
HAL Id: hal-00732677
https://hal.science/hal-00732677

Preprint submitted on 16 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Remark on the Projective Geometry of Constant
Curvature Spaces

Athanase Papadopoulos, Sumio Yamada

To cite this version:
Athanase Papadopoulos, Sumio Yamada. A Remark on the Projective Geometry of Constant Curva-
ture Spaces. 2012. �hal-00732677�

https://hal.science/hal-00732677
https://hal.archives-ouvertes.fr


A Remark on the Projective Geometry of

Constant Curvature Spaces

Athanase Papadopoulos and Sumio Yamada

September 16, 2012

Abstract

We highlight the relation between the projective geometries of n-

dimensional Euclidean, spherical and hyperbolic spaces through the pro-

jective models of these spaces in the n+ 1-dimensional Minkowski space,

using a cross ratio notion which is proper to each of the three geometries.
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1 Cross Ratio

The projective geometry of a Riemannian manifold (M, g) is the geometry of the
space of lines/unparametrized geodesics of the manifold. For each dimension
n ≥ 2, the Euclidean space R

n, the sphere Sn and the hyperbolic space H
n

provide a set of canonical Riemannian manifolds of constant sectional curvatures
0, 1 and −1 that are distinct from each other in the Riemannian geometric
sense, but one can consider the projective geometry on each of these spaces.
The most important qualitative feature of projective geometry is the notion of
cross ratio, and the Riemannian distance and angle invariance under isometric
transformations of the underlying Riemannian manifold are replaced by a weaker
invariance of the cross ratio under projective transformations. The goal of this
article is to highlight the relation among the projective geometries of these three
space forms through the projective models of these spaces in the Minkowski
space R

n,1, by using a cross ratio notion which is proper to each of the three
geometries.

We start by recalling some classical facts. In the Euclidean plane R2, consider
four ordered distinct lines l1, l2, l3, l4 that are concurrent at a point A and let
l be a line that intersects these four lines at points A1, A2, A3, A4 respectively.
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Then the cross ratio [A2, A3, A4, A1] of the ordered quadruple A1, A2, A3, A4

does not depend on the choice of the line l′. This property expresses the fact
that the cross ratio is a projectivity invariant.

As a matter of fact, Menelaus (Alexandria, 2nd century A.D.) considered the
above property not only the Euclidean plane, but also on the sphere, where the
lines are the spherical geodesics, which are the great circles of the sphere. Once
there is a parallel between the Euclidean geometry and the spherical geome-
try, it is natural to expect to have the corresponding statement for hyperbolic
geometry. We now define the cross ratio for the three geometries.

Definition Consider a geodesic line in Euclidean, hyperbolic and spherical ge-
ometry respectively, and let A1, A2, A3, A4 be four ordered pairwise distinct
points on that line. We define the cross ratio [A1, A2, A3, A4], in the Euclidean
case, by:

[A2, A3, A4, A1]e :=
A2A4

A3A4

· A3A1

A2A1

,

in the hyperbolic case, by:

[A2, A3, A4, A1]h :=
sinhA2A4

sinhA3A4

· sinhA3A1

sinhA2A1

,

and in the spherical case, by:

[A2, A3, A4, A1]s :=
sinA2A4

sinA3A4

· sinA3A1

sinA2A1

,

where AiAj stands for the distance between the pair of points Ai and Aj ,
which is equal to the length of the line segment joining them. (For this, we
shall assume that in the case of spherical geometry the four points lie on a
hemisphere; instead, we could work in the elliptic space, that is, the quotient of
the sphere by its canonical involution.)

We denote by Un the open upper hemisphere of Sn equipped with the in-
duced metric. Let X and X ′ belong to the set {Rn,Hn, Un}. We shall say that
a map X → X ′ is a perspectivity, or a perspective-preserving transformation if it
preserves lines and if it preserves the cross ratio of quadruples of points on lines.
(We note that these terms are classical, see e.g. Hadamard [3] or Busemann [2].
We also note that such maps arise indeed in perspective drawing.) In what fol-
lows, using well-known projective models in R

n+1 of hyperbolic space H
n and

of the sphere Sn, we define natural homeomorphisms between R
n, Hn and the

open upper hemisphere of Sn which are perspective-preserving transformations.
The proofs are elementary and are based on first principles of geometry.

The authors would like to thank Norbert A’Campo for sharing his enthusi-
asm and ideas.

2 Projective Geometry

Up to now, the word “projective” is being used as a property of the incidence of
lines/geodesics in the underlying space. On the other hand, the n-dimensional
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sphere and the n-dimensional hyperbolic space are realized “projectively” in
n+1-dimensional Euclidean space as sets of “unit” length vectors. Namely the
sphere Sn is the set of unit vectors in R

n+1 with respect to the Euclidean norm

x2
1 + · · ·+ x2

n + x2
n+1 = 1

and the hyperbolic space Hn is one of the two components the set of “vectors of
imaginary norm i” with xn+1 > 0 in R

n+1 with respect to the Minkowski norm

x2
1 + · · ·+ x2

n − x2
n+1 = −1.

These models of the two constant curvature spaces are called projective for
the geodesics in the curved spaces are realized as the intersection of the unit
spheres with the two-dimensional subspace of Rn+1 through the origin of this
space. We also note that each two-dimensional linear subspace intersects the
hyperplane {xn+1 = 1} in a line, that is, a Euclidean geodesic. Hence each
two-dimensional linear subspace of Rn+1 represents a geodesic in each of the
three geometries, consequently establishing the correspondence among the three
incidence geometries.

Now we present the main results.

Theorem 1 (Spherical Case) Let Ps be the projection map from the origin of

R
n+1 sending the open upper hemisphere Un of Sn onto the hyperplane {xn+1 =

1} ⊂ R
n+1. Then the projection map Ps is a perspectivity. In particular it

preserves the values of cross ratio; namely for a set of four ordered pairwise

distinct points A1, A2, A3, A4 aligned on a great circle in the upper hemisphere,

we have

[Ps(A2), P2(A3), Ps(A4), Ps(A1)]e = [A2, A3, A4, A1]s.

Proof Let u, v be the two points on the hyperplane {xn+1 = 1}, let Ps(u) =:
[u], Ps(v) =: [v] be the points in U , and d([u], [v]) be the spherical distance
between them. Finally let ‖x‖ be the Euclidean norm of the vector x ∈ R

n+1.
We show that

sind([u], [v]) =
‖u− v‖
‖u‖‖v‖ .

This follows from the following trigonometric relations:

sind([u], [v]) = sin
[

cos−1
( u

‖u‖ · v

‖v‖
)]

=

√

1− cos2
[

cos−1

( u

‖u‖ · v

‖v‖
)]

=

√

1− (
u

‖u‖ · v

‖v‖
)2

=
1

‖u‖‖v‖
√

‖u‖2‖v‖2 − (u · v)2

=
1

‖u‖‖v‖ × (the area of parallelogram spanned by u and v)

=
‖u− v‖
‖u‖‖v‖ .
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Now for a set of four ordered pairwise distinct points A1, A2, A3, A4 aligned
on a great circle in the upper hemisphere, their spherical cross ratio [A2, A3, A4, A1]s
is equal to the Euclidean cross ratio [Ps(A2), Ps(A3), Ps(A4), Ps(A1)]e;

sind([A2], [A4])

sind([A3], [A4])
· sin d([A3], [A1])

sin d([A2], [A1])
=

‖A2−A4‖
‖A2‖‖A4‖

‖A3−A4‖
‖A3‖‖A4‖

·
‖A3−A1‖
‖A3‖‖A1‖

‖A2−A1‖
‖A2‖‖A1‖

=
‖A2 −A4‖
‖A3 −A4‖

·‖A3 −A1‖
‖A2 −A1‖

q.e.d.

Theorem 2 (Hyperbolic Case) Let Ph be the projection map of the hyper-

boloid H
n ⊂ R

n+1 from the origin of Rn+1 onto the unit disc of the hyperplane

{xn+1 = 1} ⊂ R
n+1. Then the projection map Ph is a perspectivity. In particu-

lar it preserves the values of cross ratio; namely for a set of four ordered pairwise

distinct points A1, A2, A3, A4 aligned on a geodesic in the upper hyperbolid, we

have

[Ph(A2), Ph(A3), Ph(A4), Ph(A1)]e = [A2, A3, A4, A1]s.

Proof We follow the spherical case, where the sphere of the unit radius
in R

n+1 is replaced by the upper sheet of the sphere of radius i, namely the
hyperboloid in R

n,1. Let u, v be the two points on the hyperplane {x0 = 1}. and
Ph(u) =: [u], Ph(v) =: [v] be the points in the hyperboloid, or, equivalently, the
time-like vectors of unit (Minkowski) norm. Denote by d([u], [v]) the hyperbolic
length between the points. Also let ‖x‖ be the Minkowski norm of the vector
x ∈ R

n,1. We will show that

sinh d([u], [v]) = −‖u− v‖
‖u‖‖v‖ .

Note that the number on the right hand side is positive, for ‖u‖, ‖v‖ are posi-
tive imaginary numbers, and u − v is a purely space-like vector, on which the
Minkowski norm of Rn,1 and the Euclidean norm of Rn coincide.

This follows from the following trigonometric relations

sinh d([u], [v]) = sinh
[

cosh−1
( u

‖u‖ · v

‖v‖
)]

=

√

cosh2
[

cosh−1
( u

‖u‖ · v

‖v‖
)]

− 1

=

√

( u

‖u‖ · v

‖v‖
)2

− 1 =

√
−1

‖u‖‖v‖
√

‖u‖2‖v‖2 − (u · v)2

=

√
−1

‖u‖‖v‖
√
−1× (the area of parallelogram spanned by u and v)

= −‖u− v‖
‖u‖‖v‖ .
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The formula

√

‖u‖2‖v‖2 − (u · v)2 =
√
−1× (the area of parallelogram spanned by u and v)

is as stated in Thurston’s notes (Section 2.6 [6]). Now by the same argument
as in the spherical case, the hyperbolic cross ratio [A2, A3, A4, A1]h is equal to
the Euclidean cross ratio [P (A2), P (A3), P (A4), P (A1)]e. q.e.d.

In §1, we have referred to the notion of projectivity invariance of the cross ra-
tio in Euclidean space. We extend this notion for the cross ratio in the spherical
and hyperbolic spaces, by using the same definition. In the case of the sphere,
we restrict to configurations so that all the points considered are contained in
an open hemishpere. We have the following:

Corollary 3 The spherical and hyperbolic cross ratios are projectivity invari-

ants.

This follows from the fact that the projection map Ps and Ph are both
perspective-preserving transformations. The classical proofs of this result in
the cases of Euclidean and spherical geometry (known to Menelaus) relies on
the fact that the cross ratio is completely determined by the angles among the
lines/geodesic li’s at the vertex A. This proof can easily be done using the
so-called Sine Rule.

Proposition 4 (Sine Rule) Given a triangle ABC with sides a, b, c opposite

to the angles A,B,C respectively, we have, in the case where the triangle is

Euclidean, spherical, hyperbolic respectively:

a

sinA
=

b

sinB
=

c

sinC
,

sin a

sinA
=

sin b

sinB
=

sin c

sinC
,

sinh a

sinA
=

sinh b

sinB
=

sinh c

sinC
.

For this and for other trigonometric formulae in hyperbolic trigonometry we refer
the reader to [1] where the proofs are given in a model-free setting. In such a
setting the proofs in the hyperbolic and the spherical cases can be adapted from
each other with very little changes.

3 Generalized Beltrami-Klein’s models of Hn

Given a bounded open convex set Ω in a Euclidean space, D. Hilbert in ([4]
1895) proposed a natural metric H(x, y), now called the Hilbert metric, de-
fined for x 6= y in Ω as the logarithm of the cross ratio of the quadruple
(x, y, b(x, y), b(y, x)), where b(x, y) is the point where the ray R(x, y) from x
through y hits the boundary ∂Ω of Ω. This defines a metric on Ω, which is
Finslerian and projective. We refer to the article [5] for a parallel treatment of
the subject in hyperbolic and in spherical geometry.

The most prominent example of Hilbert metric is the Beltrami-Klein model
of hyperbolic space, where the underlying convex set Ω is the unit ball in R

n. In
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fact, this special case was Hilbert’s primary motivation to define the so-called
Hilbert metric on an arbitrary bounded open convex set Ω in a Euclidean space.
Actually, for the Beltrami-Klein model, the size of the ball is irrelevant, as the
Hilbert metric is invariant under homothety of the underlying Euclidean space,
so that for each Hilbert metric Hρ(x, y) defined on the ball Bρ(0) of radius ρ > 0
centered at the origin, (Bρ, Hρ) is isometric to the hyperbolic space H

n.
Immediate corollaries of Theorems 1 and 2 are that there are new models

of the hyperbolic space, which we call generalized Beltrami-Klein models. We
first set some notation: let Bh

ρ and Bs
ρ be the geodesic balls of H

n and Sn

respectively, both centered at a fixed reference point which is identified with
the point (0, · · · , 0, 1) of Rn+1 through the projective models. Then we define
the spherical Hilbert metric as follows:
Definition For a pair of points x and y in Bs

ρ with 0 < ρ ≤ π/2, the Hilbert
distance from x to y is defined by

Hs
ρ(x, y) =







log
sin d(x, b(x, y))

sin d(y, b(x, y))
· sin d(y, b(y, x))
sin d(x, b(y, x))

if x 6= y,

0 otherwise

where b(x, y) is the point where the geodesic ray R(x, y) from x through y hits
the boundary ∂Bs

ρ of Bs
ρ.

We then define hyperbolic Hilbert metric:
Definition For a pair of points x and y in Bh

ρ with ρ > 0, the Hilbert distance
from x to y is defined by

Hh
ρ (x, y) =







log
sinh d(x, b(x, y))

sinhd(y, b(x, y))
· sinh d(y, b(y, x))
sinh d(x, b(y, x))

if x 6= y,

0 otherwise

where b(x, y) is the point where the geodesic ray R(x, y) from x through y hits
the boundary ∂Bh

ρ of Bh
ρ .

Through the projective maps Ps and Ph, each geodesic ball in the curved
spaces corresponds to a Euclidean ball. From Theorems 1 and 2, the Hilbert
distance, which is the logarithm of the spherical/hyperbolic cross ratio of the
quadruple (x, y, b(x, y), b(y, x)) defined on the geodesic ball, is preserved by
projective maps; that is, Ph and Ps are isometries of the Hilbert metrics. Hence
it follows that in the spherical case, we have the following:

Corollary 5 The geodesic ball Bs
ρ in the unit sphere Sn with 0 < ρ < π/2 with

its spherical Hilbert metric Hs
ρ is isometric to the hyperbolic space H

n.

And in the hyperbolic case, we have:

Corollary 6 The geodesic ball Bh
ρ in the hyperbolic space Hn with its hyperbolic

Hilbert metric Hh
ρ is isometric to the hyperbolic space H

n.

We can consider the spaces (Bs
ρ, H

s
ρ) and (Bh

ρ , H
h
ρ ) as generalized Beltrami-

Klein models of the hyperbolic space.
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