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ABSTRACT

We propose an audio-visual approach to video genre classification using content descriptors that

exploit audio, color, temporal, and contour information. Audio information is extracted at block-

level, which has the advantage of capturing local temporal information. At the temporal structure

level, we consider action content in relation to human perception. Color perception is quantified

using statistics of color distribution, elementary hues, color properties, and relationships between

colors. Further, we compute statistics of contour geometry and relationships. The main contribution

of our work lies in harnessing the descriptive power of the combination of these descriptors in genre

classification. Validation was carried out on over 91 hours of video footage encompassing 7 common

video genres, yielding average precision and recall ratios of 87%−100% and 77%−100%, respectively,

and an overall average correct classification of up to 97%. Also, experimental comparison as part of
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the MediaEval 2011 benchmarking campaign demonstrated the superiority of the proposed audio-

visual descriptors over other existing approaches. Finally, we discuss a 3D video browsing platform

that displays movies using feature-based coordinates and thus regroups them according to genre.

Keywords: video genre classification, block-level audio descriptors, action segmentation, color

perception, statistics of contour geometry, video indexing.

1 Introduction

Automatic labeling of video footage according to genre is a common requirement in indexing large

and heterogeneous collections of video material. This task may be addressed, either globally or

locally. Global-level approaches aim to classify videos into one of several main genres, for instance,

cartoons, music, news, sports, documentaries or into more fine-grained sub-genres, for instance

specific types of sports (football, hockey, etc.) and movies (drama, thriller, etc.). Local-level

approaches label video segments according to specific human-centered concepts such as outdoor vs.

indoor scenes, action segments and scenes showing violence (see TRECVid campaign [1]).

In this paper, we address the global classification task. Since it is related to data mining, video

genre classification involves two steps: feature extraction and classification. Feature extraction and

selection is one of the main critical steps determining the success of the classification task. In the

literature, many sources of information have been exploited [3].

One of the least common approaches (in the context of image processing) is the use of text-

based information, mainly due to its limited availability with video information. Text is retrieved

either from scene text (e.g., graphic text, sub-titles), from the transcripts of dialogues obtained with

speech recognition techniques, or from other external sources such as synopses and user tags. Bag-

of-Words model approaches [4] are very common in genre classification. Audio-based information

is more widely available than text and derived from both time and frequency domains. Common

time-domain approaches use the Root Mean Square of signal energy (RMS) [5], sub-band informa-
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tion [7], Zero-Crossing Rate (ZCR) [9], or silence ratio. Frequency-domain features include energy

distribution, frequency centroid [9], bandwidth, pitch [10], and Mel-Frequency Cepstral Coefficients

(MFCC) [8].

Of course, most video genre classification approaches rely on visual elements. They exploit both

static and dynamic visual information in the spatial domain, for instance using color, temporal

structure, objects, or motion or in the compressed domain, for instance, using MPEG coefficients

[3]. Color information is generally derived at image level and quantified with color histograms or

other low-level parameters such as predominant color, color entropy, and variance (various color

spaces are used, including RGB - Red Green Blue, HSV - Hue Saturation Value, or YCbCr -

Luminance, Chrominance) [11] [12] [13]. Temporal-structure-based information exploits temporal

segmentation. A video sequence is composed of several video shots which are connected by video

transitions, which can be sharp (cuts) or gradual (such as fades, dissolves) [14]. Existing approaches

basically exploit their frequency of occurrence in the movie. Although some approaches use this

information directly [15] (e.g., rhythm, average shot length), others derive features related to visual

activity, for instance, by defining the concept of action (a high frequency of shot changes is usually

related to action content) [16] [17] [18]. Object-based features in genre classification are generally

limited to characterizing the occurrence of face and text regions in frames [22] [15] [18]. Motion-

based information is derived either by motion detection techniques (i.e., foreground detection) or by

motion estimation (i.e., prediction of pixel displacement vectors between frames, see [23]). Common

features describe motion density, camera movement (global movement) and object trajectory [16]

[24] [25]. Finally, less common are features computed directly in the compressed video domain, for

example, using DCT coefficients (Discrete Cosine Transform) or embedded motion vectors from the

MPEG stream [26]. Their main advantage is their immediate availability with the video file.

The efficiency of these sources in genre classification was discussed in [3]. All sources of infor-

mation have advantages and disadvantages, but some prove to be more convenient than others.

Text-based information may produce high error rates (due to automatic recognition) and is usually
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computationally expensive to process (e.g., Optical Character Recognition - OCR); object-based

information, although also computationally expensive to obtain tends to be semi-automatic (re-

quires human confirmation); motion information is available in high quantities during the entire

sequence (object/camera), but is insufficient by itself to distinguish between some genres, for in-

stance, movies, sports, music. In contrast, audio-based information provides good discrimination

and requires fewer computational resources to be obtained and processed; color information is not

only simple to extract and inexpensive to process, but also powerful in distinguishing cinematic

principles; temporal-based information is a popular choice and proves to be powerful as long as

efficient video transition detection algorithms are employed.

The remainder of this paper is organized as follows: Section 2 discusses several genre classifi-

cation approaches and situates our work accordingly. Section 3 deals with extraction of features:

audio, temporal structure, color, and contour-based. Experimental results are presented in Section

4, and Section 5 concludes the paper and discusses future work.

2 Related work

The most reliable video genre classification approaches, which also target a wider range of genres, are

multi-modal, that is, multi-source. In this section, we discuss the performance of several approaches

- from single-modal (which are limited to copeing with a reduced number of genres) to multi-modal

(which are able to perform more complex classifications) - we consider relevant for the present work.

A simple, single-modal approach was proposed in [24]. It addresses genre classification using

only video dynamics, namely background camera motion and object motion. A single feature vec-

tor in the DCT-transformed space ensures low-pass filtering, orthogonality, and a reduced feature

dimension. A classifier based on a Gaussian Mixture Model (GMM) is then used to identify three

common genres: sports, cartoons, and news. Despite the limited content information used, applying

the GMM model to a reduced number of genres achieves detection errors below 6%. The approach

presented in [18] uses spatio-temporal information: average shot length, cut percentage, average
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color difference, and camera motion (temporal) and face frames ratio, average brightness, and color

entropy (spatial). Genre classification is addressed at different levels, according to a hierarchical on-

tology of video genres. Several classification schemes (Decision Trees and several SVM approaches)

are used to classify video footage into main genres (movie, commercial, news, music, and sports)

and further into sub-genres (movies into action, comedy, horror, and cartoons and sports into base-

ball, football, volleyball, tennis, basketball, and soccer). The highest precision achieved in video

genre categorization is around 88.6% and in sub-genre categorization 97% and 81.3% for sports and

movies, respectively.

However, truly multi-modal approaches also include audio information. For instance, the ap-

proach in [19] combines synchronized audio (14 Mel-Frequency Cepstral Coefficients - MFCC) and

visual features (mean and standard deviation of motion vectors, MPEG-7 visual descriptors). Di-

mensionality of the feature vectors is reduced by means of Principal Component Analysis, and

videos are classified with a GMM-based classifier. Tested with five common video genres, namely

sports, cartoons, news, commercials, and music, this approach yields an average correct classifica-

tion of up to 86.5%. Another example is the approach proposed in [28]. Features are extracted from

four information sources: visual-perceptual information (color, texture, and motion), structural in-

formation (shot length, shot distribution, shot rhythm, shot clusters duration, and saturation),

cognitive information (e.g., numbers, positions, and dimensions of faces), and aural information

(transcribed text, sound characteristics). These features are used to train a parallel Neural Net-

work system, which achieves an accuracy of up to 95% in distinguishing between seven video genres

and sub-genres, namely football, cartoons, music, weather forecast, newscast, talk shows, and com-

mercials. A generic approach to video categorization was discussed in [21]. Each video document

is modeled by a Temporal Relation Matrix (TRM) which describes the relationship between video

segments, that is temporal intervals related to the occurrence of a specific type of event. Events

are defined based on the specificity of video features such as speech, music, applause, and speaker

(audio) and color, texture, activity rate, face detection, and costume (visual). TRMs provide a

similarity measure between documents. Experimental tests with several classification approaches
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(mostly tree-based) and the six video genres: news, soccer, TV series, documentary, TV games, and

movies yield individual genre Fscore ratios ranging from 40% to 100% (e.g., for Random Forest with

cross-validation). Another interesting approach to multimedia categorization is the cross-media

retrieval method proposed in [20]. It is founded on the construction of a Multimedia Correlation

Space (MMCS) which exploits semantic correlations between different multimedia modalities based

on content description and co-occurrence information. The proposed video descriptors are related

to color and texture (color histogram, color moment, color coherence, tamura statistics, MSRSAR

texture) and aural information (RMS energy, Spectral Flux, Rolloff, Centroid). Tested with 500

multimedia objects, the system achieved correct classification rates of up to 90% in cross-media

categorization.

Our approach exploits both audio and visual modalities for genre classification. Use has previ-

ously been made of these sources of information, but we approach computing these features in a

novel way. The proposed audio features are block-level-based and have the advantage of captur-

ing local temporal information by analyzing sequences of consecutive frames in a time-frequency

representation. Visual information is described using temporal information, color, and structural

properties. Temporal descriptors are derived using a classic confirmed approach, that is, analysis

of the shot change frequency [18] [28]. However, we use a novel way of measuring action content

that assesses action perception. Color information is extracted globally. In contrast to existing ap-

proaches, which mainly use local or low-level descriptors such as predominant color, color variance,

color entropy, and frame based histograms [12] [18], our approach analyzes color perception. Using

a color naming system, we quantify color perception with statistics of color distribution, elementary

hues distribution, color properties (e.g., percentage of light colors, cold colors, saturated colors),

and relationships between colors [31]. The final type of visual descriptor is related to contour infor-

mation, which has rarely been exploited in genre classification [3]. Unlike most existing approaches,

which describe closed region shapes (e.g., with MPEG-7 visual descriptors [27] [3]) we break con-

tours down into segments and describe curve contour geometry both individually and relative to

neighbor contours.
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The principal contribution of our work, however, lies in realizing the descriptive power of the

combination of these descriptors in genre classification. Extensive experimental tests conducted over

91 hours of video footage spanning seven common video genres yielded excellent classification ratios.

Also, experimental comparison as part of the MediaEval 2011 benchmarking campaign proved the

superiority of the proposed audio-visual descriptors compared to other approaches. Further, we

tested our descriptors within a practical application, namely automatic genre categorization of

video documents for potential use with media platforms (e.g., video rental, selling). We propose a

prototype 3D browsing environment in which movies are displayed according to descriptor-based

coordinates. Preliminary results show that movies tend to regroup according to similarities in

content and genre, which is a very interesting result.

3 Content descriptors

We approach video genre categorization by exploiting audio and visual (temporal, color, and

contour-based) video modalities. Our selection is motivated by the specificity of these informa-

tion sources with respect to video genre.

For instance, most common video genres have very specific audio signatures, for instance, music

clips contain music, news contain many monologues/dialogues, documentaries have a mixture of

natural sounds, speech, and ambient music, in sports there is crowd noise, and so on. To address

these particularities, we use audio descriptors related to rhythm, timbre, onset strength, noisiness,

and vocal aspects.

In terms of visual information, we first extract temporal information by assessing action con-

tent and video transitions. This information is related to genre-specific cinematic principles. For

instance, commercials and music clips tend to have a high visual tempo, commercials use many

gradual transitions, documentaries have reduced action content, movies use gradual transitions,

and so on (see also the examples in Subsection 4.1.1). The second type of visual information is

related to color since different genres have different global color signatures. For example, animated
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movies use specific color palettes and color contrasts (light-dark, cold-warm), music videos and

movies tend to have darker colors (mainly due to the use of special effects), and sports usually

show a predominant hue, such as green for soccer, white for ice hockey (see also the examples in

Subsection 4.1.1). The final type of visual information is related to contours, and consequently to

object shape. Different objects have different types of contours, for instance, animal silhouettes

tend to be undulating with low edginess while natural scenes often contain ”wiggly” and irregular

shapes. Video genres tend, therefore, to have specific contour signatures: in documentaries, skyline

contours dominate; in news, human faces and silhouettes are common; movies use combinations of

contour shapes, such as: silhouettes, buildings, and skylines; commercials often use psycho-visual

techniques (involving basic shapes such as lines, circles). Below we describe each descriptor category

in more detail.

3.1 Audio features

The proposed set of audio descriptors, called block-level audio features, has the key advantage of

capturing temporal information from the audio track at a local level.

In contrast to standard spectral audio features (e.g., Mel Frequency Spectral Coefficient, Spectral

Centroid, or Spectral Roll Off), which are typically extracted from each spectral frame (capturing a

time span of 20 ms) of the time-frequency representation of an audio signal, the proposed features

are computed from a sequence of consecutive spectral frames called a block. Depending on the

extracted block-level feature, a block consists of 10 up to about 512 consecutive spectral frames.

Thus, local features can themselves capture temporal properties (e.g., rhythmic aspects) of an audio

track over a time span ranging from half a second up to 12 seconds of audio. Blocks are analyzed

at a constant rate and their frames overlap by default by 50%, which results in one local feature

vector per block. These local vectors are then summarized by computing simple statistics (e.g.,

mean, variance, or median) separately for each dimension of the local feature vectors. A schematic

diagram of this procedure is depicted in Figure 1.
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Figure 1: Processing a time (OX axis) - frequency (OY axis) representation in terms of spectral
blocks (N is the number of blocks).

To obtain a perceptual time-frequency representation of the video soundtrack, the audio track

is first converted into a 22kHz mono signal. Then we compute the short-time Fourier transform

and perform a mapping of the frequency axis according to the logarithmic cent-scale because hu-

man frequency perception is logarithmic. The resulting time-frequency representation consists of

97 logarithmically spaced frequency bands. The following complex block-level audio features are

derived:

Spectral pattern (SP , number of frames constituting a block: BW = 10, 0.9 percentile statis-

tics): characterizes the timbre of the soundtrack by modeling the frequency components that are

simultaneously active. The dynamic aspects of the signal are retained by sorting each frequency

band of the block along the time axis. The block width varies depending on the extracted patterns,

which allows capturing temporal information over different time spans.

Delta spectral pattern (DSP , BW = 14, 0.9 percentile statistics): captures the strength of

onsets. To emphasize onsets, we first compute the difference between the original spectrum and a

copy of the original spectrum delayed by three frames. As with the spectral pattern, each frequency

band is then sorted along the time axis.
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Variance delta spectral pattern (V DSP , BW = 14, variance statistics): is basically an exten-

sion of the delta spectral pattern and captures the variation of the onset strength over time.

Logarithmic fluctuation pattern (LFP , BW = 512, 0.6 percentile statistics): captures the

rhythmic aspects of the audio signal. In order to extract the amplitude modulations from the

temporal envelope in each band, periodicities are detected by computing the FFT (Fast Fourier

Transform) along each frequency band of a block. The periodicity dimension is then reduced from

256 to 37 logarithmically spaced periodicity bins.

Spectral contrast pattern (SCP , BW = 40, 0.1 percentile statistics): roughly estimates the

”tone-ness” of an audio track. For each frame within a block, the difference between spectral peaks

and valleys in 20 sub-bands is computed, and the resulting spectral contrast values are sorted along

the time axis in each frequency band.

Correlation pattern (CP , BW = 256, 0.5 percentile statistics). To capture the temporal relation

of loudness changes over different frequency bands, the correlation coefficients for all possible pairs

of frequency bands within a block are used. The resulting correlation matrix forms the correlation

pattern. The correlation coefficients are computed for a reduced frequency resolution of 52 bands.

Figure 2 shows an example in which audio features were extracted from both a documentary

and a music video. A typical characteristic of music signals is the presence of strong beats, which

is reflected by the strong peaks in the LFP of the music video. In contrast, the flat structure of

the LFP of the documentary indicates that there are no repeated percussive elements in the audio

stream.

These audio features in combination with a Support Vector Machine (SVM) classifier form a

highly efficient automatic music classification system. At the 2010 Music Information Retrieval

Evaluation eXchange (MIREX) audio benchmark, this approach ranked first at automatic music

genre classification [30]. However, the proposed approach has not yet been applied to automatic

video genre classification.
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Figure 2: Visualization of the audio features of a documentary (upper plots) and a music video
(lower plots). Except for the CP the OY axis of all patterns is frequency. The SCP has a lower
frequency resolution. The OX axis for the SP, DSP, VDSP, SCP is related to the evolution over
time. For the LFP the oX axis is periodicity. The CP is a correlation matrix.

Below we provide a preliminary test and compare our descriptors with standard MFCC in video

genre classification. We tested a standard Bag-of-Frames (BoF) approach [48] in which each audio

track is modeled as a single multi-dimensional Gaussian distribution over the local MFCC vectors.

Two different classifiers were evaluated: the Nearest Neighbor (k-NN) classifier, to indicate retrieval

performance, and a Support Vector Machine, to indicate the achievable classification performance.

For nearest-neighbor classification, the distance between two Gaussian models was estimated using

the KL-divergence, which is given by:

DKL(P ||Q) =
∫

∞

−∞

p(x) log
p(x)

q(x)
dx (1)

where P and Q are both probability distributions. For the block-level features, the Manhattan

distance was used.

Table 1 compares the classification accuracy (i.e., the number of sequences which were correctly
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labeled) obtained with a Single Gaussian model over MFCC (denoted SG) to the proposed block-

level feature set (denoted BLF ) for the two classifiers. For our experiments we used the data set

that is introduced in Section 4.

Table 1: Classification accuracy of BLF vs. MFCC.
classifier SG BLF

5-Nearest Neighbors 70.29% 90.71%

Support Vector Machines 84.10% 91.71%

The results clearly indicate the superiority of the block-level features over MFCC, as the im-

provement in classification ranges from 8% to 20%. This is also in line with the results obtained at

the MediaEval 2011 Evaluation Campaign presented in Section 4.3. Table 4 shows that the video

genre classification system that is based only on the proposed feature set achieved a Mean Average

Performance of 10.29%. Interestingly, this approach not only outperformed an approach based on

standard audio features (see team KIT), but also some systems based on textual and visual modal-

ities. Thus, we can conclude that the proposed block-level features are more powerful in terms of

music genre classification [30] and also provide an adequate audio representation for video genre

classification [2]. In Section 4 we investigate whether this approach in combination with visual

descriptors can help to further improve the quality of video genre classification.

3.2 Temporal descriptors

Temporal descriptors are derived by means of a classic confirmed approach, that is, analysis of the

shot change frequency [18]. Unlike existing approaches, we determine the action content based on

human perception.

A correct temporal description requires accurate temporal segmentation. First, we detect video

transitions [14]: cuts and two of the most frequent gradual transitions - fades and dissolves. Cut

detection is performed using an adaptation of the histogram-based approach proposed in [33], while

fades and dissolves are detected by means of a pixel-level statistical approach [34] and analysis of
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fading-in and fading-out pixels [35], respectively. The temporal descriptors are then computed as

follows:

Rhythm. To capture the movie’s tempo of visual change, we define a basic indicator, denoted ζT (i),

which represents the relative number of shot changes occurring within the time interval T , starting

at the frame at time index i (T = 5 s, determined experimentally). Based on ζT , we define the

movie rhythm as the movie’s average shot change speed, denoted v̄T , which is the average number

of shot changes in the time interval T for the entire movie, thus E{ζT}.

Action. We aim to define two opposite situations: video segments with a high action content

(denoted ”hot action”, e.g., fast changes, fast motion, visual effects) and video segments with low

action content (denoted ”low action”, containing mainly static scenes).

First, at a coarse level, we identify segments containing a high number of shot changes (ζT > 3.1),

which are ”hot action” candidates, and a reduced number of shot changes (ζT < 0.6), which are

low action candidates (see step a in Figure 3). Thresholds were determined experimentally based

on human perception: several persons were asked to manually classify video segments into the two

categories mentioned. On the basis of this ground truth, we determined average ζT intervals for

each type of action content.

To avoid over-segmentation, we merge neighboring action segments at a time distance smaller

than T seconds (the size of the time window, see step b in Figure 3). Further, we remove unnoticeable

and irrelevant action segments by erasing small action clips of length less than the analysis time

window T . Finally, all hot action clips containing fewer thanNs = 4 video shots are removed because

they are very likely the result of false detection and contain one or several gradual transitions (e.g.,

a ”fade-out” - ”fade-in” sequence, see step c in Figure 3). The entire process is illustrated in Figure

3. Using this information, we quantify the action content by two parameters, hot-action ratio (HA)

and low-action ratio (LA):

HA =
THA

Ttotal

, LA =
TLA

Ttotal

(2)
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Figure 3: Action-based temporal segmentation (the OX axis is the temporal axis, vertical blue
lines correspond to shot changes). ”Hot action” and ”low action” segments are indicated in red and
green respectively. Letters denote the processing steps as described in the text.

where THA and TLA represent the total lengths of hot and low action segments, respectively, and

Ttotal is the total length of the movie.

Gradual transition ratio. The gradual transition ratio (GT ) is computed by:

GT =
Tdissolves + Tfade−in + Tfade−out

Ttotal

(3)

where Tx represents the total duration of all the gradual transitions of type x. This provides

information about editing techniques which are specific to certain genres, such as live action feature

films and artistic animated movies.

3.3 Color content

Color information is a powerful means of describing visual perception. Most existing color-based

genre classification approaches are limited to using intensity-based parameters or generic low-level

color features [3] such as average color differences, average brightness, average color entropy [18],

variance of pixel intensity, standard deviation of gray level histograms, percentage of pixels with

saturation above a given threshold [16], lighting key (measures how well light is distributed) [6],
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object color, and texture.

We propose a more sophisticated strategy which addresses the perception of color content. A

simple and efficient way to accomplish this is using color names; associating names with colors allows

creating a mental image of a given color or color mixture. We project colors onto a color naming

system [37], and color properties are described using statistics of color distribution, elementary hue

distribution, color visual properties (e.g., percentage of light colors, warm colors, saturated colors,

etc.), and relationships between colors (adjacency and complementarity). Color descriptors are

extracted globally taking the temporal dimension into account.

Prior to parameter extraction, we project colors onto a more manageable color palette (initial

images are true color). We selected the non-dithering 216 color Webmaster palette because of the

high color diversity and its efficient color naming system: each color is named according to the

degree of hue, saturation, and intensity [38]. Color mapping is performed with a classic dithering

scheme [40], and colors are selected in the L*a*b* color space [41]. Further, the proposed color

parameters are computed as follows:

Global weighted color histogram captures the global color distribution of the movie. It is

computed as the weighted sum of each individual shot average color histogram:

hGW (c) =
M∑
i=0

⎡
⎣ 1

Ni

Ni∑
j=0

hj
shoti

(c)

⎤
⎦ ·

Tshoti

Ttotal

(4)

where M is the total number of video shots, Ni is the total number of frames retained from shot i

(to reduce computational load, each shot is summarized by retaining p = 10% of its frames), hj
shoti

()

is the color histogram of frame j from shot i, c is a color index from the Webmaster palette, and

Tshoti is the total length of shot i. The longer the shot, the more important the contribution of its

histogram to the global histogram of the movie. Thus, values of hGW () describe global percentages

of colors appearing in the movie (values are normalized to 1, i.e., a frequency of occurrence of 100%).

Elementary color histogram. This feature is computed by:

hE(ce) =
215∑
c=0

hGW (c)|
Name(ce)⊂Name(c)

(5)
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where ce is an elementary color from the Webmaster color dictionary, ce ∈ Γe with Γe = {”Orange”,

”Red”, ”Pink”, ”Magenta”, ”Violet”, ”Blue”, ”Azure”, ”Cyan”, ”Teal”, ”Green”, ”Spring”, ”Yel-

low”, ”Gray”, ”White”, ”Black”}, and Name() is an operator that returns a color name from the

palette dictionary.

Thus, each available color is projected in hE() onto its elementary hue, while saturation and

intensity information are disregarded. This mechanism removes susceptibility to color fluctuations

(e.g., illumination changes) and provides information about predominant hues.

Color properties. These parameters aim to describe color perception by means of light/dark,

saturated/non-saturated, warm/cold colors and color richness by quantifying color variation/diversity.

Using the previously determined histogram information in conjunction with the color naming dic-

tionary, we define several color ratios. For instance, the light color ratio, Plight, which reflects the

percentage of bright colors in the movie, is computed by:

Plight =
215∑
c=0

hGW (c)|
Wlight⊂Name(c)

(6)

where c is the index of a color whose name (provided by Name(c)) contains one of the words defining

brightness, and Wlight ∈ {”light”, ”pale”, ”white”}. Using the same reasoning and keywords specific

to each color property, we define:

• dark color ratio, denoted Pdark, where Wdark ∈ {”dark”, ”obscure”, ”black”};

• hard color ratio, denoted Phard, which reflects the number of saturated colors. Whard ∈

{”hard”, ”faded”} ∪Γe, where Γe is the elementary color set (see eq. 5, elementary colors are

100% saturated colors);

• weak color ratio, denoted Pweak, which is opposite to Phard, Wweak ∈ {”weak”, ”dull”};

• warm color ratio, denoted Pwarm, which reflects the number of warm colors; in art, some hues

are commonly perceived to exhibit levels of warmth, namely: ”Yellow”, ”Orange”, ”Red”,

”Yellow-Orange”, ”Red-Orange”, ”Red-Violet”, ”Magenta”, ”Pink” and ”Spring”;
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• cold color ratio, denoted Pcold, where ”Green”, ”Blue”, ”Violet”, ”Yellow-Green”, ”Blue-

Green”, ”Blue-Violet”, ”Teal”, ”Cyan” and ”Azure” describe coldness.

Further, we capture movie color richness with two parameters. Color variation, Pvar, which repre-

sents the number of significant colors, is defined as:

Pvar =
Card{c|hGW (c) > τvar}

216
(7)

where c is a color index, hGW is the global weighted histogram defined in eq. 4, and Card() is the

cardinal function, which returns the size of a data set. We consider a color significant if it has a

frequency of occurrence in a movie of more than 1% (i.e., τvar = 0.01). Color diversity, Pdiv, which

reflects the number of significant color hues in the movie, is defined using the same principle, but

based on the elementary color histogram hE.

Color relationship. The final two parameters are related to the concept of perceptual relationships

between colors in terms of adjacency and complementarity. The parameter, Padj reflects the number

of perceptually similar colors in the movie (neighborhood pairs of colors on a perceptual color wheel,

e.g., Itten’s color wheel [42] [38]), and Pcompl reflects the number of perceptually opposite color pairs

(antipodal).

3.4 Structural content

The final set of parameters provides information based on structure, that is, on contours and

their relations. So far, contour information has been exploited to a very limited extent in genre

classification. For instance, some approaches use MPEG-7-inspired contour descriptors [3] [27], such

as texture orientation histograms, edge direction histograms, edge direction coherence, [43], which

do not exploit real contour geometry and properties.

Our approach, in contrast, proposes a novel method which uses curve partitioning and curve

description [29]. The contour description is based on a characterization of geometric attributes

of each individual contour, for instance, degree of curvature, angularity, and ”wiggliness”. These
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attributes are used as parameters in a high-dimensional image vector and have been exploited

successfully in a (statistical) classification task. For instance, the system achieved the benchmark

for urban and natural scene collection in [44], and ranked among the upper third of all performances

in the photo-annotation task of the ImageCLEF competition [45].

Contour characterization. Contour processing starts with edge detection, which is performed

with the Canny edge detection algorithm [32]. For each contour, a type of curvature space is

created. This space is then abstracted into spectra-like functions, from which a number of geometric

attributes, such as the degree of curvature, angularity, circularity, symmetry and ”wiggliness”, are

derived. In addition to these geometric parameters, a number of ”appearance” parameters are

extracted. They are based on simple statistics obtained from the luminance values extracted along

the contour, such as contrast (mean and standard deviation, abbreviated cm, and cs respectively)

and ”fuzziness”, obtained by convolution of the image with a blob filter (fm, and fs, respectively).

In summary, for a given image with n extracted and partitioned contours, we obtain a list of 7

geometric and 4 appearance attributes for each contour. For each attribute, a 10-bin histogram

with n values, is generated.

Pair relations. In addition to individual contour attributes, we also obtain attributes for pairs

of contours. Contour segments are first grouped as a list of all n! pairs. From this long list of

pairs, only a subset (approximately 3×n) is selected based on spatial proximity, meaning that their

contour endpoints are either proximal or in the proximity of other segments.

For each selected pair, a number of geometric attributes is determined: the angular direction

of the pair (γp), the distance between the proximal contour endpoints (dc), the distance between

the distal contour end points (do), the distance between segment center (middle) points (dm), the

average segment length (l), the symmetry of the two segments (y), the degree of bendiness of each

segment (b1 and b2), the structural biases (ŝ) which express to what degree the pair alignment is

an L feature (ŝL), a T feature (ŝT ), or a ”closed” feature (two curved segments facing each other

as ’( )’, ŝ()). In total, 12 geometric relational attributes are extracted for the selected pairs. Again,
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for each attribute a 10-bin histogram is generated.

Figure 4 shows an example of the representative power of these descriptors in image-based

categorization. We present the results obtained by similarity-based contour search in the Corel

collection (60000 images) using three concepts: ”landscape”, ”entrance”, and ”people”. The contour

of the first image in each row is the selected sample contour, the remaining images in each row

contain the most similar contours. Regular objects can be associated with particular salient contour

signatures (see the blue contours in Figure 4) and retrieved accordingly with good recognition rates

[29]. This information can be very useful in tackling our genre classification problem.
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Figure 4: Similarity-based contour search for all contours of the entire Corel collection (60000
images). The contour of the first image in each row is the selected sample contour, the remaining
images in each row contain the most similar contours. The percentage on the left denotes correct
basic-level categorization for the first 99 similar images.

The structural information is extracted only from a summary of the movie. In this case, we

retained around 100 images that are evenly distributed with respect to video transitions. As previ-

ously mentioned, at image level, contour properties are captured with histograms. To address the

temporal dimension - at sequence level - the resulting concatenated feature vectors are averaged to

form so the structure signature of the movie (see also the examples in Figure 7).
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4 Experimental results

In this section, we present several experimental scenarios to validate the proposed descriptors:

the example descriptors emphasize their specificity with respect to video genre, classification tests

demonstrate their power for genre classification, and 3D feature-based representation show their

potential in real-world browsing applications. Finally, we also present a comparative benchmark

evaluation.

4.1 Classification experiments

To asses the representative power of the proposed content descriptors, we conducted several ex-

periments. For validation, we selected seven of the most common video genres, namely animated

movies, commercials, documentaries, movies, music videos, news broadcast, and sports. Classifying

these genres is challenging due to content similarity: animated movies include natural scenes (we

used not only cartoons but also artistic movies, see [39]), commercials also include cartoons, news

include scenes from sports and scenes resembling documentaries, music clips tend to have visual

patterns similar to those of commercials, and so on.

The data set comprises over 91 hours of video footage (30 sequences per genre). Video material

was retrieved from several TV programmes:

• animated movies: 1230 min, long, short clips and series, sources: Folimage - France, Disney,

Pixar, and DreamWorks animation companies;

• commercials: 15 min, sources: TV commercials from the 1980s and David Lynch clips;

• documentaries: 1320 min, on the topics wildlife, ocean, cities and history, sources: BBC,

IMAX, and Discovery Channel;

• movies: 1317 min, long, episodes and sitcom, e.g., Friends, X-Files, Sex and the City series;

• music: 150 min, pop, rock and dance video clips, source: MTV Channel;
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• news broad cast: 1320 min, source: TVR Romanian National Television Channel;

• sports, 115 min, various short clips from the Internet.

Several supervised strategies were used for classification. As the choice of training data may

distort the accuracy of the results, we used a cross-validation approach: for each experiment we

tested all possible combinations of training and test data. Additionally, we varied the amount of

training data (percentage split from 10% to 70%) and tested different combinations of descriptors.

To assess performance at genre level, we evaluated average precision (P ) and recall (R) ratio:

P =
TP

TP + FP
, R =

TP

TP + FN
(8)

where TP , FP , and FN are the average numbers of correct detections (True Positives), false detec-

tions (False Positives) and non-detections (False Negatives), respectively. Averaging was performed

over all repetitions for a given amount of training data.

As a global measure of performance, we computed Fscore ratio and average correct classification

(CD):

Fscore = 2 ·
P · R

P +R
, CD =

NGD

Ntotal

(9)

where NGD is the average number of good classifications, and Ntotal is the number of test sequences.

4.1.1 Descriptor examples

For a preliminary analysis of the representative power of the proposed descriptors with respect to

video genre we show the average audio, color-action, and contour descriptors in Figures 5, 6 and 7,

respectively, for each of the seven genres. In general, each genre behaves differently.

The most visible differences can be found in the audio descriptors, where measures such as

logarithmic fluctuation pattern, spectral pattern, and delta spectral pattern discriminate well be-

tween all genres. In contrast, color-action and contour descriptors tend to emphasize the specificity

of some genres. For instance, commercials and music clips have a high visual rhythm and action
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Figure 5: Average audio feature vectors for each genre (”cont.” stands for contrast, and ”pat.” for
pattern, see Section 3.1).
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Figure 6: Average color-action feature vectors for each genre (see Section 3.2 and 3.3).

content (see v̄T and HA in Figure 6); animated movies have a different color pattern (more colors

are used, see hGW ) and most of the hues are used in significant amounts (see hE); movies and

documentaries tend to have reduced action content; sports scenes have a predominant hue (see the

high peak in hE); commercials show an important symmetry of contours (see high values in contour

relationship in Figure 7). The representative power of the proposed features is further corroborated
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Figure 7: Average contour feature vectors for each genre (see Section 3.4).

by the following classification experiments.

4.1.2 One-genre-at-a-time binary classification

The first classification experiment consisted of retrieving one genre at a time. To this end, we

selected three binary classifiers, namely K-Nearest Neighbors (KNN, with k=1, cosine distance,

and majority rule), Support Vector Machines (SVM, with a linear kernel) and Linear Discriminant

Analysis (using Principal Component Analysis to reduce dimensionality). Method parameters were

tuned to appropriate values based on preliminary experiments.

Figure 8 plots average precision against recall (see eq. 8) for different amounts of training data

and different descriptor combinations. The results are very promising considering the diversity of

sub-genres within each genre (see video sources at the beginning of Section 4). The best classification

results we obtained were P ∈ [87.5%; 100%] (P > 95% for music, news, commercials, and sports),

and R ∈ [77.6%; 100%] (R > 95% with animated movies and commercials excluded).

Figure 9 presents overall Fscore and correct detection CD for all genres (which takes into account

correct classification in both classes, i.e., target genre and others, see eq. 9). The highest Fscore of

90.6% was obtained using 70% of the data for training, while the overall correct classification ratio
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ranges from 92.2% to 97.2%. The overall performance is very good, even for a reduced amount of

training data, as Fscore > 83% for 20% training data, and CD > 92% for as little as 10% training

data.
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Figure 9: Overall average Fscore and correct classification (CD) for all genres against the amount
of training data.

The most interesting result, however, is that each descriptor set harnesses different properties of

the video content, as the most efficient approach (both in terms of overall classification performance
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and genre precision and recall) is the combination of all audio-visual descriptors (see the SVM results

in Figure 8). Table 2 summarizes the precision and recall ratios for this case (”docum.” stands for

documentaries and ”comm.” for commercials; these results are marked with black circles in Figure

8).

Table 2: SVM vs. KNN and LDA (using all audio-visual descriptors).

genre
Precision (P ) Recall (R)

SVM KNN LDA SVM KNN LDA

animated 74.3% 72.3% 43.2% 88.4% 58.2% 83.3%
docum. 87.4% 77.2% 72.6% 95.1% 96.3% 93.5%
movies 87.1% 65% 53.9% 94.9% 89.6% 85.8%
music 95.1% 79.3% 57% 95.4% 65.2% 87.3%
sports 99.3% 97.7% 96.3% 96.7% 86.9% 89.2%
news 95.2% 76.9% 60.8% 99.8% 99.9% 99.1%
comm. 99.5% 91.5% 53.3% 68.3% 40.9% 69.4%

Globally, the lowest accuracy is obtained for animated movies and commercials, mainly because

their content is heterogeneous and resembles that of other genres. For instance many commer-

cials include animation, music clips are similar to commercials, movies may contain commercial-like

contents, etc. The best performance (as anticipated) was obtained for genres with a certain repeti-

tiveness in content structure, that is, news and sports (average precision or recall up to 100%).

From the angle of the information sources, audio information proves to be highly efficient com-

pared to visual information, and leads to very good classification ratios (see Figure 8). At genre

level, audio features are more accurate at retrieving music, sports, news, and commercials, as these

genres have specific audio patterns. Using contour and color-action information alone proves to be

less efficient. Compared to color-action parameters, contour parameters yield better performance

for documentaries, sports, and news, which have salient contour signatures such as skyline contours

and silhouettes of people (see Figure 8). Compared to contour parameters, color-action features

perform better for music, commercials, movies, and news (which can be attributed to the specific

rhythm and color diversity, see also Figure 8). Compared to audio descriptors, visual descriptors

used in combination are more discriminative for animated movies, movies, and documentaries. Fi-

nally, the best performance in classifying each individual genre was achieved by using all audio-visual
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information available.

4.1.3 Multi-class classification

In the final classification test, all genres were to be classified simultaneously. We used all audio-

visual descriptors and the multi-class SVM classifier proposed in [47] (i.e., the descriptor-method

combination which previously provided the best classification results). Since we used the same

classification strategy as described at the beginning of Section 4, we varied the amount of training

data (from 10% to 70%) and classification was repeated for all possible combinations of training

and test data.

Figure 10 plots the average precision against recall, average Fscore and average correct classifica-

tion (CD) ratios we obtained. Discriminative power is maintained even when addressing all genres

at once. The best classification results are summarized in Table 3. At genre level, we achieved

P ∈ [78%; 94%] and R ∈ [62%; 100%]. Compared to the binary one-genre-at-a-time classification

approach (see Subsection 4.1.2), precision and recall tend to be slightly lower for some of the genres

(see also Table 2), but still significant (on average above 85%) compared to the results described in

the literature (see Section 2).
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Figure 10: SVM multi-class classification results, from left to right: average precision vs. recall,
overall average Fscore and correct classification (CD) for all genres against the amount of training
data used.

Similar to previous results, the best classification performance was obtained for genres with some
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Table 3: SVM multi-class results.
genre Precision (P ) Recall (R) Fscore

news 91% 100% 95.3%
sports 94% 91% 92.5%

documentaries 83% 97% 89.5%
music 88% 88% 88%
movies 78% 93% 84.8%

animated 84% 73% 78%
commercials 90% 62% 73.4%

degree of repetitiveness and specificity in content structure: news (Fscore = 95.3%) followed closely

by sports (Fscore = 92.5%), and then documentaries (Fscore = 89.5%) and music (Fscore = 88%).

For news and sports we achieved Fscore ratios above 80% even when only 10% of the data was

used for training (see Figure 10). Classification performance was less satisfactory for genres with

heterogeneous content and content similar to that of other genres, that is commercials (Fscore =

73.4%) and animated movies (Fscore = 78%).

In terms of overall average correct classification (CD), we achieved CD > 80% when using

just 30% of the data for training, which means that out of 147 test sequences, 119 sequences were

correctly labeled. The accuracy increases with the amount of training data, for example, for 50%

training data, the CD = 84.3%; thus, out of 105 test sequences, 89 sequences were correctly labeled.

The highest correct classification was 86.7%.

Figure 11 plots the average confusion matrix obtained for 50% training data. The genres that

are most often mislabeled are animated movies and commercials, followed by music. With increas-

ing the amounts of training data, confusion proportions tend to remain similar to those presented

(for reasons of brevity we do not present all confusion matrices). Nevertheless, classification er-

rors remain greatly reduced (few sequences for each genre - confusion matrix diagonal values are

significant with respect to others).
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Figure 11: Average confusion matrix (50% training data, i.e., 105 sequences, 15 per genre; abbre-
viations: ”anim.” - animated, ”comm.” - commercials, ”doc.” - documentaries, ”mov.” - movies,
”mus.” - music).

4.2 Content-based representation

The following experiment was conducted at application level. We sought to simulate a video brows-

ing environment in which sequences were to be represented using the proposed descriptors. We have

developed a client-server architecture which provides a virtual 3D browsing environment for video

databases [46]. Movies are displayed in a spherical coordinate system, and each movie is represented

by one key frame. The user interface resembles that of Google Earth (by which we were inspired):

the user flies virtually through ”constellations of movies”.

For displaying movies, we combined all descriptors, since this provided the best classification

results. As we are restricted to only 3 axes in selecting the most representative components, we

used Principal Component decomposition. Each movie is displayed according to:

• inclination (denoted θ) - the first PCA component (normalized to [0; π]),

• azimuth (ϕ) - second PCA component (normalized to [0; 2π]),

• radius (r) - third PCA component (normalized to [0; 1]).
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θ, azimuth-ϕ, radius-r). Each movie from the data set is represented by a point with which we
associate an image vignette. Views A to E are screenshots taken from different perspectives (the
points of view used are shown in the chart). In views A-E, representative genres are annotated (a
demo is available at http://imag.pub.ro/~bionescu/index_files/MovieGlobe.avi).
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Several screenshots taken from different angles are presented in Figure 12. Interestingly, although

we use only the first three principal components (which account for up to 94% of the initial data

variance), movies from particular genres form clusters. Due to similarity in content and structure,

the most clearly grouped genres are news (see view B in Figure 12) and sports (see view C in Figure

12). Other genres tend to be more ”interleaved”, as one might expect, since even human observers

find it difficult to draw sharp distinctions between genres (see also the observations at the beginning

of Section 4). Nevertheless, sequences of the same genre tend to regroup around a basis partition

(see the examples in Figure 12, e.g., animated movies - view D, documentaries - view E).

Coupled with genre labeling provided by a classification mechanism (e.g., SVM), this could

be a powerful genre-based browsing tool. However, although they illustrate the potential of our

descriptors, these results are only preliminary, and more detailed tests must be conducted.

4.3 MediaEval benchmark

To provide a more standardized evaluation of the proposed descriptors in comparison with other

approaches, we present the results obtained for the MediaEval 2011 (Benchmark Initiative for Mul-

timedia Evaluation) Video Genre Tagging Task [2]. The following 26 video genres were to be tagged

automatically: ”art”, ”autos and vehicles”, ”business”, ”citizen journalism”, ”comedy”, ”confer-

ences and other events”, ”documentary”, ”educational”, ”food and drink”, ”gaming”, ”health”,

”literature”, ”movies and television”, ”music and entertainment”, ”personal of auto-biographical”,

”politics”, ”religion”, ”school and education”, ”sports”, ”technology”, ”environment”, ”mainstream

media”, ”travel”, ”video blogging”, ”web development and sites” and ”default category” (containing

movies that cannot be assigned to any one of the previous categories).

Each participant was provided with a development set consisting of 247 sequences, unequally

distributed across genres (some genre categories contained very few - even just one or two - ex-

amples). This initial set served as a reference point for the development of the proposed solution.

The participants were encouraged to build their own training sets if required by their approach.
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Consequently, to provide a consistent training data set for classification, we extended the data set

to up to 648 sequences. The final classification task was performed using a test set consisting

of 1727 sequences (approximatively 350 hours of footage). After testing various machine learning

techniques (we used the Weka environment, see http://www.cs.waikato.ac.nz/ml/weka/) on the

development data, the most accurate results were achieved again with a linear SVM approach using

all audio-visual descriptors. Therefore, we used this approach for the final classification run.

Performance was assessed by computing the overall Mean Average Precision (MAP) as defined

by TRECVid [1] (see also trec eval scoring tool at http://trec.nist.gov/trec_eval/). In Table

4 we compare our results with several other approaches using various modalities of the video - from

textual (e.g., speech transcripts, user tags, metadata - provided by the organizers with the data

sets) to audio-visual information1. A detailed overview of the results was presented in [2].

The proposed descriptors achieved an overall MAP of up to 12% (see team RAF in Table

4), which - considering difficulty of the task - is significant. Also, these were the best results

obtained using audio-visual information alone. Using descriptors such as cognitive information (face

statistics), temporal information (average shot duration, distribution of shot lengths) [28], audio

(MFCC, zero crossing rate, signal energy), color (histograms, color moments, autocorrelogram -

denoted ”autocorr.”), and texture (co-occurrence - denoted ”co-occ.”, wavelet texture grid, edge

histograms) with SVM resulted in MAPs below 1% (see team KIT in Table 4); clustered SURF

features in combination with SVM achieved a MAP of up to 9.4% (see team TUB in Table 4). We

achieved better performance even compared to some classic text-based approaches, for instance,

the Term Frequency-Inverse Document Frequency (TF-IDF, MAP 9.8%, see team UAB in Table 4)

and the Bag-of-Words (MAP 5.5%, see team SINAI in Table 4) approaches. Compared to visual

information, audio descriptors seem to provide better discriminative power for this task.

It must be noted, however, that the results presented in Table 4 cannot be definitive, as the

classification approaches were not trained and set up strictly comparably. Teams were allowed

1the following notations were used: Terrier IR is an information retrieval system, see http://terrier.org/;
Delicious is a social tagging site, see http://del.icio.us/.
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Table 4: Comparative results: MediaEval benchmark [2] (selection).
descriptors modality method decision MAP team

speech transcripts text Support Vector Machines ranked list 11.79% LIA
speech transcripts text Bag-of-Words + Terrier IR ranked list 10.31% SINAI
speech transcripts,
metadata

text Bag-of-Words + Terrier IR ranked list 10.73% SINAI

speech transcripts,
metadata, user tags

text Bag-of-Words + Terrier IR ranked list 11.15% SINAI

speech transcripts text Bag-of-Words ranked list 5.47% SINAI
speech transcripts text TF-IDF + cosine dist. binary 6.21% UAB
speech transcripts,
metadata

text TF-IDF + cosine dist. binary 9.34% UAB

speech transcripts,
metadata, user tags

text TF-IDF + cosine dist. binary 9.4% UAB

speech transcripts, De-
licious tags

text BM25F [36] + Kullback - Leibler
divergence

ranked list 11.03% UNED

speech transcripts, De-
licious tags, metadata

text BM25F [36] + Kullback - Leibler
divergence

ranked list 11.11% UNED

metadata text Negative multinomial divergence ranked list 39.37% TUD
MFCC, zero cross.
rate, signal energy

audio multiple SVMs binary 0.1% KIT

proposed audio SVM with linear kernel binary 10.29% RAF
clustered SURF visual Bag-of-Visual-Words + SVM

with Radial Basis kernel
binary 9.43% TUB

hist., moments, auto-
corr., co-occ., wavelet,
edge hist.

visual multiple SVMs binary 0.35% KIT

cognitive (face statis-
tics [28])

visual multiple SVMs binary 0.1% KIT

structural (shot statis-
tics [28])

visual multiple SVMs binary 0.3% KIT

proposed visual SVM with linear kernel binary 3.84% RAF

color, texture, aural,
cognitive, structural

audio, visual multiple SVMs binary 0.23% KIT

proposed audio, vi-

sual

SVM with linear kernel binary 12.08% RAF

clustered SURF, meta-
data

visual, text Naive Bayes, SVM + serial fu-
sion

binary 30.33% TUB

to access other sources of information than those proposed in the competition). For instance, we

used 648 sequences for training, whereas team KIT used up to 2514 sequences. Most text-based

approaches used query expansion techniques (e.g., Wordnet - see http://wordnet.princeton.

edu/, Wikipedia - see http://en.wikipedia.org). Nevertheless, these results provide a good

overview and (crude) comparative ranking of the performance of various methods and in consequence

of the proposed descriptors.

In conclusion, the competition results show that the most efficient retrieval approach remains
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the inclusion of textual information, as it provides a higher semantic level of description than audio-

visual information. The average MAP obtained by including textual descriptors is around 30% (e.g.,

see team TUB in Table 4), which is still hard to achieve using only video information.

5 Conclusions

We have addressed global video genre categorization using four categories of content descriptors:

block-level audio features, temporal-based descriptors, color perceptual descriptors and statistics

of contour geometry. These sources of information have previously been exploited, but our ap-

proach provides a novel way of computing these content descriptors. The main contribution of our

work, however, lies in harnessing the descriptive power of the combination of these descriptors in

genre classification. We validated our approach in several experiments using over 91 hours of video

footage encompassing seven common video genres (animated, movies, news, sports, commercials,

movies and documentaries). Furthermore, experiments conducted at the MediaEval 2011 bench-

marking campaign proved the superiority of our proposed audio-visual descriptors compared to

other validated approaches.

In individual genre retrieval (binary classification), we achieved average precision and recall

ratios of 87% − 100% and 77% − 100%, respectively, while average correct classification was up

to 97%. Using only audio information proves to be - compared to visual information - highly

efficient in tackling this task. Audio features are more accurate when classifying music, sports,

news, and commercials. Visual descriptors are more discriminative than audio for animations,

movies, and documentaries. The best performance, however, is obtained when all audio-visual

descriptors are used in combination. Retrieving all genres simultaneously (multi-class classification)

produced good results: the Fscore achieved ranged from 95.3% for news to 73% for commercials.

Experimental comparison as part of the MediaEval 2011 benchmarking campaign demonstrated

also the superiority of the proposed audio-visual descriptors over other existing approaches

Finally, we tested the potential of the proposed descriptors at the application level. Movies
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displayed according to feature-based coordinates in a prototype 3D browsing environment tend to

regroup according to similarities in content and genre. Coupled with genre labeling provided by a

classification mechanism (e.g., SVM), this could be a powerful genre-based browsing tool.

Future improvements will mainly consist of approaching sub-genre categorization and consid-

eration of the constraints of very large scale approaches (millions of sequences and tens of genre

concepts).
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[36] J. Pérez-Iglesias, J. R. Pérez-Agüera, V. Fresno, Y. Z. Feinstein, ”Integrating the Probabilistic

Models BM25/BM25F into Lucene”. CoRR, abs/0911.5046, 2009.

[37] P. Kay, T. Regier, ”Resolving the Question of Color Naming Universals,” Proceedings of the

National Academy of Sciences of the United States of America, 100(15), pp. 9085-9089, 2003.

[38] B. Ionescu, D. Coquin, P. Lambert, V. Buzuloiu: ”A Fuzzy Color-Based Approach for Un-

derstanding Animated Movies Content in the Indexing Task,” Eurasip Journal on Image and

Video Processing, doi:10.1155/2008/849625, 2008.

[39] B. Ionescu, L. Ott, P. Lambert, D. Coquin, A. Pacureanu, V. Buzuloiu, ”Tackling Action -

Based Video Abstraction of Animated Movies for Video Browsing”, SPIE - Journal of Electronic

Imaging, Vol. 19, No. 3, 2010.

[40] R. W. Floyd and L. Steinberg, ”An Adaptive Algorithm for Spatial Gray Scale”, Proc. Int.

Symp. Digest of Technical Papers, pp. 3637, 1975.

[41] W. K. Pratt, ”Digital Image Processing,” John Wiley & Sons, Hoboken, NJ, USA, 2007.

[42] J. Itten, ”The Art of Color: The Subjective Experience and Objective Rationale of Color,”

Reinhold, New York, NY, USA, 1961.

38



[43] A. Hauptmann, R. Yan, Y. Qi, R. Jin, M. Christel, M. Derthick, M.- Y. Chen, R. Baron, W.-H.

Lin, T. D. Ng, ”Video Classification and Retrieval with the Informedia Digital Video Library

System,” Text Retrieval Conference, 2002.

[44] A. Oliva, A. Torralba, ”Modeling the Shape of the Scene: A Holistic Representation of the

Spatial Envelope,” Journal of Computer Vision, 42(3), pp. 145-175, 2001.

[45] C. Rasche, C. Vertan, ”A Novel Structural-Description Approach for Image Retrieval,”

CLEF Notebook Papers, http://clef2010.org/resources/proceedings/clef2010labs_

submission_56.pdf, 2010.

[46] B. Ionescu, A. Marin, P. Lambert, D. Coquin, C. Vertan, ”A Content-Driven System Architec-

ture for Tackling Automatic Cataloging of Animated Movie Databases,” Int. Journal of Digital

Library Systems, 1(2), pp. 1-23, 2010.

[47] I. Tsochantaridis, T. Hofmann, T. Joachims, Y. Altun, ”Support Vector Learning for Interde-

pendent and Structured Output Spaces,” Int. Conf. on Machine Learning, 2004.

[48] J.-J. Aucouturier, F. Pachet, ”A Scale-Free Distribution of False Positives for a Large Class of

Audio Similarity Measures,” Pattern Recognition, 41(1), pp. 272-284, 2008.

Biographies

Bogdan Ionescu is currently a lecturer at University ”Politehnica” of Bucharest-

Romania. He holds a B.S. degree in applied electronics (2002) and an M.S. degree in computing sys-

tems (2003), both from University Politehnica of Bucharest. He also holds a Ph.D. degree in image

processing (2007) from, both, the University of Savoie and University ”Politehnica” of Bucharest.

Between 2006 and 2007, he held a temporary Assistant Professor position at Polytech’Savoie, Uni-

39



versity of Savoie. His scientific interests cover video processing, video retrieval, computer vision,

software engineering, and computer science. He is a Member of IEEE, SPIE, ACM, and GDR-ISIS.

Klaus Seyerlehner is a postdoctoral researcher at the Department of Computa-

tional Perception at Johannes Kepler University in Linz, Austria. He holds an M.S. (2006) and a

Ph.D. (2011) degree in computer science, both from Johannes Kepler University. His main research

interests cover the fields of digital music signal processing, pattern recognition, machine learning,

statistics and recommender systems.

Christoph Rasche obtained a PhD degree in Computational Neuroscience, with a
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