced image, and only half that number for the two quarter-
size images.

Because array indexing is ignored here, the number of elementary operations
required to compute a CCM only depends on the number of co-occurrences taken
into account at each pixel. Since the neighbourhood used to compute the CCMs
contains 8 pixels, the number of co-occurrences amounts to 48XY for the 6 CCMs
computed from a demosaiced image, and only half that number for the 12 CCMs
computed from the pair of quarter-size images.

Normalizing one CCM requires q2 − 1 additions and q2 divisions, hence about
2q2 operations. So, the normalization step requires about 12q2 operations for the
6 CCMs extracted from the demosaiced image, and twice that number for the
12 CCMs extracted from the pair of quarter-size images.

Overall, the number of elementary operations required to compute the CCMs
extracted from the demosaiced colour image reaches at least 131XY +12q2, whereas
that required to compute the CCMs from the pair of quarter-size images is 34XY +
24q2.

For our experiments, the demosaicing procedures are available as Matlab code [30, 31],
whereas we implemented other steps (including quarter-size image formation) as
Java plugins under ImageJ [36]. Hence, we finally give a rough idea of the pro-
cessing times required by these operations (see last three rows of table 6). The
processing times, obtained on a CoreTM2 Duo PC at 1.58 GHz with 4 Go RAM,
are averaged over 100 images of each dataset and five values of q. They show that
demosaicing is a time-consuming step that should be avoided, and that CCMs alone
are computed faster with our scheme.
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4.4.2. CCM comparison

Measuring the similarity between two CCMs thanks to the intersection (see
equation (4)) requires q2 minimums and q2 − 1 additions, hence about 2q2 opera-
tions. So, texture comparison requires 12q2 operations using the CCMs extracted
from the demosaiced image, and 24q2 operations using the CCMs extracted from
the pair of quarter-size images.

Overall, comparing two colour texture images is divided into two successive
steps: once the CCMs have been computed, they are compared thanks to the
intersection similarity measure. When the CCMs are computed from demosaiced
colour images, performing this comparison requires at least 2×

(

131XY + 12q2
)

+
12q2 = 262XY +36q2 operations to compute the CCMs and compare them. When
the CCMs are computed from pairs of quarter-size images, the texture comparison
requires 2 ×

(

34XY + 24q2
)

+ 24q2 = 68XY + 72q2 operations. Assuming for
simplicity that the value of q2 is of the same order of magnitude as XY , our texture
comparison strategy requires nearly twice fewer elementary operations. The average
processing times in the worst case q = 256 (131 ms for CCMs from demosaiced
images and 42 ms for our scheme) are even in a ratio above 3:1.

5. CONCLUSION

This paper focuses on colour texture classification from images delivered by
single-sensor colour cameras. Such devices actually acquire CFA images, in which
each pixel is characterized by only one of the three colour components, and from
which colour images have to be estimated. We experimentally show that the de-
mosaicing step, which estimates the two missing colour components at each pixel
to deliver the demosaiced colour images, alters the texture representation quality
and is time-consuming.

This leads us to develop an original approach that extracts texture descriptors
using CFA images without any colour estimation. For this purpose, we propose
to form a pair of quarter-size colour images directly from any CFA image. Al-
though the size of these quarter-size images is reduced, they do not result from
any colour estimation (unlike demosaiced images), and allow us to code colours in
various colour spaces (unlike CFA images). Standard texture features can then be
computed from these colour images, and used to compare textures in a classifica-
tion scheme. Here, we choose the chromatic co-occurrence matrices that provide
satisfying performances.

Experimental results from benchmark texture datasets show that better clas-
sification accuracies and recognition rates are reached by comparing CCMs ex-
tracted from pairs of quarter-size images rather than CCMs extracted from demo-
saiced colour images. Moreover, our new approach is less time-consuming than
that based on demosaiced images, while still taking advantage of the properties of
colour spaces. Such outstanding performance could be exploited whenever a texture
classification scheme analyses images acquired by single-sensor colour cameras.
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This study introduces a new low-level strategy of CFA image analysis that
provides promising results. It highlights the fact that demosaicing may not be
useful and should even be avoided to analyse CFA images. Because most colour
cameras actually deliver CFA images, such an approach could be used in every
application achieving texture analysis. Fast colour–texture segmentation is required
for instance by on-board low-level image analysis algorithms running in real time,
such as for mobile robots control [37] or road detection in vehicle environment [38].
But CCMs are known to be sensitive to illumination variations [39], and CCM-
based texture classification only provides satisfying results when the illumination
is constant. This is a key issue in the analysis of outdoor scene images. To deal
with it, we now intend to extract texture descriptors from the CFA image that are
as invariant as possible to illumination changes.
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