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EDGE SEPARATORS FOR QUASI-BINARY TREES

JORGE LUIS RAMÍREZ ALFONSÍN AND SERGE TISHCHENKO

Abstract. One wishes to remove k − 1 edges of a vertex-weighted tree T such

that the weights of the k induced connected components are approximately the

same. How well can one do it ? In this paper, we investigate such k-separator for

quasi-binary trees. We show that, under certain conditions on the total weight of

the tree, a particular k-separator can be constructed such that the smallest (re-

spectively the largest) weighted component is lower (respectively upper) bounded.

Examples showing optimality for the lower bound are also given.

Keywords: Binary tree, separator

1. Introduction

The seminal paper by Lipton and Tarjan [1] has inspired a number of separator-

type problems and applications (we refer the reader to [2] for a recent survey on

separators).

Let us consider the following question.

One wishes to split a given embedding of a planar connected graph

G into blocks formed by weighted faces (weights might be thought

as area of faces) such that the dual of the planar graph induced by

each block is connected and the blocks’ weights are approximately

the same. How well can this be done ?

One way to answer the latter is by considering k-separators on a spanning tree

TG of the vertex-weighted dual graph of G. Indeed, one may want to remove k − 1

edges of TG such that the weights of the k induced connected components of TG are

approximately the same.

More formally, let T = (V,E) be a graph and let ω : V (T ) −→ R be a weight

fonction. Let ω(T ) =
∑

v∈V (T )

ω(v) and let 1 ≤ k ≤ |V | − 1 be an integer. A

k-separator of T is a set F ⊂ E(T ) with |F | = k − 1 whose deletion induce k
1
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connected components, say C1
F (T ), . . . , C

k
F (T ). If we let ω(C

i
F (T )) =

∑

v∈V (Ci
F
(T ))

ω(v)

then ω(T ) =
k
∑

i=1

ω(C i
F (T ). Let

βk(T ) := max
F⊆E,|F |=k−1

{

min
1≤i≤k

ω(C i
F (T ))

}

and

αk(T ) := min
F⊆E,|F |=k−1

{

max
1≤i≤k

ω(C i
F (T ))

}

.

An optimal k-separator is achieved when βk(T ) = αk(T ) =
1
k
ω(T ).

In this paper, we investigate the existence of k-separators with large (resp. small)

value for βk (resp. for αk) for the class of quasi-binary trees. A tree is called binary if

the degree of any vertex is equals three except for pending vertices (vertices of degree

one) and a root vertex (vertex of degree two). A tree is say to be quasi-binary if

it is a connected subgraph of a binary tree. Notice that a good k-separators in

quasi-binary trees would lead to a good k-block separators for triangulated planar

graphs in the above question.

Since d(v) = 1, 2 or 3 for any v ∈ V (T ) of a quasi-binary tree T then we may

define, for each i = 1, 2, 3,

Vi := {v ∈ V (T )|d(v) = i} and ωi := max{ω(v)|v ∈ Vj for each i ≤ j ≤ 3}.

Notice that

V (T ) = V1 ∪ V2 ∪ V3, ω1 ≥ ω2 ≥ ω3 and ω1n1 + ω2n2 + ω3n3 ≥ ω(T ). (1)

where ni = |Vi| for each i = 1, 2, 3.

Our main results are the following.

Theorem 1. Let T be a quasi-binary tree. Let k ≥ 2 be an integer and γ ∈ R with

γ ≥ ω3. If

ω(T ) ≥ max

{

(k + 1)(k − 2)

(k − 1)
ω1 −

2

(k − 1)
γ,

2(k + 1)(k − 2)

(k − 1)
ω2 − kγ

}

then

αk(T ) ≤
2ω(T ) + (k − 1)γ

k + 1
·
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Theorem 2. Let T be a quasi-binary tree. Let k ≥ 2 be an integer and γ ∈ R with

γ ≥ ω3. If

ω(T ) ≥ max

{

(2k − 1)

2
ω1 −

1

2
γ, (2k − 1)ω2 − kγ

}

then

βk(T ) ≥
ω(T )− (k − 1)γ

2k − 1
·

We notice that the bounds for αk(T ) and βk(T ) are not necessarily reached by

using the same k-separator.

The second author has studied k-separators in a more general setting (for planar

graphs with weights on vertices, edges and faces) where a lower bound for βk is

obtained [3] . We noticed that the conditions given in [3] are different from those

presented in Theorem 2. Moreover, the proof of Theorem 2 (which is in the same

spirit as that of Theorem 1) is different from that given in [3]. The value αk is not

treated in [3] at all.

In the following section we present some preliminary results needed for the rest

of the paper. Main results are proved in Section 3. Finally, a family of quasi-binary

trees, showing optimality of Theorem 2, is constructed in the last section.

2. Preliminary results

Let T be a quasi-binary tree with ω(T ) > 0. We let n = |V (T )| > 1, and ni = |Vi|

for each i = 1, 2 and 3. We observe that

n1+2n2+3n3 = 2|E(T )| = 2(n−1) = 2n1+2n2+2n3−2 and thus n1 = n3+2. (2)

Our main theorems will be proved by induction. For, we need the following two

lemmas.

Lemma 1. Let T be a quasi-binary tree with n = |V (T )| > 1. Let γ, η ∈ R such

that γ ≥ ω3 and max
{

ω1−γ

2
, ω2 − γ

}

≤ η ≤ ω(T )
2

. Then, there exist e ∈ E(T ) such

that

η ≤ ω(C i
e) ≤ 2η + γ

for some 1 ≤ i ≤ 2, where C1
e , C

2
e denote the two connected components of T \ {e} .

Proof. The inequality η ≤ ω(C i
e) holds for i = 1 and/or i = 2 and for any

e ∈ E(T ), otherwise ω(T ) = ω(T )
2

+ ω(T )
2

≥ 2η > ω(C1
e ) + ω(C2

e ) = ω(T ), which is a

contradiction.
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We now prove the right-hand side inequality. Without lost of generality, we

suppose that ω(C1
e ) ≥ η for each e ∈ E(T ). If we also have that ω(C1

e ) ≥ η then we

choose indices such that |V (C1
e )| ≤ |V (C2

e )|.

We proceed by contradiction, suppose that ω(C1
e ) > 2η + γ for all e ∈ E(T ). Let

e = {v1, v2} with vi ∈ V (C i
e) be the edge that minimizes |V (C1

e )|. We have three

cases.

Case 1) If d(v1) = 1 then ω(C1
e ) = ω(v1) ≤ ω1. Since η ≥ ω1−γ

2
then 2η + γ ≥

ω1 ≥ ω(C1
e ), which is a contradiction.

Case 2) If d(v1) = 2 then we let f = {v1, u} ∈ E(T ), f 6= e be the other edge

incident to v1.

Let C i
f , i = 1, 2 be the two connected components of T \ {f}. Since |V (C1

f )| ≥

|V (C1
e )| then V (C1

e )) = V (C2
f )∪ {v1} so ω(C2

f ) = ω(C1
e )− ω(v1) > 2η+ γ − ω2 ≥ η,

and thus |V (C2
f )| ≥ |V (C1

f )| ≥ |V (C1
e )| which is a contradiction.

Case 3) If d(v1) = 3 then we let f1 = {v1, u}, f2 = {v1, v} ∈ E(T ), f1, f2 6= e

be the other two edges incident to v1 with V (C2
f1
) ∪ V (C2

f2
) = V (C1

e ) \ {v1}. So,

ω(C2
f1
) + ω(C2

f2
) = ω(C1

e ) − ω(v1) > 2η + γ − ω3 ≥ 2η. Without loss of generality,

we suppose that ω(C2
f1
) ≥ ω(C2

f2
), and thus ω(C2

f1
) > η and |V (C2

f1
)| ≥ |V (C1

f1
)| ≥

|V (C1
e )| which is a contradiction. ⊓⊔

Lemma 2. Let T be a quasi-binary tree with n = |V (T )| > 1. Let γ ∈ R such that

γ ≥ ω3. If ω(T ) ≥ max
{

3ω1−γ

2
, 3ω2 − 2γ

}

then

β2(T ) ≥
ω(T )− γ

3
and α2(T ) ≤

2ω(T ) + γ

3
·

Proof. We first claim that ω(T ) ≥ −2γ. Indeed,

(n+ 2)(ω(T ) + 2γ) = (2n1 + n2)ω(T ) + (2n1 + n2)2γ

≥ 2n1

(

3
2
ω1 −

1
2
γ
)

+ n2(3ω2 − 2γ) + 3n3(ω3 − γ) + (2n1 + n2)2γ

≥ 3(n1ω1 + n2ω2 + n3ω3) + 3(n1 − n3)γ ≥ 3(ω(T ) + 2γ).

Therefore, since n ≥ 1 then (ω(T ) + 2γ) ≥ 0 and the result follows.

We now claim that

max

{

ω1 − γ

2
, ω2 − γ

}

≤ η ≤
ω(T )

2

is verified by taking η = ω(T )−γ

3
. Indeed,

η ≤
ω(T )

2
⇐⇒

ω(T )− γ

3
≤

ω(T )

2
⇐⇒ ω(T ) ≥ −2γ.
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For the lower bound, we have two cases.

Case 1)

η ≥
ω1 − γ

2
⇐⇒

ω(T )− γ

3
≥

ω1 − γ

2
⇐⇒ ω(T ) ≥

3ω1 − γ

2

which is true by hypothesis.

Case 2)

η ≥ ω2 − γ ⇐⇒
ω(T )− γ

3
≥ ω2 − γ ⇐⇒ ω(T ) ≥ 3ω2 − 2γ

which is true by hypothesis.

Therefore, by Lemma 1, there is an edge e ∈ E(T ) such that

ω(T )− γ

3
≤ ω(C i

e) ≤
2ω(T ) + γ

3

for one of the two connected components C i
e, i = 1, 2 of T \ {e} and the result

follows. ⊓⊔

3. Proofs of main results

We may now prove our main results.

Proof of Theorem 1. We first show that ω(T ) > −kγ (needed for the rest of the

proof). For, we consider

(

n− 2(k−1)
k

)

(ω(T ) + kγ) = (2n1 + n2)ω(T ) + (2n1 + n2)kγ − 2(2k−1)
k

(ω(T ) + kγ)

≥ 2n1

(

(2k−1)
2

ω1 −
1
2
γ
)

+ n2((2k − 1)ω2 − kγ)

+(2k − 1)n3(ω3 − γ) + (2n1 + n2)kγ − 2(2k−1)
k

(ω(T ) + kγ)

≥ (2k − 1)(n1ω1 + n2ω2 + n3ω3) + (2k − 1)(n1 − n3)γ

−2(2k−1)
k

ω(T )− 2(2k − 1)kγ

≥ (2k−1)(k−2)
k

ω(T ) > 0.

Since n > 1 if and only if n− (2k−1)
k

> 0 then (ω(T ) + kγ) > 0 and the inequality

follows.

We now shall construct the desired k-separator as follows. Let Tk = T , we first find

an edge ek ∈ E(Tk) (by using Lemma 1) such that one of the connected components

of Tk \ {ek}, say Tk−1, has a suitable weight (the other connected component of

Tk \ {ek}, say Rk−1, remains fixed for the rest of the construction). By a suitable

weight we mean a weight such that Lemma 1 can be applied to Tk−1 in order to find

an edge ek−1 ∈ E(Tk−1) such that one of the connected components of Tk−1 \{ek−1},
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say Tk−2, has again a suitable weight (and again the other connected component of

Tk−1 \ {ek−1}, say Rk−2, remains fixed for the rest of the construction), and so on.

We claim that the weight of component Tj is suitable if

(j − 1)(k − 1)

(k + 1)(k − 2)
ω(T ) +

(

2(j − 1)

(k + 1)(k − 2)
− 1

)

γ ≤ ω(Tj) ≤
(j + 1)

(k + 1)
ω(T ) +

(k − j)

(k + 1)
γ· (3)

Now, in order to apply Lemma 1 we need to define an appropriate parameter ηj
(that ensures suitable weights throughout the construction). For each j = k, k −

1 . . . , 2, we set

ηj =
(k − 3)

2(2k − j − 3)
ω(Tj)−

(j − 3)(k − 1)

2(2k − j − 3)(k + 1)
ω(T )−

(k + 3)(k − 2)− j(k − 1)

2(2k − j − 3)(k + 1)
γ· (4)

We first claim that

max

{

ω1 − γ

2
, ω2 − γ

}

≤ ηj ≤
ω(Tj)

2
·

For the lower bound we consider the following

nj = (k−3)
2(2k−j−3)

ω(Tj)−
(j−3)(k−1)

2(2k−j−3)(k+1)
ω(T )− (k−3)(k−2)−j(k−1)

2(2k−j−3)(k+1)
γ

≥ (k−3)
2(2k−j−3)

(

(j−1)(k−1)
(k+1)(k−2))

)

ω(T ) + (k−3)
2(2k−j−3)

(

2(j−3)
(k+1)(k−2)

− 1
)

γ

− (j−3)(k−1)
2(2k−j−3)(k+1)

ω(T )− (k−3)(k−2)−j(k−1)
2(2k−j−3)(k+1)

γ

= (k−1)
2(k+1)(k−2)

ω(T )− k2−k−4
2(k+1)(k−2)

γ

≥ max
{

ω1

2
− 1

(k+1)(k−2)
γ, ω2 −

k(k−1)
2(k+1)(k−2)

γ
}

− (k2−k−4)
2(k+1)(k−2)

γ

= max
{

ω1

2
− γ

2
, ω2 − γ

}

.

And, for the upper bound, we consider the following.

nj = (k−3)
2(2k−j−3)

ω(Tj)−
(j−3)(k−1)

2(2k−j−3)(k+1)
ω(T )− (k−3)(k−2)−j(k−1)

2(2k−j−3)(k+1)
γ

=
ω(Tj)

2
− (k−j)

2(2k−j−3)
ω(Tj)−

(j−3)(k−1)
2(2k−j−3)(k+1)

ω(T )− (k+3)(k−2)−j(k−1)
2(2k−j−3)(k+1)

γ

≤
ω(Tj)

2
− (k−j)

2(2k−j−3)

(

(j−1)(k−1)
(k+1)(k−2)

ω(T ) +
(

2(j−1)
(k+1)(k−2)

− 1
)

γ
)

− (j−3)(k−1)
2(k−j−3)(k+1)

ω(T )− (k+3)(k−2)−j(k−1)
2(2k−j−3)(k+1)

γ

≤
ω(Tj)

2
− (j−2)

(k+1)(k−2)

(

(k−1)
2

ω(T ) + γ
)

=
ω(Tj)

2
− (j−2)

2k
ω(T )− (j−2)

k(k+1)(k−2)
(ω(T ) + kγ) ≤

ω(Tj )

2
·

Therefore, by Lemma 1, one of the connected components of Tj \ {ej}, say Rj−1,

verifies
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ηj ≤ ω(Rj−1) ≤ 2ηj + γ (5)

and thus, the weight of the other connected component of Tj \ {ej}, says Tj−1,

satisfies

ω(Tj)− 2ηj − γ ≤ ω(Tj−1) ≤ ω(Tj)− ηj·

So, the set of edges e1, . . . , ek−1 chosen as above gives a k-separator T where the

connected component with the largest weight is given by max
1≤i≤k

{ω(Tj)}. In order to

upper bound the latter, we shall show that that the components Tj, j = k, k−1, . . . , 1

have suitable weights satisfying both inequalities of (3).

We proceed by induction on j. If j = k the upper bound is immediate. For the

lower bound we have,

ω(Tk) = ω(T ) = (k−1)(k−1)
(k+1)(k−2)

ω(T ) +
(

2(k−1)
(k+1)(k−2)

− 1
)

γ + (k−3)
(k+1)(k−2)

(ω(T ) + kγ)

≥ (k−1)(k−1)
(k+1)(k−2)

ω(T ) +
(

2(k−1)
(k+1)(k−2)

− 1
)

γ. (6)

The latter inequality uses the fact that ω(T ) > −kγ. Suppose that inequalities

hold for j ≤ k. By using (3),(4) and (6), we have

ω(Rj−1) ≥ ω(Rj)− 2ηj − γ

= ω(Rj)−
(k−3)

(2k−j−3)
ω(Rj) +

(j−3)(k−1)
(2k−j−3)(k+1)

ω(T ) + (k−3)(k−2)−j(k−1)
(2k−j−3)(k+1)

γ − γ

≥ (k−j)
(2k−j−3)

(

(j−1)(k−1)
(k+1)(k−2)

)

ω(T ) + (k−j)
(2k−j−3)

(

2(j−1)
(k+1)(k−2)

− 1
)

γ

+ (j−3)(k−1)
(2k−j−3)(k+1)

ω(T )− (k+3)(k−2)−j(k−1)
(2k−j−3)(k+1)

γ − γ

= (j−3)(k−1)
(k+1)(k−2)

ω(T ) +
(

2(j−2)
(k+1)(k−2)

− 1
)

γ.

And

ω(Rj−1) ≤ ω(Rj)− ηj

= ω(Rj)−
(k−3)

2(2k−j−3)
ω(Rj) +

(j−3)(k−1)
2(2k−j−3)(k+1)

ω(T ) + (k−3)(k−2)−j(k−1)
(2k−j−3)(k+1)

γ

≤ (3k−2j−3)(j+1)
2(2k−j−3)(k+1)

ω(T ) + (3k−2j−3)(k−j)
2(2k−j−3)(k+1)

γ

+ (j−3)(k−1)
2(2k−j−3)(k+1)

ω(T ) + (k+3)(k−2)−j(k−1)
2(2k−j−3)(k+1)

γ

= j

(k+1)
ω(T ) + (k−j+1)

(k+1)
γ.
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Therefore, (3) holds for all j = k, . . . , 1 when T is decomposed into the k compo-

nents T1, Rk, . . . , R2. So,

αk = max

{

max
2≤j≤k

{ω(Rj)} , ω(T1)

}

(5)

≤ max

{

max
2≤j≤k

{2ηj + γ} , ω(T1)

}

(4)
= max

{

max
2≤j≤k

{

(k−3)
(2k−j−3)

ω(Tj)−
(j−3)(k−1)

(2k−j−3)(k+1)
ω(T ) + k2−2k+3−2j

(2k−j−3)(k+1)
γ
}

, ω(T1)

}

(3)

≤ max

{

max
2≤j≤k

{

2
(k+1)

ω(T ) + (k−1)
(k+1)

γ
}

, 2
(k+1)

ω(T ) + (k−1)
(k+1)

γ

}

= 2
(k+1)

ω(T ) + k
(k+1)

γ,

as desired. ⊓⊔

Proof of Theorem 2. We first show that ω(T ) > −kγ (needed for the rest of the

proof). For, we consider

(

n− 2(k−1)
k

)

(ω(T ) + kγ) = (n+ 2)(ω(T ) + kγ)− 2(2k−1)
k

(ω(T ) + kγ)

= (2n1 + n2)ω(T ) + (2n1 + n2)kγ − 2(2k−1)
k

ω(T )− 2(2k − 1)γ

≥ 2n1

(

(2k−1)
2

ω1 −
1
2
γ
)

+ n2((2k − 1)ω2 − kγ)

+(2k − 1)n3(ω3 − γ) + (2n1 + n2)kγ − 2(2k−1)
k

ω(T )− 2(2k − 1)γ

≥ (2k − 1)(n3ω3 + n2ω2 + n1ω1)−
2(2k−1)

k
γ(T )

+(2k − 1)(n1 − n3 − 2)γ

≥ (2k − 1)ω(T )− 2(2k−1)
k

ω(T ) = (2k−1)(k−2)
k

ω(T ) > 0.

Since n > 1 if and only if n− (2k−1)
k

> 0 then (ω(T ) + kγ) > 0 and the inequality

follows.

We shall construct the desired k-separator in a similar way as done in Theorem

1. Let Tk = T , we find an edge ek ∈ E(Tk) (by using Lemma 1) such that one of

the connected components of Tk \ {ek}, say Rk, has a prescribed weight and which

will be fixed for the rest of the construction. By applying Lemma 1 to the other

component of Tk \ {ek}, say Tk−1, we find an edge ek−1 ∈ E(Tk−1) such that one of

the connected components of Tk−1 \ {ek−1}, say Rk−2, has a prescribed weight and

which will be fixed for the rest of the construction, and so on. The only difference

with the procedure in the proof of Theorem 1 is that the value ηj is now fixed for

any step of the construction

ηj = η = ω(T )−(k−1)γ
2k−1

for all j = k, k − 1, . . . , 2.
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First, we claim that η ≥ max
{

ω1−γ

2
, ω2 − γ

}

. Indeed,

η = ω(T )−(k−1)γ
2k−1

≥ max
{

(2k−1)ω1−γ

2(2k−1)
,
(2k−1)ω2−kγ

2(2k−1)

}

− (k−1)γ
2k−1

= max
{

ω1−γ

2
, ω2 − γ

}

.

Therefore, at each step (by Lemma 1) one of the connected components of Tj\{ej},

say Rj−1 verifies

η =
ω(T )− (k − 1)γ

2k − 1
≤ ω(Rj−1) ≤

2ω(T ) + γ

2k − 1
= 2η + γ.

The weight of the other connected component of Tj \ {ej}, say Tj−1 satisfies

ω(Tj)−
2ω(T )− ω

2k − 1
≤ ω(Tj−1) ≤ ω(Tj)−

ω(T )− (k − 1)γ

2k − 1
.

Since ω(Tk) = ω(T ), we obtain

ω(Tj) ≥ ω(T )− (k − j)
2ω(T ) + γ

2k − 1
=

(2j − 1)ω(T )− (k − j)γ

2k − 1
, j = k, k − 1, . . . , 1.

We claim η ≤
ω(Tj )

2
for each j = k, k − 1, . . . , 2. Indeed,

ω(Tj)

2
≥ (2j−1)ω(T )−(k−j)γ

2(2k−1)

= ω(T )−(k−1)γ
2k−1

+ (2j−3)ω(T )+(k+j−2)γ
2(2k−1)

= ω(T )−(k−1)γ
2k−1

+ (j−2)
2k

ω(T ) + (k+j−2)
2k(2k−1)

(ω(T ) + kγ)

≥ ω(T )−(k−1)γ
2k−1

= η.

So, the set of edges {ek, ek−1, . . . , e2} chosen as above forms a k-separator Sk of

T where the connected component with the smallest weight is given by

β(Sk) = min{ω(Rk−1), ω(Rk−2), . . . , ω(R1), ω(T1)} ≥
ω(T )− (k − 1)ω

2k − 1

as desired. ⊓⊔

4. Tightness

In this section we show that the lower bound presented in Theorem 2 is optimal.

For, we consider the quasi-binary tree Tk consisting of a root vertex r joined by k−1

different paths to k−1 vertices x1, . . . , xk−1 each of which is adjacent to exactly two

vertices of degree one.
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We set ω(xi) = ω > 0 for all i, ω(r) = ω(v) = ω′ ≥ ω > 0 where d(v) = 1 and the

weight of any other vertex equals zero. So,

ω(Tk) = (k − 1)ω + 2(k − 1)ω′ + ω′ = (k − 1)ω + (2k − 1)ω′.

Let F be an optimal k-separator of T . We have that either F contains one of the

edges {xi, v}, 1 ≤ i ≤ k−1 with v a pending vertex (so vertex v will be a connected

component itself in the separator and thus βk = ω′) or F contains no such edges

in which case we find (by an easy analysis of Tk) that the root vertex r will be

in a connected component containing just vertices of weight zero in any optimal

separator (obtaining again that βk = ω′).

Lower bound of Theorem 2 gives

βk ≥
1

2k − 1
ω(Tk)−

(

k − 1

2k − 1

)

ω3 =
1

2k − 1
((k − 1)ω + (2k − 1)ω′)−

(

k − 1

2k − 1

)

ω = ω′

showing the desired optimality.
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