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REMARKS ON QUANTUM ERGODICITY

GABRIEL RIVIÈRE

Abstract. We prove a generalized version of the Quantum Ergodicity Theorem on smooth
compact Riemannian manifolds without boundary. We apply it to prove some asymptotic
properties on the distribution of typical eigenfunctions of the Laplacian in geometric situations
where the Liouville measure is not (or not known to be) ergodic but still presents some chaotic
properties like nonuniform hyperbolicity.

1. Introduction

Let M be a smooth, compact, connected Riemannian manifold of dimension d (without bound-
ary). Denote by L the normalized Liouville measure on the unit cotangent bundle S∗M and by
gt the geodesic flow on S∗M . Let (ψj)j∈N be an orthonormal basis of eigenfunctions of −∆g

associated to a nondecreasing sequence of eigenvalues λ2j , i.e.

−∆gψj = λ2jψj , ‖ψj‖L2(M) = 1.

In the following, we will write N(λ) := ♯{j : λ2j ≤ λ2}. Our goal in this note is to describe

the asymptotic distribution of this sequence of eigenfunctions as λ2j tends to infinity. For that
purpose, we introduce the following distribution on S∗M :

∀a ∈ C∞(S∗M), µj(a) =

∫

S∗M

adµj := 〈ψj ,Op(a)ψj〉,

where Op(a) is a pseudodifferential operator with principal symbol a. It is a classical fact to check
that any accumulation point1 of this sequence belongs to the set M(S∗M, gt) of (gt)t-invariant
probability measures on S∗M [3].

If the Liouville measure is ergodic, the Shnirelman Theorem states that there exists a subset S
of density2 1 in N such that the sequence (µj)j∈S converges to the Liouville measure L [13, 16, 4].
It means that the eigenfunctions become equidistributed in S∗M : this phenomenon is known as
Quantum Ergodicity. We refer the reader to [18] for a recent detailled survey on related issues. In
our context, the main example of application is given by geodesic flows on manifolds of negative
curvature or more generally by uniformly hyperbolic geodesic flows: in this setting, the Liouville
measure is known to be ergodic.

Here, we are interested in the case where we drop the ergodicity assumption. The main examples
we have in mind are nonuniformly hyperbolic geodesic flows for which the Liouville measure may
not always be ergodic. In these cases, we derive properties on the asymptotic distributions of the
eigenmodes. For that purpose, we prove an alternative version of Shnirelman Theorem that does
not rely on ergodicity. Then, we apply this result in several geometric contexts which present
for instance a nonuniform hyperbolicity property. For example, we obtain an equidistribution
property for subsequences of eigenfunctions of the Laplacian on surfaces of nonpositive curvature
with genus ≥ 2. In this case, the Liouville measure is not known to be ergodic; thus, the standard
Shnirelman Theorem does not apply a priori.

Date: September 16, 2012.
1Convergence is for the standard topology on D′(S∗M).
2Recall that S ⊂ N have density 1 if limn→+∞

1

n
♯{k ∈ S : 1 ≤ k ≤ n} = 1.
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2. Statement of the main result

Thanks to the Birkhoff Ergodic Theorem [6], there exists a subset Λ ⊂ S∗M such that L(Λ) = 1
and, for every ρ in Λ,

lim
T→+∞

1

T

∫ T

0

δgtρdt = Lρ,

where Lρ is a (gt)t-invariant probability measure on S∗M and where the convergence is for the
weak-⋆ topology, i.e.

∀a ∈ C0(S∗M), ∀ρ ∈ Λ, lim
T→+∞

1

T

∫ T

0

a(gtρ)dt = Lρ(a).

Thanks to this property, we introduce Cv(L) which is the closure (in D′(S∗M)) of the convex
hull of {Lρ : ρ ∈ Λ}. We emphasize that the set Cv(L) depends implicitely on the choice of Λ and
that any element in Cv(L) is a probability measure on S∗M invariant under the geodesic flow.
One can then show the following version of Shnirelman Theorem:

Theorem 2.1. Let (ψj)j∈N be an orthonormal basis of eigenfunctions of −∆g associated to a
nondecreasing sequence of eigenvalues λ2j , i.e.

−∆gψj = λ2jψj , ‖ψj‖L2(M) = 1.

Then, there exists S ⊂ N of density 1 such that any accumulation point of the sequence (µj)j∈S

belongs to Cv(L).

We underline that this theorem is true for any orthonormal basis of eigenfunctions of ∆g and
that we do not make any particular assumption on the manifold (like ergodicity for instance). Even
if this generalization is quite natural, we did not find any trace of such a result in the literature.
If M is the sphere Sd endowed with its canonical metric, the set Cv(L) is equal to M(S∗M, gt)
and the result is empty as we already know that any accumulation point of the sequence (µj)j≥0

is an invariant probability measure. In the “opposite” case where the Liouville measure is ergodic
for the geodesic flow, we recover the standard Shnirelman Theorem [13, 16, 4] as Cv(L) can be
chosen equal to {L} (for a good subset Λ).

In the physics literature, the “semiclassical eigenfunctions hypothesis” states that the eigen-
modes (ψj)j≥0 must be asymptotically concentrated into regions of phase space which a typical
orbit explores in the long time limit [10, 2]. In our context, the set Λ could represent in some
sense a set of typical orbits and the measure Lρ is the canonical measure associated to the orbit
of a point ρ in the phase space S∗M . Regarding this conjecture, it seems natural to understand
when there exist a subset Λ of full measure and a typical subsequence of eigenmodes (ψj)j∈S such
that the accumulation points of (µj)j∈S are exactly given by {Lρ : ρ ∈ Λ}. In a general setting,
this is a priori not true as there exist geometric situations where the set {Lρ : ρ ∈ Λ} cannot not
be reduced to L while there exists a typical family of states that converges to L [17, 18, 8].

Our theorem shows that, for a typical family (µj)j∈S , the accumulation points belong to a larger
set than {Lρ : ρ ∈ Λ}, precisely they belong to the closure of its convex hull. We underline that
stronger results than ours were obtained by Marklof and O’Keefe for specific families of quantum
maps with divided phase space [9].

We will explain in paragraph 4 how one can get our generalized version of Shnirelman theorem
by implementing in the classical proof of Shnirelman Theorem an idea used by Sjöstrand in the
context of damped wave equations [14]. In fact, our proof will combine Hahn-Banach theorem
with the following main lemma that makes the connection with the results in [14] more explicit:

Lemma 2.2. Let a be an element in C∞(S∗M,R). Then, there exists S ⊂ N of density 1 such
that,

essinf Lρ(a) ≤ lim inf
j→+∞,j∈S

µj(a) ≤ lim sup
j→+∞,j∈S

µj(a) ≤ esssup Lρ(a).
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Organization of the following. In the next paragraph, we apply our theorem in several geomet-
ric situations. After that, we give the proof of theorem 2.1 and provide the proof of an intermediary
lemma that we used in our applications.

In the following, we will sometimes use the notation D(S∗M) for the space C∞(S∗M) when we
want to emphasize that we are working with distributions.

3. Application of theorem 2.1

Before entering the details of the proof, we describe several geometric situations where the
Liouville measure is a priori not supposed to be ergodic and we apply theorem 2.1 in order to
derive some kind of equidistribution properties for the eigenfunctions in the chaotic portions of
the phase space.

When we were finishing to write this note, we learned that Galkowski recently proved similar
equidistribution properties for some class of systems with divided phase space [7]. He considered
manifolds with piecewise smooth boundary while we are only dealing with manifolds without
boundary. The approach in this note slightly differs and, for instance, it would be interesting to
understand if the generalized version of Shnirelman Theorem that we obtained in 2.1 could be
extended to the case with boundary.

3.1. Nonuniformly hyperbolic geodesic flows. A direct consequence of theorem 2.1 is the
following property:

Corollary 3.1. Suppose there exists I at most countable and a family (Λi)i∈I of invariant subsets
such that

• L(Λi) > 0 for every i ∈ I;
• Λi ∩ Λj is empty when i 6= j;
• L(∪iΛi) = 1;
• L|Λi

is ergodic for every i ∈ I.

Then, there exists a subset S ⊂ N of density 1 such that any accumulation point of the sequence
(µj)j∈S is absolutely continuous with respect to L.

Theorem 2.1 applies in this setting as in this case one can take Λ = ∪i∈IΛi (up to some subset
of measure 0) and verify that

Cv(L) :=

{

∑

i∈I

ti
L|Λi

L(Λi)
: ∀i ∈ I, 0 ≤ ti ≤ 1 and

∑

i∈I

ti = 1

}

.

Thus, if the phase space can be divided into (at most) countably many subsets on which L is
ergodic, then most of the eigenmodes are equidistributed, in the sense that they have to converge
to a convex combination of (L|Λi

/L(Λi))i∈I . We emphasize that no hypothesis on the nonuniform
hyperbolicity is made in the above statement. However, we recall that, thanks to Pesin works, the
assumptions of the corollary are automatically satisfied when the geodesic flow is nonuniformly
hyperbolic with respect to the Liouville measure – Theorem 11.5 in [1].

In [8], Gutkin constructed a nonuniformly hyperbolic geodesic flow on a billiard table for which
the Liouville measure is not ergodic. However, his system presented a symmetry that allowed him
to obtain a stronger result than corollary 3.1, precisely he proved the existence of a subsequence
of density 1 converging to the Liouville measure. It is not clear to the author whether there exist
smooth compact Riemannian manifolds without boundary which satisfy the assumption of the
corollary with |I| ≥ 2 and which do not present a symmetry like the one in [8]. For instance, we
do not know if ergodicity is a “generic property” in the family of nonuniformly hyperbolic geodesic
flows.

3.2. Geodesic flows with divided phase space. In [5] – section 11, Donnay constructs Riem-
manian metrics on the sphere S

2 for which the phase space splits into a chaotic component and
an integrable one. His idea is to remove three or more points from the sphere and to endowe
the induced punctured surface with the Poincaré metric; then, he attaches smoothly a so called
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“light-bulb cap” in a neighborhood of each deleted points. We will call these spheres Donnay’s
surfaces.

The geodesic flow he obtains is not ergodic for L. Yet, the phase space S∗M contains two
disjoint invariant subsets Λchaotic and Λintegrable of positive Liouville measure satisfying L(Λchaotic∪
Λintegrable) = 1. More precisely, Λintegrable consists of orbits that stay in the caps and gt|Λchaotic

is

nonuniformly hyperbolic for the measure L|Λchaotic
. Thanks to Pesin Theorem, this chaotic part of

the phase space can be divided into (at most) countably many subsets (Λi)i∈I of positive Liouville
measure such that L|Λi

is ergodic for every i in I.
If we apply theorem 2.1 in this geometric context, there exists a subset S ⊂ N of density 1 such

that the accumulations points of the sequence (µj)j∈S are of the form

(1) µ = α
∑

i∈I

ti
L|Λi

L(Λi)
+ (1− α)νint,

where 0 ≤ α ≤ 1, 0 ≤ ti ≤ 1,
∑

i∈I ti = 1 and νint belongs to the closure of the convex hull of
{Lρ : ρ ∈ Λintegrable}.

3.3. More on divided phase space. At this point, our statement does not forbid α = 0 in the
previous example. This motivates the following intermediary lemma which is valid for any smooth
and compact Riemannian manifold without boundary and which gives partial informations on this
question.

Lemma 3.2. Let M be a smooth, compact, connected Riemannian manifold without boundary.
Suppose there exists a subset Λ′ such that L(Λ′) > 0 and such that L|Λ′ is ergodic. Moreover,
assume there exists a smooth function χ ≥ 0 such that Lρ(χ) = 0 almost everywhere on Λ′c.

Then, for every subset S ⊂ N of density 1 and for every 0 ≤ δ < L(Λ′), there exists a subset
Sδ ⊂ S of density ≥ δ such that any accumulation point of the sequence (µj(χ))j∈Sδ

is of the form
αL(χ) with

0 <
1− L(Λ′)−1δ

1− δ
≤ α ≤ 1

L(Λ′)
.

This result is true for any orthonormal basis of eigenfunctions of ∆g and it can be obtained
as an application of lemma 2.2 – see paragraph 5 for details. Under this form, it cannot be
directly applied to treat the case of Donnay’s surfaces as |I| could be a priori ≥ 2. At the end of
paragraph 5, we will check that the statement can be generalized to fit to this example. Precisely,
in the setting of Donnay’s surfaces, we will obtain the existence of a subset S′ of positive density
such that any accumulation point of the sequence (µj)j∈S′ is of the form given by equation (1)
with α > 0. In other words, it means that a positive proportion of eigenmodes are equidistributed
in the chaotic part of the phase space for Donnay’s surfaces.

3.4. Surfaces of nonpositive curvature. We will now give an application of this lemma in
the context of nonpositively curved manifolds. We suppose that M is a surface of nonpositive
curvature of genus ≥ 2. For any point x in M , we will denote by K(x) ≤ 0 the sectional curvature
at point x. We will make a small abuse of notations and use also the notation K for its canonical
lift on S∗M . Following [1], we introduce the following subset

Λ′ :=

{

ρ ∈ S∗M : lim sup
T→+∞

1

T

∫ T

0

K ◦ gt(ρ)dt < 0

}

.

Thanks to [11, 1], the set Λ′ is open (modulo 0) and everywhere dense and it satisfies L(Λ′) > 0
and L|Λ′ is ergodic. We underline that it is still an open question to determine whether L(Λ′) = 1
or not for any surface of nonpositive curvature of genus ≥ 2. In other words, it is not known if
the Liouville measure is ergodic or not. However, we will now show that the eigenfunctions satisfy
some equidistribution properties in this negatively curved part of the surface.

For that purpose, we apply the Birkhoff Ergodic Theorem and we find that

• almost everywhere on Λ′, Lρ(K) = 1
L(Λ′)

∫

Λ′
KdL(ρ);

• almost everywhere on Λ′c, Lρ(K) = 0;
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•
∫

S∗M
KdL =

∫

S∗M
Lρ(K)dL(ρ) =

∫

Λ′
KdL (and thus K ≡ 0 a.e. on Λ′c).

As the genus of the surface is ≥ 2, this last quantity is < 0 by the Gauss Bonnet Theorem. We
can now combine lemma 3.2 (with χ = −K) to theorem 2.1 in order to get the following corollary:

Corollary 3.3. Suppose M is a surface of nonpositive curvature K(x) and of genus ≥ 2.
Then, there exists a subset S of density 1 in N such that any accumulation point of the sequence

(µj)j∈S is of the form

α
L|Λ′

L(Λ′)
+ (1− α)ν0,

where 0 ≤ α ≤ 1 and ν0 belongs to the closure of the convex hull of {Lρ : ρ ∈ Λ0} for some
Λ0 ⊂ Λ′c satisfying L(Λ′c) = L(Λ0).

Moreover, for every 0 ≤ δ < L(Λ′), there exists a subset Sδ ⊂ S of density ≥ δ such that, for
any accumulation point of the sequence (µj)j∈Sδ

, one has

0 <
L(Λ′)− δ

1− δ
≤ α ≤ 1.

This result is true for any orthonormal basis of eigenfunctions of ∆g. This corollary tells us
that a positive proportion of eigenmodes are asymptotically equidistributed in the set Λ′ even if
we do not have ergodicity of the Liouville measure on the entire phase space. We emphasize that
our result does not forbid that the eigenmodes put also some weight in the region {K = 0}.

Finally, in the case where dimM ≥ 2, one can introduce the following subset of S∗M :

Λ′ :=

{

ρ ∈ S∗M : lim sup
T→+∞

1

T

∫ T

0

Kπ◦gtρ(g
tρ, gtρ′)dt < 0, for every ρ′ orthogonal to ρ

}

,

where π : S∗M →M is the canonical projection on M and Kx(v1, v2) is the sectional curvature for
x in M and v1, v2 in T ∗

xM . Suppose now that M has nonpositive curvature, i.e. Kx(v1, v2) ≤ 0 for
every x in M and every v1, v2 in T ∗

xM . Under some extra geometric assumptions3 on M that are
always satisfied by nonpositively curved surfaces of genus ≥ 2, the set Λ′ is again open (modulo
0) and everywhere dense and it satisfies L(Λ′) > 0 and L|Λ′ is ergodic. In particular, thanks to
the fact that Λ′ is open, one can find a smooth function χ satisfying the assumption of lemma 3.2.
Then, corollary 3.3 can be extended in dimM ≥ 2 modulo the above extra geometric assumptions.

4. Proof of the main result

The proof follows classical ideas taken from [13, 16, 4, 14] that we carefully combine to get our
generalized version of the Shnirelman Theorem. Without loss of generality, one can suppose that
the sequence of distributions µj is real valued, i.e. µj(a) belongs to R when a is real valued.

4.1. Proof of lemma 2.2. We start our proof by giving the proof of the main lemma 2.2. Let a
be an element in C∞(S∗M,R). We introduce the average of a at time T ,

aT (ρ) :=
1

T

∫ T

0

a ◦ gt(ρ)dt.

In order to simplify the presentation, denote A0 := esssupρ Lρ(a). By definition, one has that, for
every δ > 0,

L ({ρ ∈ S∗M : aT (ρ) ≥ A0 + δ}) → 0, as T → +∞.

We start our proof by replacing Op by a positive quantization Op+ that satisfies

b ≥ 0 =⇒ Op+(b) ≥ 0.

For instance, as in [4], one can take the so-called Friedrichs quantization. We have then, as j tends
to +∞

µj(a) = 〈ψj ,Op+(a)ψj〉+ o(1).

Fix now T > 0 and ǫ > 0. The Egorov theorem tells us that, as j tends to ∞,

µj(a) = 〈ψj ,Op+(a)ψj〉+ o(1) = 〈ψj ,Op+(aT )ψj〉+ oT (1),

3For more details on these assumptions, we refer the reader to [1], sections 2 and 17.
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where the remainder depends on T . As in [14], one can define a new smooth function ãT ≤ aT on
S∗M such that

• ãT (ρ) = aT (ρ) when aT (ρ) ≤ A0 +
√
ǫ

2 .
• ãT (ρ) ≤ A0 +

√
ǫ otherwise.

Remark 4.1. This function can be chosen in such a way that ‖ãT −aT‖∞ is bounded independently
of T > 0.

As j tends to infinity, one has the following equality:

µj(a) = 〈ψj ,Op+(aT − ãT )ψj〉+ 〈ψj ,Op+(ãT )ψj〉+ oT (1).

The idea of introducing this new function is taken from [14] where it was used to study spectral
asymptotics of the damped wave equation. In the following lines, we will show that

• most of the terms in the sequence (〈ψj ,Op+(aT−ãT )ψj〉)j≥0 are small following arguments
from [16, 4];

• the other term in the RHS will be less than A0 +
√
ǫ+ oT (1) by construction.

A careful combination of these two facts will finally allow us to get our conclusion.

From trace asymptotics – see [4], paragraph 4 for instance, one has

lim
λ→+∞

1

N(λ)

∑

λ2

j≤λ2

〈ψj ,Op+(aT − ãT )ψj〉 =
∫

S∗M

(aT − ãT )dL,

where each term in the sum is nonnegative (as aT − ãT ≥ 0). Thanks to our construction, one has
∫

S∗M

(aT − ãT )dL ≤ Ca,ǫL

({

ρ ∈ S∗M : aT (ρ) ≥ A0 +

√
ǫ

2

})

.

Fix η > 0. There exists Tǫ,η > 0 such that, for every T ≥ Tǫ,η, one can find λT > 0 satisfying

λ ≥ λT =⇒ 1

N(λ)

∑

λ2

j≤λ2

〈ψj ,Op+(aT − ãT )ψj〉 ≤ ηǫ.

We now fix T = Tǫ,η. Denote Dǫ := {j : λ2j ≤ λ2 and 〈ψj ,Op+(aT − ãT )ψj〉 ≥
√
ǫ}. Thanks to

the Tchebychev inequality, we obtain that ♯Dǫ

N(λ) ≤ η
√
ǫ for λ ≥ λT . This means that most of the

terms in the sequence of nonnegative numbers (〈ψj ,Op+(aT − ãT )ψj〉)j≥0 are small.

As Op+ is positive and ãT ≤ A0 +
√
ǫ, one has that, for λ2j larger than some A > 0, the term

〈ψj ,Op+(ãT )ψj〉+ oT (1) is less than A0 + 2
√
ǫ. Thanks to the above discusion, we can write

♯
{

j : λ2j ≤ λ2 and µj(a) ≤ A0 + 3
√
ǫ
}

≥ ♯
{

j : λ2j ≤ A and µj(a) ≤ A0 + 3
√
ǫ
}

+♯
{

j : A ≤ λ2j ≤ λ2 and 〈ψj ,Op+(aT − ãT )ψj〉 <
√
ǫ
}

.

If we denote Sǫ :=
{

j : λ2j ≤ λ2 and µj(a) ≤ A0 + 3
√
ǫ
}

, then we have limλ→+∞
♯Sǫ

N(λ) ≥ 1 − η
√
ǫ.

This is true for any η > 0 which implies that Sǫ has density 1.
Using the procedure of paragraph 5 in [4], one can then obtain4 a subset S0 ⊂ N of density 1,

such that any accumulation point of the sequence (µj(a))j∈S0
is ≤ A0. This achieves the proof of

the upper bound in lemma 2.2 and the lower bound can be easily derived by considering −a.

4.2. Proof of theorem 2.1. We are now in position to prove theorem 2.1. For that purpose, we
interpret lemma 2.2 as an inequality on linear forms and then we apply Hahn-Banach Theorem.

First, we observe that

inf
ρ∈Λ

Lρ(a) ≤ essinf Lρ(a) ≤ esssup Lρ(a) ≤ sup
ρ∈Λ

Lρ(a).

4The set S0 is constructed from the family of subsets (S 1

l
)l≥1 we have just defined.
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Fix now (ak)k∈N a family of smooth functions which is dense in C0(S∗M,R) (for the uniform
topology). Combining lemma 2.2 to the procedure of [4] (paragraph 5), one can choose a subset
S of density 1 such that

∀k ∈ N, inf
ρ∈Λ

Lρ(ak) ≤ lim inf
j→+∞,j∈S

µj(ak) ≤ lim sup
j→+∞,j∈S

µj(ak) ≤ sup
ρ∈Λ

Lρ(ak).

Fix now an accumulation point µ of the sequence (µj)j∈S . By a density argument, the above
inequality implies then

∀a ∈ D(S∗M,R), inf
ρ∈Λ

Lρ(a) ≤ µ(a) ≤ sup
ρ∈Λ

Lρ(a).

As the space D(S∗M,R) is the topological dual of D′(S∗M,R) (Theorem XIV , Chapter 3
in [12]), the previous inequality implies that, for every continuous linear form Φ on D′(S∗M,R),

inf
ρ∈Λ

Φ(Lρ) ≤ Φ(µ) ≤ sup
ρ∈Λ

Φ(Lρ).

Suppose by contradiction that µ does not belong to Cv(L). By the Hahn-Banach theorem [15],
there exists a continuous linear form Φ0 on D′(S∗M,R) that strictly separates the compact convex
subset Cv(L) from {µ}. In particular, there exists α in R such that

∀ν ∈ Cv(L), Φ0(ν) < α ≤ Φ0(µ).

As Cv(L) is a compact subset of D′(S∗M,R), we get that supν∈Cv(L)Φ0(ν) < α ≤ Φ0(µ). In

particular, supρ∈Λ Φ0(Lρ) < α ≤ Φ0(µ) which leads to the contradiction.

5. Proof of lemma 3.2

In this final section, we will prove lemma 3.2 that we used in our applications to surfaces of
nonpositive curvature and under a generalized form to Donnay’s surfaces – see paragraph 5.3
below.

As in the statement of the lemma, we fix an invariant subset Λ′ in S∗M such that L(Λ′) > 0
and L|Λ′ is ergodic. Let χ ≥ 0 be a smooth function satisfying Lρ(χ) = 0 almost everywhere on
Λ′c.

5.1. Preliminary remark. Recall from Birkhoff Ergodic Theorem that

Lρ(χ) = lim
T→+∞

1

T

∫ T

0

χ ◦ gt(ρ)dt

is well defined for L almost every ρ in S∗M . From our assumptions on Λ′, one can verify that

Lρ(χ) =
1

L(Λ′)

∫

Λ′

χdL, a.e. on Λ′,

and one has Lρ(χ) = 0 almost everywhere on Λ′c. Still thanks to Birkhoff Ergodic Theorem, we
also have

∫

S∗M

χdL =

∫

S∗M

Lρ(χ)dL(ρ) =

∫

Λ′

χdL.

5.2. Proof of the lemma. First, we observe that one can again replace Op by a nonnegative
quantization procedure Op+. In particular, one gets, as j → +∞,

µj(χ) = 〈ψj ,Op+(χ)ψj〉+ o(1),

and 〈ψj ,Op+(χ)ψj〉 ≥ 0 (as χ ≥ 0). Thus, without loss of generality, one can look at the
accumulation points of the sequence

µ+
j (χ) := 〈ψj ,Op+(χ)ψj〉, j ∈ S,

where S ⊂ N is of density 1. Thanks to the trace asymptotics of paragraph 4 in [4], we observe
that

lim
λ→+∞

1

N(λ)

∑

j∈S:λ2

j≤λ2

µ+
j (χ) = lim

λ→+∞

1

N(λ)

∑

j:λ2

j≤λ2

µ+
j (χ) =

∫

S∗M

χdL =

∫

Λ′

χdL.
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Moreover, using lemma 2.2 and our remarks on the value of Lρ(χ), one can find a subset S′ ⊂ S
of density 1 such that any accumulation point of the sequence (µ+

j (χ))j∈S′ belongs to the interval

[essinf Lρ(χ), esssupLρ(χ)] =

[

0,

∫

Λ′
χdL

L(Λ′)

]

.

We suppose now that
∫

Λ′
χdL > 0 (if not, we already have our conclusion) and we introduce

the notation

αj :=
µ+
j (χ)

∫

Λ′
χdL

≥ 0.

In order to prove our lemma, it remains to verify that, for every 0 < ǫ ≤ 1, there exists a subset
Sǫ ⊂ S′ of density ≥ 1−ǫ

L(Λ′)−1−ǫ
such that any accumulation point of the subsequence (αj)j∈Sǫ

belongs to the interval [ǫ, L(Λ′)−1]. The proof is quite straightforward: we briefly explain it for
the sake of completeness.

Fix now 0 < ǫ ≤ 1. Let η ≪ ǫ be a small positive number. From the properties of the sequence
(αj)j∈S′ , there exists A > 0 (depending on η) such that, for λ2 ≥ A,

1− η ≤ 1

N(λ)

∑

j∈S′:λ2

j≤λ2

αj and (j ∈ S′ and λ2j > A =⇒ αj ≤ L(Λ′)−1 + η).

Thus, one gets, for λ2 ≥ A,

1− η ≤ 1

N(λ)

∑

j∈S′:λ2

j≤A

αj + ǫ
1

N(λ)
♯
{

j ∈ S′ : A < λ2j ≤ λ2 and αj < ǫ
}

+(L(Λ′)−1 + η)
1

N(λ)
♯
{

j ∈ S′ : A < λ2j ≤ λ2 and αj ≥ ǫ
}

.

It implies that, for λ2 large enough (depending on η and on A),

1− η ≤ η + ǫ+ (L(Λ′)−1 + η − ǫ)
1

N(λ)
♯
{

j ∈ S′ : λ2j ≤ λ2 and αj ≥ ǫ
}

.

In other words, we have shown that, for every η > 0,

lim
λ→+∞

1

N(λ)
♯
{

j ∈ S′ : λ2j ≤ λ2 and αj ≥ ǫ
}

≥ 1− 2η − ǫ

L(Λ′)−1 + η − ǫ
,

which implies the result.

5.3. Donnay’s surfaces. In this last paragraph, we will deal with the example of Donnay’s
surfaces that was described in paragraph 3.2. We want to show that lemma 3.2 can be slightly
improved in order to allow several subsets, i.e. |I| ≥ 2 with the notations of paragraph 3.2.

Precisely, we want to verify that α can be chosen > 0 in equation (1) for a subsequence of
positive density of eigenstates (without giving precise informations on the density of the subset).
For that purpose, we pick χ ≥ 0 a smooth function which is compactly supported outside the
“light-bulb cap” (with χ non identically equal to 0). We also consider a subset S ⊂ N of density 1
such that any accumulation point of (µj)j∈S is of the form given by equation (1).

We can apply lemma 2.2 to this function: there exists S′ ⊂ S of density 1 such that any
accumulation point of the subsequence (µj(χ))j∈S′ belongs to the interval

[

0,max
i∈I

∫

Λi
χdL

L(Λi)

]

.

A trace asymptotics gives us that

lim
λ→+∞

1

N(λ)

∑

j∈S′:λ2

j≤λ2

µj(χ) = lim
λ→+∞

1

N(λ)

∑

j:λ2

j≤λ2

µj(χ) =

∫

S∗M

χdL > 0.
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As µj(χ) is “almost positive”, we can apply the argument of the previous paragraph. In particular,
for every ǫ > 0 small enough, we obtain the existence of a subset Sǫ ⊂ S′ of positive density such
that any accumulation point of the sequence (µj(χ))j∈Sǫ

belongs to the interval
[

ǫ,max
i∈I

∫

Λi
χdL

L(Λi)

]

.

As Sǫ ⊂ S, one knows that any accumulation point of (µj)j∈Sǫ
is of the form

µ = α
∑

i∈I

ti
L|Λi

L(Λi)
+ (1− α)νint,

where 0 ≤ α ≤ 1, 0 ≤ ti ≤ 1,
∑

i∈I ti = 1 and νint belongs to the closure of the convex hull of
{Lρ : ρ ∈ Λintegrable}. Finally, as µ(χ) ≥ ǫ and νint(χ) = 0, we find that α must be positive.

Acknowledgements

This work has been partially supported by the grant ANR-09-JCJC-0099-01 of the Agence
Nationale de la Recherche. We warmly thank Stephan De Bièvre for discussions and comments
related to this work.

References

[1] L. Barreira, Y. Pesin Smooth ergodic theory and nonuniformly hyperbolic dynamics, Handbook of Dynamical
Systems 1B, 57–263 (2006)

[2] M.V. Berry Regular and irregular semiclassical wavefunctions, J. Phys. A: Math. Gen. 10, 2083 (1977)
[3] N. Burq Mesures semi-classiques et mesures de défaut, Séminaire Bourbaki, Astérisque 245, 167–195 (1997)
[4] Y. Colin de Verdière Ergodicité et fonctions propres du Laplacien, Comm. in Math. Phys. 102, 497–502 (1985)
[5] V. Donnay Geodesic flow on the two-sphere. I. Positive measure entropy., Ergodic Theory Dynam. Systems

8, 531–553 (1988)
[6] M. Einsiedler, T. Ward Ergodic Theory: with a view towards Number Theory, Springer (2011)
[7] J. Galkowski Quantum Ergodicity for a Class of Mixed Systems, arXiv:1209.2968 (2012)
[8] B. Gutkin Note on converse quantum ergodicity, Proc. AMS 137, 2795–2800 (2009)
[9] J. Marklof, S. O’Keefe Weyl’s law and quantum ergodicity for maps with divided phase space, with an appendix

by S. Zelditch, Nonlinearity 18, 277–304 (2005)
[10] I.C. Percival Regular and irregular spectra, J. Phys. B: At. Mol. Opt. Phys. 6, L229–L232 (1973)
[11] Y. Pesin Characteristic Ljapunov exponents, and smooth ergodic theory, Russian Math. Surveys 32, 55–114

(1977)
[12] L. Schwartz Théorie des distributions, Hermann (1966)
[13] A. Shnirelman Ergodic properties of eigenfunctions, Usp. Math. Nauk. 29, 181-182 (1974)
[14] J. Sjöstrand Asymptotic distribution of egenfrequencies for damped wave equations, Publ. RIMS 36, 573–611

(2000)
[15] F. Trèves Topological vector spaces, distributions and kernels., Academic Press, New York-London (1967)
[16] S. Zelditch Uniform distribution of the eigenfunctions on compact hyperbolic surfaces, Duke Math. Jour. 55,

919–941 (1987)
[17] S. Zelditch Quantum ergodicity on the sphere, Comm. in Mat. Phys. 146, 61–71 (1992)
[18] S. Zelditch Recent developments in mathematical quantum chaos, in Current Developments in Mathematics

2009 (2010)

Laboratoire Paul Painlevé (U.M.R. CNRS 8524), U.F.R. de Mathématiques, Université Lille 1,
59655 Villeneuve d’Ascq Cedex, France

E-mail address: gabriel.riviere@math.univ-lille1.fr


