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 
Abstract—A novel method for color image enhancement is 
proposed as an extension of scalar diffusion-shock filter coupling 
model, where noisy and blurred images are denoised and 
sharpened. The proposed model is based on using single vectors 
of the gradient magnitude and the second derivatives as a 
technique to relate different color components of the image. This 
model can be viewed as a generalization of Bettahar-Stambouli 
filter to multi-valued images. The proposed algorithm is more 
efficient than the mentioned filter and some previous works on 
color image denoising and deblurring without creating false 
colors. 
 
Index Terms— Diffusion, shock filter, color, noise, blur, 
enhancement. 
 

I. INTRODUCTION 

APTURING an image with sensors is an important step in 
many areas. The captured image is used in several 
applications, which all have their own requests on the 

quality of the captured image. Acquired images are often 
degraded with blur, noise or blur and noise simultaneously. 
The processing to be applied to these images depends on the 
way of extracting wanted information. So, the frequent 
problem in low-level computer vision arises from the goal to 
eliminate noise and uninteresting details from an image, 
without blurring semantically important structures such as 
edges [1,2]. Two operations would be done: denoising and 
sharpening. Since, several deconvolution and denoising 
techniques have been proposed in the literature: Statistics 
based filters [3,4,5], wavelets [6,7], Partial Differential 
Equations (PDE) based algorithms [8,9] and variational 
methods [10,11]. Particularly, a large number of PDE-based 
methods have been proposed to tackle the problem of image 
denoising with a good preservation of edges, and also to 
explicitly account for intrinsic geometry. In this paper, we are 
interested in PDE-based methods. Hence, partial differential 
equations based on diffusion methods [8,12,13,14,15] and 
shock filter [16,17,18] have recently dominated image 
processing research, as a very good tool for noise elimination, 
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image enhancement and edge detection [19]. Then many 
solutions have been proposed in the processing of gray level 
images by coupling diffusion to shock filter [20,21,22,23,24]. 
The extension of these methods to multi-valued images can be 
achieved in two ways. The first one consists in using a 
marginal approach that enhances each color component of the 
multi-valued image separately using a scalar method [25]. The 
second way consists in using a single vector processing, 
where different components of the image are enhanced by 
considering correlation between them 
[15,26,27,28,29,30,31,32].  

II. BACKGROUND 

Originated from a well known physical heat transfer process, 
the PDE- based approaches consist in evolving in time the 
filtered image u(t) under a PDE. When coupling diffusion and 
shock filter the PDE is a combination of three terms: 

  uuFCuCuC
t

u
sk 




          
                                   (1) 

where u(t=0) = u0 is the input image,uis the gradient 
magnitude, is the gradient direction,  is  the direction 
perpendicular to the gradient, and so u and u  represent the 
diffusion terms in gradient and level set directions 
respectively. C  and C are some flow control coefficients. 
The first kind of diffusion smoothes edges, while the second 
one smoothes parallel to the edge on both sides. The last term 
in (1), which is weighted by Csk, represents the contribution of 
the shock filter in the enhancement of the image. The function 
F(s) should satisfy the conditions F(0)=0 and F(s).s  0. The 
choice of F(s) = sign(s) gives the classical shock filter [15]. 
Hence, by considering adaptive weights C, C and Csk as 
functions of the local contrast, we can favor smoothing 
process under diffusion terms in homogeneous parts of the 
image or enhancement operation under shock filter at edge 
locations. 

The first model of coupling diffusion and shock filter has 
been introduced by Alvarez and Mazorra [20], where the 
image is diffused only in the direction perpendicular to the 
gradient eliminating fluctuations and developing shocks with 
production of false piecewise constant images. This model is 
given by 

  uuGsignuC
t

u





       
                                       (2) 

where  denotes the convolution operator, G the Gaussian 
function with the standard deviation  and C is a constant. 

However, the balance between diffusion process and shock 
filter has been more investigated by Kornprobst [21]. It 
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becomes a binary function of the local contrast in the 
following scheme: 

        uuGsignhαuuhuu
t

u
ckeskrf 




       1           0        (3) 

with hsk=1 if u< K and 0 otherwise, where K is a contrast 
threshold. f , r  and e are some constants. The parameter K 
selects edges to be enhanced or smoothed. The first term (u-
u0) is a fidelity term to carry out a stabilization effect of the 
solution. This reactive term is added as a regularization 
method in order to oblige the image to be close to the initial 
one. Kornprobst model is seen also to produce false piecewise 
constant images.  

However, Gilboa developed a complex diffusion shock 
filter coupling model, that smoothes the image with a weak 
edges enhancement [22]. The imaginary value of the solution, 
which is an approximated smoothed second derivative, is used 
as an edge detector. This filter is given by: 

 


uuu
u

a
t

u
 

~
       Im  arctan 
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


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











                       (4)

 

where Im denotes the imaginary part of the solution, || 

expi, a and~ are  real scalars. Gilboa filter is conditioned 
by the value of , which must be smaller than 5° in order to 

end to the edge detector
 









u

 Im  [21]. 

In the other hand, Fu developed a region-based shock-
diffusion scheme [23], where directional diffusion and shock 
terms are factored by adaptive weights. It is based on the 
following equation: 

    uuGsignuwuCuC
t

u





            
                     (5) 

C is used to prevent excess smoothness to smaller details 
under gradient direction smoothing. C, C and w(u) are 
computed by: 
 

 C C w(u) 
u>T1 0 1/(1+l1

2u ) 1 

T2 <uT1 0 1/(1+l1
2u ) th( l2 u)

else 1 1 0 
 
The thresholds T1 and T2 are used to select which edge to be 
enhanced or smoothed. l1 and l2 are constants.   

This scheme uses an hyperbolic tangent membership 
function th( l2 u) to guarantee a natural smooth transition, by 
controlling softly changes of grey levels of the image. 
However, Fu filter creates a strong shock between regions of 
the image, which is due to the oscillations at big edges that 
make this scheme instable. 

In a more recent work, Bettahar and Stambouli proposed a 
new reliable and stable scheme, which is a kind of coupling 
diffusion to shock filter with reactive term [24]. This model is 
based on the following set: 
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where u is the smoothed image using the Gaussian kernel, 
v(t) is the just previous evolution of u(t). In discrete time, v(t) 
is the last value of  u(t)   and u(0)=u0. g(|u|) and f(|u|) are 
decreasing functions having the same form with free 
parameters respectively kd (for g) and kc (for f), so: 

 

2

2

1

1

dk

s
sg



                                                                          (7)                    

The first function g(|u|) is used to assure an anisotropic 
behavior, and to select “small edges” to be smoothed 
according to the parameter kd. However, f(|u|) is introduced 
to select which “big edges” have to be improved according to 
kc. The parameters  and  are positive balance constants. All 
mentioned models have been developed for enhancement of 
grey levels images. The natural way to apply them on multi-
valued images is to process each color component 
independently of the others in a marginal way. Such a way is 
well known to produce false colors as it can be observed on 
fig. 1, whatever the used filter (near parrot eye for instance). 

 

   
(a)                                            (b) 

   
(c)                                            (d) 

   
(e)                                            (f) 

Fig. 1. Enhancement of Parrot image: (a) Original image; (b) 
Alvarez-Mazorra filter; (c) Kornprobst filter; (d) Gilboa filter; 
(e) Fu filter; (f); Bettahar-Stambouli filter. 
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III. COLOR IMAGES 

Only a very few works tackle the shock diffusion coupling 
using an approach specifically dedicated to color images [30]. 

A. Tschumperlé-Deriche model 

To avoid the effect of the apparition of false colors, the 
processing applied to the image must be driven in a common 
and coherent manner for all image components. This type of 
approach is denoted as “vector processing”, in opposition to 
the marginal processing which is a multi-scalar processing. 
Thus, in order to describe vector-valued image variations and 
structures, Di Zenzo [26] and Lee [27] have proposed to use 
the local variation of a vector gradient norm |u|  that detects 
edges and corners when its value becomes high. It can be 
computed using the eigen-values + and - (+ > - ) of the 
symmetric and semi-positive matrix G: 
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 2
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yyyyxyxyx

yxyxyxxxx

uuuuuuuuu

uuuuuuuuu
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gg
G (8) 

where upl (p=1,2,3 and l = x,y) represents the derivative in 
direction l of the red, green and blue components of the color 
image, and: 

 
2

4 2
12

2

22112211 ggggg 
                                      (9) 

Three different choices of vector gradient norms can be 

considered. 
 , which is the value corresponding to the 

maximum variations. 
    that fails to detect saddle 

points discontinuities. 
   that detects perfectly edges 

and corners. Remark that for the eigen-values + and - 
correspond the eigen-vectors respectively + and -, that form 
an orthogonal base. This new base can be used for geometrical 
description of the multi-valued image [27]. 

Hence, by using multi-valued geometrical description of 
[26,27], Tschumperlé and Deriche proposed a new form of 
diffusion shock filter coupling especially for enhancement of 
color images [30]. This model takes into account the 
correlation between all color components by using the new 
directions + and - ( and  for the scalar case), where 
diffusion and shock terms are computed using common 
directions for all channels. So, in order to evolve all 
components in same directions, Tschumperlé and Deriche 
enhanced the image by: 

   






 ppskppppa

p uusignCuCuCuua
t

u
     ) (   )(       0

  (10)      

where p=1,2,3 for red, green and blue color.  aa is a constant, 


C and


C are decreasing functions of the common gradient 

magnitude |u|, which is computed by the norm: 

 
 
 

 
yxl p

lpuu
,

3

1

2                                          (11) 

and 

 
21

1

s
sC





                                                               (12) 

 
21

1

s
sC




                                                                    (13) 

Csk is a weight that adapts the intensity of the shock filter 
process in order to enhance edges, while keeping 
homogeneous regions unchanged. Csk is obtained using an 
increasing function of the common gradient magnitude |u|. 
The relative importance of Csk is empirically tuned. 

So, once the new base 

















2

1




  is established, it will be 

easy to compute different partial derivatives as: 

ypxpp uuu  


21 


                                                           (14) 
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2
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




                               (15) 

This model gives satisfactory results, in that it removes 
noise and enhances multi-valuated images. However, despite 
the use of a vector approach, the shock filter still generates 
some false colors, as it can be seen in fig. 2. Furthermore, 
there are some instabilities along edges. 

 

   
 
Fig. 2. Enhancement of Parrot image image: (a) Blurry and 
noised; (b) Tschumperlé-Deriche filter. 

B. Proposed method 

The proposed method is based on the model (6) as an 
extension to multi-valued images, where each color 
component up of the enhanced image u is considered by taking 
into account the correlation between the three components. 
This model is given by: 
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 (16) 

where vp(t) is the last evolution of up(t) and vp(0)=up0. In 
discrete time, vp(t) is the last value of up(t). So first, we 
compute the second equation that gives the value of vp,  which 
will be injected in the first equation  being, later, noted up 
(This point can be well understood by using the discrete form 
in equations 33 and 34 ). The functions g(|u|) and f(|u|) 
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are defined by (7) with control parameters respectively kd and 
kc. α and β are constants.  

Starting from grey level Bettahar-Stambouli solution, 
equations (16) has been obtained using an empirical approach 
but always conserving the constraint that gradient information 
has to be obtained in a vector way. In these equations, each 
component is processed separately, like in a marginal 
approach. However, the processing of each component takes 
into account the correlation between the different components 
of the multi-valued image by using the same gradient 
magnitudes (u and u) and the same derivatives (u and 
u) obtained in vector way. This is the key point of the 
proposed approach which will avoid the generation of false 
colors, as it will be seen in the following behavior of the 
proposed model.   

The gradient magnitudes are computed by using the 
equation (11) like in Tschumperlé-Deriche model, while we 
estimate the second derivatives by: 





3

1p
puu
                                                                   (17) 





3

1p
puu
                                                                        (18) 

The sum of the derivatives is a simple but efficient 
solution to relate different color components.  On can use the 
higher order derivatives given by equation (15), with the risk 
of creation of false colors while coupling diffusion process to 
shock filter as in Tschumperlé-Deriche model. 

The first equation in the proposed filter behaves as a 
nonlinear reaction-curvature diffusion process like in (6). In 

this equation, the first term   















u

u
ugdivu p 

         is used 

to assure a selective smoothing that reduces noise in 
homogeneous parts of the image without introducing new 
structures like false colors. The second term 

  
   2

2
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






uuf

uf




 acts as a balance between smoothing 

of diffusion process and enhancement of shock filter. It is 
weak in smooth parts and strong at edge locations. Hence, in 
homogeneous regions, f(|u|) 1, so f(|u|) 0 and 
u   0, while at edge locations f(|u|) 0, so 
f(|u|) 1. So, by choosing adequate values of α and β, 

the weight 
  
   2

2

2

     1

    








uuf

uf




 will be high at edge 

locations and low in smooth parts. Thus in the first case the 
process will operate as a diffusion-shock filter reaction that 
enhances edges, and in the second case the filter will behave 
as a linear diffusion that smoothes noise. The second equation 
in (16) is a simple shock filter and its result vp(t) is injected in 
the first equation as a reactive term. It can be noted again that 

this filter is not designed in a marginal way because of the use 
of the vector derivative u, which is a combination of the 
values of 

pu  (see equation 18). 

To well understand the proposed filter behavior, it is 
necessary to give more details about the reasons which have 
decided the form of the equation (16). First the choice of the 
balance diffusion-shock filter, with the form 

  
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




uuf
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


, has a critical impact on the behavior of 

the proposed model at non creation of false colors. This 
choice has been done by considering some practical 
observations on different cases in order to take the best choice 
of this balance as following. Consequently, by using the 
marginal method, we have computed the balance f 
(|up|) of the model (6) with processing each image 
component separately. We can observe in this case some false 
colors at edge locations as an expected result (fig. 3-b).  

 

   
(a)                                            (b) 

   
(c)                                            (d) 

   
(e)                                            (f) 

Fig. 3. Enhancement of Cap image; (a) Original image; (b) 
Using the marginal balance f(|up|); (c) Using the 

balance 
  
  2

2

    1

    








uf

uf




;(d) Enlargement of situation (a); 

(e) Enlargement of situation (b); (f) Enlargement of situation 
(c). 
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However, by applying the balance 
  
  2

2

    1

    








uf

uf




 that 

uses the vector method, it can be noticed in fig. 3-c that the 
image has been enhanced without creating any false colors. 
This can be well remarked on the enlargement of "Bahamas" 
text, where some red and green colors have been created in the 
first case (fig. 3-e). Second, by introducing the term u, we 
can make the model more robust at creation of false colors in 
the case of noisy images. We consider now a single gradient 
vector u for all color image components. So we compare 
performances of the proposed model, firstly by using the 
balance f(|u|)β =0) and secondly by introducing in 
the dominator of the proposed balance the term  
1+βf(|u|)u.  As depicted in fig. 4, noise has been 
removed successfully in both cases, but in the first one (fig. 4-
e) false colors at edges locations have been created. 

 

    
(a)                                            (b) 

   
(c)                                            (d) 

   
(e)                                            (f) 

Fig. 4. Enhancement of Cap image; (a) Noisy image; (b) 
Using the balance f(|u|) ( = 0 in eq. (16)); (c) Using  

the balance 
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2
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
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
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uuf
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
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; (d) Enlargement of 

situation (a); (e) Enlargement of situation (b); (f) Enlargement 
of situation (c). 
 

Structures in the results of models 6 and 16 being close, it 
is interesting to note that the proposed method produces so 
similar results than Bettahar-Stamboui filter when it is applied 
on grey level images (fig. 5). 

 

  
(a)                                            (b) 

  
(c)                                            (d) 

Fig. 5. Enhancement of Cameraman image: (a) Original 
image; (b) Blurry and noised image; (c) Bettahar-Stambouli 
filter; (d) Proposed filter. 
 

The choice of the parameters has a critical impact on the 
behavior of the proposed filter. So, with reference to the 
contrast of the image, the value of kd is chosen to be a 
threshold of  “small edges” to be smoothed under the diffusion 
process and kc “big edges” to be improved according to the 
shock filter. One can use the same values for the threshold 
dedicated to "big" and "small" edges in both Bettahar ‘s 
filters. In our experiences, we saw that in this case the filters 
converge to the solution with a considerable number of 
iterations without good detail preservations comparing to the 
case of kc=kd. 

The constants  and  contribute in the balance between 
the diffusion process and the shock filter. If we want to 
attenuate the effect of the shock filter, we have to take small  
and large value of . 

 
Recently, an interesting method called block-matching and 

3D filtering (BM3D) has been developed by Dabov [5] and 
improved by Hou [33]. This method is based on Wiener 
filtering that requires a priori knowledge about the noise. In 
the case of PDE coupling, no knowledge about the blur or the 
noise is needed. As depicted in fig. 6, our model gives almost 
similar results in smoother regions with an effective edge 
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sharpening compared to the BM3D based method. This latter 
has the drawback of not eliminating the blur. 

 

   
(a)                                            (b) 

    
(c)                                            (d) 

Fig. 6. Enhancement of House image: (a) Original image; (b) 
Blurry and noised image; (c) BM3D filter (d) Proposed filter;. 

IV. EXPERIMENTAL RESULTS 

We evaluate performances of our model by comparing it to 
marginal channel by channel methods of Alvarez-Mazorra, 
Kornprobst, Gilboa, Fu, Bettahar-Stambouli and the vector 
regularization of Tschumperlé-Deriche only. These are 
developed especially to enhance degraded images in presence 
of blur and additive noise simultaneously. We are not dealing 
with the evaluation of other types of methods, as our focus is 
on diffusion-shock filter coupling. 

 

A. Direct observation 

For this comparison, we choose the parameters that give 
better results for each filter, except for the number of 
iterations which must be the same for objective comparison. 
The number of iterations is chosen in function of the visual 
quality of the result. For each test image, we opt for the same 
number of iterations, and for the step time  we prefer a small 
value in order to converge to the solution with more precision 
about the values of the objective criterions while getting more 
details in the visual aspect of the restored images. So, we can 
converge to the solution with small numbers of iterations in 
reference to the number that we use in this paper, excepted to 
Tschumperlé-Deriche filter that employs an adaptive step time 
. All models are applied to blurry and noised images. In the 
production of artificially blurry images, we use the Gaussian 
convolution of original test images (=1). Noised images are 
produced by adding random Gaussian noise to blurred images 

(=18). The first criterion used is the color Pick Signal to 
Noise Ration (PSNR): 
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Where Ip is the p component of the color image reference 
I(MxNx3) and up is the p component of the restored image 
u(MxNx3). 

For more objective comparison of overall image qualities, 
we also use the Mean Image Quality Assessment Index 
MSSIM [34], which is given by the following expression as 
for one component p : 
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 where 
0  and 

p are the standard deviations of  the images  

Ip and up respectively. µp is the mean value of the image up , 
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and where C1 and C2 are small constants that provide stability 
when the denominator approaches zero. The MSSIM for the 
color image is the mean value of the MSSIM obtained for 
each component. 

Fig. 7 shows Face image blurred and noised with 
PSNR=18.10 dB. We use for Alvarez-Mazorra filter =1, C=2 
and the time step discretization =0.01; Kornprobst filter =1, 

K=3, f=0, r= 1, e=1 and=0.01; Gilboa filter ~ =1.5, 
||=0.6, a=6, =π/1000 and =0.01; Fu filter =1, T1=35, 
T2=4, l1=0.0008 l2=200 and  =0.01;  Bettahar-Stambouli filter 
=1, kd=4, kc=30, =800, =0.05 and=0.01; Tschumperlé-
Deriche filter a=0 and adaptive =2; Proposed filter =1, 
kd=5, kc=28, =800, =1 and =0.01 with 1500 iterations for 
all mentioned filters. We easily notice that our model has 
efficiently removed noise in smoother regions with edges 
sharpening referring to Alvarez-Mazorra, Kornprobst, Gilboa, 
Bettahar-Stambouli and Tschumperlé-Deriche filters. Only the 
last two models have successfully smoothed noise in 
homogeneous parts of the images. The other models have 
produced false piecewise constant images with residual noise, 
where artificial blobs have been created. Furthermore, we 
notice here how Alvarez-Mazorra, Kornprobst, Gilboa and 
Bettahar-Stambouli filters have introduced false colors as it 
appears on the different parts of the enhanced image, as on the 
nose, sun glass edges and cap borders at blue and white 
junction. Only Tschumperlé-Deriche model presents some 
satisfactory results, with, however, a fine production of false 
colors at localized edges. On the contrary, in the proposed 
filter, edges can well be distinguished without any false 
colors. This is more obvious in fig. 8, on the enlargement of a 
part of the image, where we can see that our algorithm doesn’t 
create false colors referring to other models with an effective 



TIP-06549-2010 7

selective smoothing of the sun glass according to the other 
parts of the image. 

In fig. 9, we present the PSNR evolution versus the 
number of iterations for the different approaches which have 
been compared. It can be noted that, for a same number of 
iterations, the PSNR of our solution is always bigger than the 
PSNR of other models. This can be deep-rooted by the 
MSSIM representation (fig. 10), that confirms the best visual 
quality of our solution. 

 

    
(a)                                       (b) 

    
(c)                                       (d) 

    
(e)                                       (f) 

    
(g)                                       (h) 

Fig. 7. Enhancement of Face image: Blurry and noised image; 
(b) Alvarez-Mazorra filter; (c) Kornprobst filter; (d) Gilboa 
filter; (e) Fu filter; (f) Bettahar-Stambouli filter; (g) 
Tschumperlé-Deriche filter; (f) Proposed filter. 

 
 

   
(a)                                          (b) 

   
(c)                                           (d) 

   
(e)                                           (f) 

   
(g)                                           (h) 

Fig. 8. Enlargement of a part of Face image: (a) Blurry and 
noised image; (b) Alvarez-Mazorra filter; (c) Kornprobst 
filter; (d) Gilboa filter; (e) Fu filter; (f) Bettahar-Stambouli 
filter; (g) Tschumperlé-Deriche  filter; (h) Proposed filter. 
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Fig.9. PSNR representation of Face image as a function of the 
number of iterations. 
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Fig. 10. MSSIM representation of Face image as a function of 

the number of iterations. 
 
The second experiment has been performed on blurred and 

noised Window-Flowers image with strong noise 
PSNR=17.67 dB (fig. 11). We use for Alvarez-Mazorra filter 
=1, C=2 and =0.05; Kornprobst filter =1, K=2, f=0, r= 

1, e=1 and =0.05; Gilboa filter ~ =1, ||=0.5, a=6, 
=π/1000 and =0.05; Fu filter =1, T1=25, T2=2, l1=0.0008 
l2=200 and =0.05; Bettahar-Stambouli filter =1, kd=2, 
kc=30, =800, =0.05 and =0.05; Tschumperlé-Deriche filter 
a=0 and adaptive =2 ; Proposed filter =1, kd=3, kc=110, 
=800, =1 and  =0.05 with 500 iterations for all filters. We 
can see here again how our method has removed noise in 
homogeneous parts of the image without creating false colors 
referring to other models. In our case, the window, flowers 
and sheets are well denoised and sharpened as observed in fig. 
12, where the window and the pink flower are successfully 
enhanced. Only Tschumperlé-Deriche model gives 
satisfactory results, but we can see a subsistence of a kind of 
false colors on the horizontal lines of the window and on a 
part of the pink flower. In the case of Alvarez-Mazorra, 
Kornprobst, Gilboa and Bettahar-Stambouli filters, a residual 
noise subsists with false colors at edge locations. 

In fig. 13, we remark that our PSNR is always bigger than 
the PSNR of other models with a better MSSIM (fig. 14). 
Looking at the PSNR and MSSIM evolutions, it is also 
interesting to compare the proposed approach to Bettahar-
Stambouli marginal approach. As these methods principles are 
close, this specific comparison is a measure of the difference 
between the marginal approach and the vector approach. It can 
be concluded that using a vector approach always provides a 
gain, even though this gain is sometimes small. 

 
 
 
 
 

   
(a)                                    (b) 

   
(c)                                     (d) 

   
(e)                                     (f) 

   
(g)                                     (h) 

Fig. 11. Enhancement of Flowers-Window image: Blurry and 
noised image; (b) Alvarez-Mazorra filter; (c) Kornprobst 
filter; (d) Gilboa filter ; (e) Fu filter; (f) Bettahar-Stambouli 
filter; (g) Tschumperlé-Deriche filter; (f) Proposed filter. 
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(a)                                            (b) 

   
(c)                                            (d) 

   
(e)                                             (f) 

   
(g)                                            (h) 

Fig. 12. Enlargement of a part of Flowers-Window image: (a) 
Blurry and noised image; (b) Alvarez-Mazorra filter; (c) 
Kornprobst filter; (d) Gilboa filter ; (e) Fu filter; (f) Bettahar-
Stambouli filter; (g) Tschumperlé-Deriche  filter; (h) Proposed 
filter. 
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Fig. 13. PSNR representation of Flowers-Window image as a 

function of the number of iterations. 
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Fig. 14. MSSIM representation of Flowers-Window image as 

a function of the number of iterations. 

B. Indirect observation 

Filtering is generally a pre-processing before segmentation. 
So, an indirect way to compare different filtering approaches 
is to compare the segmentation obtained after filtering. 
a – Edge detection 

The first comparison is performed after edge detection. The 
image which is used is the Flowers-Window image seen in 
fig. 11. Edges are obtained using the marginal Canny edge 
detector. We can obviously observe how edges in our solution 
are well detected and closed referring to other methods that 
present thin contours due to the presence of false colors at 
edge locations (fig. 15). These observations show how 
performances of our model are improved in presence of a 
strong noise. 
b – Region segmentation 

The second comparison is performed after region 
segmentation. The segmentation which is used is a classical 
region growing technique: blob-coloring using a 4 
neighborhood [35]. This technique is a quick and simple one 
which is known to give over-segmentation, providing a lot of 
small regions in noisy situation. In our case, this drawback 
will be used to extract a measure of performance. 
Nevertheless, to limit over-segmentation, the region growing 
is realized iteratively, the aggregation threshold being 
incremented at each iteration. Fig. 16 shows the results of the 
segmentation on Face image. All the different segmentations 
have been realized using the same parameter values (initial 
threshold = 3, threshold increment = 2, iteration number = 30). 

On this figure, it can be seen that the simplest segmentation 
is the one obtained with the proposed method, despite the 
largest number of regions. Tschumperlé-Deriche and our 
method excepted, all the segmentations contain false regions 
due to false colors. Alvarez-Mazorra and Gilboa give an over-
segmentation in the background, on the face and on the 
glasses. Kornprobst, Fu and Bettahar-Stambouli provide some 
quite good segmentations, but with false color regions. With 
Tschumperlé-Deriche filter, there are thin regions along some 
edges, like the borders of the glasses.  
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(a)                                           (b) 

   
(c)                                            (d) 

   
(e)                                            (f) 

   
(g)                                            (h) 

Fig. 15. Edges of degraded Flowers-Window image: (a) 
Original  image; (b) Alvarez-Mazorra filter; (c) Kornprobst 
filter; (d) Gilboa filter ; (e) Fu filter; (f) Bettahar-Stambouli 
filter; (g) Tschumperlé-Deriche filter; (h) Proposed filter. 
 

To characterize these results in a more precise way, we 
have focused our attention on a part of the border of the 
glasses as seen in fig. 17 where there are two main regions, 
the glass and the face. Then, we have computed three 
numerical indicators: 

- the number of regions. 
- the average size of the small regions. By small regions, we 

mean regions that are not the two main regions, i.e. the 
face and the glass. 

- the sum of the color distance (denoted Dcolor) of these small 
regions to the two main regions, defined by: 
 

k
k

RkRRkRColor RCCdistCCdistD  )),(),,(min( 21
 

where CR1 and CR2 denote the color of the two main 
regions R1 and R2, CRk is the color of a small region Rk, k is 
the small region index , dist(.) is the Euclidean distance in 
the RGB space and | Rk | is the size of the region Rk . 
The last indicator is a measure of the false color 
importance. Indeed, if a small region has a color which is 

far from the color of R1 and R2, it will have a large 
contribution to Dcolor. Table 1 presents the results. 
 

   
(a)                                            (b) 

   
(c)                                            (d) 

   
(e)                                             (f) 

    
(g)                                             (h) 

Fig. 16. Segmentation of Face image: (a) Non noisy initial 
image; (b) Alvarez-Mazorra filter 2442 regions; (c) 
Kornprobst filter 2385 regions; (d) Gilboa filter 2198 regions; 
(e) Fu filter 2071 regions; (f) Bettahar-Stambouli filter 2198 
regions; (g) Tschumperlé-Deriche filter 1434 regions; (h) 
Proposed filter 2959 regions. 
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(a)                                     (b) 

   
(c)                                     (d) 

   
(e)                                    ( f) 

 
(g) 

Fig. 17. Enlargement of Segmentation of Face image: (a) 
Alvarez-Mazorra filter; (b) Kornprobst filter; (c) Gilboa filter; 
(d) Fu filter; (e) Bettahar-Stambouli filter; (f) Tschumperlé-
Deriche; (g) Proposed filter. 
 

Method Region 
number 

Average 
size of 
small 

regions 

Dcolor 

(x10-3) 

Alvarez-Mazorra 22 3 8.9 
Kornprobst 57 5 9.58 
Gilboa 26 23 27.8 
Fu 54 12 15.8 
Bettahar-Stambouli 68 4 10.9 
Tschumperlé-Deriche 6 5 25.0 
Proposed method 42 1 3.3 

Table 1. Comparison of region segmentation performance on 
a small area of Face image. 

 
Considering the proposed method, it can be seen that, 

despite the number of regions being large, these non wanted 
regions are small (average size is only one pixel) and their 
colors are close to the color of one of the two main regions 
(Dcolor is three times lower than the smaller value provided by 
other approaches). 

By considering Flowers-Window image with 500 
iterations (fig. 11), table 2 gives the execution time of all 
studied filters using a video machine Intel Core I7 4, 3GHz 
24GO RAM Ubuntu 64 bit with matlab code. As no 
optimization has been done in our codes, the results are to be 
considered in a relative way. 

 
Method Execution time  

Alvarez-Mazorra 2'14" 
Kornprobst 3'56" 

Gilboa 4'11" 

Fu 5.23" 
Bettahar-Stambouli 7'18" 
Tschumperlé-Deriche 27'00" 
Proposed 6'43" 

Table 2. Comparison of the time execution of Flowers-
Window image. 

 
In this table, first it can be noted a wide diversity between 

the execution times of the different marginal approaches, 
Alvarez-Mazorra filter being the fastest and Bettahar-
Stambouli filter the slowest. Secondly, it interesting to note 
that our vector approach is a little bit faster than the Bettahar-
Stambouli marginal approach.  It means that avoiding false 
colors does not increase the computation time. On the 
contrary, Tschumperlé-Deriche approach, which is also a 
vector approach, is the slowest approach 

V. CONCLUSION 

We have proposed a novel filter of coupling shock filter to 
curvature diffusion for color image enhancement in RGB 
space, which is based on using single vectors for all 
components of the image. This filter produces a selective 
smoothing reducing efficiently noise and sharpens edges. Our 
analysis shows that the proposed method is more efficient than 
Alvarez-Mazorra, Kornprobst, Gilboa, Fu, Bettahar-Stambouli 
and Tschumperlé-Deriche models at color image restoration in 
presence of blur and noise simultaneously. In that it denoises 
homogeneous parts of the multi-valued image, while it keeps 
edges enhanced. However, due to the fact of using single 
vectors with the specific reaction, our filter doesn’t create 
false colors that can appear when each component of the 
image is enhanced separately.  

APPENDIX: NUMERICAL IMPLEMENTATION 

We use finite difference to compute the different 
derivatives. Thus for p=1,2,3, the discrete image up can be 
regarded as a vector [1MN], whose components upi, i[1, 
…,MN] display the grey values at the pixels. Pixel i represents 
the location xi. Let h denote the discretization grid size. We 
employ discrete times tk=k, where k is a positive integer and  

is the time step size. By k

ipu , k
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k
pu
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,  
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ku ,  
i

ku  and 
k
isign  denote approximations 

of upxi,tk, vpxi,tk, |up|, |u|, g(|u|), f(|u|), pu , 

pu , u u  and sign(Gu)  respectively. 

For the implementation of temporal derivatives respecting to 
the component p, we use:  



TIP-06549-2010 12

 



k
p

k
pp

uu

t

u   
  

1 







, 


k
p

k
pp

vv

t

v   
  

1 







                               (22) 

 
In the first step, we compute the second equation: 
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As mentioned above, vp is the last value of up. So, we can 
write: 
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Now, we are able to determine 
1k

ipv , hence: 
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At each iteration, we have a value of 
1k

ipv , that will be 

injected in the first equation within the proposed model. 
For the implementation of |up| in the shock equation, we use 
minmod function m(a,b): 
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where x
  and x

  ( y
  and y

 ) are backward and forward 

differences of k

ipu  in x  direction (y  direction). 

However, for 
pu and 

pu , we use central differences to 

discretize all derivatives such as : 
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In the other hand, we use a semi-implicit scheme with 
harmonic averaging to approximate the quasi-divergence term 
[34]:  
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w(i) consists on the four neighbors of pixel i and  
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For the discretization of 
k

i
f , we use the following 

approximation: 
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where
k

Nf ,
k

Sf ,
k

Wf  and 
k

Ef  denote respectively north, south, 
west and east values of the function f in the neighbors of pixel 
i.  
Therefore, the numerical implementation of the proposed 
model with reflecting boundary conditions will be given by: 
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because as mentioned above, 
k
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k

ip  uv  .  From where (35): 
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Using matrix-vector notation [12,13,36], where k

ipu and |up|
k  

are considered as vectors [1xMN], we obtain at time k : 
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Hence by decomposing the matrix A in x and y directions, we 
obtain: 
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where I denotes the unit matrix. Components of the matrix F, 
S and Al are given by: 
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wl(i) represents the two neighboring pixels with respect to the 
direction lx,y. Boundary pixels may have only one 
neighbor. 

However, the solution  1k
pu  cannot be directly determined 

from the scheme (37). Instead, it requires solving a linear 
system of equations. Its solution is formally given by: 
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We can remark that the matrix  
 
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   is strictly 

diagonally dominant: 
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ij

ijii bb                                                                            (42) 

therefore, it is invertible [37,38]. 
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