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ABSTRACT

Robot localization is a key barrier to providing natural interaction

between 3D virtual characters, human users and mobile robots.

Knowing where the robot is, relative to a known world-frame,

is essential to directed gestures, gazes and expressions between

the robot and the other real and virtual participants in a telep-

resence system. The intrinsic noise of robots is a flexible and

robust, yet under-examined, source for localization information.

Sounds that likely localize the robot are identified and separated

from background noises using a support vector machine. The re-

sulting sound-bearing data is combined with robot odometry using

a particle filter. Experiments conducted in a noisy office environ-

ment show substantial improvement over odometry alone.

Index Terms — Robot Localization, Intrinsic Noise, Particle

Filter, Support Vector Machine, Mixed-Reality, Integrated Inter-

action

1. INTRODUCTION

Several new technologies hold out the promise of integrated, sit-

uated human-autonomous agent interaction. Life-like virtual hu-

mans can be displayed on 3D auto-stereoscopic LCD displays to

appear within the viewer’s interaction space. Mobile humanoid

robots are able to walk within human environments, directly in-

teracting with both users and manipulable objects. Such mobile

robots and 3D virtual humans will exist explicitly within the 3D

space of the human viewers. The regions of 3D space that hu-

man users can directly touch, see and hear are the same regions of

3D space that the virtual humans and mobile robots can pointed

to, look at and manipulate. With a common reference frame and

spatial context, interactions between controlled agents (virtual hu-

man or mobile robot) are seamlessly integrated into the real-world

environment of the user. We refer to this specific kind of mixed-

reality as integrated interaction environments (IIE). Fig. 1 pictures

an IIE within a relaxed office setting, complete with a mobile hu-

manoid robot and a virtual human character on the display.

A key difficulty with realizing an IIE is determining precisely

the locations of humans and robots. This problem is exacerbated

by two practical factors common to home and commercial set-

tings. First, environments are generally dynamic, cluttered and

visually complex, making localization algorithms based solely on

vision hard to use. Second, physical properties of floor surfaces,

including rigidity and friction, vary broadly across types of floors,

and floor type may differ even within a single IIE. This limits

the accuracy of odometry methods that could be used to local-

ize robots. Classic approaches to localization depend primarily on

robot odometry and ego-centric vision. Robot odometry measures

Figure 1. Scenario example image

changes to the robot’s internal state (e.g., joint angles) to deter-

mine the robot’s change in world-space position. Odometry alone

is subject to drift and errors due to unmeasured quantities, such as

the slip between a robot’s foot and the floor. Odometry is less re-

liable when the robot is walking on unusual, complex or uncertain

surfaces, such as home or office carpeting. Ego-centric vision is

perhaps the most common mean of robot localization [1], and has

found significant success in semi-structured environments such as

autonomous driving [2]. However, vision’s effectiveness is greatly

reduced in practical environments that may contain reflecting ob-

jects or confounding colors or textures.

In this paper, we introduce a localization system designed to

mitigate these real-world impediments. The key contribution is

the observation that operating mobile robots emit significant, iden-

tifiable motor noise, and that this motor noise provides usable in-

formation about the location of the robot. This intrinsic noise is

shown to be, on its own, sufficient to localize an unmodified Alde-

baran Nao humanoid robot within a noisy office setting. Further,

we show that inexpensive, commodity microphone arrays, such as

the Microsoft Kinect are sufficient for practical implementations.

While this paper considers localization using only intrinsic noise,

we speculate that intrinsic noise could also augment vision-based

localization or be used as an alternative in circumstances when

vision fails, such as when the line-of-sight is partially or totally

occluded or in particularly visually complex environments.

Unfortunately, naive use of microphone arrays to locate the

robot can fail in the presence of situational noise, for example,

conversations, passing footsteps, cell phone rings, opening and

closing of doors, and office printers. In order for the intrinsic noise

of the robot to be useful for localization, a method is needed to

distinguish nuisance sounds from the useful intrinsic robot noise.

Further, even when nuisance sounds are removed, the accuracy

and precision of commodity microphone arrays are poor, leading

to erratic and noisy position estimates. Previous approaches to us-

ing sound for robot localization have used either specific sounds



emitted by the robot [3], or considered the related but distinct

problem of using robot-mounted microphones for localizing en-

vironmental sounds [4].

Our approach uses two techniques from machine learning to

address the two key problems of situational noise and sound lo-

calization sensor inaccuracy. First, as described in section 2, seg-

ments of recorded sound are classified based on a small number

of signature features. Second, sounds that are likely to reveal the

robot’s location are provided as sensor data to a sequential Monte

Carlo filter, as discussed in section 3. To validate the proposed

method, an IIE was setup in a natural, noisy office environment,

and the accuracy of intrinsic-noise localization was compared to

simple odometry as reported in section 4. Although the proposed

method uses only intrinsic-noise, it is found to be significantly

more accurate than odometry, and could serve both to augment

better-established vision-based techniques, and as a backup for

real-world situations were vision is confounded.

2. SOUND PROCESSING AND CLASSIFICATION

A sound localization device, such as the Kinect, outputs the esti-

mated bearing of a perceived sound in its own frame, i.e. a bear-

ing of 0 corresponds to a sound emitted in front of the sensor.

A key difficulty with effective sound localization is distinguish-

ing sounds that inform about the robot position from the broad

class of sounds that do not. Different IIEs will certainly be sub-

ject to different confounding sounds, and different mobile robots

will emit different intrinsic noise. Experimental recordings are

used to build a statistical model and a classification module ca-

pable of distinguishing robot intrinsic noise from ambient sounds.

This data-driven approach requires a training phase for each robot-

environment pairing, but also allows the flexibility of learning.

To record the sample sounds, the robot walks in-place for a

short period of time. It is placed by hand at an actual bearing θ

in the sensor frame. During this period, a sample of typical con-

founding sounds are made, such as human speech or cell-phone

rings. The sound localization sensor outputs an observed bearing

θ̂. θ and θ̂ are recorded for each sound sample, at 60 Hz. For this

particular experiment, the recordings are repeated at nine separate

actual bearings, shown in Fig. 2, for approximately one minute at

each bearing, for a total of approximately 36,000 samples. The

fast Fourier transform is applied to each sample and the intensi-

ties are aggregated across 500 Hz-wide bands evenly from 0 Hz to

8000 Hz. The aggregated intensity corresponding to the j th band-

width is noted Ij . For the system to ignore properly extraneous

environmental noises, each sound sample is classified using its

frequency signature (Ij)j . Classification is done using a support

vector machine (SVM) [5]. Samples were annotated according to

the correspondence between the measured bearing and the robot

position, i.e. θ̂ ∼ θ. The feature vector for each sound sample

is the vector of sixteen intensities Ij scaled to within (−1, 1). A

binary classification of:

a =

{

0 if |θ̂ − θ| ≤ π
24

1 otherwise
(1)

was assigned to each scaled sample Ij for training the SVM. Five-

fold cross-validation gave a 76.1% classification accuracy of sam-

ples. Classification of individual samples is fast enough to match

the sensor rate. As the system is based on a probabilistic approach

we use the probability of each sample, given by SVM, to modify
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Figure 2. Recorded error in bearing angle (circles) for each actual bear-

ing angle (black lines) between robot and microphone array. Each color

represents a different actual bearing. Kinect is more accurate for sounds

coming in front of it (bearings close to 0), and less accurate at the ends of

its range ( ± π/4).

the confidence of the associated bearing. Such an approach also

reduces the effects of mis-classification.

3. PROBABILISTIC LOCALIZATION

The goal of localization is to estimate the position of the robot

x
k = [x, y, φ]T at time t = k. Each ith sound sensor registered in

the system provides an estimate of the bearing θ̂i from that sensor

to the robot. Each of these bearings are imprecise, due to noise

in the microphone array time-delay estimation, and uncertain, due

to the uncontrolled nature of the robot’s intrinsic sounds and the

inherent randomness of the environment. The total sensor infor-

mation at any one time is z = [θ̂i, ai]i. Fig. 3 shows a theoretical

example of a robot localized by two sound sensors.

θ2

θ1

Figure 3. Schematic experimental setup. Intrinsic noise from the robot is

localized by two Kinects.

The sequential Monte Carlo approaches, such as the parti-

cle filter [6], have proven extremely effective for robot localiza-

tion. These methods discretize the probability distribution of be-

lief about the robot’s current position into a set of weighted hy-

potheses or samples. Belief about the robot’s position is updated

by a recursive Bayes filter, estimating the posterior distribution of

positions conditioned on sensor data up to time k, z1:k.

The recursive process entails a prediction step, where the model

of the robot’s motion p(xk|xk−1) is used to update the prior prob-

ability distribution of robot state p(xk−1|z1:k−1) as

p(xk|z1:k−1) =

∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (2)
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Figure 4. Histogram of the signed error in bearing reading vs the mea-

sured sound angle. Note the increased error around the zero angle and the

slightly asymmetric form.

In practice, the model of robot motion is conditioned on the com-

manded motion of the robot and the model of this error, as de-

scribed in detail in section 3.1. With each iteration, new sensor

data zk for time k is measured and used to calculate the posterior

in the update step, with a post-normalization step,

p(xk|z1:k) ∝ p(zk|xk)p(xk|z1:k−1), (3)

The particle filter discretizes the probability distribution of

robot state as Sk
j = [xk

j , w
k
j ] for time t = k and with j as the

particle index. In each time-step, prediction and update are ap-

plied to each particle. The final estimate of robot position for

each time-step is a robust mean of a windowed average around

the highest-weighted particle.

3.1. Robot Motion Model

The model of the robot’s motion is determined empirically, and is

specific to the particular robot (here, the Aldebaran Nao) and the

floor surface conditions. Motion commands of linear velocity v

and angular rate of change in heading ω are communicated to the

robot in coordinates relative to its current direction of facing φ.

The motion model updates hypothesis positions over timestep ∆t

according to





xk

yk
φk



 =





xk−1 + v̄∆t cos(φk−1)
yk−1 + v̄∆t sin(φk−1)

φk−1 + ω̄∆t



 (4)

with
(

v̄

ω̄

)

=

(

v +N (lµ, lσ2)
ω̄ +N (rµ, rσ2)

)

(5)

where N (µ, σ2) is the Gaussian distribution and dµ, dσ2 define

the linear noise distribution and rµ, rσ2 define the angular.

3.2. Sensor Model

The role of the sensor model within the particle filter is to deter-

mine the probability of the observed sensor data zk at time k given

some hypothetical robot state x,

p(zk|xk) =
∏

i

(1−a
k
i )+a

k
i (erf(θki +

w

2
)− erf(θki −

w

2
)) (6)

for fixed sample width w and with error function erf from N (sµ, s
2

σ).
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Figure 5. Linear robot odometry vs distance actually travelled.

4. EXPERIMENTAL VALIDATION

4.1. Empirical Sensor Model

The accuracy and precision of the Kinect’s sound-bearing sensing

were determined experimentally, using the average values from

two different Kinect devices. From the data described in section 2,

the best-fit parameters of the assumed normal distribution were a

mean sµ of 0.145 rad and a standard deviation of 0.15 rad. A

histogram of the error in measured bearing is shown in Fig. 4.

4.2. Empirical Robot Motion Model

In order to estimate the error in linear and angular motion, the

robot was assigned different walking tasks, and for each we recorded

the robot command, the odometry measures, and real measures

taken using a meter and a protractor. The robot commands were

divided in two groups: first walking straight covering 0.5, 1.0, 1.5,

2, 3 and 4 meters, and second walking one meter after turning on

the spot of -135, -90, -45, 45, 90, 135 and 180 degrees.

The best-fit Gaussian noise model for the distance travelled

by the robot in this environment was
(

dµ

d
σ2

)

=
(

1.125

0.075

)

and the

best fit for rotational error,
(

rµ

r
σ2

)

=
(

0.15v

0.05

)

.

Fig. 5 illustrates the measured values for distance error, and

shows the high quality of the linear fit. Note also that angular

noise depends on the commanded rate of travel.

4.3. Spatial Setup

Our final layout for the walking experiment is similar to Fig. 3.

Even though two Kinects are theoretically sufficient to localize

a robot navigating on a 2D plane, we have added a third Kinect

for better precision. The coordinates, 2D position and orientation

(x, y, α) of the Kinects in a fixed world-frame are: (−1.0, 0.0, 0.0),
(2.0, 0.0, π

4
) and (0.0, 4.0, π). We are covering, with satisfying

results a rough area of 3 by 3 meters.

4.4. Results

As a test scenario the robot had to perform a walking task and

reach a pre-define goal, starting from a fixed configuration. Fig. 6

shows one trial of this experiment. During the walk, the system

uses information from the sound localization and the robot odom-

etry to update an estimate of robot position and heading. The robot

used this estimate in a feedback loop to constantly walk towards



Figure 6. Representation of robot key position while traveling to the goal

point

the goal. The robot was always placed on the same starting con-

figuration (1.0, 3.0, π) and aimed at reaching the 2D goal point

(0.0, 1.5). No prior knowledge about the robot initial position was

given to the probabilistic localization engine. The robot started

by walking straight for 5 s, to bootstrap the localization engine.

Then, the walk control feedback-loop was running at a frequency

of 1 Hz. The walk was stopped when the estimate of the robot

distance to the goal was less than 0.2 m.

trial time(s) Position Estimate Error(m) Distance to goal(m)

1 62 0.142 0.17

2 32 0.165 0.18

3 45 0.14 0.184

4 84 0.21 0.178

5 35 0.21 0.161

avg 51.6 0.173 0.174

Reference 35 1.06 1.05

Table 1. Recordings from 6 robot trials.

As a reference trial, we put the robot at the starting configura-

tion and made it walk towards the target using the same walking

strategy and only odometry for localization during the walk. In

this trial, perfect knowledge of the robot world-frame initial con-

figuration was assumed. Table 1 shows the average results of five

trials of the experiment and the results of the reference trial. We

have indicated the total walking time, the error in the robot po-

sition estimate when the robot stopped walking and the distance

between the robot and the goal at the end of the walk. The er-

ror in the position estimate is due to sensor noise and small errors

in the environment setup (microphone positions and orientations).

The final distance to the goal is always less than 0.2 m, which

is the required precision in accomplishing the task. On the other

hand, the reference walk motion, without using sound for localiza-

tion, ended up at around 1 m from the goal. Some trials required

the robot to walk for a long time, because the localization engine

was unable to localize the robot with sufficient precision for some

time. Note that the robot needs at least 20 s at full walking speed

to travel the required distance. In the trial presented in Fig. 6, we

can clearly see the different stages of the robot control. First the

robot started by walking straight for 5 seconds. Once this boot-

strapping phase is over, the system takes over and makes the robot

turn right towards the goal. Finally, the sampled images of the

robot were evenly time spaced, so the visible jamming of robot at

the end of the trajectory highlights our choice of slowing down the

robot pace when getting closer to the goal.

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented a localization system designed for

integrated interaction environments. Our system is based on in-

trinsic robot noise tracking, and uses inexpensive and easily avail-

able microphone arrays. To perform effective sound localization,

we have evaluated and implemented different methods from sig-

nal processing and robotics literature: first, we have used a support

vector machine to identify sound signals coming from the robot;

second, we have performed probabilistic localization using a par-

ticle filter. Both methods are well suited for handling noisy data.

Our system has been shown to work well for tracking a small hu-

manoid robot within a natural, noisy office environment. We were

able to overcome the limitations of odometry-based localization

and the robot could reach navigation targets a few meters away

with a precision of about 15 cm.

This work is a first step towards a general IIE, and suffers from

limitations that will be addressed in future work. First, in this pa-

per, we have focused on intrinsic sound data and proved that it is

useful for robot localization. In near future, we plan to add vision

based tracking of the robot and robot ego–centric vision data to

our probabilistic localization framework. In free and static envi-

ronments, vision will give precise results, while sound would take

over in case of visual obstructions, or within dynamic or visually

complex environments. Second, for now, we have used our system

in a single office environment. Sensor models for odometry and

microphone arrays are dependent of this particular setting. In fu-

ture work, we will evaluate how these models have to be adapted

in different rooms, with different configurations (e.g. furniture,

people), that could lead to sound obstructions or echos.

Finally, our long term plan is to have humans, virtual humans

and robots interacting within an IIE. For this, we will use our sys-

tem to track humans and various robots at the same time. We will

have to evaluate the robustness and scalability of our probabilistic

localization framework in these more challenging environments.
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