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Abstract

We show how the method of endogenous gridpoints can be ex-
tended to solve models with occasionally binding constraints among
endogenous variables very efficiently. We present the method for a
consumer problem with occasionally binding collateral constraints and
non-separable utility in durable and non-durable consumption. This
problem allows for a joint analysis of durable and non-durable con-
sumption in models with uninsurable income risk which is important
to understand patterns of consumption, saving and collateralized debt.
We illustrate the algorithm and its efficiency by calibrating the model
to US data.
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1 Introduction

Many interesting problems in economics have to be analyzed with dynamic
and stochastic models of equilibrium. Unless one is willing to make very re-
strictive assumptions about the underlying environment, equilibria in these
models need to be approximated numerically. Maybe the most popular
method for finding such approximations of solutions to dynamic stochastic
optimization problems is value function iteration. This standard approach,
however, is known to be particularly prone to a “curse of dimensionality” in
problems whose recursive formulation needs to include multiple state vari-
ables. Therefore, the analysis of many interesting research questions has been
hampered by the large amounts of required computing time.

In this paper we develop a much less time-consuming and very accu-
rate solution algorithm, based on the endogenous gridpoints method (EGM)
of Carroll (2006), to solve problems with occasionally binding constraints
among multiple endogenous variables. This type of problem is frequently
encountered in economics and has received much interest recently in the con-
text of consumer models with durables and occasionally binding collateral
constraints. We thus illustrate our method for such a model.

The EGM has been previously extended by Barillas and Fernández-Villaverde
(2007) to problems with more than one control variable. There are two
important differences of our paper compared with Barillas and Fernández-
Villaverde (2007). Firstly, in our problem we have both an additional con-
trol variable and an additional state variable. Secondly, our algorithm han-
dles constraints among endogenous variables which are occasionally binding.
This is achieved much more simply than in the parameterized expectations
approach described in Christiano and Fisher (2000) since we can fully char-
acterize the policy functions and the multipliers on the constraints in terms
of the next-period combinations of state variables that we condition on.

As a result we compute precise solutions with average Euler equation
errors below 10−4 very efficiently: our algorithm needs one second per (period
of time) iteration using Matlab on one of the 2.4 GHz dual-core processors
for a PC with 2 GB RAM. Solving the problem with the same accuracy using
standard value function iteration would be prohibitively slow.

The computational advantage of conditioning on the grid of future rather
than current state variables (or post-decision rather than pre-decision state
variables) has been explored in the engineering literature (Powell, 2007).
There it has been used to avoid numerical complications in the computation
of expectations in high-dimensional dynamic programming problems. In our
algorithm we exploit at least two additional advantages. Firstly, occasionally
binding constraints are dealt with very efficiently, since constraints among
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variables are naturally expressed in terms of future endogenous states. Thus,
our algorithm derives the binding patterns of the constraints and the cor-
responding multipliers as functions of future endogenous states. Secondly,
the economic structure of a problem may allow for a very efficient mapping
between future endogenous states.

Importantly, our proposed algorithm can provide substantial efficiency
gains even if the model of interest in a certain application can only be solved
by value function iteration. The EGM may be applicable to a suitably de-
fined auxiliary model, which allows to efficiently compute an accurate initial
guess for the value function, reducing the number of iterations necessary for
convergence. For example, such an auxiliary model could hold some dimen-
sions of the choice problem constant while exploiting the advantages of the
EGM for a subset of choice variables.

We illustrate our method for a consumer problem with durables and oc-
casionally binding collateral constraints. This is an important problem that
has received substantial attention in recent research since a joint analysis of
durables and non-durables helps to understand patterns of consumption, sav-
ing and collateralized household debt. Introducing durables into classic mod-
els with uninsurable income risk (Aiyagari, 1994, Carroll, 1997, and Deaton,
1991) has allowed to quantify the importance of durables for the precaution-
ary savings motive and wealth inequality (Gruber and Martin, 2003, Dı́az
and Luengo-Prado, 2010) or to highlight the importance of durables for the
hump of non-durable consumption over the life-cycle (Fernández-Villaverde
and Krueger, 2005). Since durables serve as collateral in these models and
most of consumer debt is collateralized in reality, the models’ predictions also
help to interpret observed patterns of consumer borrowing.

The numerical solution of models with durables and collateralized debt
has been considered to be particularly challenging and computationally ex-
pensive for two reasons: First, durables enter as an additional state variable
in the value function along with total wealth and persistent stochastic labor
income (at least if non-separable utility from durable and non-durable con-
sumption or adjustment costs are allowed for). Second, durables increase the
dimensionality of portfolio choice beyond a simple savings decision. Hence,
there is a substantial payoff for a method which allows to solve these models
efficiently.

The rest of this paper is structured as follows. In Section 2 we present the
consumer problem. We then discuss our algorithm for a rather general model
structure before explaining details of the implementation in the framework of
the consumer problem. In Section 3 we illustrate our method by calibrating
the model to US data. We conclude in Section 4.
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2 The EGM with collateral constraints and

non-separable utility

In this section we first present the consumer problem before we discuss the
algorithm for its efficient solution. The basic idea of the algorithm is to
exploit the structure of the first-order conditions to avoid time-consuming
and potentially unstable standard procedures such as root-finding or numeric
optimization.

2.1 The model

Risk averse consumers with a (finite or infinite) time horizon T derive utility
from a durable good d and a non-durable good c where the instantaneous
utility U(c, d) is assumed to be strictly concave, is allowed to be non-separable
in c and d.

Consumers are exposed to idiosyncratic labor-income shocks and the tim-
ing of these shocks is as follows. After the draw of uncertain exogenous labor
income yt, agents choose consumption ct and the endogenous assets in the
next period, i.e., the holdings of the durable good dt+1 and the financial risk-
free asset at+1. They then derive utility from consumption before the returns
of the assets accrue. Financial assets earn interest r and durables depreciate
at rate δ. Markets are incomplete since the assets do not allow consumers to
fully diversify their risk. As a consequence, consumers are heterogeneous ex
post although they are identical ex ante: different histories of shocks imply
different portfolios of the endogenous state variables.

Durables generate utility but the durability of these goods also allows
consumers to use them as collateral against which they can borrow. Since
most household debt in the US is mortgage debt or other credit that is secured
by collateral (about 85% in the Survey of Consumer Finances 2004), we make
the simplifying assumption that all credit needs to be collateralized. Denote
y as the minimum labor income realization and μ ∈ [0, 1) and γ ∈ [0, 1)
as the collateralizable fractions of the durable stock and of minimum labor
income, respectively. The collateral constraint takes the following form:

μ(1− δ)dt+1 + γy︸ ︷︷ ︸
collateral

≥ − (1 + r) at+1 .

Given the timing assumptions made above, this constraint guarantees full
repayment by consumers. The assumption is that the lender, who lends
at the risk-free rate, knows the financial portfolio choice (at+1,dt+1) and the
minimum of the support of the income distribution y but he does not observe
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future individual income draws yt+1. Note that whether and by what margin
the collateral constraint binds in t + 1 is entirely determined by the choices
in period t.

Defining the available total wealth as

xt ≡ (1 + r)at + (1− δ)dt, (1)

it is useful to rewrite the collateral constraint in terms of xt+1 and dt+1:

xt+1 ≥ −γy + (1− μ) (1− δ)dt+1. (2)

Written this way, we see that total wealth needs to be larger than the negative
value of γy and the fraction of durable wealth which cannot be used as
collateral. If the constraint binds, dt+1 is determined for a given xt+1, under
our assumption that μ < 1.

We also consider the case in which durables can only be adjusted at a
cost Ψ where

Ψ(dt+1, dt) =
α

2

(
dt+1 − (1− δ)dt

dt

)2

dt.

This specification of quadratic adjustment costs is borrowed from the invest-
ment literature (see, for example, Adda and Cooper, 2003, p. 192) where the
costs are differentiable in dt+1 and dt and consumers can avoid adjustment
costs if they let the durable stock depreciate.1 The definition of total wealth
above then implies that we can write the budget constraint as

at+1 + dt+1 + ct +Ψ(dt+1, dt) = xt + yt. (3)

2.1.1 The recursive formulation of the household problem

The recursive formulation of the household problem is

vt (xt, dt, yt) = max
at+1,dt+1

⎡⎣U(xt + yt − at+1 − dt+1 −Ψ(dt+1, dt)︸ ︷︷ ︸
ct

, dt) + v̂t(xt+1, dt+1, yt)

⎤⎦
(4)

subject to the constraints

1For simplicity, adjustment costs do not reduce the amount of collateral in (2). This
is the case if adjustment costs do not affect sales of collateral seized by lenders. We show
in the Appendix how this assumption may be relaxed. We prefer the simpler case in the
main text for presentation purposes.
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at+1 + dt+1 + ct +Ψ(dt+1, dt) = xt + yt

xt+1 = (1 + r)at+1 + (1− δ)dt+1

xt+1 ≥ −γy + (1− μ) (1− δ)dt+1

dt+1 ≥ dmin

where yt enters as a state variable due to its persistence and the expected
value of next period’s value function, multiplied by the discount factor β, is
denoted by

v̂t(xt+1, dt+1, yt) ≡ βEtvt+1(xt+1, dt+1, yt+1).

The last constraint restricts the portfolio position in durables where dmin = 0
in the model specification without adjustment costs and dmin > 0 in the
specification with adjustment costs so that the adjustment cost function in-
troduced above is well defined.

In the following we drop time indices on variables, on functions, and on
the expectations operator, if these are at date t. Furthermore, we let primes
“ ′ ” denote a one-period lead on variables.

2.1.2 Further assumptions and useful analytic properties

We now summarize further assumptions and useful analytic properties that
apply in the model and which turn out beneficial to rely on in the construction
of the algorithm. We consider the class of preferences which are characterized
by

U(c, d) =
ψ(c, d)1−σ − 1

1− σ
and ψ(c, d) = cθ(d+ εd)

1−θ,

where εd ≥ 0 can be interpreted as autonomous durable consumption. For
εd > 0 marginal utility for durables is finite at d = 0. Introducing the
parameter εd adds to the flexibility of the class of preferences by allowing for
solutions where agents choose not to hold durables for certain combinations
of the state variables. This flexibility also helps to apply the framework of the
model to situations that differ in the empirical interpretation of the durable
good in terms of its necessity. Allowing for the potentially optimal choice
d′ = dmin means that the constraint for minimal durable holdings needs to be
taken into account in the recursive problem as another occasionally binding
constraint in addition to the collateral constraint.

Although our approach may be valid for a more general class of prefer-
ences, we focus on the parametric case introduced above since (i) it encom-
passes many of the previous numerical applications which we are aware of,
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(ii) the Cobb-Douglas specification for the consumption index is roughly in
line with empirical estimates on the substitutability between durables and
non-durables (see Fernández-Villaverde and Krueger, 2005, for further dis-
cussion and references) and (iii) the Cobb-Douglas specification allows to
invert the financial-asset Euler equation to retrieve c as a function of future
choices in a straightforward manner.

Moreover, we use in the algorithm that the value function at iteration step
n is differentiable in our problem with inequality constraints (proposition 1,
Rendahl, 2007). Furthermore, the value function is strictly concave at each
iteration step (Stokey and Lucas, 1989, ch. 9).

Finally, time iteration on the policy function converges to the true policy
function (proposition 2, Rendahl, 2007). At each iteration for given state
variables, the unique maximizers are continuous policy functions (Stokey
and Lucas, 1989, ch. 9).

2.2 The algorithm

We pursue a numerical approach that relies on a substantial extension of the
endogenous gridpoints method (EGM) which has been proposed by Carroll
(2006) for a much simpler problem. Extending the EGM allows for an efficient
and accurate solution of our model. Carroll’s method avoids root-finding and
forward maximization to solve for the optimal endogenous state next period
x′ given this period’s state x. By specifying an exogenous grid for the state
variable x′ in the next period instead, the first-order conditions are used to
determine the endogenous grid of the state variable x in this period implied
by the optimal choices.

The challenge of extending the EGM to the problem in our paper is
twofold. Firstly, we have to handle the mapping from multiple next-period
state variables (x′, d′) to multiple current-period states. Secondly, we need to
consider this mapping from tomorrow’s endogenous states to today’s states
in a setting with constraints among endogenous choice variables. These con-
straints may be occasionally binding. The main contribution of our algorithm
is thus to handle these challenges. Importantly, the algorithm is derived from
a recursive formulation such that it can be applied to both life-cycle and
infinite-horizon problems. We now proceed by discussing our algorithm for
a rather general setting before applying it to our specific case of interest.

2.2.1 The general framework

Suppose the optimal solution of a general choice problem in its recursive
formulation is characterized by a set of first-order conditions with equality
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constraints and occasionally binding constraints. Given the vector of endoge-
nous state variables s and the vector of exogenous state variables y we thus
have a system of equations and inequalities

F(s′, c, λ; s,y) = 0

E(s′, c; s,y) = 0

O(s′, c; s,y) ≥ 0

λ(s′, c; s,y) ≥ 0

λ(s′, c; s,y)O(s′, c; s,y) = 0

in the unknowns s′, the vector of future endogenous states, c, the vector of
controls, and λ, the vector of multipliers on the occasionally binding con-
straints.
F(·) = 0 collects the first-order derivative conditions, E(·) = 0 contains

the equality constraints, and O(·) ≥ 0 gathers the occasionally binding in-
equality constraints. The system also includes the complementary slackness
conditions λ(·)O(·) = 0.

The algorithm uses the system above to compute policy functions, and it
proceeds in two steps, which we label “Step 1” and “Step 2” in the following.
In Step 1 of the algorithm, we condition on a subset of the future endoge-
nous state variables s′, a subset of the current endogenous state variables
s and all the exogenous state variables y. We then exploit the first-order
derivative conditions F(·) = 0 to determine the combinations of future en-
dogenous state variables that can be attained through an optimal choice.
Since the occasionally binding constraints are naturally expressed in terms
of future endogenous state variables, we simultaneously find out where these
constraints are binding. We are then able to compute those multipliers that
only depend on the future endogenous state variables and the subset of cur-
rent state variables which we conditioned on.

In Step 2 of the algorithm, we use the combinations of future endogenous
state variables and the multipliers, which we computed in Step 1, and the
first-order derivative conditions F(·) = 0 to determine the remaining controls
c. In doing so, we condition on a subset of the current endogenous state vari-
ables s and all the exogenous state variables y. Finally, equality constraints
from E(·) = 0 let us determine those endogenous current state variables that
we did not condition on in the previous stages of the algorithm.

Given this general structure of the problem, it becomes evident that the
efficiency gains of the endogenous gridpoint method decrease in the num-
ber of states that need to be conditioned on in Step 1 and Step 2. This
is particularly relevant in Step 1 since the characterization of the optimal
combinations of future endogenous state variables will involve derivatives of
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the value function. In typical applications such characterization cannot be
done in closed form. In contrast Step 2, which inverts first-order derivative
conditions in closed form, copes well with a larger state space.

We now impose the structure of our application on this framework in
order to elaborate in-depth on the explanation of the steps of the algorithm
presented above. In terms of our model the key components of the general
choice problem described above are the equality and inequality constraints
of the recursive optimization problem in (4), and the first-order derivative
conditions (5) and (6) discussed in the following.

2.2.2 The first-order conditions for our application

Assigning the multiplier κ to the collateral constraint and the multiplier η
to the constraint on durables, the two first-order conditions for a′ and d′ in
problem (4) are

−κ(1 + r) +
∂U(c, d)

∂c
= (1 + r)

∂v̂

∂x′
(5)

and

−η − κμ (1− δ) +
∂U(c, d)

∂c

(
1 +

∂Ψ(d′, d)
∂d′

)
= (1− δ)

∂v̂

∂x′
+
∂v̂

∂d′
, (6)

where for our parametric specification of adjustment costs

∂Ψ(d′, d)
∂d′

= α

(
d′

d
− (1− δ)

)
.

For later reference note that the envelope conditions are

∂v

∂x
=
∂U(c, d)

∂c
and

∂v

∂d
=
∂U(c, d)

∂d
− ∂U(c, d)

∂c

∂Ψ(d′, d)
∂d

, (7)

where
∂Ψ(d′, d)

∂d
=
α

2

(
(1− δ)2 −

(
d′

d

)2
)
.

Using the first optimality condition (5) to substitute for ∂U(c, d)/∂c in the
second condition (6), we obtain

κ

(
(1 + r)

(
1 +

∂Ψ(d′, d)
∂d′

)
− μ (1− δ)

)
− η (8)

= −
(
∂Ψ(d′, d)
∂d′

(1 + r) + r + δ

)
∂v̂

∂x′
+
∂v̂

∂d′
.
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Equation (8) is one of the key equations for our solution method as it
characterizes the implicit relationship between the two endogenous state vari-
ables in the next period x′ and d′. Notice that equation (8) also relates the
multipliers κ and η to the endogenous state variables in the next period.

Using that

∂U(c, d)

∂c
=
∂ψ(c, d)

∂c
ψ(c, d)−σ = θcθ−1(d+ εd)

1−θ
[
cθ(d+ εd)

1−θ
]−σ

,

we derive the other key equation, solving the first optimality condition
(5) for c:

c =

[
(1 + r)

(
∂v̂(x′, d′, y)

∂x′
+ κ

)
(d+ εd)

(θ−1)(1−σ)

θ

] 1
θ(1−σ)−1

. (9)

Conditional on one of the endogenous state variables in the current period,
d, equation (9) relates the endogenous state variables in the next period, d′

and x′, to the current choice c. The presence of the occasionally binding
collateral constraint, which is captured by the multiplier κ in equation (9),
does not destroy the structure of the relationship. As mentioned above, κ
can be characterized in terms of next-period states d′ and x′.

Given the next-period states x′ and d′, the current choice c and conditional
on the current state d, we describe in more detail below how equations (1)
and (3) allow us to determine the remaining endogenous state x in the current
period.

2.2.3 The extension of the EGM in our application

For the numerical implementation of the EGM, we start with an exogenous
grid for the future state x′, Gx′ ≡ {x′1, x′2, ..., x′I}, the current state d,
Gd ≡ {d1, d2, ..., dJ}, and use Tauchen’s (1986) method to discretize the
stochastic process for y on the grid Gy ≡ {y1, y2, ..., yK}.

Step 1: Mapping x′ into d′. The first step of the algorithm uses the
optimal relationship in equation (8)

κijk

(
(1 + r)

(
1 +

∂Ψ(d′ijk, dj)

∂d′

)
− μ (1− δ)

)
− ηijk (10)

= −
(
∂Ψ(d′ijk, dj)

∂d′
(1 + r) + r + δ

)
∂v̂(x′i, d

′
ijk, yk)

∂x′
+
∂v̂(x′i, d

′
ijk, yk)

∂d′

to determine the values of d′ijk which correspond to each of the exogenous
gridpoints x′i for a given yk and current durable stock dj. Conditioning
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on dj would not be necessary without adjustment costs, further improving
the speed of our algorithm. The partial derivatives ∂v̂(x′i, d

′
ijk, yk)/∂x

′ and
∂v̂(x′i, d

′
ijk, yk)/∂d

′ are obtained by exploiting the envelope conditions (7).
With adjustment costs this implies a term ∂Ψ(d′′, d′)/∂d′ on the right-hand
side of equation (8) which we handle in the second iteration (the “second-to-
last” period) by using the terminal condition d′′ = 0 (we then update d′′ in
each further iteration by the previously computed optimal policy).2

The collateral constraint and the lower bound on positions of d′ imply
that an optimal solution d′ijk lies in the interval

[
dmin, d′i

]
, where

d′i ≡
x′i + γy

(1− μ) (1− δ)
. (11)

In order to compute the optimal d′ijk we need to distinguish three possible
cases for each income state yk and current durable stock dj. In the first case
neither the collateral constraint nor the constraint on durables are binding
so that κijk = ηijk = 0. In this case there exists a d′ijk in the feasible interval
for which the right-hand side of equation (10) intersects zero. If there is no
such intersection, the right-hand side of equation (10) is either positive or
negative over the entire feasible interval of d′, so that two more possible cases
need to be considered.

In one case the right-hand side is positive, such that equation (10) can
only be satisfied for κijk > 0 and d′ijk = d′i where

κijk =

∂v̂(x′i,d
′
ijk,yk)

∂d′ −
(

∂Ψ(d′ijk ,dj)

∂d′ (1 + r) + r + δ
)

∂v̂(x′i,d
′
ijk ,yk)

∂x′

(1 + r)
(
1 +

∂Ψ(d′ijk ,dj)

∂d′

)
− μ (1− δ)

,

and we interpolate the derivatives of v̂ to determine their values at d′ijk.
The condition

μ < (1 + r)

[
1

1− δ
− α

]
(12)

ensures that in this case for all x′i and dj there exists a d
′
ijk = d′i that satisfies

equation (10) with κijk > 0. Condition (12) is not very restrictive for plau-
sible parameter values, as we will see below. It guarantees that the term in
brackets which multiplies κijk on the left-hand side of (10) is positive. This
also implies that in the last of the three cases, in which the right-hand side
of (10) is negative over the entire feasible interval, equation (10) can only
be satisfied for ηijk > 0 and d′ijk = dmin. Specifying an exogenous grid for

2With adjustment costs, full decumulation is feasible for all x, d and y if
μ < 1− (1− δ)α/2 which is satisfied for the chosen parameter values below.
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x′ rather than x thus allows immediate characterization of the multipliers of
the occasionally binding constraints which is a major advantage compared
with standard methods.

Figure 1 illustrates the solution d′ik(x
′
i, yk) without adjustment costs (α =

0) for each of the five income states and for the parameter values which we
consider in our application below.3 Since μ is very close to one in our calibra-
tion (i.e., most of the durable can be collateralized), the collateral constraint
is very steep in the (x′, d′) space and this constraint is binding for small val-
ues of x′. The constraint intersects with the horizontal axis at x′i = −γy
and, conditional on being collateral constrained, durable wealth in the con-
sumer’s portfolio is independent of the income state. Not surprisingly, the
share of the consumer’s portfolio in durable wealth decreases in the amount
of total wealth x′ if the collateral constraint is slack and the motive to accu-
mulate durables rather than financial wealth becomes weaker. In this case,
however, higher income increases the amount of durables in the consumer’s
portfolio since income shocks are persistent and durables are also a normal
consumption good.

3Recall that we do not need to condition on dj in this case so that there is no index j.
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Figure 1: The relationship between future total wealth and future durable
wealth for five different income states without adjustment costs.
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Step 2: From optimal future combinations (x′,d′) to current choice
c and state x. The second step of the algorithm applies equation (9) at
all gridpoints

cijk =

[
(1 + r)

(
∂v̂(x′i, d

′
ijk, yk)

∂x′
+ κijk

)
(dj + εd)

(θ−1)(1−σ)

θ

] 1
θ(1−σ)−1

(13)

to determine consumption cijk where we need to condition on dj also
because of the non-separable utility function. Equation (1) implies

a′ijk =
x′i − (1− δ)d′ijk

1 + r
.

so that we can use the budget constraint (3) to calculate the current state x
as

xijk = a′ijk + d′ijk + cijk +Ψ(d′ijk, dj)− yk . (14)

These are the endogenous gridpoints in our problem. We then interpolate
to retrieve the policies c(x, dj , yk), d

′(x, dj, yk) on the exogenous grid of x for
given dj and yk, where we use Gx′ as the exogenous grid for x. To simplify
notation, we do not index this exogenous grid.

The structure of our application implies that low values of x are not
attained when we apply (13) and (14) to map backwards from the combina-
tions (x′i, d

′
ijk) computed in Step 1. The reason is that the optimal policies

(x′, d′) for all these low values of x lead to the point (−γy, dmin) where both
constraints are binding. We now explain how we can determine the optimal
consumption and portfolio choices in this case.

Define the minimum endogenous value of xijk for each dj and yk as

x̃jk ≡ min
i
{xijk} , for all j and k.

For x < x̃jk, x
′(x, dj, yk) = −γy and d′(x, dj, yk) = dmin, and the budget

constraint implies

c(x, dj, yk) = x+
γy

1 + r
+ yk −Ψ(dmin, dj) . (15)

Hence, the consumption propensity out of total wealth x is equal to one in this
case so that Δc = Δx in the range x < x̃jk for given dj and yk. Equation (15)
and the consumption policy c(x, dj, yk), for x ≥ x̃jk and conditional on all
dj and yk, complete the update of the relevant policy functions c(x, d, y) and
d′(x, d, y) that enter the next iteration. The budget constraint and definition
for total wealth x′ then allow us to calculate a′(x, d, y) and x′(x, d, y).
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Further algorithmic issues. We now discuss some remaining issues con-
cerning the algorithm. The constraint set in this problem is characterized by
two inequality constraints, i.e., the collateral constraint and the constraint
on the minimal holdings of durables. The smallest value of x′, for which
optimal combinations (x′,d′) exist, is determined by the intersection of the
two constraints under condition (12). This value −γy +(1− μ)(1− δ)dmin is
the lower bound of the grid for x′. The lower bound of the grid for d is dmin.
Our choices of the upper bounds guarantee that, for every x and d and for
every realization of income y, the equilibrium policy will imply a value for
x′ and d′ that remains within the implied interval. We choose a finer grid at
the origin where the policy functions tend to have more curvature.

We initialize the choice of durables as d′ = 0 and the consumption policy
function as c(x, dj, yk) = x + yk − Ψ(0, dj). Therefore we can interpret the
solutions in each iteration step n as policy functions in a life-cycle problem
n periods before the end of life. We obtain the stationary solution of the
policy functions for the infinite horizon by iterating on Step 1 and Step 2
above until convergence of the policy functions c and d′.

3 Illustration of the algorithm

We now provide an illustration of our algorithm for an infinite horizon model,
with and without adjustment costs. We first briefly discuss the data and
calibration of the model before discussing the efficiency of the algorithm.

3.1 The data

We use data on households with a head between 20 and 55 years of age
from the Survey of Consumer Finances (SCF) 2004 to calibrate our model.
The focus on this age group is motivated by our choice of an infinite horizon
model in the illustration which abstracts from retirement. The SCF data has
been widely used as it provides the most accurate information on consumer
finances in the US. The data collectors of the Federal Reserve System pay
special attention in their sampling procedures to accurately capture the right
tail of the very right-skewed wealth distribution (see Kennickell, 2003, and
the references therein). The data thus allow us to compute precise statistics
for the consumers’ wealth portfolio.

We largely follow Budŕıa Rodŕıguez, Dı́az-Giménez, Quadrini and Ŕıos-
Rull (2002) and Dı́az-Giménez, Quadrini and Ŕıos-Rull (1997) when comput-
ing statistics for net worth and labor earnings in the US. Net worth consists
of net-financial wealth and durables where durables are defined as the sum
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of the value of homes, residential and non-residential property and vehicles.
These are the most important durable items which can be used as collateral
in real-world debt contracts.

We account for differences in household size using the equivalence scale re-
ported in Fernández-Villaverde and Krueger (2007), Table 1, last column. To
make the empirical data comparable with the data generated by the model,
we normalize all variables by average net labor earnings. More precisely, we
use SCF data on gross labor earnings and the NBER tax simulator described
in Feenberg and Coutts (1993) to construct a measure of disposable labor
earnings after taxes and transfers for each household in 2004.4 Arguably,
after-tax rather than pre-tax earnings matter for household consumption de-
cisions since some of the uninsurable labor earnings risk may be eliminated
by redistributive taxes and transfers. More detailed information is contained
in the data appendix.

3.2 Calibration

For our numerical application we use a triple-exponential grid for x′ and d
with I = 225 gridpoints for x′ and J = 100 gridpoints for d, and we use
K = 5 gridpoints for y. We set risk aversion σ = 2, a commonly used value
in the literature. We calibrate the remaining preference parameters θ and β
to precisely match (up to precision 10−2) the amount of total wealth in the
data, which is 6.33 in terms average population labor earnings (after taxes
and transfers), and the part of wealth accounted for by durables, 4.45.5 The
parameters are recalibrated for each model version we consider so that these
targets are always matched in the calibrations below.

The annual real interest rate is set to 3% and the depreciation rate is 2%
(see, for example, Caporale and Grier, 2000, and Lustig and van Nieuwer-
burgh, 2005). The low depreciation rate is motivated by the dominating role
of housing for consumer durables.

We have to specify three parameters for the collateral constraint: the
minimum labor income y and the parameters γ and μ which determine the
fractions of minimum income and durables that can be used as collateral.
We choose μ = 0.97, consistent with data on the legal maximum of the
loan-to-value ratio reported in Green and Wachter (2005), Table 2. We set

4We use the programs provided by Kevin Moore on http://www.nber.org/˜taxsim/ for
constructing the SCF data in 2004 which are fed into the tax simulator on the NBER
website.

5When computing the statistics in the data, we use the sampling weights provided in
the SCF. The normalization by net labor earnings and the use of equivalence scales implies
that normalized (aggregate) wealth is larger than the wealth to output ratio.
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γ = 0.95, a value smaller than unity to ensure positive consumption at the
smallest gridpoint for x′. The discrete approximation of the labor income
process below implies y � 0.09. This value is positive since transfer income
is included in labor earnings and US consumers in our sample, who receive
transfers in the SCF 2004, receive about 9% of average net labor earnings
through unemployment insurance, food stamps or child support.

In the calibration with adjustment costs, we set α = 0.05 to capture the
order of magnitude of these costs observed in market transactions, such as
the typical 5% fee charged by real-estate brokers in the US (Dı́az and Luengo-
Prado, 2010). Note that condition (12) holds for the chosen parameter values
which imply that μ has to be smaller than 0.9995. This is barely restrictive
since we require that μ < 1 anyway. Finally, the functional form for adjust-
ment costs is well defined only if d ≥ dmin > 0. We choose dmin = 0.01 to
keep the grid very similar to the one without adjustment cost.

3.2.1 Income process

We approximate the income process by a 5-state Markov chain.6 We purge
net labor earnings of life-cycle effects focusing on households with a head
between 20 and 55 years of age. For this sample we regress net labor earn-
ings on an age polynomial and compute the quintile means of the residual
distribution around the normalized mean income of 1 in the SCF 2004. This
results in

y = [0.09, 0.39, 0.74, 1.22, 2.57],

We approximate the income distribution in the SCF as

log y ∼ N (−0.3663, 0.7325)
and assume an AR(1) process with first-order correlation of 0.95 which im-
plies a variance of the innovations in the AR(1) process of 0.7325(1−0.952) =
0.07. This is larger than the variance of 0.02 for persistent innovations es-
timated by Storesletten, Telmer and Yaron (2004) using PSID data but we
consider our parametrization of the Markov chain reasonable for the following
reasons. Firstly, as discussed for example in Heathcote, Perri and Violante
(2010), the earnings dispersion is larger in the SCF sample than in the PSID
sample, which does not represent very wealthy consumers well. Secondly,
the estimates of Storesletten et al. (2004) based on the PSID panel are not
directly applicable to the SCF data cross-section since they are able to con-
trol for permanent effects and allow also for purely transitory innovations.

6We make use of existing Matlab routines accompanying Miranda and Fackler (2002)
and Ljungqvist and Sargent (2004).
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As a robustness check we will also report results for a first-order correlation
of 0.97 which implies a smaller variance of 0.04 for the innovations in the
AR(1) process.

We then use Tauchen’s (1986) method to compute the transition matrix
which, for our benchmark parameters, is given by

Γ =

⎡⎢⎢⎢⎢⎣
0.9854 0.0146 0 0 0
0.0045 0.8451 0.1491 0.0013 0
0 0.1359 0.6787 0.1843 0.0011
0 0.0029 0.2208 0.6963 0.0800
0 0 0.0006 0.1455 0.8539

⎤⎥⎥⎥⎥⎦ .

The stationary income distribution is

π = [0.0817,0.2627,0.2856,0.2377,0.1323].

Although the Markov chain with five states approximates the log-normally
distributed AR(1) process very well, we implement a bias correction which
ensures that the discrete Markov chain implies exactly the same mean and
variance.7

3.2.2 Results

We calibrate the preference parameters θ and β to match the average durable
stock and total wealth in the data. The steady-state statistics for the model
are based on 110,000 simulated observations where we discard the first 10,000
observations to avoid that initial conditions influence our results.

Table 1 displays the calibrated preference parameters for the two differ-
ent values of the autocorrelation discussed above, 0.95 and 0.97, for the case
with and without adjustment costs. The calibrated preference parameters, θ
and β, are similar to previous studies in all cases and align the statistics for
durable and total wealth of the model with the data. Since the results with
and without adjustment costs are very similar, we focus on the case with-
out adjustment costs in our discussion below and only highlight important
differences for the case with adjustment costs.

In terms of wealth dispersion, our benchmark case with an autocorrelation
of 0.95 matches the Gini of net financial wealth in the data 0.97 quite closely
with a Gini of 0.88.8 The Ginis for durable wealth and total wealth are a bit

7The idea is to choose the standard deviation which we use to compute the transition
matrix so that the implied standard deviation of the Markov chain is exactly equal to the
one in the data.

8Since net-financial wealth can be negative, we renormalize the Gini statistic so that it
remains between 0 and 1 (see Chen et al., 1982).
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Calibrated parameters
No adjustment costs: α = 0 Adjustment costs: α = 0.05

Autocorrelation 0.95
θ = 0.8092 θ = 0.807
β = 0.9391 β = 0.93885

Autocorrelation 0.97
θ = 0.8098 θ = 0.8083
β = 0.94552 β = 0.94536

Table 1: Calibrated parameters for first-order autocorrelation 0.95 and 0.97.
Notes: The target statistics are the average total wealth, 6.33, and average
durable stock, 4.45. These statistics are matched at precision 10−2 for all
cases. Wealth is measured in units of average net-labor earnings for con-
sumers between age 20 and 55.

smaller in the model than in the data: 0.54 in the model compared with 0.81
in the data for total wealth and 0.30 compared with 0.67 for durable wealth.

Quantitatively, the model generates more dispersion if shocks are more
persistent (when the autocorrelation is 0.97). For example, the model then
generates a Gini of 0.37 for durables which nonetheless is still smaller than
in the data. This is not surprising since additional non-testable assump-
tions about the income processes are necessary to match the observed wealth
dispersion (see for example Dı́az and Luengo-Prado, 2010). The model cor-
rectly predicts the ranking of the Ginis: financial wealth is most unequally
distributed, followed by total wealth and durable wealth. The ranking is intu-
itive since durables are also a consumption good which is smoothed over time.
Finally, we find that the collateral constraint is binding for a non-negligible
part of the population (between 5% and 15% in the four cases presented
above) so that the very non-linear part of the policy functions (which are
plotted in Figure 2 for the case without adjustment costs) is relevant.

Figure 2 displays the policy functions for financial assets, durables and
non-durable consumption as function of total wealth for each of the five
income states, in the benchmark case with an autocorrelation of 0.95 and no
adjustment costs. Since the collateral constraint is more relevant for a small
durable stock d and low values of total wealth x, which makes the plots more
interesting, the graphs in the figure are plotted for a small current durable
stock d = 0.05 and for values of total wealth x ≤ 5. Not surprisingly, higher
labor income shifts up the durable and non-durable consumption policies.
The policies for financial wealth shift down for higher income levels instead,
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Figure 2: Policy functions without adjustment costs (α = 0) for the five
income states, conditional on d = 0.05, plotted for total wealth x ≤ 5.
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since income states are quite persistent and consumers can afford to consume
more out of current income if that income is high.

We now discuss how the collateral constraint affects the shape of the
policy functions. If consumers are not at the collateral constraint, financial
assets and consumption increase in total wealth. At the constraint instead,
the propensity to consume out of total wealth is higher and financial assets
decrease in total wealth. Consumers borrow as much as possible against
their additional durable collateral d′ in this case. As total wealth increases,
the collateral constraint eventually stops to bind. Note that the policies are
non-linear when consumers are constrained where the shape also depends on
the degree of complementarity between durables and non-durables.

The main difference for the policy functions with adjustment costs is that
the policies for durables become flatter in total wealth, especially for small
values of d. This is not surprising since quadratic adjustment costs make it
optimal to slowly adjust durables from their current level.

3.3 Computational accuracy and efficiency

We iterate until the policy functions have converged at a precision of 10−6.
As has become standard in the literature (see, e.g., Judd, 1992, Aruoba
et al., 2006, and Barillas and Fernández-Villaverde, 2007), we evaluate the
accuracy of our solutions by the normalized Euler equation errors implied by
the policy functions. The normalized Euler errors ρa and ρd in our problem
are obtained by using the envelope conditions (7) in equations (5) and (6)
for κ = η = 0,

ρa ≡ 1−
[
β(1 + r)E ∂U(c′,d′)

∂c′
(d+εd)(θ−1)(1−σ)

θ

] 1
θ(1−σ)−1

c

and

ρd ≡ 1−

(
β
(
(1−δ)E

∂U(c′,d′)
∂c′ +E

(
∂U(c′,d′)

∂d′ − ∂U(c′,d′)
∂c′

∂Ψ(d′′,d′)
∂d′

))
(d+εd)(θ−1)(1−σ)

θ
(
1+ ∂Ψ(d′,d)

∂d′
)

) 1
θ(1−σ)−1

c
.

These errors are expressed in units of non-durable consumption and thus
have a straightforward interpretation. An error of 10−3, or −3 in units of
the base-10 logarithm, means a mistake of $1 for $1, 000 spent. Table 2
displays statistics for these errors in units of the base-10 logarithm for an
autocorrelation of 0.95, both for the case with and without adjustment costs.
In both cases, we present statistics for solutions with 100 and 300 gridpoints
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Number of gridpoints Time to converge Max. Euler Error Average Euler error
for (x′, d) (seconds) for (a′, d′) for (a′, d′)

No adj. costs: α = 0
(225, 100) 169 (−3.94,−3.77) (−4.69,−4.49)
(225, 300) 381 (−4.44,−4.43) (−5.22,−5.13)

Adj. costs: α = 0.05
(225, 100) 218 (−3.54,−2.79) (−4.67,−4.08)
(225, 300) 462 (−3.46,−3.51) (−5.19,−4.88)

Table 2: Maximum and average Euler equation errors for autocorrelation
0.95. Notes: Absolute errors reported in units of base-10 logarithms.

for durables to illustrate the trade-off between computing time and accuracy.
The statistics in Table 2 show that the solution is fast and already quite
accurate for relatively few gridpoints. With 100 gridpoints for durables and
225 gridpoints for total wealth, an iteration on the policy functions takes
about a second, using Matlab on one of the 2.4 GHz dual-core processors for
a PC with 2 GB RAM. Convergence of the policies for the infinite horizon
case is achieved in about 4 minutes. For this setting, the average Euler errors
are smaller than 10−4, applying the weights of the stationary distribution,
where the largest errors on the range where the Euler equations apply with
equality are of order 10−3. Computation time and accuracy are better in the
case without adjustment costs but the speed and accuracy in the case with
adjustment costs remain remarkable. Even the very accurate solutions with
300 gridpoints for durables and 225 gridpoints for total wealth are computed
at a rate of about two seconds per iteration.

Standard approaches for solving our type of portfolio choice problem with
occasionally binding constraints either discretize choices and states or rely on
numerical root-finding or constrained optimization. Both approaches suffer
from the additional dimension due to durables, in both the space of states
and choices. To obtain reasonable accuracy in a fully discretized approach
requires a large number of gridpoints, saym, for each dimension of states and
choices. Having m gridpoints in 2 × 2 = 4 dimensions, would entail solving
m2 maximization problems each of which would need to be evaluated at m2

candidate choices, an enormous computational burden.
Figure 3 illustrates this point, comparing the computation time for dif-

ferent grid sizes for the model without adjustment costs.9 The computation

9We use a single (instead of triple) exponential grid for the comparison which improves
the accuracy in terms of the normalized Euler error criteria for standard value function

22



Acc
ep

te
d m

an
usc

rip
t 

5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

Grid−size factor

C
om

pu
ta

tio
n 

tim
e 

(in
 s

ec
on

ds
)

Value function iteration←

EGM
↓

Figure 3: Computation time of the model without adjustment costs, as a
function of the grid size. Notes: Solid graph: computation time for the
EGM; dashed graph: computation time for discretization with value function
iteration. A grid-size factor of 10 means twice as many gridpoints for x′ and
twice as many points for d than for a grid-size factor of 5.
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time for the solution obtained with EGM is plotted as the solid graph and
the time for the solution obtained with discretization and value function
iteration is shown as the dashed graph. The grid size at factor 1 in the
figure is 8 gridpoints for x′ and 4 gridpoints for d. At factor 10 it is 80
gridpoints for x′ and 40 gridpoints for d and so forth. For small grid-size
factors, the overhead-computing time dominates and both methods are ap-
proximately equally fast. The accuracy of the solutions is very different,
however. Whereas the accuracy of the EGM is remarkable for so few grid-
points (the average Euler errors are of order −2 in base-10 logarithms), the
average Euler errors with discretization and value function iteration are of
order −1.

At the grid-size factor 10 in Figure 3, the solution with the EGM is 20
times faster than with value function iteration, with average Euler errors of
order−2.7 in base-10 logarithms that are half the size of the average errors for
the solution obtained with standard value function iteration. As illustrated
in the figure, standard value function iteration is subject to a severe “curse
of dimensionality” while the EGM is not. In fact, the EGM allows the
computation of solutions at a level of accuracy that would be prohibitively
costly to achieve with standard value function iteration. Moreover, the “curse
of dimensionality” limits the scope of gradually increasing the number of
gridpoints in the value function iteration. For the numbers of gridpoints
that we use for the very accurate solution of the model with the EGM in
Table 2, standard value function iteration would reach memory requirements
of more than 30 gigabytes for one Markov state ((225∗ 300)2 ∗ 8 = 36.5 ∗ 109,
where 8 bytes are allocated by Matlab to a double-precision floating point).

We now briefly discuss the advantages of the EGM in the context of
two further alternatives which might be considered for the type of problem
we have presented above. One such alternative is standard time iteration
on the policy functions, which would need to solve a system of first-order
conditions that includes the Kuhn-Tucker inequalities for the occasionally
binding constraints. An example of this approach is the paper by Kubler and
Schmedders (2003) who replace these inequalities by equalities via a change
of variables. Massive application of root-finding routines then allows to solve
for equilibrium policies and multipliers at each point in the state space. In
the context of our application with three state variables, two choice variables
and up to two multipliers, such an approach would encounter the difficulty of
having to solve multidimensional root-finding problems on a very large scale.

Compared with such an approach our extension of the EGM has the
advantage that the combination of future state variables computed in Step 1

iteration.
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of our algorithm immediately reflects the binding patterns of the constraints.
We can then express the multipliers on the occasionally binding constraints
in terms of these combinations of future state variables, and solve for the
control variables in closed form.

Another alternative would be to stick to value function iteration and to
allow for continuous optimization by relying upon numerical optimization
routines. In our application this amounts to solving constrained optimiza-
tion problems in two dimensions, one call of a numerical solver for each point
in a three-dimensional state space. This presupposes that the stability of the
solver employed is ascertained. Experimenting with various standard rou-
tines that are available in Matlab we have encountered numerical instability
problems. The appropriate rectification of this numerical issue is in general
quite cumbersome, it will depend on the particular problem at hand, and it
asks for a fair degree of computational literacy. The advantage of the EGM
is that it avoids such numerical challenges since it does not rely on any kind
of multidimensional optimization or root-finding. We therefore hope that
the availability of such a stable method will encourage research on economic
questions in fields such as household portfolio choice, which involve solutions
of multidimensional problems subject to occasionally binding constraints.

4 Conclusion

We have proposed an efficient method to solve dynamic stochastic models
with occasionally binding constraints among endogenous variables. We have
illustrated the method for an important consumer problem where the method
is well founded in the analytical properties of the problem. In terms of perfor-
mance, we find that the algorithm needs one second per iteration for a very
accurate solution which would otherwise be prohibitively time consuming
to compute. The efficient and accurate way of describing optimal individ-
ual behavior with our method will hopefully become an important building
block for future research which studies DSGE models or attempts structural
estimation.
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Appendix

Adjustment costs and the collateral constraint

We sketch how adjustment costs may alter the collateral constraint in
the application we study. If the bank seizes the collateralizable part of

labor income γy and incurs adjustment costs α
2

(
(1+r)a′+γy

d

)2

d if it sells

− ((1 + r) a′ + γy
)
units of the durable to recover the debt, the collateral

constraint becomes

min

⎧⎪⎨⎪⎩μ, 1−
α
2

(
(1+r)a′+γy

d

)2

d

(1− δ)d′

⎫⎪⎬⎪⎭ (1− δ)d′ + γy

︸ ︷︷ ︸
+ (1 + r) a′

collateral

≥ 0,

for a′ < 0. If

μ ≤ 1−
α
2

(
(1+r)a′+γy

d

)2

d

(1− δ)d′
,

then the collateral constraint is

μ(1− δ)d′ + γy︸ ︷︷ ︸
collateral

≥ − (1 + r) a′ ,

as in the text.
If instead

μ > 1−
α
2

(
(1+r)a′+γy

d

)2

d

(1− δ)d′
,

the constraint becomes

(1− δ)d′ − α

2

(
(1 + r) a′ + γy

d

)2

d+ γy︸ ︷︷ ︸
collateral

≥ − (1 + r) a′

Expressing this constraint in terms of x′ and d′, we have to solve the
quadratic equation

(1− δ)d′ − α

2

(
x′ − (1− δ)d′ + γy

d

)2

d+ γy ≥ −x′ + (1− δ)d′
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which has the solution

x′ ≥ (1− δ)d′ − γy +
d

α
−
√
d2

α2
+ 2

d

α
(1− δ)d′ .

The negative root is the relevant one and the constraint simplifies to
x′ ≥ −γy if d′ = 0. Importantly, the constraint is differentiable in x′ and d′

so that the EGM still can be applied.

Data appendix

This data appendix describes how we construct data counterparts for the
wealth portfolio as well as labor earnings in the model, using data from the
Survey of Consumer Finances (SCF). We construct all variables for the full
SCF sample and then apply the sample-selection criteria mentioned below.

Gross labor income is the sum of wage and salary income. As in Budŕıa
Rodŕıguez et al. (2002) we add a fraction of the business income where this
fraction is the average share of labor income in total income in the SCF.
Disposable labor income is computed using the NBER tax simulator. We use
the programs by Kevin Moore provided on http://www.nber.org/˜taxsim/
to construct disposable labor earnings for each household in the SCF 1983
and 2004. Following the standardized instructions on the NBER website, we
feed the following required SCF data into the NBER tax simulator: the US
state (where available, otherwise we use the average of the state tax pay-
ments across states), marital status, number of dependents, taxpayers above
age 65 and dependent children in the household, wage income, dividend in-
come, interest and other property income, pensions and gross social security
benefits, non-taxable transfer income, rents paid, property tax, other item-
ized deductions, unemployment benefits, mortgage interest paid, short and
long-term capital gains or losses. We then divide the resulting federal and
state income tax payments as well as federal insurance contributions of each
household by the household’s gross total income in the SCF. This yields the
implicit average tax rate for each household in 1983 and 2004. The mean of
that average tax rate for consumers in the SCF is 24% in 1983 and 23% in
2004. Finally, we use the average tax rate of each household in 1983 and 2004
to compute household disposable labor income as (1 - household average tax
rate) * household gross labor income (including taxable transfers) and then
add non-taxable transfers.

Durables are defined as the sum of the value of homes, residential and
non-residential property and vehicles. These are the most important durable
items which can be used as collateral in real-world debt contracts.
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Net financial assets are defined as the sum of assets (besides the durables
defined above) net of household debt. The assets are the sum of money in
checking accounts, savings accounts, money-market accounts, money-market
mutual funds, call accounts in brokerages, certificates of deposit, bonds,
account-type pension plans, thrift accounts, the current value of life insur-
ance, savings bonds, other managed funds, other financial assets, stocks and
mutual funds, owned non-financial business assets, jewelry, antiques or other
small durable items not included in the durable definition above. We then
subtract the sum of mortgage and housing debt, other lines of credit and debt
written against residential and nonresidential property or vehicles, credit-
card debt, non-auto consumer loans and other financial debt.

Net worth is then defined as the sum of durables and net-financial wealth.

Sample selection criteria: In order to contain the effect of outliers on
the means, we drop observations if gross labor income is negative (11 ob-
servations are deleted) and net worth is smaller than -1.2 in terms of the
population average of disposable labor income (additional 19 observations
are deleted). We further restrict our attention to households with a house-
hold head between age 20 and 55 when matching the model to the data, for
reasons discussed further in the main text.
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