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Abstract

The deformation of solid materials is nearly always accompanied with temperature variations, induced
by intrinsic dissipation and thermomechanical coupling. Heat sources give precious information on the
thermomechanical behavior of materials. They can be indirectly observed from thermal measurements
on the specimen boundary, obtained e.g. via infrared thermography. To solve the inverse problem of
identifying heat sources from such observations, a non-iterative algebraical method based on the Reciprocity
Gap Method is proposed. This approach, used elsewhere mainly for time-independent identification, is
applied here to transient measurements. Under appropriate modelling assumptions the number of heat
sources, their spatial locations and energies are retrieved, as demonstrated on numerical experiments where
the robustness of the method to measurement noise is also studied.

Keywords: Inverse problem, Heat equation, Source identification, Reciprocity Gap, Non-iterative
method.

1. Introduction

1.1. Physical motivation

The deformation of solid materials is nearly always accompanied with temperature variations.
These variations, induced by intrinsic dissipation of energy and thermomechanical coupling, are
governed by the heat diffusion equation stemming from the first and second laws of thermodynam-
ics:

ρC∂tϑ− k∆ϑ = f, (1)

where ϑ is the temperature, ρ, C, k are respectively the mass density, the specific heat capacity
and the thermal conductivity (which in this article are assumed to be homogeneous and, for the
conductivity, isotropic). The thermomechanical source term has the form f = D + T , where D
is the intrinsic dissipation (caused by e.g. plasticity) and T := ρϑ∂2ϑαj

ψ · α̇j (where ψ is the free

energy density and αj are the internal variables) is associated to thermomechanical couplings [8].
In (1) and thereafter, the shorthand ∂X denotes the partial derivative w.r.t. a variable X.

Quantitative evaluation of such sources therefore provides important information on the ther-
momechanical behavior of the material. Infrared thermography techniques [9], which measure
thermal fields on specimen boundaries, provide useful experimental data. Information on internal
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sources can then be extracted from boundary thermal full-field data by solving an inverse heat
source problem (IHSP) [20, 15], which is the main focus of this article.

Source identification in general is known to be ill-posed, as uniqueness and continuous de-
pendence of data on f cannot usually be assured [20]. Source inverse problems using boundary
observations require additional source modelling assumptions for identifiability, see specific exam-
ples in e.g. [15, 16, 22, 5]. Besides, the available literature on source identification is mainly devoted
to equilibrium, rather than evolutive, situations. Various iterative inversion procedures have been
applied to heat source identification, see e.g. [7, 4, 21]. Their main drawbacks are, as usual for
this type of approach, the dependence of the result on the choice of initial guess and the high
computational times entailed by repeated forward solutions. In addition, specialized strategies
have been proposed in e.g. [19] (where the convex hull of a set of sources is reconstructed) and [26]
(an algorithm we found, by conducting preliminary numerical experiments, to be highly sensitive
to imperfect data).

The availability of dense boundary data permitted by infrared thermography suggests a recourse
to another approach, based on the concept of reciprocity gap (RG) [2]. When the dual boundary
quantities (here, the temperature and the heat flux) are completely known, any hidden feature
(such as an unknown source, flaw or perturbation in material characteristics) is revealed by the
fact that the reciprocity identity applied to the boundary data and another, arbitrarily chosen, trial
state (often termed ’adjoint state’) fulfilling the relevant field equations for a reference medium
yields a nonzero value. RG-based methodologies for source identification have been investigated
for scalar (thermal or electrostatic) equilibrium [16], wave propagation [17], and diffusion [18].
An algebraic algorithm for multiple point source identification under equilibrium conditions is
proposed for two-dimensional configurations in [16]. This algorithm is appealing in that (i) it
does not require multiple initial-boundary value problem (IBVP) solutions like usual optimization-
based methodologies, and (ii) it includes a methodology for determining the number of hidden point
sources. As it crucially relies on the use of harmonic polynomials as adjoint fields, its extension to
source identification under transient conditions is not straightforward. RG-based approaches have
also been developed for flaw identification [2, 6, 24] or electromagnetic inverse scattering [11].

In this article, the RG concept is applied to the transient IHSP in a manner making it
amenable to the algebraic approach of [16]. The proposed treatment is thus restricted to spa-
tially two-dimensional configurations, although it is open to generalizations to three-dimensional
situations [23]. It allows to retrieve the number of distinct heat sources, their spatial locations
and their energies. Numerical experiments under transient or static conditions are reported herein,
bridging a gap with the mostly mathematical nature of the available literature for this particular
type of problem and approach.

The paper is organized as follows. The IHSP of interest is defined in the remainder of this Sec-
tion. The reciprocity gap functional (RGF) relevant for the present purposes is then presented in
Section 2. Next, a time-integrated version of the RG that allows to exploit the algebraic approach
initially developed for time-independent problems is proposed, together with the resulting identi-
fication algorithm, in Section 3. Finally, numerical experiments with that algorithm are reported,
first for time-independent data and using an analytical solution for the synthetic data (Section 4),
then for time-dependent data using numerically-computed synthetic data (Section 5), with the
influence of noisy data discussed in both cases.

2



1.2. Formulation of the source identification problem

Let Ω be a bounded regular domain of Rp (where p = 2, 3 is the spatial dimensionality) whose
boundary ∂Ω admits a well-defined unit normal vector n almost everywhere. The thermal evolution
problem is then set on the space-time domain Ω×[0, T ], where T denotes the measurement duration.

To define a well-posed IBVP for the heat conduction arising from an assumed source f (referred
to hereinafter as the forward problem), Equation (1) is supplemented by the boundary condition

αϑ+ k∂nϑ = αϑext on ∂Ω× [0, T ] (2)

modelling heat transfer with the external environment (with ϑext the external temperature field,
assumed uniform and constant, and α the heat transfer coefficient), and the initial condition

ϑ(·, 0) = ϑext in Ω. (3)

Introducing the change of variable θ = ϑ− ϑext and setting x= x̂/x̄, t= t̂/t̄, θ= θ̂/θ̄ and f = f̂/f̄
(where θ̄ is a nonzero reference temperature and with the characteristic length x̄, time t̄ and source
f̄ defined by x̄= k/α, t̄= k3/(ρCα2) and f̄ = k3/(ρCα2θ̄)), the IBVP defined by (1), (2) and (3)
is recast into the simple, non-dimensional form

(∂t̂ − ∆̂)θ̂ = f̂ in Ω̂× [0, T̂ ] (4a)

(∂n̂ + 1)θ̂ = 0 on ∂̂Ω× [0, T̂ ] (4b)

θ̂(·, 0) = 0 in Ω̂, (4c)

on which the remainder of this article is based (with the non-dimensional form of all variables
implicitly understood and all hat symbols hereinafter dropped to avoid cumbersome notations).

The IHSP thus consists in identifying the source distribution f from space-time boundary data
θm:

θ = θm on ∂Ω× [0, T ]. (5)

The heat flux ∂nθ is then also known from the data θm by virtue of the boundary condition (4b).
In this article θm is assumed to be known on the whole lateral boundary ∂Ω× [0, T ]. In case of
data collected over time but only on a part of ∂Ω, the proposed identification procedure remains
conceivably applicable if preceded by a data completion step [3, 10].

1.3. Modelling assumptions for the source term

As pointed out in [20], a major difficulty is the non-identifiability of general source terms.
A review of existing modelling assumptions can be found in [19]. In this article, multiple time-
modulated point sources are considered, with the time modulation restricted to piecewise-constant
powers. The sought sources are thus assumed to have the form

f(x, t) =
N
∑

j=1

pjδ(x− sj)Π
( t− tj

ℓj

)

(6)

where Π(·) is a normalized box function defined in terms of the Heaviside step function H(·) by
Π(t) = H

(

t + 1
2

)

− H
(

t − 1
2

)

. The set of unknown sources (6) is thus characterized by the source
spatial and temporal locations sj , tj , powers pj and holding times ℓj ; moreover, the total number
N of sources is not known a priori and is thus also sought.
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Additionally, the sources to be identified are assumed to be spatially well separated (i.e., si 6= sj
for i 6= j) and inactive after a finite extinction time t⋆ (i.e. tj+ℓj ≤ t⋆, 1≤ j ≤N). A lower threshold
pthr on source power will also be taken into account. Under these assumptions, Theorem 2.1 of [18]
holds, i.e. sources are uniquely identifiable from the temperature and heat flux distributions on
the boundary associated with one experiment.

The chosen modelling assumptions and the assumed format (5) of the available supplementary
data are well suited to the extraction of information using a reciprocity gap (RG) functional. The
RG-based formulation for the present heat source identification problem is now presented.

2. Reciprocity Gap Method

2.1. Formulation

Reciprocity gap functionals are set up by resorting to an adjoint field ψ, which in the present
transient heat conduction setting is governed by the homogeneous heat equation with time reversed:

(∂t +∆)ψ = 0, in Ω× [0, T ]. (7)

On applying the third Green’s identitiy to (4a) and (7), integrating the resulting equality in time
over τ ∈ [0, t], and using boundary condition (4b), initial condition (4c) and observation (5), one
obtains:

∫

∂Ω×[0,t]
(∂nψ + ψ)θm ds dτ +

∫

Ω
θ(·, t)ψ(·, t) dv =

∫

Ω×[0,t]
fψ dv dτ. (8)

This identity thus links information on time-varying point sources in Ω × [0, t] with measured
space-time data on ∂Ω× [0, t]. This is emphasized by symbolically reformulating it as

R(ψ, t) = S(ψ, t) ∀ψ solution of (7), ∀t ∈ [0, T ], (9)

where the source term functional S is defined by

S(ψ, t) :=

∫

Ω×[0,t]
fψ dv dτ (10)

and R is the reciprocity gap functional (RGF), defined by

R(ψ, t) := RL(ψ, t) +RB(ψ, t) (11)

in terms of the “lateral” RGF RL collecting lateral (experimental) information over ∂Ω× [0, t] and
the “base” RGF RB collecting information at the final time t, with

RL(ψ, t) :=

∫

∂Ω×[0,t]
(∂nψ + ψ)θm ds dτ, RB(ψ, t) :=

∫

Ω
θ(·, t)ψ(·, t) dv. (12)

The reciprocity gap equality (9) links causes hidden in Ω (featured in S) to their measurable
consequences (featured inR). The nature of the two componentsRL andRB ofR is, however, quite
different, as RL(ψ, T ) is observable while RB(ψ, T ) is not. Following this remark, equality (9) can
be considered as linking the observable quantity RL(ψ, t) to an apparent source functional H(ψ, t),
through

RL(ψ, t) = H(ψ, t) with H(ψ, t) := S(ψ, t)−RB(ψ, t). (13)
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One now needs a strategy (and in particular a suitable set of adjoint test-functions {ψk}k∈N)
allowing to extract information about the unknown source system. In particular, it is important
to remove, or minimize, the non-observable contribution RB to R. This can be done in at least
two different ways:

(a) Use adjoint fields ψ(x, τ) that vanish at final time τ = t (hence RB = 0). Such adjoint fields are
available in analytical form involving Fourier-Bessel series (see Appendix A). However, their
complicated expressions preclude the use of simple analytical or algebraic approaches such as
those proposed for time-independent problems in previously-mentioned works on RG-based
identification. Instead, iterative algorithms (e.g. root-finding methods) must be applied for
extracting information from the RL(ψ, t).

(b) Exploit measurements made over a duration T sufficiently large to make the non-observable
component RB negligible. This approach is followed here as it permits more flexibility in
choosing adjoint fields. In particular, harmonic time-independent adjoint fields can be used
(whereas they are not permitted by treatment (a)), allowing a natural extension of previously-
proposed algebraic treatments. This essentially requires making measurements until much later
than the extinction time t⋆ of the last active source (a limitation which clearly does not affect
treatment (a)).

3. Reciprocity gap method in time-integrated form

3.1. The large observation time limit

Let t⋆ denote the extinction time of the last active source to be identified. For a fixed adjoint
field ψ, the function t 7→ S(ψ, t) is constant for t > t⋆, so that

∀t > t⋆, RL(ψ, t) = S(ψ, t⋆)−RB(ψ, t). (14)

Moreover, for t > t⋆, the system evolves towards thermal equilibrium, and in particular (see [1],
Prop. 8.4.1) one has lim

t→∞
θ(x, t) = 0, which implies

lim
t→∞

RB(ψ, t) = 0 (15)

for any adjoint field that remains bounded as t → +∞. For an infinite observation duration,
exploiting (15), one thus obtains:

R(ψ,∞) = S(ψ, t⋆), (16)

allowing to exploit the RG values at large times for source identification.

3.2. RG with time-independent adjoint fields

We now consider exploiting the RG equality in its limiting form (16) by using time-independent
(and hence harmonic) adjoint fields ψ. Consider the time-integrated quantities

Θ(x) =

∫ ∞

0
θ(x, τ) dτ ; F (x) =

∫ ∞

0
f(x, τ) dτ (17)

which are well-defined since all sources are assumed inactive for t ≥ t⋆. They are readily found by
directly time-integrating (4a), (4b) and invoking the initial and final conditions (4c) and (15) to
satisfy the following Poisson BVP:

∆Θ = F (in Ω), (∂n + 1)Θ = 0 (on ∂Ω). (18)
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Then, for any harmonic adjoint field Ψ, the components of the RG equality (16) are given by:

R(ψ,∞) =

∫

∂Ω
Θm(∂nΨ+Ψ)ds, S(ψ, t⋆) =

∫

Ω
FΨdv (19)

where Θm is the time-integrated version of the data θm. Moreover, with the chosen source model (6),
one obtains

S(ψ, t⋆) =
N
∑

j=1

λjΨ(sj) (20)

where λj = pjℓj (or λj =
∫∞
0 pj(τ) dτ for more general source modulations) is the energy of the

j-th source.
Since integrating over an infinite observation duration has reduced the heat equation to the

Poisson equation, the algebraic method introduced in [16] for exploiting the RG identity in the
time-independent case can be applied. Being based on a complex-variable formulation of the adjoint
fields, this approach assumes a spatially two-dimensional setting (however, [16] and [23] propose
ways to extend this approach to three-dimensional configurations).

3.3. Adjoint fields

From now on, a spatially two-dimensional setting is assumed, with complex polynomials used
for adjoint fields (such functions, being holomorphic, have harmonic real and imaginary parts).
Associating R

2 with C through x1 + ix2 = z, the following family of test functions is defined:

Ψk(x) = zk, k ∈ N. (21)

The components of the RG equality (16) are then given by:

R(Ψk,∞) =

∫

∂Ω
Θm(knz + z)zk−1 ds =: αk, S(ψ, t⋆) =

N
∑

j=1

λjσ
k
j (22)

where σj denotes the affix of the j-th source location sj . The source reconstruction thus consists in
finding the locations σj and energies λj verifying the RG equality (wherein the known quantities
αk are defined by (22))

N
∑

j=1

λjσ
k
j = αk. (23)

3.4. Reconstruction procedure: perfect data

The algebraical method previously introduced in [16] for source identification in elliptic system
is now summarized. It assumes, as a priori information, that an upper bound M ≥ N of the
correct number N of unknown sources is known. For m,n≤M , let the RG values R(Ψk,∞) that
synthesize available measurements be arranged into m × n complex-valued observation matrices
H0

m,n and H1
m,n defined by

H0
m,n = [αi+j−2]1≤i≤m, 1≤j≤n = [R(Ψi+j−2,∞)]1≤i≤m, 1≤j≤n, (24a)

H1
m,n = [αi+j−1]1≤i≤m, 1≤j≤n = [R(Ψi+j−1,∞)]1≤i≤m, 1≤j≤n (24b)

The unknowns N , σj and λj can then be recovered via the following procedure:
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Algorithm 1 (reformulation of Theorem 2 of [16])

1. The rank of H0
M,M equals N , and its first N columns are linearly independent (i.e. H0

M,n has

rank N for any n ≥ N). This allows to determine N by evaluating the rank of H0
M,M (or,

equivalently, of H0
M,n for all n≤M until a stationary rank is reached).

2. Once N is known, the source locations σj are the eigenvalues of H1
N,N (H0

N,N )−1.

3. Finally, once N and σj are known, the energies λj are found by simply solving the RG
equations (23), linear in λj, with 0≤ k ≤ N−1.

Implementing this procedure requires prior evaluation of αk = R(Ψk,∞) for 0 ≤ k ≤ 2M − 1.
Besides, the governing matrix [σkj ] (0≤ k ≤ N −1, 1≤ j ≤ N) for this last step is a Vandermonde
matrix, making the estimation of λj potentially sensitive to rounding errors in the evaluation of
{αk}.

3.5. Reconstruction procedure: noisy data

In practice, the accurate determination of N from the rank of H0
M,M is not easy because the

trailing eigenvalues of the latter will usually be small, but nonzero, due to numerical approximations
(in e.g. the evaluation of integrals defining the αk) and rounding errors. It is suggested in [16] to
define N as the smallest n such that the columns of H0

M,n+1 verify a linear-dependence relationship
within a tolerance ǫ (rather than exactly), while N is sought in [23] as the smallest n such that
det

(

H0
n+1,n+1

)

= 0.
Those approaches are no longer suitable when noisy data is used, as is always the case with

real experiments. We propose instead the following procedure for determining N from noisy data,
which is a modified version of Algorithm 1 where the exact rank of H0

M,M , expected to be equal
to M rather than N , is not explicitly sought a priori. Instead, only sources whose energy is above
a threshold λthr are retained as physically relevant (which amounts to defining and evaluating a
numerical rank for H0

M,M ):

Algorithm 2

1. Compute source locations σj as the eigenvalues of H1
M,M (H0

M,M )−1.

2. Find the corresponding energies λj by solving the RG equations

M
∑

j=1

λjσ
k
j = αk (0≤ k≤M−1). (25)

Renumber the σj and λj so that |λ1| ≥ |λ2| . . .≥ |λM |.

3. Evaluate the estimated number of sources Nest(M,λthr) as

Nest(M,λthr) = max
{

j
∣

∣ |λj | ≥ λthr
}

. (26)

Retain (σj , λj)1≤j≤Nest
as identified sources, discard (σj , λj)j>Nest

.
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source # x1 x2 λj tmj ℓj pj

S1 0.25 0, 5 0.04 0.025 0.05 1

S2 −0.25 −0.25 0.06 0.125 0.05 1

S3 0.5 0 0.04 0.225 0.05 1

S4 −0.3 0.1 0.1 0.425 0.05 1

S5 0.5 −0.6 0 0.425 0.05 1

Table 1: Source characteristics (σj = x1,j + ix2,j); S5 is used only in Section 5

4. Numerical experiments: time-independent data

The RG-based source identification is first illustrated on a time-independent example. The
domain Ω is the disk of radius 2 centered at the origin. Four point sources S1, . . . , S4, whose
locations and energies are given in Table 1, are to be identified from time-independent temperature
data Θm on ∂Ω (hence N =4). The noisy-corrupted simulated temperature data is given by

Θm =

N
∑

j=1

λjG(·; sj) + δN = Θm,exact + δN (27)

where x 7→ G(·;σ) is the Green’s function of the Laplace’s equation for a unit source located at
σ ∈ Ω, which is known analytically (see Appendix B) for the disk-shaped domain and boundary
condition (4b) considered for this example, N is a white Gaussian noise whose root mean square
amplitude is equal to that of Θm,exact, and δ is the noise level relative to the reference implicit in
the definition of N . The simulated measurement (27) is then sampled at NΘ equally-spaced points
of the circle ∂Ω, and the RG values αk = R(Ψk) computed for 0≤ k ≤ 2M −1 using a NΘ-point
trapezoidal quadrature rule.

Estimation of the number of sources. Figure 1 shows the estimated number Nest(M,λthr) of sources
for λthr = 2×10−3 as a function of the assumed maximum number M of sources, for various noise
levels δ and two measurement densities NΘ = 100 and NΘ = 500. The correct number N = 4 of
sources is found in all cases with M = 4 or M = 5 and also for larger values of M when δ is small
enough. Moreover, one notes that the larger measurement density NΘ = 500 yields, on average, a
better estimate of N from noisy data.

The ability of the RG-based method to correctly identify the number of unknown sources can
also be assessed by other means. Consider the distribution of the singular values hi (1≤ i≤M) of
H0

M,M , which are plotted in Figure 2 for various measurement densities, with M = 6 and M = 10

and δ = 0, 10−3 and 2× 10−2. One sees in particular that hi ≈ 0 (i > N = 4) for noise-free
data (δ = 0) , except for the coarsest measurement density NΘ = 25 (i.e. the correct number
N of sources is identified), while for noisy data the drop between hN and hN+1 gets sharper as
NΘ increases and δ decreases, and also as M goes from M = 6 to M = 10 while NΘ and δ are
fixed. This is due to the fact that matrix H0

M,M requires the RG values αk for 0 ≤ k ≤ 2M − 1:
since the traces on ∂Ω of the adjoint fields Ψk are increasingly oscillating functions, the effect of
measurement errors on the accuracy of αk increases with k. Finally, to assess the average effect
of noise on source number estimation, 200 realizations of noisy data have been generated for each
noise level δ, and the number of times (out of 200) for which the correct number of sources is
identified is given in Table 2 for various values of δ and measurement density NΘ. One sees that
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Figure 1: Time-independent source identification: Nest(M,λthr) for various noise levels δ, with λthr = 2×10−3 and
NΘ = 100 (top) or NΘ = 500 (bottom).

H
H

H
H

HH
NΘ

δ
0 10−4 10−3 10−2 2×10−2 5×10−2 10−1

50 200 199 185 171 163 89 55
100 200 199 184 179 173 108 81
500 200 200 190 180 177 164 119

1000 200 200 192 173 174 177 145

Table 2: Time-independent source identification, noisy data: number of noise realizations (out of 200) for which the
correct number of sources is identified, for various values of the noise level δ and measurement density NΘ.

the procedure is sensitive to noise, the correct number of sources being consistently identified only
for low noise levels (less than about one percent).

Identification of the source locations and energies. Once the number of sources is known, their
locations and energies are estimated. For a given number of sources this procedure can be shown
to be stable. The absolute discrepancies dL (in location) and dE (in energy) between two sets
A = {σj , λj}1≤j≤N and B = {σ′j , λ

′
j}1≤j≤N of sources can be quantified [5] as

dL(A,B) =
N
∑

j=1

|σj − σ′π(j)|, dE(A,B) =
N
∑

j=1

|λj − λ′π(j)| (28)

with the permutation π defined by π := arg min̟∈SN

∑N
j=1 |σj − σ′

̟(j)|. The total absolute dis-

crepancy is measured by d(A,B) = dL(A,B) + dE(A,B) (conventionally setting d(A,B) = ∞ if
NA 6= NB). Moreover, the following stability result about d(A,B) is given in [5]:

Theorem 1 ([5], Theorem 1.3.4) Assume that there exist real, strictly positive constantsM1,M2, R
such that two sets A and B of sources satisfy

|σj − σk| ≥M1 , |σ′j − σ′k| ≥M1 , |σj − σ′k| ≥M1 (j 6= k);
|λj | ≥M2 ; |λ′j | ≥M2; |z| ≤ R.
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Figure 2: Time-independent source identification: singular values of H0

M,M for various measurement densities, with
M =6 (left) and M =10 (right) and δ=0 (top), δ=10−3 (middle) and δ=2×10−2 (bottom).
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NΘ δ = 0 δ = 10−3 δ = 10−2

drelL drelE drelL drelE drelL drelE

100 5.1×10−14 1.9×10−13 1.7×10−02 6.0×10−02 5.5×10−01 5.7×10−01

500 1.4×10−14 5.1×10−14 7.6×10−03 2.7×10−02 2.4×10−01 2.5×10−01

1000 1.5×10−14 5.6×10−14 5.3×10−03 1.9×10−02 1.4×10−01 1.7×10−01

Table 3: Time-independent point source identification, noisy data: reconstruction errors for various noise levels δ

and measurement densities NΘ.

Then, the thermal boundary data θA and θB corresponding respectively to source sets A and B
satisfy d(A,B) ≤ c(M1,M2,Ω, R)‖θA − θB‖L2(∂Ω).

A local Lipschitz stability result of a similar nature is established in [14] for time-independent
point source identification in anisotropic media. Moreover, source locations σi are found from
an eigenvalue problem (step 1 of Algorithm 2), and matrix perturbation theory [13] shows that
(simple) eigenvalues are continuous functions of the matrix, consistently with the above-quoted
theorem. Hence, the high sensitivity to noise observed for the time-independent data means that
the condition numbers (acting as sensitivity coefficients) for these eigenvalues are high.

In the following, source reconstruction errors will be conveniently quantified in terms of the
relative mean discrepancies

drelL =
(

N
∑

j=1

|σtruej |
)−1

dL, drelE =
(

N
∑

j=1

|λtruej |
)−1

dE. (29)

For example, results for the identification of the set of time-independent sources of Table 1 are
shown in Table 3, in terms of the relative discrepancies (29) averaged over 200 realizations of the
simulated noise. Accurate identification using time-independent data is again seen to require very
low levels of noise.

5. Numerical experiments: time-dependent case

Multiple source identification using transient thermal data is now considered, with Ω taken as
the disc of unit radius centered at the origin. Five point sources S1, . . . , S5 are defined (in terms of
their spatial and temporal location, power and holding time) in Table 1. Synthetic transient data
is numerically generated for three different sets of sources, namely S1 = {S1, S2, S3}, S2 = S1∪{S4}
and S3 = S2 ∪ {S5}, using the Comsol software environment [12]. The identification of the sets
Si from their respective simulated thermal data is then considered. Sets S1 and S2 are made of
spatially and temporally well-separated sources, while S3 features two simultaneously-active sources
S4 and S5. The computations use an approximate version of the time-modulation box function Π,
resulting in a source energy λ = 0.04p.

The numerical results of this Section are based on the following parameters: observation dura-
tion Tobs = 4∼8t⋆, time step 5×10−4, energy threshold λthr = 0.005. RG evaluations again use a
trapezoidal quadrature rule.

Noise-free data, point sources. The RG-based identification procedure is first assessed on noise-free
simulated data for NΘ =480 equally-spaced measurement points on ∂Ω. To study the convergence
of the identification procedure with increasing measurement durations, the sets of singular values

11



0 0,5 1 1,5 2 2,5 3 3,5 4
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

h
i

 

 
S1 S2 S3

h
1

h
2

h
3

Figure 3: Transient point source identification, source set S1, noise-free data: evolution of singular values hi(t) of
HM,M (t).
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Figure 4: Transient point source identification, source set S2, noise-free data: evolution of singular values hi(t) of
HM,M (t).

hi(t) of H
0
M,M (t) are plotted against t for t≤ Tobs in Figures 3, 4 and 5, corresponding respectively

to the identification of S1, S2 and S3. In each case, the largest N singular values reach stabilized
values for t ≈ 1; moreover their values for t = Tobs were found in all cases to be very close to
their steady-state limit (T =∞). Finally, hN+1(Tobs) < 10−2hN (Tobs) was observed in each case,
implying a correct estimation of the number of unknown sources from the transient thermal data.

Once N is determined, the source locations and energies can be found. Relative reconstruction
errors for the identification of S2 using NΘ = 480, 960 or 1920 measurement points, given in Table 4
for δ = 0, show that this step of the reconstruction is quite accurate when noise-free data is used.
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Figure 5: Transient point source identification, source set S3, noise-free data: evolution of singular values hi(t) of
HM,M (t).

NΘ δ = 0 δ = 10−2 δ = 10−1

drelL drelE drelL drelE drelL drelE

480 5.3×10−3 1.4×10−2 1.5×10−2 3.1×10−2 1.5×10−1 3.2×10−1

960 5.2×10−3 1.4×10−2 1.1×10−2 2.4×10−2 1.0×10−1 2.1×10−1

1920 5.2×10−3 1.4×10−2 8.4×10−3 1.9×10−2 7.1×10−2 1.4×10−1

Table 4: Transient point source identification: reconstruction errors for increasing noise level δ and various measure-
ment densities NΘ.

Noisy data, point sources. The influence of data noise on source reconstruction is now considered,
for the unknown source configuration S2, using again synthetic noise generated as outlined in
Section 4 and with relative noise levels δ = 0, 0.01 and 0.1. Overall, the obtained results show that
the reconstruction from transient data is much more resistant to noise than that from steady-state
data. The estimation Nest(M,λthr) of the number of hidden sources is correct for all noise levels
considered (Figure 6), whereas the reconstruction errors for the source locations and energies remain
acceptable under significant noise levels, see Table 4 where measurement densities NΘ = 480, 960
and 1920 were used. Of course, transient measurements provide much more data than steady-state
measurements, and the time integration inherent in the RG functional averages out much of the
noise and improves dramatically the reconstruction stability compared to the steady-state data.

Noisy data, spatially-extended sources. In this final example, the identification of sources whose
support is a small disk (rather than a point) is considered in order to assess the capability of the
proposed RG-based approach to identify sources whose characteristics do not correspond with the
source model assumed in the identification method. Transient conditions are again assumed. The
synthetic data is produced for sources S1, . . . , S5 whose characteristics are given in Table 1, and
then polluted by simulated noise using the previously-presented procedure. Reconstruction errors
using NΘ = 960 and averaged over 200 realisations of the simulated noise are given in Table 5
for three cases of source support radii: (a) r1 = . . . r5 = 0.01, (b) r1 = . . . r5 = 0.05 and (c)
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Case δ = 0 δ = 10−2 δ = 10−1

drelL drelE drelL drelE drelL drelE

(a) 1.1×10−4 1.6×10−3 3.1×10−2 6.4×10−2 3.3×10−1 7.3×10−1

(b) 1.1×10−4 1.6×10−3 3.2×10−2 6.4×10−2 3.1×10−1 6.9×10−1

(c) 3.5×10−3 1.3×10−2 2.2×10−2 5.4×10−2 1.9×10−1 6.5×10−1

Table 5: Transient extended source identification: reconstruction errors for increasing noise level δ (NΘ = 960) and
r1 = . . . r5 = 0.01 (a), r1 = . . . r5 = 0.05 (b), (r1, . . . , r5) = (0.06, 0.03, 0.04, 0.07, 0.03) (c).

(r1, . . . , r5) = (0.06, 0.03, 0.04, 0.07, 0.03).

Discussion. The main trends emerging from these numerical experiments are as follows. For low
measurement noise levels, the number, locations and energies of point sources or spatially-extended
sources are accurately identified. For higher noise levels, the number of unknown sources is still
correctly found while the identification accuracy deteriorates as δ increases, this degradation being
more pronounced for the case of spatially-extended sources. Moreover, in most cases the source
locations are more accurately reconstructed than the source energies.

6. Conclusion

In this article, a non-iterative treatment of the IHSP based on the concept of reciprocity gap is
studied. Depending on how well the real source is described under the modelling assumptions for
the unknown source(s) used in the proposed approach, the source estimation achieved ranges from
quantitatively accurate (in which case the proposed methodology can be used on a stand-alone
basis) to qualitatively reasonable (providing e.g. a suitable initial guess for a subsequent iterative
refinement).

The method proposed here allows the identification of sets of spatially-localized heat sources,
and more specifically to find the number of distinct heat sources, their spatial locations and their
energies. The variation in time of the power of each source is not accessible. The identification
method is very fast, as it does not require any numerical forward solution, unlike most iterative
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methods [7, 4, 21]. Should more refined reconstructions (in terms of either the spatial or tempo-
ral distribution of unknown sources) be needed, this approach provides a useful initial guess for
subsequent iterative inversion algorithms. Topics for future research include treating λthr as a reg-
ularization parameter to be selected algorithmically according to the noise level δ, and evaluating
eigenvalue condition numbers for matrices H1

M,M (H0
M,M )−1 to help quantify the sensitivity to data

noise of identified source locations.
The examples indicate that increasing the spatial measurement density increases the quality

of the source reconstruction. From an experimental point of view, this identification approach is
well suited to full-field measurement techniques such as IR thermography. The robustness of the
method against measurement noise is found to be poor in time-independent conditions (SNR=46)
but substantially better when transient measurements are used (SNR=20), presumably thanks
to averaging effects. The next step is to test this method against experimental data, with IR
thermography measurements currently being carried out at LMGC for this purpose.

Appendix A. Transient adjoint fields

Let (r, θ) denote polar coordinates in the plane. Using Fourier-Bessel series (see [25], Chap. 18),
one can show that the transient adjoint field Ψn(r, θ, t) with vanishing initial condition Ψn(r, θ, 0) =
0 and large-time limit Ψn(r, θ,∞) = zn = rneinθ is given in D := {r < a, 0≤ θ≤ 2π} by

Ψn(r, θ, t) = einθ
∑

m≥1

(1− e−j2m,nt)
2Jn(jm,nr/a)

jm,nJn+1(jm,n)
(A.1)

where Jn is the Bessel function of first kind and order n, and j1,n, j2,n, . . . are the (real-valued,
positive) zeros of Jn in order of increasing value. It can be used for any domain Ω such that Ω̄⊂D.

Appendix B. Point source(s) in a disk: analytical solution

The field G(z;σ) generated by a unit point source located at σ ∈ C (using complex notations
for points in the plane) and solving the Laplace equation in C\{σ}, i.e., the Green’s function of
Laplace’s equation for the entire plane, is given by the well-known formula

G(z;σ) = −
1

2π
Re ln(z − σ) z ∈C\{σ}.

Considering only the case |z| > |σ| (the other case |z| < |σ|, not needed here, being treat-
able by a simple adjustment of the argument to follow), G(z;σ) can be rewritten as G(z;σ) =
−(2π)−1Re

[

ln z + ln(1 − σ/z)
]

, and the last term expanded in a convergent infinite series since
|σ/z|< 1, to obtain

G(z;σ) = −
1

2π
Re

{

ln z −
∑

n≥1

1

n
(σ/z)n

}

.

Now, let Db := {z ∈ C | |z| < b} denote the disk of radius b and Cb its boundary (i.e., the circle
of radius b centered at the origin). The Green’s function G(z;σ) satisfying the Robin boundary
condition (4b), i.e., G(·;σ)+∂nG(·;σ) = 0 on Cb is sought. To that aim, let G(·;σ) = G(·;σ)+Gc(·;σ),
where the complementary contribution Gc is nonsingular at z = σ and is thus sought as a power
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series: Gc(z;σ) = (2π)−1Re
[
∑

n≥0 αnz
n
]

. Enforcing the Robin boundary condition at |z|= b, one
then finds

α0 =
1

b
+ ln b, αn =

n−b

n(n+b)

( σ̄

b2

)n

.

The steady-state temperature Θ(z) generated in Db by the unit heat source located at σ ∈Db is
then given by

Θ(z) =
1

2πb
+

1

2π

∑

n≥1

1

n
Re

[(σ

z

)n

+
n−b

n+b

( σ̄z

b2

)n]

.

The predicted boundary measurement Θm = Θ||z|=b is then obtained by setting z = bẑ (with
|ẑ|=1) in the above formula. Noting that Re

(

σ/z
)

= Re
(

σ̄z/b2
)

= (σ ˆ̄z + σ̄ẑ)/(2b), one finds

Θm(ẑ;σ) =
1

2πb

{

1 +
∑

n≥1

b−n(σnẑ−n + σ̄nẑn)

}

. (B.1)

The RG integrals for adjoint fields Ψk = zk can then easily be evaluated analytically using (B.1):
since Ψk = (bẑ)k on Cb, R(Ψk,∞;σ) is given by

R(Ψk,∞;σ) =

∫

|ẑ|=1
Θm(ẑ;σ)(bẑ)

kb dẑ = zk

having used
∫

|ẑ|=1
ẑp dẑ = 2πδp0 (p∈Z)

Of course, the effect of several sources σi with energies λi is obtained simply by linear combination:
R(Ψk,∞) =

∑

i λiR(Ψk,∞;σi).
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ENIT, Tunis (Tunisia) (2009).
[6] Bui, H. D., Constantinescu, A., Maigre, H. Numerical identification of linear cracks in 2D elastodynamics using

the instantaneous reciprocity gap. Inverse Prob., 20:993–1001 (2004).
[7] Capatina, A., Stavre, R. Algorithms and convergence results for an inverse problem in heat propagation. Int.

J. Eng. Sc., 38:575–587 (2000).
[8] Chrysochoos, A. Infrared thermography, a potential tool for analysing the material behaviour (in French).

Mécanique et Industries, 3:3–14 (2002).
[9] Chrysochoos, A., Belmahjoub, F. Thermographic analysis of thermo-mechanical couplings. Arch. Mech., 44:55–

68 (1992).
[10] Cimetière, A., Delvare, F., Jaoua, F., Pons, F. Solution of the Cauchy problem using iterated Tikhonov

regularization. Inverse Prob., 17:553–570 (2001).

16



[11] Colton, D., Haddar, H. An application of the reciprocity gap functional to inverse scattering theory. Inverse
Prob., 21:383–398 (2005).

[12] Comsol Multiphysics. http://www.comsol.com/ (1998-2012).
[13] Demmel, J. W. Applied numerical linear algebra. SIAM (2007).
[14] El Badia, A. Inverse source problem in an anisotropic medium by boundary measurements. Inverse Prob.,

21:1487–1506 (2005).
[15] El Badia, A., Ha Duong, T. Some remarks on the problem of source identification from boundary measurements.

Inverse Prob., 14:883–891 (1998).
[16] El Badia, A., Ha Duong, T. An inverse source problem in potential analysis. Inverse Prob., 16:651–663 (2000).
[17] El Badia, A., Ha Duong, T. Determination of point wave sources by boundary measurements. Inverse Prob.,

17:1127–1139 (2001).
[18] El Badia, A., Ha Duong, T. On an inverse source problem for the heat equation. Application to a pollution

detection problem. J. Inv. Ill-Posed Prob., 10:585–599 (2002).
[19] Ikehata, M. An inverse source problem for heat equation and the enclosure method. Inverse Prob., 23:183:202

(2007).
[20] Isakov, V. Inverse source problems. American Mathematical Society (1989).
[21] Johansson, B., Lesnic, D. A procedure for determining a spacewise dependent heat source and the initial

temperature. Applic. Anal., 87:265–276 (2008).
[22] Kang, H., Lee, H. Identification of simple poles via boundary measurements and an application of EIT. Inverse

Prob., 20:1853–1863 (2004).
[23] Nara, T., Ando, S. A projective method for an inverse source problem of the Poisson equation. Inverse Prob.,

19:355–369 (2003).
[24] Shifrin, E.I., Shushpannikov, P.S. Identification of a spheroidal defect in an elastic solid using a reciprocity gap

functional. Inverse Prob., 26:055001 (2010).
[25] Watson, G. N. A treatise on the theory of Bessel functions. Cambridge University Press (1944).
[26] Yamatani, K., Ohnaka, K. An estimation method for point sources of multidimensional diffusion equation.

Appl. Math. Modelling , 21:77–84 (1997).

17


