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Abstract

We estimate the approximate nonlinear solution of a small DSGE model on euro
area data, using the conditional particle filter to compute the model likelihood. Our
results are consistent with previous findings, based on simulated data, suggesting
that this approach delivers sharper inference compared to the estimation of the
linearised model. We also show that the nonlinear model can account for richer
economic dynamics: the impulse responses to structural shocks vary depending on
initial conditions selected within our estimation sample
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have become popular
tools for monetary policy analysis. The central feature of these models, em-
phasized in the theoretical work of Yun (1996) and Woodford (2003), is the
presence of nominal rigidities in the adjustment of goods prices. More recently,
a number of additional frictions have been introduced in the basic sticky-price
framework and the resulting models have been successfully taken to the data
(see e.g. Christiano, Eichenbaum and Evans, 2005; Smets and Wouters, 2003).

In all cases, however, what is estimated is only the reduced form emerging
from the solution of a linearized version of those models. This approach has
obvious advantages in terms of simplicity and possibility of comparison to
other well-known empirical tools, such as VARs. There are a number of rea-
sons, however, to also be interested in exploring the implications of the many
nonlinear features built in DSGE models.

The first one is that they are more suited to characterize macroeconomic
dynamics in presence of large deviations from the steady state. Since 1970,
average euro area inflation has reached a maximum and minimum of 14.56
and 0.69 percent, respectively, compared to an average of 5.83 percent®. By
construction, a linearized model is ill-suited to explain such large deviations
and it might deliver distorted estimates, at least in principle, if forced to do
S0.

More specifically, it is conceivable that the dynamic properties of inflation
should depend on its distance from the steady state. Small deviations could
be characterized by a relatively small degree of persistence and/or amplitude of
inflation responses to shocks. Persistence and amplitude could become more
pronounced in case of larger deviations, when the inflationary shock could
more easily become entrenched in expectations. These economic features can
be captured by higher-order terms in a nonlinear solution, terms which, by
construction, would start playing a non-negligible role only when large devi-
ations from steady state do take place. A linearized model, on the contrary,
would be forced to-account for all observed dynamics with linear terms, thus
possibly delivering incorrect estimates.

To test this conjecture, one would ideally solve the model to a high order of ac-
curacy using global solution methods. Unfortunately, however, these methods
tend to be too slow for their output to be amenable to econometric estima-
tion. A compromise between the desire to capture the bulk of the nonlinear
dynamics of the model and the interest in exploring its empirical performance

I These statistics are computed by using the year-on-year percentage changes of
the euro area GDP deflator.



is to focus on second-order perturbation methods. These methods produce as-
ymptotically correct expressions around the deterministic steady state of the
model, but there is no guarantee that these solutions will be accu-
rate away from the approximation point. Nevertheless, second order
perturbations are often found to produce more accurate results than lineari-
sations for a range of values of the state variables around the steady state (see
e.g. Aruoba, Fernandez-Villaverde and Rubio-Ramirez, 2006).

The second reason to be interested in nonlinear models is empirical. Nonlin-
ear models have been argued to provide sharper estimates of the structural
parameters than their linearized counterparts. The nonlinearities induce ad-
ditional testable implications, compared to those characterizing the linearized
version of the same model. A straightforward example can be made for the
case of solutions obtained through second-order perturbation methods. These
approximate solutions imply that the variance of exogenous shocks have an
impact on the unconditional means of observable variables. The link amounts
to a restriction on the size of those variances, which is ignored in linearized so-
lutions. 2 A number of authors have therefore reported a superior performance
of estimates based on the nonlinear model, compared to estimates based on
the linearized model (e.g. An and Schorfheide, 2007; Fernandez-Villaverde and
Rubio-Ramirez, 2006, 2007). However, these results are mostly based on sim-
ulated data, drawn by construction from the "true", nonlinear model. It is
obviously interesting to test if nonlinear estimates can also do better on ac-
tual data, where the model is only an approximation of reality. It is in fact
conceivable that the tighter theoretical constraints imposed in the estimation
of a nonlinear model may result in a worse fit, when compared to a linearized
version of the same model.

We provide new evidence on these issue, based a relatively standard DSGE
model solved using second-order perturbation methods. We estimate the model
on euro area data over the 1970-2004 period using sequential Monte Carlo
methods to construct the likelihood. Our results highlight that nonlinearities
have played a non-negligible role over the past three decades.The nonlinear
model tends to perform consistently better than the linear over the whole
sample and especially when inflation is high.

Concerning the dynamic features of euro area inflation, our preferred specifica-
tion shows that notable differences can be found between linear and nonlinear
estimates of our DSGE model. The amplitude and persistence of the responses
of inflation to shocks differ, depending on whether they are computed starting
from the "high inflation" values of the seventies, or from the "low inflation"

2 Fernandez-Villaverde, Rubio-Ramirez and Santos (2006) highlight a more general
empirical advantage of the estimation of nonlinear models, which has to do with
the approximation errors made when computing the the likelihood function.



levels observed in recent years. For example, a positive inflation target shock
has temporarily expansionary effects on output, if it occurs in a low-inflation
environment, while it has contractionary effects if it takes place when inflation
is high.

The rest of the paper is organized as follows. Section 2 provides a broad de-
scription of the two theoretical models employed in the empirical exercise.
The main difference between those models concerns the behaviour of mon-
etary policy. While always following a Taylor-type rule, the central bank is
assumed to have a stationary stochastic inflation target in the first case and
an integrated target in the second case. Section 3 discusses briefly the solu-
tion method. It is well-known that approximate nonlinear solutions can be
computed using a variety of methods (see Aruoba, Fernandez-Villaverde and
Rubio-Ramirez, 2006). We focus on second-order perturbation methods, be-
cause they are a direct extension of the standard linearisation and because
they are fast to implement. The estimation methodology is presented next,
in Section 4, with particular emphasis on the construction of the likelihood
function, which is performed using a method not previously used in macroeco-
nomic applications: the conditional particle filter. We also discuss briefly some
of the choices available to the researcher in this context and the importance
of a plausible specification of the priors for the variance of the shocks. Section
5 presents the estimation results, including posterior means of the parameters
and comparisons of stationary and nonstationary, linear and nonlinear mod-
els. We also look at nonlinear impulse responses and document the differences
which can be observed starting from different points in time. Section 6 con-
cludes. Appendix (A) describes the structures of the models being estimated
and and Appendiz (B) explains how the solution method is applied.

2 The theoretical framework

One of the conclusions of the "Inflation Persistence Network" (IPN) coordi-
nated by the European Central Bank is that different estimates of the per-
sistence of aggregate euro area inflation are obtained depending on whether
the researcher allows, or not, for shifts in the inflation mean (see e.g. Angeloni
et al., 2005). Empirical estimates of inflation persistence are high if a single
inflation mean is assumed, while they fall considerably in the second case. For
example, Bilke (2005) argues that a structural break in French CPI inflation
occurred in the mid-eighties. Controlling for this break, both aggregate and
sectoral inflation persistence are stable and low. Levin and Piger (2004) also
find strong evidence for a break in the mean of inflation in the late 1980s or
early 1990s for twelve industrial countries. Allowing for such break, the in-
flation measures generally exhibit relatively low inflation persistence. Similar
results are obtained by Corvoisier and Mojon (2005) for most OECD coun-



tries. Dossche and Everaert (2005) find similar results when they allow for
shifts in the inflation target in the form of a random walk.

By and large, the existence of shifts in the mean of inflation has been tested
within statistical or reduced-form frameworks (see e.g. Levin and Piger, 2004;
Corvoisier and Mojon, 2005). As a result, it could be argued that there are two
difficulties with the interpretation of these results. First, it remains unclear
whether the hypothesis of one or more shifts in the mean of inflation would be
rejected within a richer model. Secondly, the reasons for a potential shift in the
inflation mean are left unspecified, while it would be interesting to understand
their determinants.

To shed further light on the first issues, we explore the empirical plausibility
of two variants of a simple DSGE model of inflation and output dynamics.
The first one is a benchmark model which embodies the assumption of no
permanent shifts in the average inflation rate. The second model allows instead
for smooth shifts in the mean of inflation through an integrated inflation
target. Comparing the empirical performance of these two specifications, we
will be able to assess the plausibility of the structural break hypothesis?.

In the rest of this section, we present in more detail the main features of the
microeconomic environment and the two alternative policy rules.

2.1 A simple DSGE model

The model is based on the framework developed by Woodford (2003) and
extended in a number of directions by Christiano, Eichenbaum and Evans
(2005).

Consumers maximize the discounted sum of the period utility
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H; = hC;_; is the habit stock, L (i) are hours of labour provided to firm i.

3 Our results are obviously contingent on our particular model of the evolution of
the inflation mean.



For consistency with Smets and Wouters (2003) and Christiano, Eichenbaum
and Evans (2005), habit formation is modelled in difference form. However,
habit is internal, so that households care about their own lagged consumption.

The household’s budget constraint is given by
1 1
PC,+ B, < /O we (i) Hy (i) di +/0 L, (6) di + W, (3)

where II; (i) are profits received from investment in firm 4, B; denotes end of
period holdings of a complete portfolio of state contingent assets, W, denotes
the beginning of period value of the assets and w; (¢) is the nominal wage rate.
The price level P; defined as the minimal cost of buying one unit of C}, hence

equal to )
r=(f o) (@)

In the budget constraint, B; denotes end of period holdings of a complete
portfolio of state contingent assets. W, denotes the beginning of period value
of the assets, w; (7) is the nominal wage rate, L; (i) is the supply of labor to
firm ¢ and Z; (i) are the profits received from investment in firm 4. Following
Steinsson (2003), we also introduce a stochastic income tax, which will lead
to a trade-off between inflation and the output gap. We write the tax rate as

-, to ensure that the total tax is bounded between 0 and 1, given that

logri = (1= p,) T+ p.logmia + o7 of ~ N (0,03). )

The first order conditions w.r.t intertemporal aggregate consumption alloca-
tions and labour supply can be written as

(1 7, )wt(i):¢XL(i)¢_1
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where [; is the gross nominal interest rate.
Turning to the firm’s problem, the production function is given by
Vi (i) = AL (i), Ap = Afeye (7)

where A; is a technology shock and v{ is a normally distributed innovation
with constant variance o2.



We assume Calvo (1983) contracts, so that firms face a constant probability ¢
of being unable to change their price at each point in time ¢t. Firms will take
this constraint into account when trying to maximize expected profits, namely

Pt At+s
P)tJrs At

o0
maxE, Y- (750 (P} —T1Cl), (8)
t s=t

where T'C' denotes total costs and, as in Smets and Wouters (2003), firms
not changing prices optimally are assumed to modify them using a rule of
thumb that indexes them partly to lagged inflation and partly to steady-state
inflation IT, namely P} (ﬁ)lﬂ (%)L, where 0 < ¢ < 1. When we assume
an integrated inflation target, steady state inflation is not defined and we set
¢ = 1. We introduce indexation in the model for two reasons. First, aggregate
inflation will be driven to some extent by lagged inflation, which is an em-
pirically plausible hypothesis — though not immediately consistent with the
microeconomic evidence. Second, firms not allowed to update their prices op-
timally for a long time will still find themselves with a price which is not too
far from the optimum.

Under the assumption that firms are perfectly symmetric in all other respects
than the ability to change prices, all firms that do get to change their price
will set it at the same optimal level P;. The first order conditions of the firms’
problem can be written recursively as implying
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where II; is the inflation rate defined as II; and

1
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(10)

expresses the optimal price at time ¢ as a function of aggregate variables. 4
Note that we can use equation (10) in the system (9) to write aggregate

4 Similar nonlinear expressions are used, amongst others, by Ascari (2004) and
Benigno and Woodford (2005).



inflation as an implicit function of expected future inflation

1

L, (1 1=C( o8 Ta\Tem)\
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It is well known that a first order approximation of this equation yields the
new-Keynesian Phillips curve, where inflation is positively related to expected
future inflation. The second-order approximation of equation (11) is more
elaborate, so that the relationship between current and future inflation is not
immediately apparent (see Benigno and Woodford, 2005, for an example in the
simpler case without habits nor inflation indexation). Nevertheless, equation
(11) is suggestive of two features.

First, past inflation only enters log-linearly in the equation, since it never
appears in the T, and Y, terms. Even with indexation, the fact that past
inflation is high does not per se matter in inducing a nonlinearity in inflation
as a function of the state of the economy. Indexation does, however, matter in
changing expectations of future inflation.

The second known feature of equation (11) is that its quadratic approximation
will be either concave or convex, regardless of whether inflation deviations from
the long run mean are positive or negative. The effects of the second order
terms in the solution will therefore be asymmetric. If, ceteris paribus, inflation
is a convex function of expected future inflation, firms will try to increase
current prices more and more aggressively, the larger is the expected future
deviation of inflation from steady state. They will however cut their prices
less than they would in the linear case, in case of negative inflation deviations
from the steady state.

2.2 Two Taylor rules

Equations (5), (7), (9) and (10) describe aggregate economic dynamics. We
close the model with a Taylor rule with interest rate smoothing. A key deci-
sion that has to be taken in the specification of the rule concerns the inflation
target. Since inflation displays a noticeable downward trend over the sample
period, the assumption of a constant target is not very appealing. In empir-
ical applications, it is therefore often assumed that the decline in inflation
corresponds to a decline in the inflation target. This is also what we do here.
However, this assumption is likely to have important implications in terms
of the persistence of inflation. In order to explore this issue, we analyse two
variants of the policy rule.

The first rule assumes that the inflation target follows a stationary AR(1)



process. In this case, the idea is that the long run target of the central bank
is actually constant, but that there are shifts in the horizon at which the
central bank tries to get inflation back to that long run level. If the target
is temporarily high when inflation is high, then the central bank is willing to
tolerate a slow return to the long run target. If, instead, there are no changes
in the long run target when inflation is high, inflation will be brought back on
target more quickly.

In logarithmic terms (lower case letters), the first rule takes the form

iv=1=p) (T =0 B) + ¥ (e — 7)) + 0, (e — y1)) + pries +v; (12)
T =1 = p) T+ Py + 07 (13)

where 7; is the logarithm of the gross nominal interest rate, 7} is the inflation
target, v¢ is a policy shock and y! is the logarithm of the level of natural
output. The innovations v} and v]  are white noise with variances'o? and o2.,
respectively. In this model, considerable deviations from the mean of inflation
can arise from short-term movements in the inflation target. The model solved
using the first policy rule is dubbed M1.

The second policy rule is identical to the first, except for the property that the
inflation target becomes integrated (and the steady state level of the interest
rate is modified accordingly)

ir=(1—=py) ((Wf —Ing) +ab, (m — m3) + 0, (e — Z/?)) + priv-1 +vy(14)
T =T v (15)

In this case, smooth changes of the inflation mean occur over time as the
central bank target is revised. The idea here is that the inflation target process
captures true shifts in the objective of the central bank. Given the slow decline
in inflation over our sample period, this should supposedly reflect a shift in
public preferences in favour of lower and lower inflation levels. The integrated
inflation target induces a non-stationary behaviour also in actual inflation and
the nominal interest rate. These nominal variables are also co-integrated, so
that the model can be written in stationary form in terms of the rate of growth
of inflation, Am; = m; — m;_1, and the deflated inflation target and interest
rate, defined as 7} = 7 — 7, and 4, = i, — 7, respectively (see Appendix A).
This model is dubbed M2.



3 Second-order approximate solution

We solve the model using a second order approximation around the non-
stochastic steady state. The model dynamics will then be described by two
systems of equations: a quadratic law of motion for the predetermined variables
of the model and a quadratic relationship linking each non-predetermined
variable to the predetermined variables.

The solution is obtained numerically. A few methods have been proposed in
the literature, including those in Schmitt-Grohé and Uribe (2004), Kim, Kim,
Schaumburg and Sims (2003, henceforth KKSS), Lombardo and Sutherland
(2007). For our applications we select the implementation proposed by Gomme
and Klein (2008), that has the advantage of being relatively faster. Speed is
particularly important for estimation, since the model needs to be solved at
every evaluation of the likelihood. For this reason, we also rely on analytical
derivatives to evaluate the second order terms of the approximation.

The solution can be written as follows. The vector x; of predetermined vari-
ables, expressed in terms as deviations from its non-stochastic steady state
value, follows the quadratic law of motion

1 1
Xi+1 = iho'o' + Hxxt + EHTT (Xt [ Xt) + O'JVt+1 (16)
Vi1~ NID(0,1,,) (17)

where h,,, H, and H,, are n, X 1,n, X n,, and n, x n2 matrices, respectively.
The vector of shocks has variance covariance matrix I,,,, where n is typically
different from n,. The scalar o is the perturbation parameter: when ¢ = 0
the system becomes deterministic. Non-predetermined variables, y;, also ex-
pressed as deviations from their non-stochastic steady-state values, are linked
to predetermined variables by the solution

1 1
Y= igaa' + Gux; + isz (x: ®%y) (18)
where g,,, G, and G,, are n, x 1, n, X n, and n, x n,n, matrices, respec-
tively. The definitions of state vectors in the models analysed in this paper
are contained in Appendix (B).

We tested the accuracy of the solution obtained using our second
order approximations focusing on 1-step ahead errors in the Euler
equation and on our favourite econometric specification (i.e. the one
referred to as "model M1" below). There are different dimensions
over which Euler equation errors can be computed and we explored
many of them at the posterior mean of the parameter values. First,
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we computed errors at each point in time, starting from the fil-
tered value of the state vector. Second, we computed Euler equa-
tion errors: (a) along a simulation path, (b) on an ellipse around the
mean of the state variables, and (c) for innovations of various size. ’
Overall, the second order approximation tends to be more accurate
than the linearisation of the model, but the errors it produces can
become non-negligible for some particular realisations of the state
vector. More specifically, the maximum of the base-10 logarithm of
the normalised, absolute Euler equation error can reach the value
—1.1, which corresponds to an error of almost 8%.

3.1 Simulation and impulse responses

Some care needs to be taken when simulating the approximate second-order so-
lution (16)-(18). KKSS emphasise that a standard simulation procedure would
introduce undesired higher order elements in the simulated path. Such ele-
ments are compounded over the simulation period and could conceivably lead
to explosionary paths.

We therefore follow the alternative recursive approach suggestion by KKSS.
This approach is also the basic intuition for the solution method proposed
in Lombardo and Sutherland (2007). The approach amounts to using jointly
both the second order solution (16)-(18) and the first order solution

Xip1 = Hth + O'JVt+1. (19)
Given past realisations of the first order state vector, x’, and second order
state vector, xtQ, we proceed as follows:
(1) draw v/, and simulate X}, ;
xtL+1 = HIXtL + UJvtLJrl
(2) construct xfil without further simulations (i.e. using v{,,) as
1 1

xﬁrl = Qhw + HJLX,E’2 + §Hm (x,L ® xf) + UJvtL+1

(3) construct the second order jump vector

1 1
Yi+1 = 5800 + Goxy + §Gm (Xf,L+1 ® XtL+1>

5 We relied on an implementation of our model in dynare4+ to compute the second
three methods.
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(4) Go back to 1.

This issue is particularly important for us, since we make extensive use of
simulation methods in the rest of the paper. More specifically, we use these
methods to:

e compute the likelihood, relying on the conditional particle filter (see next
section);

e compute nonlinear impulse responses, which are obtained simply going through

steps 2-3 described above, starting from a certain value x; = X, and given

two different paths for the structural shocks [vi}r)l, Vii2, ..., Vipn) and [VSH, Viia,

(see section 5.4).

4 Estimation method
4.1 Non linear-non Gaussian state space models

The system (16)-(18) can be cast in the general form

(measurement equation) yy = G(x;, wy, 0) (20)
(state equation) x; = H(x;_1, vy, 0) (21)

where y; is the subset of imperfectly observable elements of the vector y;, 8

* 7.
is the parameter vector, v, = [Uta, AR v,ﬂ isthe vector of structural shocks
and w,; are measurement errors.

In order to be able to do inference on the unobservables (parameters and
state vector) we need to solve a filtering problem, i.e. given p(x;|y?, @) obtain
p(xt+1|X;’+1, 0),t=0,1,..T — 1, where

Y, = [ya" y5 y;"} (22)
collects all the data evidence up to time ¢.

The filtering problem is conceptually straightforward and consists of two steps:

e projection
pixialy?,0) = [ pxialx, 0)p(xily?, 0)dx, (23)
e update
p(Xe41ly?, O)p(ye i1 [Xe+1,0)
P(yii1 |X?> 0)

P(Xt+1|X?+1a 0) =

12

oo Vt+h]



The filtering recursion yields the likelihood of each observation as

PYEaly?0) = [ pxiaaly?. O)p(y i i1, O)dxisa (25)

When the state space is linear and the shocks are Gaussian, the integral re-
quired by the projection and the update steps can be performed analytically
giving rise to the Kalman filtering recursion. In our context, with non-linear
state and measurement equations, it is necessary to compute those integrals
by using either some approximation or numerical methods.

In this paper, the integration steps which are inherent in the filtering recursion
are performed using Sequential Monte Carlo methods. For concise and effec-
tive introductions to these methods, see Arulampalam et al. (2002), Doucet
et al. (2001). To date, sequential Monte Carlo methods have been used in
statistics and (only marginally) in financial econometrics, while in macroeco-
nomic applications they have been used very seldom. Fernandez-Villaverde
and Rubio-Ramirez (2006, 2007a) and An and Schorfheide (2007) are the first
studies in which these techniques are used for DSGE models, while in Casarin
and Trecroci (2006) these methods are used to investigate the dynamics of
univariate volatilities of macroeconomic aggregates.

Sequential Monte Carlo techniques are numerically very expensive and quite
involved but they offer the advantage to deal with more realistic models. In a
DSGE framework, these methods can be used also to deal with non-Gaussian
shocks, with non-constant volatility (see Fernandez-Villaverde 2007a, Amisano
and Tristani 2009b), or with time-varying parameters (Fernandez-Villaverde
and Rubio-Ramirez 2007Db)

The intuition behind the simplest version of these methods, which is called the
particle filter is to perform the filtering recursion and compute the likelihood
P(¥7411y7, 0). The particle filter is based on the following identity

o ° o p(yo |Xt+17Xt7y050)
a1y 0) = POxcal 2, O)p(ly;, 0) - = T
2 DS
o g PV [Xe41,0)
= | p(Xep1lXe, O)p(xely), 0)— o dx 26
[ Pl Ol O gy @9

Suppose we have a sample of size N of draws from the distribution p(xt|X‘t’, 0)
(a swarm of N particles)

Xil) e p(xt|X§70)7i = ]‘7 27 EES) N (27)

then it is possible to obtain a sample of N draws from the distribution p(x+1|y7, |, 0)

13



applying the following three steps:

(1) (projection) draw a large number of realisations from the distribution of
x¢+1 conditioned on y?; this amounts to simulating the state equation

Xgil - p(Xt+1|X§i),9),i = 1727 7N7

(2) (update) assign to each draw a weight which is determined by its "dis-
tance" from (compatibility with) y? ;. The weight assigned to each of the
draws is p(yy,,[xi41,0)

wt(Ql = p(yf+1|xt+1,0),i = 1727 HS) N7 (28)

(3) resample (with re-immission) the draws x,EQl using probabilities

(2)
i w.
Py = (29)

ul (4) '
Z Wity
j=1

Note that the unnormalised weights (28) are very important for inference:
their sample mean is the ' observation conditional density:

1 ¥ :
3 Pl )~ [ by i, 0)p(xealxe, O)p(xily?. O)dxesadx =
j=1

=p(ylly;, 0)

This likelihood can be used as a basis for full information inference (Bayesian
or not) on the parameters of the model, while the whole filtering procedure can
be used for carrying out smoothed or filtered inference on the unobservable
variables.

If we call p(x;41]y?, @) the prior distribution (prior to observing y7.,) and
P(¥Pi1|%e11,0) the "likelihood", the particle filter algorithm can be given a
very simple Bayesian interpretation which immediately clarifies its limitations:
it is as if we were doing posterior simulation drawing from the prior and then
using the likelihood as weights. This is a very straightforward procedure to
implement but hardly a computationally efficient one in the case the "likeli-
hood" is much more concentrated than the "prior".

It is well-known that the particle filter can be quite inefficient, especially in
the presence of outliers in the data or in situations in which the measurement
error is nearly absent. A few variants have therefore been proposed in the
literature, including the auxiliary-variable particle filter and the conditional
particle filter. Details on the relative merits of each of them in a DSGE frame-
work can be found in Amisano and Tristani (2009a). Here we focus on the
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conditional particle filter, proposed by Ionides (2007), which displays useful
properties when dealing with data characterised by a low signal-to-noise ratio
(see Fernandez-Villaverde and Rubio-Ramirez, 2006b, on the difficulties posed
by the absence of measurement errors for the particle filter).

The conditional particle filter is based on the following identity

p(xt+1|X;+1a 0) = /p(xt+1|xt7 Xf—H’ 0) : p(xt|Xf+17 G)dxt -

. Y p(y§+1|Xt,Yf79)
= | p(Xes1Xt, Y111, 0) - p(Xily], 0) - — o dx
/ (X131, ¥741,0) - p(xelyy, 0) p(y?ialyy, 0) t
. o Pyt [x:, 6)
/ (Xes1 ], 5711, 0) - p(xelyy, 0) p(yialys. 0) o

The conditional particle filter is applied by repeating the following steps:
(1) (projection) draw xgﬁl from the distribution of x;,1 conditioned on y?,

XEQl e p(Xt+1|yto+1,X§Z),0)7i = 1; 27 B Na

(2) (update) assign weights

w(xity) = plyg|xi”, 0);

(3) resample (with re-immission) the draws xgi)l using probabilities piﬁl =

(%)
Witr

5 .
Zwr(i)l
j=1

Note that, once again, the sample mean of the weights wt(fgl is the conditional

likelihood of y7. ;

1 :
o 2500 [[ p(yialxi O)p(xe sl ¥, O)p(xily, B)dxe 1, =
=1 :

=p(yialy?,0) (32)

It is easy to see why this filtering procedure works more efficiently than the
particle filter: in drawing x;y; from p(xt+1|y§’+1,x§1),9) we use already the
information contained in y7, ;. This feature is called "adaption" and it is the
starkest difference with respect to the particle filter algorithm, which, on the
other hand, does not use any information on yy,; to draw x,.,. Table (1)
conceptually compares how the particle filter and the conditional particle filter
work.
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The main difficulty with the conditional particle filter is that the distribution
P(Xet1 |y, xgl), 0) is not known analytically when the measurement equation
is nonlinear. An approximate solution to this problem is to use a linearization
of the measurement equation around the expected future value of the state
vector. In this way, we can draw from an approximate probability distribution
D(Xer1lyy H,x,@, 0), the distribution implied by the linearization procedure,
and compute the weights @(Xgl) as proportional to p(y? +1|x§i)7 0).

To be more specific, consider again our quadratic DSGE state space model
with measurement errors

1 1
y?+1 = igoa + Gz (Xt+1) + §Grr (XH-I & Xt+1) + 21/2Wt+1 (33)

1 1
Xi+1 = ihgg + Hw (Xt) + §wa (Xt ® Xt) + O'JVt+1

At each t, we compute the value of the state vector expected at t + 1

1 X1 ; 1 i i
Xpp1pe = N Z |:§hmr + H, (XE )> + §er (Xg '® XE ))} (34)
i=1

and linearise the measurement equation around this value as

Y1 = Yit1t T Wepafe (35)

where

1 1 — 1 —
Vit = 5800 + |G + §Gka Xeyae 1 §Gmc {(Xt%l\t @ Xt+1\t) - Dkxtlﬁﬁ])

2
Wt+1|t = UéIJVIH»l =+ El/zwt+1 A N(O,ézﬂé; —+ 2)7 Q = 0'2JJ/ (37)
_ 1 _
_ 0 (X1 ® X
D, = |2 (L0 %) = (Lo, @ Xe1) + (X1 @ Lo, ), (39)
8Xt+1 Xe41=Xp 41t e

Hence, the joint distribution of x,4; and y7 ; conditioned on x; is Gaussian
and we can use the standard multivariate Normal formulae for conditional
moments to write

(X1 |%0, Y01, 0) N [E(XH»llXtv Vi), V(x| xe, Yt+1)] (40)
e -1
E(XtJrl‘Xtv Y§+1» 0) =X¢q1)t T QG; [GwQG; + E} (y7?+1 - yg+1|t) (41)

-/

e, 1
V(Xest[Xe, Y01, 0) = {Q - 0T, [G.0C, + 3 GIQ}
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These are approximate results but, using the importance sampling principle,
it is possible to correct for the approximation induced by the linearization
when constructing the likelihood, by assigning weights

(2) ) — p(X£21|X1(EZ)7 0) X p(y?+1|xt2), 0)

B |yeax”, 0)

(42)

In this paper, however, we neglect the approximation error and directly assign
the draws weights equal to

w(xy) = By %", 0) (43)

In Amisano and Tristani (2008a) we document that the two procedures yield
very similar results in this type of model.

Note that the linearised conditional particle filter algorithm that we use is con-
nected with the extended Kalman filter (see Arulampalam et al., 2002, section
IV). The difference is that both the measurement and the state equations are
linearised at any point in time in the extended Kalman filter.

It is important to emphasise that the relative performance of the conditional
particle filter with respect to the simple particle filter (or other sequential
Monte Carlo filtering algorithms) cannot be established in a general way, and
have to be assessed on a case by case basis: there are contexts in which the
conditional particle filter fares worse than other alternatives. We investigate
this issue in details in Amisano and Tristani (2008a).

4.2 Inference on the parameters of the model

Once the likelihood has been obtained, it can be used either in a maximum
likelihood estimation framework or in a Bayesian posterior simulation algo-
rithm.

In this paper we use a random walk Metropolis Hastings algorithm (see Chib,
2001, An and Schorfheide, 2007) In other words, we use sequential Monte Carlo
methods to compute the likelihood of the model and we plug this likelihood
in a MCMC framework. As is customary, we chose the candidate density to
be a multivariate Gaussian distribution centered on the previous draw and
with covariance matrix proportional to the empirical sample covariance matrix
obtained from preliminary long simulations from the linearised model. This
procedure is appealing because, unlike alternative approaches to the choice of
the covariance matrix of the candidate distribution, it does not require any
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log-posterior maximization. The tuning parameter on the covariance matrix
was calibrated to achieve acceptance rates between 20% and 40%. In order to
avoid numerical problems, we transformed the parameters in order to get rid
of the constraints on their domain.

Some details are important in the practical implementation of the filtering
procedure used to obtain the likelihood of the model.

The first issue is how to initialise the filter. We draw N realisations from the
initial state vector (xo) from a multivariate Gaussian distribution with first
two moments given by the ergodic mean and covariance matrix implied by the
quadratic approximation. 6

Another important aspect is the choice of M, the number of MCMC replica-
tions and N, i.e. the number of particles to be drawn at each observations.
We run several chains for each model (M1 and M2) and for each approx-
imation (linear and quadratic). At the outset we run M = 55,000 MCMC
replications, the first 5000 of which are discarded, and in the nonlinear models
N = 10, 000 particles were used to construct the likelihood. For M1, the model
that seems clearly preferred by the data, we rerun estimation with a higher
number of MCMC replications (M = 275000, discarding the first 27, 500) and
with a higher number of particles (N = 20, 000).

We use an efficient filtering technique, the conditional particle filter, and we
choose N = 20, 000 particles in order to keep computation time at manageable
levels. We checked the precision achieved in evaluating the sample likelihood by
comparing values obtained using higher numbers of particles (50000). In Figure
(1) we report the empirical distribution of the relative absolute differences in
log likelihood evaluation for each draw the parameter vector taken from the
quadratic posterior distribution of M1:

|pN1 (XO|9(1)) — PN, (Xola(l)”

Z. (44)

[y (316"
v, = 20000, Ny = 50000 (45)
0" p(07y*), (46)

It is easy to see that for most of parameter values, using 20000 particles
instead of 50000 generates percentage errors smaller than 0.02%. This seems

6 In a previous version of the paper, we initialized the filter by using a distribution
centered at zero. This had the effect of unduly penalising the quadratic model in a
marginal likelihood based model comparison setting against the linear model. The
posterior distribution of the parameters seem instead not greatly influenced by filter
initialisation. We thank an anonymous referee to have suggested this to us.
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acceptable for practical estimation.

In order to test the general stability of our results, we run several different
simulation rounds. Estimates are quite stable for the M1 model, but a bit less
so for the M2 model, for which across different simulation, one observes quite
some variability in the results.

4.8  Prior elicitation

One of the hardest parts in implementing Bayesian techniques is how to specify
sensible priors. There are parameters for which this task is less difficult, and
these are parameters such as those describing preferences or technology, for
which there are well grounded beliefs which can be cast in probabilistic terms
to form priors. For some others (typically the second order parameters, i.e. the
standard errors of shocks) this task is more difficult. For most of the macro
parameters in the first group, we have adopted priors consistent with those of
Smets and Wouters (2003), while for parameters associated to second order
moments, which play a more determinant role for the second order approxima-
tion, we have resorted to prior predictive analysis (see Geweke, 2005, section
8.3.1): we draw parameter values from the joint prior, we solve the model and
we compute the moments of the stationary distribution of the data. We obtain
in this way a prior distribution of these model-based features. We calibrated
the prior hyperparameters in order to have a prior distribution of the first and
second moments of the model-based ergodic distribution centered around res-
onable values, i.e. of the same order of magnitude of the unconditional sample
data moments. We have experienced that a bit of thought in the specifica-
tion of the prior usually helps in eliminating some of the numerical problems
encountered by the sequential Monte Carlo filtering procedures.

We decided to dogmatically set measurement standard errors equal to 107 to
concentrate on the role of the four different structural shocks.

The prior used in estimation are described in Table (2). We decided to take
into considerations constraints on the parameter domain by aptly specifying
prior distributions which automatically satisfy these constraints: non negative
parameters were given a Gamma prior, parameters constrained on the unit
simplex were given a Beta prior, and parameter which cannot be smaller than
1 were given a Gamma distribution for their difference with respect to one.
The standard errors of the shocks were also assigned Gamma distributions.

7 The inverse Gamma distribution is a more customary choice for standard errors,
as it generates conjugate priors in particular models. Since we compute posterior
distributions by simulation in any case, there is no reason for us to use an inverse
Gamma distribution.
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5 Results

All our results are based on output, nominal interest rate and inflation data
taken from the Area Wide Model database (see Fagan, Henry and Mestre,
2005). Following Smets and Wouters (2003), we remove a deterministic trend
from the GDP series prior to estimation. No transformations are applied to
inflation and interest rate data. The estimation period runs from 1970Q1 to
2004Q4. The data are shown in Figure 2. Note that Model M2 uses the changes
of inflation and the difference between interest rate and inflation in order to
eliminate the unit root behaviour induced by the random walk hypothesis on
the inflation target process.

We highlight four main features of our results. First, we briefly discuss our
parameter estimates, focusing on differences across models/specifications and
compared to the existing literature. Secondly, we compare the estimates based
on the two specifications M1 and M2 and show that the first model is over-
whelmingly preferred by the data. This conclusion is also informally supported
by the fact that the 95% Highest Posterior Density credible sets (henceforth
HPD sets, see Geweke, 2005, Section 2.5) constructed using the marginal pos-
terior distribution of p, and ¢ (see Table 3) in Model M1 do not contain the
unit value. We therefore focus on M1 for the rest of our analysis. Next, we
compare the linear and nonlinear specifications for model M1 and conclude
that the nonlinear version is superior to the linear one. Finally, we discuss
the implications of the nonlinear M1 model for the dynamics of inflation, in
particular looking at the way in which initial conditions affect the magnitude
and the persistence of the effects of shocks in a nonlinear world.

5.1 Parameter estimates

Tables 3 and 4 present the results of the estimation of first and second order
versions of M1 and M2. The evidence can be summarised as follows.

e In both models and both specifications (linear and quadratic), posterior
distributions tend to have a mean which is far from the prior mean. As
an example, in M2 the RRA parameter has a posterior distribution that
hovers around 4.0 while the prior distribution is centered around 2.0. Not
all parameters, however, have marginal posterior distributions which are
tighter than the corresponding priors. See for example v (RRA), ¢ (labor
disutility), and the parameters describing the properties of the tax shock
(p,, o, and 7).

e The posterior means of the deep parameters are mostly stable across the
different specification. See for example § (discount factor), v (RRA), h
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(habit persistence), p, (interest rate smoothing).

e For both models, linear and nonlinear specifications tend to produce similar
parameter estimates, with some important exceptions: v and 6 are estimated
quite differently. As an example, the elasticity of substitution across goods,
0, is higher in the quadratic model than in the linear model. In M1 the
posterior mean of v based on the quadratic model is 4.2, while it is only 3.3
in the linear case. This parameter is crucial for determining precautionary
savings and the quadratic approximation allows us to obtain estimates which
are different from their linear counterparts.

e In general it seems that the quadratic estimation procedure is capable of
generating somehow sharper estimates. Looking just at the univariate mar-
ginal posterior of model M1, 4 parameters out of 19 have posterior HPD
sets based on the quadratic approximation which are narrower than their
counterparts based on linear estimation. For these parameters, the quadratic
approximation posterior standard errors are smaller than their counterparts
based on the linear model. These parameters are ¢,6,¢,1, and p,. Similar
considerations attain to the estimation of model M2: tighter posterior dis-
tributions are obtained for 9 out of 16 parameters. In synthesis, the docu-
mented benefits in using a higher order solution to estimate the parameters
(see Fernandez-Villaverde and Rubio-Ramirez, 2006a, b) are confirmed in
our evidence even if not for all parameters.

e For model M1, we observe that mean posteriors are consistent with a very
reasonable degree of price stickiness, implying average price durations of
1.8 quarters. Our estimates of the habit formation parameter h and of the
parameters of the policy rule are also broadly in line with other existing
results, notably those in Smets and Wouters (2003). The main, important
exception concerns the inflation indexation parameter. Irrespective of the
specification (linear or nonlinear), our estimates (v ~ 0.1) are particularly
small and imply a very minor degree of inflation persistence. This result
is quite surprising in view of the high serial correlation of actual inflation,
and also if compared to findings of existing studies. Nevertheless, this is an
appealing property of our results given that the assumption of indexation
is an ad-hoc feature of the model.

e The tax shock plays only a limited role in the model (see the forecast error
variance decomposition in Table 6): at impact tax shocks explain 7%, 3%
and 2% of inflation, interest rate and output variability.

e In terms of overall fit both models do quite well. Figure 3 shows the observed
series used for estimation and the posterior mean of their filtered one step
ahead forecasts for model M1. This seems to indicate a good fit of the data,
and similar evidence holds for model M2.

e in order to check the reliability of the estimated models, we have also looked
at the posterior distribution of the latent variables implied by the estimated
model. As an example, Figure 4 reports the smoothed posterior mean of the
inflation target for M1, showing that its range of values and its dynamics
are not unreasonable. The target is higher during the seventies and early
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eighties, but not as high as actual inflation, then declines to values around
2% (annualised) during the EMU period.

5.2 Model comparison

To test whether the assumption of permanent shifts in the average inflation
rate is borne in the data, we compare formally models M1 and M2.

It is useful to note that model M2 is almost nested in M1. With the exception
of the intercept term in the Taylor rule, it amounts to fixing two parameters
in model M1: ¢+ = 1 (the inflation indexation parameter) and p, = 1 (the
persistence of the inflation target). The second restriction is unlikely to have a
strong impact on the marginal likelihood, given that it is in any case estimated
to be very close to 1 in model M1 (even if its HPD set does not contain 1).
Given the estimates of ¢ in M1, however, the first restriction is likely to be
more binding.

In the literature, model comparison exercises are often based on the marginal
likelihood. We also follow this approach here, even if it must be kept in mind
that marginal likelihoods are subject to a number of caveats (see for instance
Gelman et al., 2004, section 6.7, Del Negro and Schorfheide; 2008, Sims, 2003).
An alternative model-evaluation criterion that has been proposed in the liter-
ature is to compare the predictive densities implied by the competing models
with a recursive estimation approach (see Geweke, 2005, section 2.6.2). We
therefore apply a variant of this approach to shed further light on the com-
parison between models that are similar in terms of marginal likelihood.

The marginal likelihood (ML) of each model M; is defined as

In(p(y|M,) < I ([ 0310, M,)p(6ly, M; )6 (47)

The difference between these two quantities for models M; and M; gives
the log Bayes Factor of one model versus the other. Computed values largely
different from zero suggest dominance of one model vs the other. The MLs
are computed based on the modified Gelfand and Dey approach described
in Geweke (1999). This method is very accurate when the posterior PDF is
unimodal. Here we use the MLs to compare models M1 and M2 and also the
linear versus the quadratic specifications.

There is an issue of detail which has to be emphasised when comparing mar-
ginal likelihoods across our two different models. The two models do not
use the same observable variables, since in M2 data on inflation and inter-
est rate are transformed to achieve stationarity (we use differenced inflation
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and the real interest rate). Nevertheless, conditional on past information, the
Jacobian determinant of the transformation from the variables in M1 to the

ones in M2 is unity. This can be shown if we define y,EMl) = [ms,re, ) and
y M) = [Amy, 7y — 74, y;) . Then vy can be rewritten as
1 00 100
v =110y~ lo00|yY
001 000
so that
" 100
Jy; | (M1)| -1
(Ml), t—1 - -110 ==
dy;
001

It follows that marginal likelihoods are directly comparable if we condition on
8

Yo-

Looking at Table 5, it seems that model M1, in either specification (linear or
quadratic) is superior to model M2. Given that the log Bayes factor is very
large (around 27 points comparing linear versions and 36 comparing quadratic
versions) and that in the estimation of M1 the posterior 95% HPD sets for p,
and ¢ do not contain respectively the unit and zero values, we conclude that in
this application model M1 is clearly preferred to M2. We thus focus on model
M1 for the rest of the paper.

In terms of the euro area inflation process, the aforementioned result seems
to imply that that process is best characterised by a constant mean, even if
considerable and persistent deviations from the mean have occurred over the
years. This is however only a tentative conclusion, given that both the M1 and
the M2 models can only capture the cross-covariances of the data to a limited
extent.

5.8 Linear vs nonlinear

Conclusions on the superiority between the linear and quadratic versions of
model M1 are not so stark as the results from comparing M1 to M2, but

8 A side issue concerns the sample size. Model M1 is estimated on a sample size
that includes 1970:1 whereas M2 starts from 1970:2. To make the comparison com-
pletely fair, we should re-estimate M1 excluding the first observation. Given the
strongly superior performance of M1 with respect to M2, this is unlikely to make a
substantive difference.
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equally conceptually interesting. Table 5 shows that the ML of these two
specifications are very close and the quadratic model prevails marginally (with
a ML around 1715, compared to 1714 for the linear case).

It is important to note that, given the specification of the models being com-
pared, the quadratic representation is going to be anyway implicitly penalised,
since the model does not include capital. Inclusion of capital would give more
importance to precautionary savings decisions and therefore to the quadratic
approximation in which precautionary savings are allowed to have a role. °

In order to have further elements for the comparison between the linear and the
quadratic representations, we also compute conditional predictive densities. To
compute conditional predictive densities, the model has to be reestimated at
each point in time. In other words we need to compute

T
p(yg+l> yg+2"'7 yg"ﬁ? MJ) = H p(y$+l |y72-, MJ) (48)

T=t

for some date 0 <t < T — 1. Doing this by brute force, i.e. re-estimating the
model at each point in time is computationally infeasible for the quadratic
model. A much faster alternative is to use the output of the full sample MCMC
estimation to construct an estimate based on the harmonic mean of the rele-
vant conditional densities as follows:

1Y 1

M 0 o 0 |0 () (49)
i=1 p(YTo+17YTD+2'--7 YT|&7 0 7Mj)

0lve , M.
ﬂ)/ 0 ]())( |& 0 j)o do
p(YT0+17YTg+2"'7YT‘&7Oij)
p(0y%,. M;) 1
:/ 0 o - o o) d0 = o) o o ) (50)

p(YTo-HaYT0+2“'aYT|YT07Mj) p(YT0+1’yTO+2'“ayT|%7 Mj)

This approach is computationally not demanding (it uses the output of the
posterior simulation of the model based on the whole sample size), but is has
the drawback that the accuracy of the approximation in the simulation based
integral (49) can be affected by large errors for a finite number of simulations
M.

The results of using this approach are presented in Figure 5, where we plot

In ( p(}’?+1> }’Z)+2-~-; Y%bj Mlinear)
p

t=0,1,.T—1 (51)
(yg+17 Yg+2 () y(j)“ |ﬁ7 Mquadratic) )

9 We thank a referee for pointing out this to us.
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Each point in the figure shows the log predictive density from that point until
the end of the sample.

From this comparison we see that the quadratic model seems to be superior
to the linear one for most of the possible partitions of the sample. Consis-
tently with the results of the marginal likelihood comparison, the conditional
predictive distribution ratio is favourable to the quadratic specification over
the full sample (the first observation in the figure). The comparison would
then continue to favour the quadratic model for most of the sample. Only at
the very end, namely as of the beginning of EMU, the conditional predictive
distribution ratio becomes favourable to the linear specification. This suggests
that nonlinearities are important in case of very large and persistent shocks,
but tend to be less relevant during periods of moderate fluctuations.

On the basis of these results, we conclude that the quadratic version of M1
is superior to the linear one for most of the sample, and especially over the
years where inflation is more distant from its steady state value.

These results are broadly consistent with those obtained on the basis of simu-
lated data. Recent literature has emphasised that estimates of the second order
model tend to be more precise — e.g. An and Schorfheide (2007). Canova and
Sala (2006) has emphasised the chronic under-identification of many DSGE
models. It is possible to verify that resorting to higher order approximation
induces sensibly more curvature in the likelihood function hence increases iden-
tifiability of the parameters. We have verified this feature also for the models
that we estimate in this paper and it does generally hold on simulated data
(see Amisano and Tristani, 2008a.).

Nevertheless, the quadratic model is not clearly and always superior to the lin-
ear specification. This result suggests the existence of a trade-off between para-
meter identification and mis-specification in nonlinear DSGE models, similar
to the one encountered when increasing the information set in the estimation
of linearised models. More information increases the ability of the researcher
to pin down various parameters, but it tends to highlight any weaknesses of
the model at the same time. Similarly, estimating a nonlinear model amounts
to extracting more testable implications from the theory, hence achieving more
efficient, or even less biased, parameter estimates when the model is approxi-
mately correct. If the model is only a rough approximation of reality, however,
its nonlinear implications are likely to make it more at odds with the data
(compared to its linearised counterpart). The finding of more spread-out pos-
terior parameter distributions may be a signal of the latter phenomenon.
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5.4  FEuro area inflation dynamics

In this section, we discuss the dynamic implications of the model focusing in
particular on the persistence and the amplitude of the responses of inflation
to shocks. All the discussion is based on the posterior simulation of model M1
in its quadratic version.

First of all, in order to understand the relative importance of the different
shocks hitting the system (technology, target, tax and policy shocks), we look
at the forecast error variance decomposition (FEVD) coefficients which are
reported in Table 6 and graphed in Figure 6. Four main features immediately
stand out:

(1) the tax shock has declining importance (over the horizon) for inflation
and output but increasing importance for interest rate.

(2) Technology explains the bulk of output variability also at short horizons:
the posterior mean of the 1 step ahead FEVD coefficient for output is
88%.

(3) Inflation is mainly driven by target shocks and policy shocks: respectively
76% and 9% at 1-step ahead, 83% and 6% after one year and 91% and
3% after 3 years.

(4) The policy rate is moved by the same shocks as inflation but with reversed
relative importance: in the short run it is nearly all (94%) policy shocks
and much less the target shocks (7%). As the horizon increases the target
shocks become more and more important: at 3 years target shocks account
for 65% and policy shocks 8%.

Next, we turn to the impulse response functions and test whether responses
starting from a high-inflation level are significantly more persistent than those
starting from a low level. At the same time, we analyse whether the amplitude
of the response of inflation after a shock of a given size varies depending on
the starting value.

The dependence of nenlinear impulse response functions on initial conditions
is well-known (see e.g. Gallant, Rossi and Tauchen, 1993). Our aim, however, is
exactly to point out the extent to which economic dynamics are different over
time, depending on cyclical conditions. We therefore study standard nonlinear
impulse response functions, defined as the difference between the expected
future sample path of a variable conditional on the state x;, and the expected
future path conditional on x|, where x; is equal to x} except for an individual
element which is perturbed by a known amount. '

10 This is also the definition used in Gallant, Rossi and Tauchen (1993). See also
Koop, Pesaran and Potter (1996).
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Rather than selecting arbitrarily various initial configurations of the state vec-
tor, we focus on its two realisations estimated at the extreme values of inflation
observed in our sample. Looking at Table 3, the maximum and minimum of
inflation are equal to 16.58% in 1976:01 and 0.59% in 1998:03, respectively.

It is important to keep in mind that we aim at describing the dynamic prop-
erties of the system starting from initial conditions which are indeed very
far from the state state. This is a hard task when using perturbation meth-
ods whose accuracy quickly deteriorates when we move away from the point
around which the approximation is taken. On the other hand, we cannot use
global approximation methods which are not fast enough to allow us to be
used for estimation of the parameters, and we use a quadratic approximation
which improves on the linear one.

In order to highlight how the impulse responses vary over time, we calculate
them starting from the filtered state vectors on these dates, referred to as .
(high inflation) and ¢, (low inflation). IRFs are then computed using the
KKSS simulation strategy illustrated in Section 3.1, and by integrating out
future values of shocks. However, different ways to compute IRFEs, namely by
projecting the quadratic laws of motions and/or by setting to zero all shocks
but one, led to virtually the same results. Posterior median responses and the
bounds corresponding to a 95% posterior coverage are reported in Figures 7
and 9.

The response of inflation to a technology shock (row 1, column 1 of Figure
7), for which the posterior mean of the standard error is equal to 1.49%,
follows the broad pattern typically observed in linearised models, if the shock
occurs when inflation is low (the "Low inflation" line). Inflation falls for a few
quarters and returns to baseline thereafter. The initial fall is also statistically
significant at the 95% level for 2 quarters. The nonlinear effects triggered by
the technology shock are quantitatively modest. Starting from a high inflation
level (the "High inflation" line), the fall in inflation is reduced and ceases to be
significant after 2 periods, but the differences are not statistically significant.

The response of inflation to a positive inflation target shocks (posterior mean
of o, = 0.17%) is more markedly dependent on the starting point (see first
row, second column of Figure 7). The low estimated value of the inflation
indexation parameter, ¢, implies that inflation is highly forward-looking. As
a result, a positive and highly persistent increase in the inflation target has
immediate consequences on current inflation, which rises more than the target
itself (around .35%). In turn, this implies that the policy interest rate increases
on impact to counter the rising inflationary pressure. Nevertheless, the shock
continues to produce expansionary effects on output, if it occurs when inflation
is low.
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This result, however, changes dramatically if the shock takes place when in-
flation is already high. In this case, there is a much bigger upward increase in
inflation, nearly twice as big as in the previous case, and also more persistent
in terms of median half-life. As a result, the policy tightening must be much
more severe, so as to progressively contract aggregate demand. Hence, the im-
pulse response of output to an inflation target shock changes sign depending
on the state of the world prevailing when the shock occurs.

The response of inflation to a monetary policy shock (posterior mean of o; =
0.18%) is again more marked when inflation at the starting point is high. For
given size of the shock, the top row, second column of Figure 9 shows that
it falls on impact by around 0.15 percent in this case, compared to a fall
of 0.10 after a low-inflation starting point. These differences are nevertheless
short-lived and they disappear completely after 5-6 quarters.

In synthesis, the two main shocks driving inflation (target and policy) have
quantitatively different impact and persistence behaviours depending on the
initial conditions. Our results are important, for example because they suggest
that sacrifice-ratios derived from a linearised model may provide a misleading
picture. In the case we analyze, the benefits on expectations of cutting a high
inflation target are so large, that the cut would have an expansionary effect.
This is not the conclusion that one would reach focusing solely on the linearised
model.

6 Conclusions

‘We have presented the results of an empirical analysis of the nonlinear features
of a relatively standard, small DSGE model. With the limitations posed by
the simplicity of the model, a few main results emerge.

First, the nonlinear macroeconomic dynamics intrinsic in the model can have
pronounced and statistically significant effects in case of moderately large
movements in the inflation rate. The amplitude and persistence of the re-
sponses of inflation to shocks differ at different points in the sample. For
example, a given surprise increase in the inflation target produces stronger in-
flationary consequences if it occurs in a high inflation environment, compared
to an environment where price stability is maintained. Even starker differences
can be observed for the response of output, which can change sign depending
on initial conditions.

When comparing formally linear and nonlinear models, we tend to conclude
slightly in favour of the latter specification. We show that this result has an
intuitive interpretation in terms of better performance when observed variables
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are furthest away from their steady state levels.

From a more general viewpoint, our results illustrate some of the promises of
exploring estimated version of nonlinear DSGE models, including the possi-
bility to increase the identifiability of parameters.

Nevertheless, we wish to end with a word of caution, since the estimation on
nonlinear models does have drawbacks. The first one, induced by the need of
resorting to simulation filtering to carry out likelihood based inference, is that
much more computation time is required. A second drawback is that sequential
Monte Carlo methods are sensitive to outliers and degeneracies which can arise
in actual data. Nevertheless, the conditional particle filter has proven to be a
robust tool in our application.
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A The complete model(s)

The models are composed of the following equations
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plus either of the policy rules (12)-(13) or (14)-(15).

In the case of M1 the solution is standard. For M2, we first remove the sto-
chastic trend from nominal variables. More precisely, we define the detrended
variables

~ 1T
M =_—"
t Ht
~ It
ILi=—
t Ht

Qt,t+1 = Qt,t+1Ht+1

and rewrite the system as
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B Model solution

The approximate solution of the model is computed following Gomme and
Klein (2006). First, we collect all first order conditions in a vector function F
such that
F‘t (Xt7 U) = Etf (yt+1a yt7 Xt+17 Xt) = O
where x; is the vector of (natural logarithms of the) predetermined variables
and y, is the vector of (natural logarithms of the) non-predetermined variables.
7

More specifically, in the case of M1 x; = [ﬂ't_l, Yyt e g, 0, ag, T, Te, U and
Yt = [y;mt’ Tl,tv TQ,ta T, it7 Y, )\t}/7 Whlle fOI‘ M2 Xt = [%:_1; ytn_mia ytflaf;tfla Aag, Uzra Tt, UZ

~ /
and y;, = [yt"‘“, Yo, Yo, AT, b, Ye, A, Wﬂ . In F}, o denotes a scalar perturba-
tion parameter, such that the law of motion of the exogenous state variables
v
z{" (where x;* = [at, 7}, T4, 0i] ) can be written as x;}7! = H9x{" +

onv,,,, where the variance-covariance matrix of v, is the identity matrlx
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Fig. 7. Impulse responses for model M1: technology and target shocks
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Fig. 8. Impulse responses for model M1: tax and monetary policy shocks
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