
HAL Id: hal-00732741
https://hal.science/hal-00732741

Submitted on 16 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some examples of instant computations of fluid
dynamics on GPU

Florian de Vuyst, Christophe Labourdette

To cite this version:
Florian de Vuyst, Christophe Labourdette. Some examples of instant computations of fluid dynamics
on GPU. CANUM 2012, May 2012, Superbesse, France. ambp.cedram.org. �hal-00732741�

https://hal.science/hal-00732741
https://hal.archives-ouvertes.fr

Annales mathématiques Blaise Pascal Version de travail – 16 septembre 2012

Quelques exemples de calculs instantanés de

fluides sur GPU

Florian De Vuyst

Christophe Labourdette

Résumé. Dans ce papier, nous partageons notre retour d’expérience
sur l’utilisation de GPU et GPGPU pour le calcul de mécanique des
fluides bidimensionnels sur grille fine et de problèmes de transport
tridimensionnels. Le choix d’une méthode appropriée à l’architecture
GPU est critique pour le gain de performance. Pour nos expérimenta-
tions numériques, nous testons respectivement une approche Lattice
Boltzmann (LBM) pour les équations de Navier-Stokes incompres-
sibles, une méthode de volumes finis de type Flux Vector Splitting
(FVS) pour les équations d’Euler compressibles, et une approche par-
ticulaire lagrangienne pour le transport cinétique libre.

Some examples of instant computations of fluid dynamics on GPU

Abstract. This paper is a summary of our experience feedback on
GPU and GPGPU computing for two-dimensional computational fluid
dynamics using fine grids and three-dimensional kinetic transport pro-
blems. The choice of the computational approach is clearly critical
for both performance speedup and efficiency. In our numerical ex-
periments, we used a Lattice Boltzmann approach (LBM) for the
incompressible Navier-Stokes equations, a finite volume Flux Vector
Splitting (FVS) method for the compressible Euler equations and a
lagrangian particle approach for a linear kinetic problem.

Mots-clés: EDP, GPU, Mécanique des Fluides, interaction, visualisation, calcul ins-
tantané, volumes finis, méthode Lattice Boltzmann, méthode particulaire, programma-
tion multicœur.

Classification math.: 35L05, 65M08, 76M25, 76N15, 76P05, 97N40.

1

F. De Vuyst & C. Labourdette

1. GPU computing with instantaneous visualization and in-

teraction in CFD. Experience feedback

1.1. Instantaneous computing and interactive visualization

High performance computing (HPC) knows an important growth since
recent years. Theoretical peak processing performance and storage capa-
city in supercomputers gained three or four orders of magnitude in less
than a decade. However, scientists and computational engineers would like
more flexibility in terms of delay of response and ease of use. Manufactu-
rers develop cluster computers to exceed the petaflop (see the exaflop !),
but the cost and planning of very large computations imposes workflow
constraints in batch mode.

Recently, the design of manycore processors like graphics processing
units GPU, general purpose graphics processing units GPGPU and many-
integrated cores MIC allow one to get theoretical teraflop performance
into a simple office workstation. This potential flexibility of use with only
one user let us imagine new ways of computing and use cases like inter-
active simulation and instant computations. The applied mathematicians
are often little concerned with the very large calculations, they are more
interested in the design of methods and algorithms for performing the cal-
culations. That’s why we emphasize here on ways of instant computing,
in particular on GPU or GPGPU. We especially focus on fluid dynamics
problems where time scales of interest allow for interaction with the simu-
lation, and where the models can be controlled by changing parameters
and operating conditions with effects viewed instantaneously.

The spin-off effect of such applications is the ease with which a user may
“play” with the computational method and the underlying Physics thanks
to the visualization. We believe that the coupling between instantaneous
computing and interactive visualization really brings an extra dimension
to better understand and evaluate methods or schemes. It is a new valuable
tool for the applied mathematician. GPU computing today seems to be
an inevitable affordable way to build such kinds of applications. Of course
there is a price to pay to fully take advantage of GPU resources. We need to
reconsider conventional methods and design new innovative computational
algorithms to really take advantage of the theoretical peak performance.

2

SOME EXAMPLES OF CFD COMPUTATIONS ON GPU

1.2. Impact on the design of numerical methods

As a simple statement of fact, standard sophisticated discretization me-
thods for partial differential problems or optimization algorithms are not
really suited for high-performance parallelization on manycore GPU-like
architectures. For example, implicit methods lead to a large (sparse) li-
near system which is solved either by a direct method involving a sparse
factorization and a sequential descent/roll up, or by an iterative algorithm
which is also sequential by nature. Of course, one can find BLAS-like libra-
ries on many-cores (like cuBLAS on nVIDIA GPU), but today reported
speedups are partially satisfactory. For that reason, explicit methods are
certainly much more suitable on GPU architectures. Another aspect is the
memory access to neighboring degrees of freedom, which is a common issue
for PDE-based problems. It is important to notice that there are strongly
optimized data structures and methods for fixed neighbor stencil patterns
access. This makes cartesian structured grids very suitable candidates. For
complex geometries, one can imagine immersed boundary methods (IBM)
into cartesian uniform meshes.

Our belief at CMLA is that we have to reconsider both models and me-
thods, in order to derive efficient single-program multiple-data (SPMD)
algorithms with communications rates that do not affect the floating point
performance too much. For most of the classical PDEs, there are tracks to
achieve manycore-suited computational approaches. For example, Lattice
Boltzmann (LB) methods are a particular class of cellular automata able to
discretize classical equations like the heat equations, convection-diffusion
equations and even the unsteady Navier-Stokes equations or more compli-
cated coupled systems. Because of the explicit nature of the method and
the uniform local spatial pattern/stencil of discretization, the LB methods
are excellent SPMD computational approaches. In the next section, we will
focus and give more details on LB methods for solving the incompressible
Navier-Stokes equations.

Another track is the underlying microscopic dynamics behind macro-
scopic models. Generally PDEs are nothing else but a deterministic ma-
croscopic representation of some microscopic or mesoscopic dynamics with
“uncertainty” taken into account (stochastic effects like brownian motion).
The Laplace operator for example is the macroscopic diffusion operator
of the microscopic brownian random walk. Generally, at the microscopic
scale, there is an underlying transport process and a collision/interaction

3

F. De Vuyst & C. Labourdette

phenomenon. On the other hand, the possible numerical simulation at
microscopic scale will require a large number of “individuals” in order
to derive accurate statistics able to return the macroscopic effects accu-
rately. Manycore architectures are excellent hardware candidates to run
population-based computational approaches (like particle methods) on a
very large number of individuals. In the sequel we shall give some illustra-
tive examples.

1.2.1. Incompressible flows

Consider the two-dimensional incompressible Navier-Stokes equations
defined on a bounded spatial domain Ω of R2 :

∇ · u = 0, t > 0, x ∈ Ω, (1.1)

ρ (∂tu+ u · ∇u) +∇p− ρν∆u = 0, t > 0, x ∈ Ω, (1.2)

where ρ is the (constant) density, u the fluid velocity, p the pressure
and ν > 0 the kinematic

viscosity of the fluid. There is lot of literature on how to discretize this
system of equations. Because of the implicit incompressibility constraint
∇ · u = 0, generally an implicit solver is used leading to the solution of
a large linear system to solve at each time step, what is not very directly
suitable for GPU.

Since two decades, a new family of discrete explicit methods, namely
the Lattice Boltzmann methods (LBM) (see the book [8] for example or
the review paper [7]) are a kind of kinetic-based cellular automata. They
are based on a discretization of the Boltzmann equation

∂tf + e · ∇xf = (∂tf)coll

governing the distribution f = f(x, e, t) of gas particles having speed e at
position x and time t. The term (∂tf)coll models all the possible pairwise
particle collisions. It is expected that the system fulfils the so-called H-
theorem, stating that the entropy functional H(f) =

∫

f log f de decreases
in time. The equilibrium steady state returns the well-known Maxwellian
distribution (see for example [3] for a general theory).

Lattice Boltzmann methods have the advantage to be implemented very
easily and even to deal with complex geometries using an immersed boun-
dary approach while being potentially very accurate. Let us consider the

4

SOME EXAMPLES OF CFD COMPUTATIONS ON GPU

2D Navier-Stokes case : the basic LB method is the so-called Lattice BGK
(LBGK) method that uses a BGK collision operator

(∂tf)coll =
feq − f

τ
for an equilibrium distribution feq and a characteristic collision time scale
τ > 0. The discretization process first deals with a finite set of discrete
velocities {ei}i=1,...,N , N > 1. This leads to a coupled system of spatial
transport equations

∂tfi + ei · ∇xfi =
feqi − fi
τ
, i = 1, ..., N

with fi(x, t) ≈ f(x,ei, t). The standard D2Q9 lattice makes use of a uni-
form spatial grid with constant space step per direction ∆x = 1, and
(only) N = 9 discrete microscopic velocities {ei}i=0,...,8 (with e0 = 0) as
shown in figure 1. Then we have nine discrete transport-collision equations
to solve. Using the characteristic method for integrating transport term
and a first order explicit Euler dicretization for the collision term, we get

fi(x+ ei∆t, t+ ∆t)− fi(x, t) =
∆t

τ
[feqi (x, t)− fi(x, t)] , i = 0, ..., 8,

(1.3)
with τ > 0 the characteristic collision time, for each lattice point x. The
zeroth-order and first-order moments allow us to retrieve both density and
momentum. Denoting by S = {0, ..., 8}, we have

∑

i∈S

(1, ei) fi(x, t) = (ρ, ρu)(x, t). (1.4)

From a formal Chapman-Enskog expansion of the discrete density proba-
bility functions fi,

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + ...

where ε is a lattice Knudsen number, for ε ≪ 1 it is possible retrieve
the macroscopic Fluid Mechanics equations. In order to reproduce the

Navier-Stokes equations, only the first two approximations f
(0)
i and f

(1)
i

are required [7]. The zero-th order term f
(0)
i identifies with the equilibrium

discribution feqi . Let us consider a dimensionless lattice size ∆x = 1 and a
lattice speed c = 1 (∆t = 1). By choosing the equilibrium density function

feqi = wi ρ

(

1 + 3ei · u+
9

2
(ei · u)

2 −
3

2
|u|2
)

, (1.5)

5

F. De Vuyst & C. Labourdette

with weighting factors w0 = 4/9, wk = 1/9 for k = 1, ..., 4 and wk = 1/36
for k = 5, ..., 8, then for |u| ≪ 1, we get (up to a scaling) second order
accurate approximations of the incompressible Navier-Stokes equations
with a kinematic viscosity ν equal to

ν =
1

3

(

τ −
1

2

)

(1.6)

Actually, for a given fluid kinematic viscosity ν, we compute τ > 1
2 such

that (1.6) holds. It can be shown that the LBGK method is linearly stable
as soon as τ > 1/2. Practically, it becomes unstable for τ close to 1

2 (high
Reynolds number), but stabilization methods exist in this case (MRT,
entropy fix, positivity preserving, etc, see [2]).

Figure 1. The two-dimensional D2Q9 lattice pattern

LBM code porting on GPU. It is easy to check that LBM can be
rewritten as a two-step fractional step method, with i) a collisionless trans-
port evolution, ii) a pure collision process. The GPU collision step can be
perfectly done in parallel because of only pointwise operations. The trans-
port step requires communications with the direct first neighboring lattice
points. But, because this communication pattern is uniform over the whole
computational domain, there are potentially important ways of improve-
ment and performance gain of memory access. On NVIDIA GPU boards,
using CUDA programming, one can use texture memory (both structures
and access methods) that are optimized for fixed memory patterns.

We implemented the D2Q9 LBGK scheme with a stabilization method
proposed by Brownlee et al. in [2]. We used Pixel Buffer Object (PBO)
for openGL instant visualization and binding between CUDA structures
and PBO. On a lattice grid of typical size 1024×1024, we observe speedup

6

SOME EXAMPLES OF CFD COMPUTATIONS ON GPU

factors of about 100 compared to a single-thread CPU sequential compu-
tation, allowing for interactivity, visual appearance and evolution of von
Karman vortex sheddings. Flow interaction is made possible by adding
new obstacles during computation with the mouse (see figure 2). This is
easily handled by the GPU programming using a solid mask array.

Figure 2. Instant Lattice Boltzmann GPU computation
of the Navier-Stokes equations on a cartesian grid of typical
size 1024×512. Flow interaction is made possible by adding
new obstacles during computation with the mouse.

1.2.2. Compressible flows

Let us now consider a compressible fluid. The Euler equations govern
the dynamics of a perfect fluid. The mass, momentum and total energy
conservation equations read

∂tρ+∇ · (ρu) = 0, (1.7)

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0, (1.8)

∂t(ρE) +∇ · ((ρE + p)u) = 0 (1.9)

with density ρ, velocity vector u, pressure p and specific total energy E.
The energy E is the sum of the kinetic energy |u|2/2 and the internal
energy e. For the perfect gas with constant specific heat ratio γ, γ ∈ (1, 3],
we have

E = e+
1

2
|u|2, e =

1

γ − 1

p

ρ
. (1.10)

The above system can be written in condensed vector form

∂tU +∇ · F (U) = 0, U = (ρ, ρu, E)T . (1.11)

This system is known to be hyperbolic on its admissible state space ([4]).

7

F. De Vuyst & C. Labourdette

For discretization, we consider a conservative finite volume scheme built
on an unstructured finite volume mesh made of cells K. We will denote
AKL the edge separating the two volumes K and L and νKL the unit exte-
rior vector orthogonal to AKL. A general explicit first-order finite volume
scheme reads

Uk+1
K = UnK −

∆t

|K|

∑

L∈V (K)

|AKL|Φ(UnK , U
n
L , νKL), (1.12)

with a numerical flux Φ(UnK , U
n
L , νKL) having at least Lipschitz-continuous

regularity, and being consistent i.e. Φ(U,U, ν) = F (U)ν. For stability pur-
poses, numerical fluxes are generally built to fulfil an upwinding property.
In this context, two main families of upwind flux are identified (see [6]) :
the Flux Difference Splitting (FDS) one, and the Flux Vector Splitting
(FVS) one. FDS fluxes (including Godunov, Osher, Roe, HLLE, etc...) are
written in the form

Φ(UnK , U
n
L , νKL) = (1.13)

1

2
(F (UnK , νKL) + F (UnL , νKL))−

1

2

∫

Γn
KL

|A(U(s), νKL)|U ′(s) ds

where A(U, ν) denote the (diagonalizable) Jacobian matrix of the flux in
the direction ν, and ΓnKL = Γ(UnK , U

n
L , s) is a Lipschitz continuous path

linking the states UnK and UnL with a curvilinear parameter s ∈ [0, 1]. The
second term of the RHS of (1.13) corresponds to the upwind artificial
viscosity term.

From the GPU computational point of view, FDS schemes require at
each time step i) the computation of the FDS flux with memory reads of
the cell states ; ii) cell updates with memory reads of the FDS fluxes (see
figure 3). Memory transfer may be a limiting performance factor for GPUs
if the DRAM bandwidth is saturated.

The Flux Vector Splitting (FVS) family [6] has numerical fluxes written
in the form

Φ(UnK , U
n
L , νKL) = F+(UnK , νKL) + F−(UnL , νKL) (1.14)

with F+ representing the leftward part of the flux and F− representing
the rightward part. Consistency requirements involve the identity

F+(U, ν) + F−(U, ν) = F (U)ν.

8

SOME EXAMPLES OF CFD COMPUTATIONS ON GPU

(a) (b)

Figure 3. FV scheme with Flux Difference Splitting FDS
schemes. FDS require two memory transfers : (a) compu-
tation of the numerical flux with memory reads of states ;
(b) state update into control volumes with memory reads
of numerical fluxes.

What is peculiar with FVS is that F+(UnK , νKL) can be computed without
any knowledge of the neigboring state UnL , and conversely. Then the GPU
computation of F+(UnK , νKL) may be seen as a pointwise, cell-centered
computation, perfectly done in parallel. For that reason, one has only to
send F+ and F− to the neighboring cells for state updates, thus reducing
memory reads and DRAM transfer (see figure 4). Moreover, FVS fluxes

Figure 4. FV scheme with Flux Vector Splitting (FVS)
fluxes. FVS only require one memory transfers : F+ ou F−

are sended to the neighboring cells for state update.

generally do not require neither eigenstructure decomposition nor matrix-
vector products, what improves the whole performance. For example, the
van Leer’s FVS with Hänel-Schwane energy-flux modification [5] leads to

9

F. De Vuyst & C. Labourdette

the scripts (written here for ν = (1, 0)) :

F+
ρ =
ρc

4
(M + 1)2 1(|M |≤1) + max(u, 0) 1(|M |>1), (1.15)

p+ =
p

4
(M + 1)2(2−M) 1(|M |≤1) + p 1(M>1), (1.16)

F+
ρu = uF+

ρ + p+, F+
ρv = v F+

ρ , (1.17)

F+
ρE = (E + p/ρ)F+

ρ (1.18)

where c =
√

γp/ρ is the speed of sound and M = u/c is the normal Mach
number. For these reasons, FVS are clearly better candidates for GPU
implementation and high-performance computation [9]. On figure 5, we
show an instant computation of the well-known 2D Mach 3 forwarding
step case on a very fine grid, using (1.15)-(1.18) as FVS scheme. Again,
mouse interactivity allows us to add obstacles on-the-fly and observe the
fluid response. This is of great interest for training, education and com-
prehension of Fluid Dynamics.

Figure 5. Instant GPU computation on the well-known
Mach 3 forward step channel 2D problem. Hänel’s FVS is
here used. The flow can be perturbed by directly adding
new wall obstacles with the mouse pointer.

1.2.3. Three-dimensional free transport kinetic equations

This case was designed to evaluate GPU performance of particle me-
thods. Let us consider the following homogeneous Vlasov equation in 3D :
find f = f(x,v, t), x ∈ Ω(t) ⊂ R

3, v ∈ R
3, t > 0, solution of

∂tf + v · ∇xf + a(x)∇vf = 0, x ∈ Ω(t) ⊂ R
3, v ∈ R

3, t > 0 (1.19)

10

SOME EXAMPLES OF CFD COMPUTATIONS ON GPU

with f(., ., 0) ∈ L1(Ω × R
3). Standard eulerian discretization methods

would involve a mesh in a space of dimension 6, what is still not realistic
to address at the present time. An alternative approach is to reformulate
the transport dynamics behind this equation. Let us consider the following
system of motion equations defined on a large set of particles {xk}k :

{

ẋk(t) = vk,

v̇k(t) = a(xk)
(1.20)

and the discrete measure-valued distribution

f =
N
∑

k=1

ωk δ(x− xk(t)) δ(v − vk(t)) (1.21)

for some given weighting factors {ωk}k, ωk > 0. We want to evaluate the
L1 norm on f in the time-dependent domain Ω(t) (a pulsating sphere for
example, see [10]). For that we have to compute at each time step

‖f(t)‖L1(Ω(t)) =
N
∑

k=1

ωk 1(xk∈Ω(t)). (1.22)

The summation has to be “optimized” on a GPU architecture. For that we
used the sum-reduction algorithm proposed in the GPU code examples of
the CUDA SDK. We have observed parallel speedup factors of about 25-30
for particles sets between 1 million and 8 million particles on a GPGPU
TESLA C2070.

(a) (b)

Figure 6. Validation of GPU acceleration of free trans-
port equations on a moving domain with parallel reduction
at each time step for L1-norm computation. (a) Schematic
of the particles and moving domain ; (b) Discrete L1(Ω(t))-
norm of the distribution during time t.

11

F. De Vuyst & C. Labourdette

1.3. Impact on the data structures

In the above sections, we have seen how GPU computing may change
the way of thinking both physical models and computational methods.
Beyond pure computational aspects, there is of course the programming
and code optimization dimensions. The obtained “speedup” and the neces-
sary work of specidifc GPU programming are subject to a search of thrust
performance. Parallel computing strongly alters the balance of power in
the classical duality memory-computation. A first simple rule is to try to
keep as much as possible data on the parallel ”device” and transfer data
as less as possible because of limited bandwidth. To illustrate, it is even
often cheaper to recompute a result than transmitting it.

Communication performance is also strongly linked to the way to handle
complex data. Data coalescence is a critical keypoint for optimal perfor-
mance. To offset a large latency of global memory a rational way is to
read consecutive blocks in memory (coalescing). There are two kinds of

Figure 7. Schematic of data coalescence, extracted from
the “CUDA C Best Practices Guide”, NVIDIA 2012 [1]

non-coalescing memory accesses, described in the figure 7 :
– either the threads cannot access to neighboring fields in the right

order ;
– or there is an alignment problem, the first thread of a warp must access

one memory multiple of 32, 64 or 128 (depending on the data), see [1].

It is difficult when looking to optimized performance, to work with
very sophisticated data models. The notion of array perfectly fits to this

12

SOME EXAMPLES OF CFD COMPUTATIONS ON GPU

scheme, data types more developed as structures or classes instead readily
scatter in the data. For example it is much more efficient to manipulate
Structures of Arrays (SoA) that Arrays of Structures (AoS). To be efficient,
it is necessary to stay close to the data and always keep in mind the specific
hardware architecture of GPU and the constraints it imposes to the data.
This is probably the main reason why we think that today CUDA is one
of the most appropriate language to obtain optimal performance on GPU.

1.4. General experience feedback and concluding remarks

Let us conclude by some humble advices. Today’s GPU for scientific
computing is a question a tradeoff between performance and design and/or
implementation effort. Reasonable (suboptimal) speedup (say 10 or 20) is
easy to reach. GPU parallel programming is far easier for computational
methods feined on cartesian grids or meshfree particle methods. For stron-
ger performance, the way is to fing a good tradeoff between implementa-
tion effort, code readability and performance. GPU computing requires a
real reflection on the choice of data structures, especially for the sake of
memory coalescence : arrays of structures AoS versus structures of arrays
SoA, byte alignment, etc. In the same spirit, the strategy/use of interme-
diate cache memory level (per streaming multiprocessor for example) is
also of great importance for high performance. Texture memory is par-
ticularly suited for local partial differential operators involving uniform
spatial stencils.

Our belief at CMLA is that GPU/manycore processors will deeply im-
pact the numerical solvers in the next years. We have to think about pa-
radigm shifts for both modeling and discretization for strong better GPU
performance.

2. Videos of instant GPU computations on youtube

All the interactive computations can be found at the following URL :
http ://www.youtube.com/user/floriandevuyst/videos.

Acknowledgements

This work has been partly supported by the FARMAN Institute of ENS
Cachan and by a NVIDIA Equipment Grant in 2011.

13

F. De Vuyst & C. Labourdette

Bibliographie

[1] CUDA C Best Practices Guide 4.1, NVIDIA. 2012.

[2] R.A. Brownlee, A.N. Gorban, and J. Levesley. Stabilization of the
lattice boltzmann method using the Ehrenfests’ coarse-graining data.
Physical Review E, 74 :037703, 2006.

[3] Carlo Cercignani. The Boltzmann Equation and Its Applications, vo-
lume 67. Springer-Verlag, 1988.

[4] E. Godlewski and P.-A. Raviart. Numerical approximation of hyper-

bolic conservation laws, volume 118. Applied Mathematical Sciences,
Springer-Verlag, Boston, 1996.

[5] D. Hanel and R. Schwane. An implicit flux-vector splitting scheme for
the computation of viscous hypersonic flow. AIAA Paper, 25, 1989.
Paper 89-0274.

[6] A. Harten, P.D. Lax, and B. van Leer. On upstream differencing and
godunov-type schemes for hyperbolic conservation laws. SIAM Re-

view, 25 :35–61, 1983.

[7] RR. Nourgaliev, T.N. Dinh, T.G. Theofanous, and D. Joseph. The lat-
tice boltzmann equation method : theoretical interpretation, numerics
and implications. Int. J. of Multiphase Flow, 29 :117–169, 2003.

[8] Sauro Succi. The Lattice Boltzmann Equation for Fluid Dynamics and

Beyond. Oxford, 2001. ISBN :0-19-850398-9.

[9] F. De Vuyst. A flux vector splitting method that preserves statio-
nary contact discontinuities. Acta Mathematicae Applicandae, 2012.
submitted.

[10] F. De Vuyst and F. Salvarani. Gpu-accelerated numerical simulations
of the knudsen gas on time-dependent domains. Computer Physics

Communications, 2012. in press.

14

SOME EXAMPLES OF CFD COMPUTATIONS ON GPU

Florian De Vuyst

Centre de Mathématiques
et de leurs Applications
CMLA CNRS UMR 8536
61, avenue du Président Wilson
94235 Cachan CEDEX
FRANCE
devuyst@cmla.ens-cachan.fr

Christophe Labourdette

Centre de Mathématiques
et de leurs Applications
CMLA CNRS UMR 8536
61, avenue du Président Wilson
94235 Cachan CEDEX
FRANCE
labour@cmla.ens-cachan.fr

15

