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I. INTRODUCTION

APTURING an image with sensors is an important step in many areas. The captured image is used in several applications, which all have their own requests on the quality of the captured image. Acquired images are often degraded with blur, noise or blur and noise simultaneously. The processing to be applied to these images depends on the way of extracting wanted information. So, the frequent problem in low-level computer vision arises from the goal to eliminate noise and uninteresting details from an image, without blurring semantically important structures such as edges [START_REF] Rosenfeld | Digital Picture Processing[END_REF][START_REF] Gonzalez | Digital Image Processing[END_REF]. Two operations would be done: denoising and sharpening. Since, several deconvolution and denoising techniques have been proposed in the literature: Statistics based filters [START_REF] Geman | Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images[END_REF][START_REF] Kaiqi | Image enhancement based on the statistics of visual representation[END_REF][START_REF] Dabov | Image denoising by sparse 3D transform-domain collaborative filtering[END_REF], wavelets [START_REF] Chen | Multi-wavelet de-noising using neighboring coefficients[END_REF][START_REF] Strela | The application of multiwavelet filter banks to image processing[END_REF], Partial Differential Equations (PDE) based algorithms [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF][START_REF] Alvarez | Image selective smoothing and edge detection by nonlinear diffusion II[END_REF] and variational methods [START_REF] Aubert | A variational method in image recovery[END_REF][START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. Particularly, a large number of PDE-based methods have been proposed to tackle the problem of image denoising with a good preservation of edges, and also to explicitly account for intrinsic geometry. In this paper, we are interested in PDE-based methods. Hence, partial differential equations based on diffusion methods [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF][START_REF] Catté | Image selective smoothing and edge detection by nonlinear diffusion[END_REF][START_REF] Weickert | Efficient and reliable schemes for nonlinear diffusion filtering[END_REF][START_REF] Whitaker | Variable-conductance level-set curvature for image denoising[END_REF][START_REF] Tschumperlé | Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE's[END_REF] and shock filter [START_REF] Osher | Feature-oriented image enhancement using shock filters[END_REF][START_REF] Remaki | Enhanced and restored signals as a generalized solution for shock filter models. Part I-existence and uniqueness result of the Cauchy problem[END_REF][START_REF] Cheriet | Enhanced and restored signals as a generalized solution for shock filter models. Part II-numerical study[END_REF] have recently dominated image processing research, as a very good tool for noise elimination, Manuscript received July 29, 2010. S. Bettahar and A. B. Stambouli are with the Electronics Department, Electronics and Electrical Engineering Faculty, University of Sciences and Technology of Oran, P.O. Box 1505, El M'naouar, Oran, Algeria (phone: +21341560329; fax: +21341560301; e-mail: salim_bettahar@yahoo.com, aboudghenes@yahoo.com).
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image enhancement and edge detection [START_REF] Ter Haar | Front-end vision and multi-scale image analysis[END_REF]. Then many solutions have been proposed in the processing of gray level images by coupling diffusion to shock filter [START_REF] Alvarez | Signal and image restoration using shock filters and anisotropic diffusion[END_REF][START_REF] Kornprobst | Image coupling, restoration and enhancement via PDE's[END_REF][START_REF] Gilboa | Image enhancement and denoising by complex diffusion processes[END_REF][START_REF] Fu | Region-based Shock-diffusion Equation for Adaptive Image Enhancement[END_REF][START_REF] Bettahar | Shock filter coupled to curvature diffusion for image denoising and sharpening[END_REF]. The extension of these methods to multi-valued images can be achieved in two ways. The first one consists in using a marginal approach that enhances each color component of the multi-valued image separately using a scalar method [START_REF] Trémeau | Image numérique couleur de l'acquisition au traitement[END_REF]. The second way consists in using a single vector processing, where different components of the image are enhanced by considering correlation between them [START_REF] Tschumperlé | Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE's[END_REF][START_REF] Zenzo | A note on the gradient of multi-images[END_REF][START_REF] Lee | Detecting Boundaries in a Vector Field[END_REF][START_REF] Sapiro | Anisotropic diffusion of multivalued images with applications to color filtering[END_REF][START_REF] Tang | Color image enhancement via chromaticity diffusion[END_REF][START_REF] Tschumperlé | Diffusion PDE's on Vector-valued images: Local approach and geometric viewpoint[END_REF][START_REF] Weickert | Coherence-enhancing shock filters[END_REF][START_REF] Weickert | Coherence-enhancing diffusion of colour images[END_REF].

II. BACKGROUND

Originated from a well known physical heat transfer process, the PDE-based approaches consist in evolving in time the filtered image u(t) under a PDE. When coupling diffusion and shock filter the PDE is a combination of three terms:
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where u(t=0) = u 0 is the input image,uis the gradient magnitude, is the gradient direction,  is the direction perpendicular to the gradient, and so u  and u  represent the diffusion terms in gradient and level set directions respectively. C  and C  are some flow control coefficients. The first kind of diffusion smoothes edges, while the second one smoothes parallel to the edge on both sides. The last term in [START_REF] Rosenfeld | Digital Picture Processing[END_REF], which is weighted by C sk , represents the contribution of the shock filter in the enhancement of the image. The function F(s) should satisfy the conditions F(0)=0 and F(s).s  0. The choice of F(s) = sign(s) gives the classical shock filter [START_REF] Tschumperlé | Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE's[END_REF]. Hence, by considering adaptive weights C  , C  and C sk as functions of the local contrast, we can favor smoothing process under diffusion terms in homogeneous parts of the image or enhancement operation under shock filter at edge locations.

The first model of coupling diffusion and shock filter has been introduced by Alvarez and Mazorra [START_REF] Alvarez | Signal and image restoration using shock filters and anisotropic diffusion[END_REF], where the image is diffused only in the direction perpendicular to the gradient eliminating fluctuations and developing shocks with production of false piecewise constant images. This model is given by
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where  denotes the convolution operator, G  the Gaussian function with the standard deviation  and C  is a constant. However, the balance between diffusion process and shock filter has been more investigated by Kornprobst [START_REF] Kornprobst | Image coupling, restoration and enhancement via PDE's[END_REF] 
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with h sk =1 if u  < K and 0 otherwise, where K is a contrast threshold.  f ,  r and  e are some constants. The parameter K selects edges to be enhanced or smoothed. The first term (uu 0 ) is a fidelity term to carry out a stabilization effect of the solution. This reactive term is added as a regularization method in order to oblige the image to be close to the initial one. Kornprobst model is seen also to produce false piecewise constant images. However, Gilboa developed a complex diffusion shock filter coupling model, that smoothes the image with a weak edges enhancement [START_REF] Gilboa | Image enhancement and denoising by complex diffusion processes[END_REF]. The imaginary value of the solution, which is an approximated smoothed second derivative, is used as an edge detector. This filter is given by:
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where Im denotes the imaginary part of the solution, || expi, a and  ~are real scalars. Gilboa filter is conditioned by the value of , which must be smaller than 5° in order to end to the edge detector

       u Im [21].
In the other hand, Fu developed a region-based shockdiffusion scheme [START_REF] Fu | Region-based Shock-diffusion Equation for Adaptive Image Enhancement[END_REF], where directional diffusion and shock terms are factored by adaptive weights. It is based on the following equation:
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C  is used to prevent excess smoothness to smaller details under gradient direction smoothing. C  , C  and w(u  ) are computed by:
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The thresholds T 1 and T 2 are used to select which edge to be enhanced or smoothed. l 1 and l 2 are constants. This scheme uses an hyperbolic tangent membership function th( l 2 u  ) to guarantee a natural smooth transition, by controlling softly changes of grey levels of the image. However, Fu filter creates a strong shock between regions of the image, which is due to the oscillations at big edges that make this scheme instable.

In a more recent work, Bettahar and Stambouli proposed a new reliable and stable scheme, which is a kind of coupling diffusion to shock filter with reactive term [START_REF] Bettahar | Shock filter coupled to curvature diffusion for image denoising and sharpening[END_REF]. This model is based on the following set:
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where u  is the smoothed image using the Gaussian kernel, v(t) is the just previous evolution of u(t). In discrete time, v(t) is the last value of u(t) and u(0)=u 0 . g(|u  |) and f(|u  |) are decreasing functions having the same form with free parameters respectively k d (for g) and k c (for f), so:
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The first function g(|u  |) is used to assure an anisotropic behavior, and to select "small edges" to be smoothed according to the parameter k d . However, f(|u  |) is introduced to select which "big edges" have to be improved according to k c . The parameters  and  are positive balance constants. All mentioned models have been developed for enhancement of grey levels images. The natural way to apply them on multivalued images is to process each color component independently of the others in a marginal way. Such a way is well known to produce false colors as it can be observed on fig. 1, whatever the used filter (near parrot eye for instance). 

III. COLOR IMAGES

Only a very few works tackle the shock diffusion coupling using an approach specifically dedicated to color images [START_REF] Tschumperlé | Diffusion PDE's on Vector-valued images: Local approach and geometric viewpoint[END_REF].

A. Tschumperlé-Deriche model

To avoid the effect of the apparition of false colors, the processing applied to the image must be driven in a common and coherent manner for all image components. This type of approach is denoted as "vector processing", in opposition to the marginal processing which is a multi-scalar processing. Thus, in order to describe vector-valued image variations and structures, Di Zenzo [START_REF] Zenzo | A note on the gradient of multi-images[END_REF] and Lee [START_REF] Lee | Detecting Boundaries in a Vector Field[END_REF] have proposed to use the local variation of a vector gradient norm |u| that detects edges and corners when its value becomes high. It can be computed using the eigen-values  + and  -( + >  -) of the symmetric and semi-positive matrix G: 
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Three different choices of vector gradient norms can be considered.

  , which is the value corresponding to the maximum variations. an orthogonal base. This new base can be used for geometrical description of the multi-valued image [START_REF] Lee | Detecting Boundaries in a Vector Field[END_REF]. Hence, by using multi-valued geometrical description of [START_REF] Zenzo | A note on the gradient of multi-images[END_REF][START_REF] Lee | Detecting Boundaries in a Vector Field[END_REF], Tschumperlé and Deriche proposed a new form of diffusion shock filter coupling especially for enhancement of color images [START_REF] Tschumperlé | Diffusion PDE's on Vector-valued images: Local approach and geometric viewpoint[END_REF]. This model takes into account the correlation between all color components by using the new directions  + and  -( and  for the scalar case), where diffusion and shock terms are computed using common directions for all channels. So, in order to evolve all components in same directions, Tschumperlé and Deriche enhanced the image by: [START_REF] Aubert | A variational method in image recovery[END_REF] where p=1,2,3 for red, green and blue color. a a is a constant, 
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and
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C sk is a weight that adapts the intensity of the shock filter process in order to enhance edges, while keeping homogeneous regions unchanged. C sk is obtained using an increasing function of the common gradient magnitude |u|. The relative importance of C sk is empirically tuned.

So, once the new base
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is established, it will be easy to compute different partial derivatives as:
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This model gives satisfactory results, in that it removes noise and enhances multi-valuated images. However, despite the use of a vector approach, the shock filter still generates some false colors, as it can be seen in fig. 2. Furthermore, there are some instabilities along edges. 

B. Proposed method

The proposed method is based on the model ( 6) as an extension to multi-valued images, where each color component u p of the enhanced image u is considered by taking into account the correlation between the three components. This model is given by:
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where v p (t) is the last evolution of u p (t) and v p (0)=u p0 . In discrete time, v p (t) is the last value of u p (t). So first, we compute the second equation that gives the value of v p , which will be injected in the first equation being, later, noted u p (This point can be well understood by using the discrete form in equations 33 and 34 ). The functions g(|u  |) and f(|u  |) are defined by [START_REF] Strela | The application of multiwavelet filter banks to image processing[END_REF] with control parameters respectively k d and k c . α and β are constants.

Starting from grey level Bettahar-Stambouli solution, equations ( 16) has been obtained using an empirical approach but always conserving the constraint that gradient information has to be obtained in a vector way. In these equations, each component is processed separately, like in a marginal approach. However, the processing of each component takes into account the correlation between the different components of the multi-valued image by using the same gradient magnitudes (u and u  ) and the same derivatives (u  and u  ) obtained in vector way. This is the key point of the proposed approach which will avoid the generation of false colors, as it will be seen in the following behavior of the proposed model.

The gradient magnitudes are computed by using the equation ( 11) like in Tschumperlé-Deriche model, while we estimate the second derivatives by:
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The sum of the derivatives is a simple but efficient solution to relate different color components. On can use the higher order derivatives given by equation ( 15), with the risk of creation of false colors while coupling diffusion process to shock filter as in Tschumperlé-Deriche model.

The first equation in the proposed filter behaves as a nonlinear reaction-curvature diffusion process like in [START_REF] Chen | Multi-wavelet de-noising using neighboring coefficients[END_REF]. In this equation, the first term
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to assure a selective smoothing that reduces noise in homogeneous parts of the image without introducing new structures like false colors. The second term 
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will be high at edge locations and low in smooth parts. Thus in the first case the process will operate as a diffusion-shock filter reaction that enhances edges, and in the second case the filter will behave as a linear diffusion that smoothes noise. The second equation in ( 16) is a simple shock filter and its result v p (t) is injected in the first equation as a reactive term. It can be noted again that this filter is not designed in a marginal way because of the use of the vector derivative u  , which is a combination of the values of  p u (see equation 18).

To well understand the proposed filter behavior, it is necessary to give more details about the reasons which have decided the form of the equation [START_REF] Osher | Feature-oriented image enhancement using shock filters[END_REF]. First the choice of the balance diffusion-shock filter, with the form
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, has a critical impact on the behavior of the proposed model at non creation of false colors. This choice has been done by considering some practical observations on different cases in order to take the best choice of this balance as following. Consequently, by using the marginal method, we have computed the balance f 6) with processing each image component separately. We can observe in this case some false colors at edge locations as an expected result (fig. 3-b). However, by applying the balance
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uses the vector method, it can be noticed in fig. 3-c that the image has been enhanced without creating any false colors. This can be well remarked on the enlargement of "Bahamas" text, where some red and green colors have been created in the first case (fig. 3-e). Second, by introducing the term u  , we can make the model more robust at creation of false colors in the case of noisy images. We consider now a single gradient vector u for all color image components. Structures in the results of models 6 and 16 being close, it is interesting to note that the proposed method produces so similar results than Bettahar-Stamboui filter when it is applied on grey level images (fig. 5). The choice of the parameters has a critical impact on the behavior of the proposed filter. So, with reference to the contrast of the image, the value of k d is chosen to be a threshold of "small edges" to be smoothed under the diffusion process and k c "big edges" to be improved according to the shock filter. One can use the same values for the threshold dedicated to "big" and "small" edges in both Bettahar 's filters. In our experiences, we saw that in this case the filters converge to the solution with a considerable number of iterations without good detail preservations comparing to the case of k c =k d .

The constants  and  contribute in the balance between the diffusion process and the shock filter. If we want to attenuate the effect of the shock filter, we have to take small  and large value of .

Recently, an interesting method called block-matching and 3D filtering (BM3D) has been developed by Dabov [START_REF] Dabov | Image denoising by sparse 3D transform-domain collaborative filtering[END_REF] and improved by Hou [START_REF] Hou | Comment on Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering[END_REF]. This method is based on Wiener filtering that requires a priori knowledge about the noise. In the case of PDE coupling, no knowledge about the blur or the noise is needed. As depicted in fig. 6, our model gives almost similar results in smoother regions with an effective edge sharpening compared to the BM3D based method. This latter has the drawback of not eliminating the blur. 

IV. EXPERIMENTAL RESULTS

We evaluate performances of our model by comparing it to marginal channel by channel methods of Alvarez-Mazorra, Kornprobst, Gilboa, Fu, Bettahar-Stambouli and the vector regularization of Tschumperlé-Deriche only. These are developed especially to enhance degraded images in presence of blur and additive noise simultaneously. We are not dealing with the evaluation of other types of methods, as our focus is on diffusion-shock filter coupling.

A. Direct observation

For this comparison, we choose the parameters that give better results for each filter, except for the number of iterations which must be the same for objective comparison. The number of iterations is chosen in function of the visual quality of the result. For each test image, we opt for the same number of iterations, and for the step time  we prefer a small value in order to converge to the solution with more precision about the values of the objective criterions while getting more details in the visual aspect of the restored images. So, we can converge to the solution with small numbers of iterations in reference to the number that we use in this paper, excepted to Tschumperlé-Deriche filter that employs an adaptive step time . All models are applied to blurry and noised images. In the production of artificially blurry images, we use the Gaussian convolution of original test images (=1). Noised images are produced by adding random Gaussian noise to blurred images (=18). The first criterion used is the color Pick Signal to Noise Ration (PSNR): For more objective comparison of overall image qualities, we also use the Mean Image Quality Assessment Index MSSIM [START_REF] Wang | Image Quality Assessment: From Error Visibility to Structural Similarity[END_REF], which is given by the following expression as for one component p :
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where 0  and p  are the standard deviations of the images I p and u p respectively. µ p is the mean value of the image u p ,
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and where C 1 and C 2 are small constants that provide stability when the denominator approaches zero. The MSSIM for the color image is the mean value of the MSSIM obtained for each component. In fig. 9, we present the PSNR evolution versus the number of iterations for the different approaches which have been compared. It can be noted that, for a same number of iterations, the PSNR of our solution is always bigger than the PSNR of other models. This can be deep-rooted by the MSSIM representation (fig. 10), that confirms the best visual quality of our solution. In fig. 13, we remark that our PSNR is always bigger than the PSNR of other models with a better MSSIM (fig. 14). Looking at the PSNR and MSSIM evolutions, it is also interesting to compare the proposed approach to Bettahar-Stambouli marginal approach. As these methods principles are close, this specific comparison is a measure of the difference between the marginal approach and the vector approach. It can be concluded that using a vector approach always provides a gain, even though this gain is sometimes small. 

B. Indirect observation

Filtering is generally a pre-processing before segmentation. So, an indirect way to compare different filtering approaches is to compare the segmentation obtained after filtering.

a -Edge detection

The first comparison is performed after edge detection. The image which is used is the Flowers-Window image seen in fig. 11. Edges are obtained using the marginal Canny edge detector. We can obviously observe how edges in our solution are well detected and closed referring to other methods that present thin contours due to the presence of false colors at edge locations (fig. 15). These observations show how performances of our model are improved in presence of a strong noise.

b -Region segmentation

The second comparison is performed after region segmentation. The segmentation which is used is a classical region growing technique: blob-coloring using a 4 neighborhood [START_REF] Ballard | Computer Vision[END_REF]. This technique is a quick and simple one which is known to give over-segmentation, providing a lot of small regions in noisy situation. In our case, this drawback will be used to extract a measure of performance. Nevertheless, to limit over-segmentation, the region growing is realized iteratively, the aggregation threshold being incremented at each iteration. Fig. 16 shows the results of the segmentation on Face image. All the different segmentations have been realized using the same parameter values (initial threshold = 3, threshold increment = 2, iteration number = 30).

On this figure, it can be seen that the simplest segmentation is the one obtained with the proposed method, despite the largest number of regions. Tschumperlé-Deriche and our method excepted, all the segmentations contain false regions due to false colors. Alvarez-Mazorra and Gilboa give an oversegmentation in the background, on the face and on the glasses. Kornprobst, Fu and Bettahar-Stambouli provide some quite good segmentations, but with false color regions. With Tschumperlé-Deriche filter, there are thin regions along some edges, like the borders of the glasses. To characterize these results in a more precise way, we have focused our attention on a part of the border of the glasses as seen in fig. 17 where there are two main regions, the glass and the face. Then, we have computed three numerical indicators:

the number of regions.

the average size of the small regions. By small regions, we mean regions that are not the two main regions, i.e. the face and the glass. -the sum of the color distance (denoted D color ) of these small regions to the two main regions, defined by:

k k Rk R Rk R Color R C C dist C C dist D    )) , ( ), , ( min( 2 1 
where C R1 and C R2 denote the color of the two main regions R 1 and R 2 , C Rk is the color of a small region R k , k is the small region index , dist(.) is the Euclidean distance in the RGB space and | R k | is the size of the region R k . The last indicator is a measure of the false color importance. Indeed, if a small region has a color which is far from the color of R 1 and R 2 , it will have a large contribution to D color . Table 1 presents the results. Considering the proposed method, it can be seen that, despite the number of regions being large, these non wanted regions are small (average size is only one pixel) and their colors are close to the color of one of the two main regions (D color is three times lower than the smaller value provided by other approaches).

By considering Flowers-Window image with 500 iterations (fig. 11), table 2 gives the execution time of all studied filters using a video machine Intel Core I7 4, 3GHz 24GO RAM Ubuntu 64 bit with matlab code. As no optimization has been done in our codes, the results are to be considered in a relative way.

Method

Execution time In this table, first it can be noted a wide diversity between the execution times of the different marginal approaches, Alvarez-Mazorra filter being the fastest and Bettahar-Stambouli filter the slowest. Secondly, it interesting to note that our vector approach is a little bit faster than the Bettahar-Stambouli marginal approach. It means that avoiding false colors does not increase the computation time. On the contrary, Tschumperlé-Deriche approach, which is also a vector approach, is the slowest approach V. CONCLUSION We have proposed a novel filter of coupling shock filter to curvature diffusion for color image enhancement in RGB space, which is based on using single vectors for all components of the image. This filter produces a selective smoothing reducing efficiently noise and sharpens edges. Our analysis shows that the proposed method is more efficient than Alvarez-Mazorra, Kornprobst, Gilboa, Fu, Bettahar-Stambouli and Tschumperlé-Deriche models at color image restoration in presence of blur and noise simultaneously. In that it denoises homogeneous parts of the multi-valued image, while it keeps edges enhanced. However, due to the fact of using single vectors with the specific reaction, our filter doesn't create false colors that can appear when each component of the image is enhanced separately.

APPENDIX: NUMERICAL IMPLEMENTATION

We use finite difference to compute the different derivatives. Thus for p=1,2,3, the discrete image u p can be regarded as a vector [1MN], whose components u pi , i[1, …,MN] display the grey values at the pixels. Pixel i represents the location x i . Let h denote the discretization grid size. We employ discrete times t k =k, where k is a positive integer and  is the time step size. By For the implementation of temporal derivatives respecting to the component p, we use:

k i p u , k i p v , k i p u  , k i u  , k i g , k i f  ,   i k p u  ,   i k p u  ,   i k u  ,   i k u 
 k p k p p u u t u 1      ,  k p k p p v v t v 1      (22)
In the first step, we compute the second equation:

1 k i p k i k i p k i p u sign v v       (23) 
As mentioned above, v p is the last value of u p . So, we can write:

1 k i p k i k i p k i p u sign u v       (24) 
Now, we are able to determine

1  k i p v , hence: 1 k i p k i k i p k i p u sign u v      (25) 
At each iteration, we have a value of 

             otherwise 0 0 if , min , ab b a a sign b a m (26) and 2 2 , , 1                                          k i p y k i p y k i p x k i p x k i p u u m u u m h u     (27) 
In the other hand, we use a semi-implicit scheme with harmonic averaging to approximate the quasi-divergence term [START_REF] Wang | Image Quality Assessment: From Error Visibility to Structural Similarity[END_REF]:

      2 2 h u u g u g u u u u u g div u k i p k j p i w j k i k j k i p                                       (30)
w(i) consists on the four neighbors of pixel i and 

               y x l p k i l p u u
      2 f f f f f 2 k E k W 2 k S k N k i      (32) 
where

k N f , k S f , k W f and k E f denote respectively north, south,
west and east values of the function f in the neighbors of pixel i. Therefore, the numerical implementation of the proposed model with reflecting boundary conditions will be given by:

                                                                1 2 1 1 1 2 2 2 2 1 1 1 k i p k i k i p k i p k i k i p i k k i k i k i p k j p i w j k i k j k i k i p k i p u sign v v v u u f f h u u g u g u u u u     (33) thus                                                    k i p k i k i p k i p i k k i k i k i p k j p i w j k i k j k i k i p k i p u sign τ u u u f f h u u g u g u u τ u u 1 - 2 1 2 2 2 2 1 1 1   (34) because as mentioned above, k i p k i p u v 
. From where [START_REF] Ballard | Computer Vision[END_REF]:

                   k i p k i i k k i k i k i p i k k i k i k i p i w j i k k i k i k i k j k i k j p i w j k i k j k i k i p u sign u f f α τ u u f f τ u u f f g u g u h u τ - u g u g u h u τ u 1 1 1 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 1                                                                                             
Using matrix-vector notation [START_REF] Catté | Image selective smoothing and edge detection by nonlinear diffusion[END_REF][START_REF] Weickert | Efficient and reliable schemes for nonlinear diffusion filtering[END_REF][START_REF] Weickert | Application of nonlinear diffusion in image processing and computer vision[END_REF], where 

          k p k k k p k k p k k p u u S u F τ u u F τ I u u A τ u 2 1 1          (36)
Hence by decomposing the matrix A in x and y directions, we obtain:

                                  k p k k k p k k p y x l k l u u S u F τ u u F τ I u u A I 2 1
,    [START_REF] Ciarlet | Introduction à l'analyse numérique matricielle et à l'optimisation[END_REF] where I denotes the unit matrix. Components of the matrix F, S and A l are given by: w l (i) represents the two neighboring pixels with respect to the direction lx,y. Boundary pixels may have only one neighbor. However, the solution 1  k p u cannot be directly determined from the scheme [START_REF] Ciarlet | Introduction à l'analyse numérique matricielle et à l'optimisation[END_REF]. Instead, it requires solving a linear system of equations. Its solution is formally given by: 

                        otherwise 0 1 ˆ2 2 2 j i u f f u f i k k i k i k ij  (38)          otherwise 0 j i sign u s ˆk i k ij (39)                                                                              otherwise 0 1 2 , 2
                                   k p k k k p k y x l k l k p u u S u F τ u u F τ I u A τ I u
therefore, it is invertible [START_REF] Ciarlet | Introduction à l'analyse numérique matricielle et à l'optimisation[END_REF][START_REF] Euvrard | Résolution numérique des équations aux dérivées partielles, 3 ème Edition[END_REF]. 

Fig. 1 .

 1 Enhancement of Parrot image: (a) Original image; (b) Alvarez-Mazorra filter; (c) Kornprobst filter; (d) Gilboa filter; (e) Fu filter; (f); Bettahar-Stambouli filter.

  u pl (p=1,2,3 and l = x,y) represents the derivative in direction l of the red, green and blue components of the color image, and:

  and corners. Remark that for the eigen-values  + and  - correspond the eigen-vectors respectively  + and  -, that form

C

  are decreasing functions of the common gradient magnitude |u|, which is computed by the norm:

Fig. 2 .

 2 Fig. 2. Enhancement of Parrot image image: (a) Blurry and noised; (b) Tschumperlé-Deriche filter.

  acts as a balance between smoothing of diffusion process and enhancement of shock filter. It is weak in smooth parts and strong at edge locations. Hence, in homogeneous regions, f(|u  |) 1, so f(|u  |) 0 and u   0, while at edge locations f(|u  |) 0, so f(|u  |) 1. So, by choosing adequate values of α and β, the weight

3 .

 3 Enhancement of Cap image; (a) Original image; (b) Using the marginal balance f(|u p |)  ; (c) Using the balance d) Enlargement of situation (a); (e) Enlargement of situation (b); (f) Enlargement of situation (c).

4 .

 4 So we compare performances of the proposed model, firstly by using the balance f(|u  |)  β =0) and secondly by introducing in the dominator of the proposed balance the term 1+βf(|u  |)  u  . As depicted in fig. 4, noise has been removed successfully in both cases, but in the first one (fig. 4e) false colors at edges locations have been created. Enhancement of Cap image; (a) Noisy image; (b) Using the balance f(|u  |)  ( = 0 in eq. (16)); (c) Using the balance (d) Enlargement of situation (a); (e) Enlargement of situation (b); (f) Enlargement of situation (c).

Fig. 5 .

 5 Enhancement of Cameraman image: (a) Original image; (b) Blurry and noised image; (c) Bettahar-Stambouli filter; (d) Proposed filter.

Fig. 6 .

 6 Enhancement of House image: (a) Original image; (b) Blurry and noised image; (c) BM3D filter (d) Proposed filter;.

  is the p component of the color image reference I(MxNx3) and u p is the p component of the restored image u(MxNx3).

Fig. 7 shows

 7 Face image blurred and noised with PSNR=18.10 dB. We use for Alvarez-Mazorra filter =1, C=2 and the time step discretization =0.01; Kornprobst filter =1, K=3,  f =0,  r = 1,  e =1 and=0.01; Gilboa filter  ~=1.5, ||=0.6, a=6, =π/1000 and =0.01; Fu filter =1, T 1 =35, T 2 =4, l 1 =0.0008 l 2 =200 and =0.01; Bettahar-Stambouli filter =1, k d =4, k c =30, =800, =0.05 and=0.01; Tschumperlé-Deriche filter  a =0 and adaptive =2; Proposed filter =1, k d =5, k c

Fig. 7 .Fig. 8 .

 78 Enhancement of Face image: Blurry and noised image; (b) Alvarez-Mazorra filter; (c) Kornprobst filter; (d) Gilboa filter; (e) Fu filter; (f) Bettahar-Stambouli filter; (g) Tschumperlé-Deriche filter; (f) Proposed filter. Enlargement of a part of Face image: (a) Blurry and noised image; (b) Alvarez-Mazorra filter; (c) Kornprobst filter; (d) Gilboa filter; (e) Fu filter; (f) Bettahar-Stambouli filter; (g) Tschumperlé-Deriche filter; (h) Proposed filter.

Fig. 9 .

 9 Fig.9. PSNR representation of Face image as a function of the number of iterations.

Fig. 10 .

 10 Fig. 10. MSSIM representation of Face image as a function of the number of iterations.The second experiment has been performed on blurred and noised Window-Flowers image with strong noise PSNR=17.67 dB (fig.11). We use for Alvarez-Mazorra filter =1, C=2 and =0.05; Kornprobst filter =1, K=2,  f =0,  r = 1,  e =1 and =0.05; Gilboa filter  ~=1, ||=0.5, a=6, =π/1000 and =0.05; Fu filter =1, T 1 =25, T 2 =2, l 1 =0.0008 l 2 =200 and =0.05; Bettahar-Stambouli filter =1, k d =2, k c =30, =800, =0.05 and =0.05; Tschumperlé-Deriche filter  a =0 and adaptive =2 ; Proposed filter =1, k d =3, k c =110, =800, =1 and  =0.05 with 500 iterations for all filters. We can see here again how our method has removed noise in homogeneous parts of the image without creating false colors referring to other models. In our case, the window, flowers and sheets are well denoised and sharpened as observed in fig.12, where the window and the pink flower are successfully enhanced. Only Tschumperlé-Deriche model gives satisfactory results, but we can see a subsistence of a kind of false colors on the horizontal lines of the window and on a part of the pink flower. In the case of Alvarez-Mazorra, Kornprobst, Gilboa and Bettahar-Stambouli filters, a residual noise subsists with false colors at edge locations.In fig.13, we remark that our PSNR is always bigger than the PSNR of other models with a better MSSIM (fig.14). Looking at the PSNR and MSSIM evolutions, it is also interesting to compare the proposed approach to Bettahar-Stambouli marginal approach. As these methods principles are close, this specific comparison is a measure of the difference between the marginal approach and the vector approach. It can be concluded that using a vector approach always provides a gain, even though this gain is sometimes small.

Fig. 11 .Fig. 12 .Fig. 13 .Fig. 14 .

 11121314 Fig. 13. PSNR representation of Flowers-Window image as a function of the number of iterations.

Fig. 15 .

 15 Edges of degraded Flowers-Window image: (a) Original image; (b) Alvarez-Mazorra filter; (c) Kornprobst filter; (d) Gilboa filter ; (e) Fu filter; (f) Bettahar-Stambouli filter; (g) Tschumperlé-Deriche filter; (h) Proposed filter.

Fig. 16 .Fig. 17 .

 1617 Segmentation of Face image: (a) Non noisy initial image; (b) Alvarez-Mazorra filter 2442 regions; (c) Kornprobst filter 2385 regions; (d) Gilboa filter 2198 regions; (e) Fu filter 2071 regions; (f) Bettahar-Stambouli filter 2198 regions; (g) Tschumperlé-Deriche filter 1434 regions; (h) Proposed filter 2959 regions. Enlargement of Segmentation of Face image: (a) Alvarez-Mazorra filter; (b) Kornprobst filter; (c) Gilboa filter; (d) Fu filter; (e) Bettahar-Stambouli filter; (f) Tschumperlé-Deriche; (g) Proposed filter.

  will be injected in the first equation within the proposed model. For the implementation of |u p | in the shock equation, we use minmod function m(a,b):

  use the following approximation:

u

  and |u p | k are considered as vectors [1xMN], we obtain at time k :

  . It PDE Based Enhancement of Color Images in RGB Space S. Bettahar, A. B. Stambouli, P. Lambert and A. Benoit C becomes a binary function of the local contrast in the following scheme:

Table 1 .

 1 Comparison of region segmentation performance on a small area of Face image.

	Alvarez-Mazorra	22	3	8.9
	Kornprobst	57	5	9.58
	Gilboa	26	23	27.8
	Fu	54	12	15.8
	Bettahar-Stambouli	68	4	10.9
	Tschumperlé-Deriche	6	5	25.0
	Proposed method	42	1	3.3

Table 2 .

 2 Comparison of the time execution of Flowers-Window image.

	Alvarez-Mazorra	2'14"
	Kornprobst	3'56"
	Gilboa	4'11"
	Fu	5.23"
	Bettahar-Stambouli	7'18"
	Tschumperlé-Deriche	27'00"
	Proposed	6'43"

  x i ,t k , v p x i ,t k , |u p |, |u|, g(|u  |), f(|u  |),

	and	k i sign denote approximations
	of u p  p u ,
		

p u , u  u  and sign(G  u  ) respectively.
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