
Hierarchical late fusion for concept detection in

videos

Sabin Tiberius Strat1,4, Alexandre Benoit1, Hervé Bredin2,
Georges Quénot3, and Patrick Lambert1

1 LISTIC - Université de Savoie, Annecy, France,
http://www.polytech.univ-savoie.fr/index.php?id=listic-accueil

2 Université Paris-Sud / CNRS-LIMSI, Orsay, France,
http://www.limsi.fr/

3 Laboratory of Informatics of Grenoble, France,
http://www.liglab.fr/?lang=en

4 IPAL - University ”POLITEHNICA” of Bucharest,
http://alpha.imag.pub.ro/en/home_page.html

Abstract. We deal with the issue of combining dozens of classifiers
into a better one, for concept detection in videos. We compare three
fusion approaches that share a common structure: they all start with a
classifier clustering stage, continue with an intra-cluster fusion and end
with an inter-cluster fusion. The main difference between them comes
from the first stage. The first approach relies on a priori knowledge about
the internals of each classifier (low-level descriptors and classification
algorithm) to group the set of available classifiers by similarity. The
second and third approaches obtain classifier similarity measures directly
from their output and group them using agglomerative clustering for the
second approach and community detection for the third one.

Key words: late fusion, hierarchical, semantic concepts, video, seman-
tic indexing

1 Introduction

Semantic indexing, as defined in the TRECVid evaluation campaign, consists in
automatically detecting the presence of visual concepts in pre-segmented video
shots [1] and returning a ranked list of shots the most likely to contain a given
concept. Judging from the performance obtained by the best system in 2010
(with a mean inferred average precision on 30 concepts of 0.090), there is still
a long way to go to solve this problem [2]. Some concepts appear to be much
easier to detect than others and no single classifier emerges as the one that
systematically (for any concept) outperforms the others. Therefore, for the sake
of universality, many systems rely on the combination of a large (up to 100+)
set of classifiers. They usually differ in the type of descriptors (color, texture,
or bag of visual words, etc.) and/or in the machine learning algorithm (support
vector machine or k nearest neighbors, for instance) they rely upon.



2 Sabin Tiberius Strat et al.

This paper focuses on the last step of this common semantic indexing pipeline:
the late fusion of available classifiers. Let K be the number of classifiers and N

the number of video shots.

Each classifier k ∈ {1 . . .K} provides scores xk = [xk1, . . . , xkN] indicating
the likelihood for each shot n ∈ {1 . . .N} to contain the requested concept. The
objective is to find a combination function f so that the resulting classifier x =
f (x1, . . . ,xK) is better than any of its components, and as good as possible.

When looking for an effective combination of classifiers, several questions
arise. Should we use them all in the fusion process, or just the best ones? Does
combining two classifiers always yield better results than the two of them taken
separately? Should we weigh them differently in case one is much better than
the other? Tackling a similar problem, Ng and Kantor [3] proposed a method
to predict the effectiveness of their fusion approach and concluded that ”[...]
schemes with dissimilar outputs but comparable performance are more likely to
give rise to effective naive data fusion”. There are multiple ways of measuring
this similarity between two classifiers i and j. One of them is the Spearman rank
correlation coefficient ρij :

ρij =

∑n=N

n=1
(rin − ri) (rjn − rj)√∑n=N

n=1
(rin − ri)

2
∑n=N

n=1
(rjn − rj)

2

(1)

where rkn is the rank of shot n according to classifier k: rkn = 1 (resp. N) for
the shot whose value xkn is the maximum (resp. minimum). ρij ranges from −1
(one ranking is the exact opposite of the other one) to 1 (rankings are identical).
ρij = 0 can be understood as classifiers being independent from each other.

Figure 1 uses a spring layout to represent this similarity measure for 90
classifiers trained for the concept Computers. Each classifier is represented by
a node and similar classifiers (higher value of ρij) are positioned closer to each
other. It appears that some kind of community structure naturally emerges, with
several groups of classifiers being more strongly connected internally than with
the outside of their group. This is partly due to the low-level descriptors used
internally by the classifiers (the type of descriptor is denoted by the shape of the
nodes). For instance, classifiers based on color (circles) seem to agglutinate, as do
classifiers based on audio features (diamonds). Finally, the size of items is directly
proportional to the performance of the corresponding classifier. Therefore, best
performing classifiers (i.e. larger items) also tend to agglutinate as they provide
rankings that are closer to the reality – therefore closer to each other.

In this paper, we compare three fusion approaches that rely on these obser-
vations and share a common structure described in Figure 2. They all begin with
a classifier clustering stage, continue with an intra-cluster fusion and end with
an inter-cluster fusion.

Section 2 describes the first approach that relies on manually grouping classi-
fiers of similar origin, in a hierarchic manner. The second and third approaches,
described in Sections 3 and 4, group classifiers automatically according to their
output scores, either iteratively in an agglomerative fashion, or based on a com-



Hierarchical late fusion for concept detection in videos 3

�������

�����

	�ABC�D�

E�DC�	F��FDC����	�

B��D�

A��D�C

�B��

�

�

�

�
�

Fig. 1. Similarity of classifiers trained for detection of concept Computers. Each node
represents a classifier, and edges represent the similarity between them (we only display
some of the edges). The dotted edges represent classifiers which derive from the same
descriptor, but have a different machine learning algorithm.

��������	A B	��CDE������
F����	

�D����	���	C�
�	�����E����

B	���DE������
F����	

��������E����

Fig. 2. Overview of the proposed late fusion approaches, sharing a common structure:
a classifier clustering stage, an intra-cluster fusion and finally an inter-cluster fusion.



4 Sabin Tiberius Strat et al.

munity detection algorithm respectively. Experiments and results are described
in Section 5.

2 Manual hierarchy

The manual hierarchy was designed according to a high level knowledge about
the descriptors and the classifiers. The main principle considered is to fuse first
descriptors or classifiers that are expected to be closer considering their na-
ture or principle of operation. The manual hierarchy incorporates more levels
than the automatic ones, with branches with different depths. In practice, we
fused first the output of all the available machine learning algorithms for each
descriptor (e.g. kNN and SVM). We then fuse different variants of the same
descriptor (e.g. BOW of the same local descriptor but with different dictionary
sizes). Afterwards, we fuse the classifiers corresponding to different image spatial
decompositions (pyramid) if available. Finally, the last level concerns descriptors
of different types within the same modality (e.g. color, texture, interest points,
percepts or faces) and descriptors from different modalities (audio and visual).

Various experiments with manually defined hierarchies suggested that going
from the most similar to the most different was a good strategy. These ex-
periments also showed that the best results are obtained when using as many
combinations as possible of descriptors and machine learning algorithms. Even
combinations with low performance can contribute to a global performance in-
crease, especially if they are complementary to better ones.

Late fusion was performed at all levels using a weighted arithmetic mean
of normalized scores. Several other and more complex methods were tried but
produced no or very small improvements. Three weighting strategies were con-
sidered: uniform (simple arithmetic mean), MAP based (simple function of the
MAP of the different inputs), and direct optimization by cross-validation. Cross-
validation experiments showed that in the early stages, uniform weighting was
preferable for robustness while in latter stages MAP-based or directly optimized
weighting provided better results.

3 Agglomerative clustering

This fusion approach automatically filters out irrelevant classifiers, then it groups
highly-correlated ones in an iterative manner. The target semantic concepts are
treated individually, meaning that each semantic concept may generate different
groupings. The method consists of the following steps:

1. determine the individual relevance of each classifier for the target concept.
The relevance is taken as the average precision α of the classifier for the
target concept on the training dataset, normalized by the proportion of true
positives in the training dataset.

2. retain only classifiers with a relevance higher than 1 (better than random
classification). Additionally, the classifiers must have at least 1/8th of the



Hierarchical late fusion for concept detection in videos 5

relevance of the best one, so as not to “pollute” the good classifiers with bad
ones.

3. Some of the retained classifiers are highly correlated, so we look for the pair
with the maximum correlation and fuse it into a single classifier. We update
the correlation between the resulting classifier and the remaining ones.

4. The previous step is repeated many times, until a sufficiently correlated pair
can no longer be found. This has a dimensionality-reduction effect and also
helps to reduce the classification “noise”.

The correlation measure used is the correlation coefficient of the raw classifi-
cation scores. We consider a pair of attributes as correlated if (a) the correlation
coefficient for all video shots is at least 0.75, to ensure that the two classifiers give
similar information on a global scale, and (b), the correlation between the scores
for just the positive shots must be at least 0.65, to ensure that the positives
tend to be classified in the same way. We add the second constraint because in
TRECVid, most of the target concepts have very few positives, and otherwise,
the classification scores on the negatives would dominate the correlation.

Now, the resulting classifiers are again filtered based on their average pre-
cision on the training set, using the same criteria as before. Afterwards, this
approach separates into two versions, which are detailed below.

First version: weighted average The individual relevances of each remaining
classifier are used as weights for a weighted arithmetic mean, thus obtaining the
final classification score. We have not used this version in the official TRECVid
2011 submissions, because previous tests have indicated that the second version
should be better (however with a different performance metric).

In the end, because all the previous steps consisted of selections and averag-
ing, without any normalisation operations as those in section 4, this approach is
in fact a weighted arithmetic mean, with a more elaborate way of choosing the
weights.

Second version: PCA and nearest-neighbors In this version, we continue
with a Principal Component Analysis (PCA) to further eliminate correlation
and reduce the dimensionality of the problem. We retain the first 1, 2, 3, 4
and 5 most important dimensions, and on each of these choices independently,
we apply a neighborhood-based fusion strategy, as follows: for a test shot, we
count the positives and negatives from the training base in a volume of radius d
around it. This radius is taken as an average distance between training shots. If
no neighbors are present within the volume, we consider the shot as a positive,
based on the assumption that because positives are generally much rarer than
negatives, they are unable to densely cover their entire corresponding space.

Because experiments on cross-validation have shown that we cannot predict
the optimal number of dimensions to take after PCA, the last step consists in
averaging the classification scores obtained with 1, 2, 3, 4 and 5 dimensions.

This version has been used to generate two official submissions for TRECVid
2011, the details of which will be given in Section 5.



6 Sabin Tiberius Strat et al.

4 Community detection

This last fusion approach is very similar to the previous one. The main difference
relies in the way classifier clusters are discovered.

We define the agreement Aij = max (0, ρij) between two classifiers i and j,
where ρij is the Spearman rank correlation coefficient given in equation 1. A
complete undirected graph G is constructed with one node per classifier. Each
pair of classifiers (i, j) is connected by an undirected edge, whose weight is
directly proportional to Aij . A simplified representation of such a graph is given
in Fig. 1.

We rely on the so-called Louvain approach for automatic community detec-
tion proposed by Blondel et al., and apply it on graph G. It is a heuristic method
that is based on the maximization of modularity Q:

Q =
1∑

i,j

Aij

∑

i,j


Aij −

∑

k

Aik

∑

k

Akj

∑

i,j

Aij


 δij (2)

where δij = 1 if classifiers i and j are members of the same community, 0
otherwise.Q can be seen as a measure of the quality of the detected communities.
It increases when communities have stronger intra-community and weaker inter-
community edges [4]. For a detailed description and analysis of the algorithm,
we refer the interested reader to [5].

With no objective groundtruth to compare with, it is difficult to evaluate
the detected communities. However, looking at Fig. 1 and the five detected
communities (A to E), it seems that the Louvain algorithm did a good job at
finding communities related to the nature of the low-level descriptors on which
classifiers are based. In particular, a dotted edge between a pair of classifiers
indicates that they are based on the very same descriptors and they only differ
in the machine learning algorithm they rely on. None of these pairs is split into
two different communities.

After the clustering stage, classifiers from each community are combined
by simple sum of normalized scores, in order to obtain one new classifier per
community. The normalization strategy is presented further below. These new
classifiers are expected to be at least as good as the best of their components
and can sometimes lead to much better performance.

Since they come from different communities, these new community classifiers
are very likely to output very dissimilar scores and rankings. They are combined
using a weighted sum fusion of normalized scores:

x =

c=C∑

c=1

αcx̂c (3)

where the weights αc are in fact the average precisions of each of these new
community classifiers. They are estimated using a development set.



Hierarchical late fusion for concept detection in videos 7

Both fusion steps rely on normalized scores. We investigated multiple nor-
malization techniques (min/max, σ/µ, TanH) but only report on the one that
proved to be the best, TanH normalization [6]:

x̂kn =
1

2

{
tanh

[
0.01

(
xkn − µk

σk

)]
+ 1

}
(4)

where µk and σk) are respectively the mean and standard deviation of scores
provided by classifier k on test set.

5 Experiments

The fusion approaches are tested on the TRECVid 2011 dataset. We train our
algorithms on the official development collection, and we evaluate the perfor-
mances on the official test collection.

5.1 Input classifiers

The input classification scores are obtained by applying supervised classification
algorithms on multidimensional descriptors extracted from the video shots. We
use a battery of multidimensional descriptors such as various color histograms,
Gabor transforms, spatio-temporal interest points, SIFT or SURF Bag-of-Words,
face tracks, presence of mid-level semantic concepts, audio spectral profiles, his-
tograms of Local Binary Patterns etc. Most of the descriptors have several ver-
sions, obtained by varying the extraction parameters (such as the number of bins
when performing clustering, the spatial pyramid decomposition etc.).

Additionally, we apply power transformations on the multidimensional de-
scriptors in order to optimize the data distribution before doing the supervised
classification. We selected an optimal power coefficient for each descriptor by
cross-validation on the training set.

The supervised classification algorithms are either a k-Nearest Neighbor
(KNN) or a multiple Support Vector Machine (MSVM). By combining descrip-
tors with different power transformations with the supervised classifiers, we ob-
tain sets of classification scores which we call KNNG, KNNC, KNNB, MSVM
and ALLC.

The KNN scores are relatively fast to compute, as the nearest-neighbors need
to be determined only once for all target semantic concepts. This is important,
because finding neighbors in a large collection and with many dimensions is a
computationally-expensive operation. Only the counting of positives and nega-
tives among neighbors needs to be done for each concept individually, but this is
trivial. The optimization of the KNN hyper parameters can be done either at the
individual target concept level (KNNC) or globally (KNNG). By partinioning
the development set, the latter was found to be more robust and the late fusion
of both (KNNB) was found to be better than both in almost all cases.

The MSVM classifiers are generated only using the optimal power trans-
formation for the 49 available descriptors. ALLC, being the average of KNNB



8 Sabin Tiberius Strat et al.

and MSVM, also has 49 classifiers, being slightly better than both KNNB and
MSVM. However, because the MSVM supervised classification is much more
computationally-demanding (and because it needs to be done for each concept
separately), only a subset of MSVM and ALLC scores was available for the
official submissions of TRECVID.

5.2 Submissions

The official submissions consist of a Manual hierarchy fusion with all the avail-
able classifiers, two Agglomerative clustering fusions (second version), one ap-
plied on the KNNB and one on the KNNC classifiers, and a Community detection
fusion applied on the KNNC/KNNG sets. Additionally, we apply a video shot
re-ranking strategy based on temporal coherence, which further increases per-
formances. The MSVM and ALLC classifiers, even though they are better than
KNN, were only used for the Manual hierarchy fusion, because they were not all
ready before the submission deadline.

Because the number of permitted official submissions per team was limited
to 5, we extend our study with unofficial experiments. For these, all the MSVM
and ALLC scores are now available for input.

As a reference for comparison, we take, for each semantic concept individ-
ually, its best classifier in cross-validation on the training set. We complement
this reference with the arithmetic mean, either with equal weights for all classi-
fiers, or weighted for each semantic concept individually by the average precision
obtained by a classifier for that concept. We also experimented in earlier stages
with a geometric mean of the input classifiers and with a rank fusion, but these
last two approaches give very similar results to the arithmetic mean.

5.3 Results and comparison

The results obtained by the various fusions are summarised in Table 1.
Among our official submissions, the Manual hierarchy fusion is the best. This

is partly due to the fact that manually grouping classifiers obtained in a similar
manner ensures more homogeneous properties within a group. The rest of the
performance increase of the manual hierarchy is due to the inclusion of some of
the MSVM and ALLC classifiers (which are better than KNN), even if they were
not all available at that time. This submission ranked 8th among all submissions
from all participants in the task.

The Community detection applied on the KNNC/KNNG sets ranked 15th
and 25th (with and without temporal re-ranking respectively) in the official
hierarchy, while the Agglomerative clustering fusions (second version) ranked
25th for KNNB and 30th for KNNC, which situates it close to the middle of the
official hierarchy.

Looking also at the unofficial experiments, a first thing to notice is that all of
the methods outperform the Best classifier baseline, if they are applied on the
same dataset and all of them either use, or do not use, the temporal re-ranking.



Hierarchical late fusion for concept detection in videos 9

Table 1. Performance of fusion approaches. We display the Mean Average Precisions
(mAvgPrec), and also the rankings of the official submissions among all Semantic
Indexing task participants. The first four rows are official TRECVid submissions, which
did not benefit from the complete MSVM and ALLC sets of classifiers. The other rows
are unofficial experiments, when the MSVM and ALLC sets were complete.

Fusion Applied on mAvgPrec + re-rank

Manual hierarchy ALLC 0.1454 0.1529 (#8)
Agglomerative clustering (v2) KNNB 0.1194 (#25)
Agglomerative clustering (v2) KNNC 0.1142 (#30)
Community detection KNNC/KNNG 0.1341 (#17) 0.1387 (#15)

Best classifier KNNB 0.1146
Best classifier ALLC 0.1178 0.1332

Arithmetic Mean KNNB 0.1381
Arithmetic Mean ALLC 0.1415 0.1481

Weighted Mean ALLC 0.1419 0.1491

Agglomerative clustering (v1) KNNB 0.1423
Agglomerative clustering (v1) ALLC 0.1457 0.1520

Agglomerative clustering (v2) ALLC 0.1332 0.1444

Community detection ALLC 0.1438

The Community detection using KNNC/KNNG outperforms the Best classifier
on KNNB (KNNB is the fusion of KNNC and KNNG) by a good margin of
21% if using the temporal re-ranking, while the Agglomerative clustering (v.2)
of KNNB achieves a small margin of 4%.

Regarding the addition of temporal re-ranking, we do not display the aver-
age precision for all methods, but we confirm that it improves the results for
all fusions. The performance boost is especially obvious for the Best classifier
approach, where, using the ALLC input scores, we increase the average precision
by 13%.

For the automatic clustering approaches applied on ALLC, the Agglomerative
clustering (first version) is the best, outperforming the Best classifier by 23%,
followed by the Community detection (22%), and finally by the Agglomerative
clustering (second version) (13%). However, the performance of the arithmetic
mean, either simple or weighted, is not to be ignored. The margins by which
the Agglomerative clustering (v.1) and the Community detection outperform
the simple arithmetic mean are much lower: 3% and 1.6% respectively, while the
Agglomerative clustering (second version) actually performs worst. The weighted
arithmetic mean, with weights given by the individual relevance of attributes,
gives very similar results.

Considering the simplicity of the arithmetic mean, the processing time con-
straints need to be taken into account when deciding whether or not the perfor-
mance boost of a more complex fusion method is worth the effort. Already, the
simple arithmetic mean manages to improve on the Best classifier by a margin
of 20%.



10 Sabin Tiberius Strat et al.

6 Conclusion and future work

In this paper, we proposed several ways of combining dozens of input classifiers
into better ones, and applied them in the context of the TRECVid 2011 Seman-
tic Indexing task. We have shown that all of the methods outperform taking
the best classifier for each concept, and they are all better than an arithmetic
mean, except the second version of agglomerative clustering, which was opti-
mized based on different criteria. The performance boost of the more complex
methods however, needs to be balanced with the computational complexity, as
the arithmetic mean is very close in performance.

In the future, we plan to experiment with combining the three fusion ap-
proaches presented, and also using various score normalisation strategies at dif-
ferent levels of the algorithm.

Acknowledgments This work was supported by the Quaero Program and
the QCompere project, respectively funded by OSEO (French State agency for
innovation) and ANR (French national research agency). The authors would also
like to thank the members of the IRIM consortium for the classifier scores used
throughout the experiments described in this paper.

References

1. Smeaton, A.F., Over, P., Kraaij, W.: High-Level Feature Detection from Video in
TRECVid: a 5-Year Retrospective of Achievements. In Divakaran, A., ed.: Multi-
media Content Analysis, Theory and Applications. Springer Verlag, Berlin (2009)
151–174

2. Snoek, C.G.M., van de Sande, K.E.A., de Rooij, O., Huurnink, B., Gavves, E., Odijk,
D., de Rijke, M., Gevers, T., Worring, M., Koelma, D.C., Smeulders, A.W.M.: The
MediaMill TRECVID 2010 Semantic Video Search Engine. In: Proceedings of the
8th TRECVID Workshop, Gaithersburg, USA (2010)

3. Ng, K.B., Kantor, P.B.: Predicting the Effectiveness of Naive Data Fusion on the
Basis of System Characteristics. Journal of the American Society for Information
Science 51 (2000) 1177–1189

4. Newman, M.E.J.: Modularity and Community Structure in Networks. Proceedings
of the National Academy of Sciences of the United States of America 103 (2006)
8577–8582

5. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast Unfolding of
Communities in Large Networks. Journal of Statistical Mechanics: Theory and
Experiment 2008 (2008) P10008

6. Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics (Interna-
tional Series on Biometrics). Springer-Verlag New York, Inc., Secaucus, NJ, USA
(2006)


