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Abstract

Comparisons of various methods for solving stochastic control economic models can be
done with Monte Carlo methods. These methods have been applied to simple one-state,
one-control quadratic-linear tracking models; however, large outliers may occur in a sub-
stantial number of the Monte Carlo runs when certain parameter sets are used in these
models. Building on the work of Mizrach (1991) and Amman and Kendrick (1994, 1995),
this paper tracks the source of these outliers to two sources: (1) the use of a zero for the
penalty weights on the control variables and (2) the generation of near-zero initial estimate
of the control parameter in the systems equations by the Monte Carlo routine. This result
leads to an understanding of why both the unsophisticated Optimal Feedback (Certainty
Equivalence) and the sophisticated Dual methods do poorly in some Monte Carlo compar-
isons relative to the moderately sophisticated Expected Optimal Feedback method.
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1 Introduction

One of the outstanding problems in the application of stochastic control methods
to economic models is the relative performance of different ways of treating the
uncertainties in these models and thus of different methods for solving the models.
For example, there has been considerable comparison of Optimal Feedback (OF),
Expected Optimal Feedback (EOF) and Dual Control (DC) methods using Monte
Carlo runs. 2 The first of these methods is a certainty equivalence approach that
ignores all the uncertainties in the model except the additive noise terms in the
systems equations. The second method considers additive noise terms as well as
parameter uncertainty in the system equations but uses passive learning. The third
method considers both additive noise and parameter uncertainty and adds consid-
eration of active learning methods that include perturbation early in time to gain
improved estimates of the model parameters later in time.

The comparison of these methods has mostly been done applying Monte Carlo
methods to simple one-state, one-control quadratic-linear tracking models such as
the MacRae (1975) model and the Beck and Wieland (2002) model. 3 However, in
some cases these comparisons have encountered a significant number of outliers,
viz Amman, Kendrick and Tucci (2007). The source of these outliers was a puzzle
– particularly so because they occurred prominently in the least sophisticated (Op-
timal Feedback) and the most sophisticated (Dual Control) methods but not in the
intermediate sophistication method (Expected Optimal Feedback).

In this paper we track the source of this puzzle to the choice of parameters (i.e. the
parameter set) in these models. In particular, we find that the use of a zero for the
penalty weight on the control variables in the criterion function (the λ parameter)
can cause problems. This is true when this weight is used in conjunction with a
parameter value near zero for the coefficient in the system equation that is multi-
plied by the control variable (the b coefficient). If the variance of the b parameter is
sufficiently large, then the Monte Carlo routine will generate values of this estimate
around zero in a meaningful number of runs. The combination of a zero value for
λ and a near zero value for b results in division by a number near zero and thus
causes large values for some components of the calculations and therefore outliers.
However, this occurs in the Optimal Feedback and the Dual Control methods but
not in the Expected Optimal Feedback methods as is discussed below.

The MacRae (1975) and the Beck and Wieland (2002) models are identical in struc-

2 For a classification of various methods of solving stochastic control models see Kendrick
and Amman (2006).
3 This work is a part of the Methods Comparison Project that seeks to compare various
ways of solving economic stochastic control models. For examples of the various ap-
proaches under consideration see Cosimano (2008), Cosimano and Gapen (2006), Amman,
Kendrick and Tucci (2007) and Beck and Wieland (2002).
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ture; however they use different sets of parameter values. In particular the Beck and
Wieland model uses a zero for the weight, λ, on the control variables in the criterion
function. Consequently it is this model where the outlier problem is pronounced,
particularly when the variance of the b parameter is relatively large.

In tracking down the source of the outliers we have made considerable use of the re-
search results on nonconvexities in the cost-to-go function of adaptive control prob-
lems. This work begin when the Tse and Bar-Shalom (1973) algorithm for solving
adaptive control problems as used by Kendrick (1978) and, Norman, Norman and
Palash (1979) found nonconvexities in the cost-to-go function of a ten-period three-
parameter version of the classic MacRae (1972) problem. However, the computer
codes were sufficiently complex that it was difficult to be sure that the phenomena
were not caused by programming errors. Therefore, at the time it was uncertain
whether nonconvexities were

(1) caused by a programming error;
(2) caused by the particular choice of parameters;
(3) fundamental to this class of problems.

Over a decade later Mizrach (1991) and Amman and Kendrick (1994, 1995) re-
turned to this problem showing, by analytical methods, that nonconvexities are
fundamental in this type of models.

In the Tse and Bar-Shalom (1973) approach for solving active learning stochastic
control problems, the total cost-to-go is approximated by a function which can be
decomposed into three terms: deterministic, cautionary and probing. Nonconvex-
ities are caused by the probing and/or cautionary components of the cost-to-go.
When only the parameter associated with the control variable is unknown, the non-
convexities are determined by the changes in the path of future state variables in-
duced by modifying the value of the control. If more than one parameter is unknown
the covariance between the unknown parameters, e.g. the covariance between the
unknown parameter associated with the control and that associated with the state,
and the relative magnitude of their variances is another possible source of noncon-
vexities (Mizrach (1991)). 4

The situation with only one unknown parameter is further investigated in Amman

4 According to Mizrach (1991):

increases in the control variables ultimately do reduce the parametric uncertainty to zero
in the limit ... there will often be at least one region in which increases in the control
value raise parametric uncertainty before it begins to decline.

This phenomenon can generate nonconvexities, see Mizrach (1991, pages 516, 526-534).
Furthermore when the planning time horizon is short initial conditions are important. For
instance in the 2 periods case, different values of x0 affect the variance term in an interesting
way, Mizrach (1991, page 534).
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and Kendrick (1994, 1995). They find that nonconvexities depend upon the mag-
nitude of the initial variance of the unknown parameter, the level of the parameter
itself and the variance of the additive noise in the system equation. Moreover, they
show that particular combinations of the parameters and of the penalty weights in
the objective function can turn the usually convex cautionary term of the cost-to-go
into a concave term which, under certain circumstances, may generate a concave
cost-to-go. These results are important because they clearly indicate that noncon-
vexities are fundamental in the mathematics of the problem (Amman and Kendrick
(1995, page 456)) and can arise even in very simple adaptive control problems.

These conclusions have substantial computational consequences. When noncon-
vexities are absent, the stochastic control problem can be solved with gradient
methods. However the gradient solution may be a local optimum, rather than a
global optimum, when nonconvexities are present. For this reason a globally op-
timizing algorithm should be generally preferred except in the one control case
where a grid search may be equally effective. Indeed as shown in Tucci (1998,
2004), nonconvexities may be much more common and subtle than the theoreti-
cal results suggest. For example, Amman and Kendrick (1995, page 465) find that
when the MacRae (1972) parameter set is used, the nonconvexity appears when the
variance of the estimate of the unknown parameter is set to 2. On the other hand
Tucci (1998, 2004) reports nonconvexities in 28% of the cases of a Monte Carlo
experiment with the same parameter set and a variance equal to .5 for the unknown
parameter. Therefore the need for a globally optimizing algorithm may be more
stringent than generally believed.

One side effect of the line of research discussed above on the origin of noncon-
vexities is that the analytical results contained in these papers allow one to fully
characterize these three components of the cost-to-go for the simplest one-state,
one-control, one unknown parameter, quadratic linear adaptive control problem
with a time horizon of two periods. It is therefore possible to compare the av-
erage or representative cost-to-go associated with different parameter sets and to
study the impact of a certain parameter set on the individual runs of a Monte Carlo
experiment. 5 The former may help to understand the basic characteristics of a cer-
tain parameter set. The latter may be useful to reconcile the theoretical results in
Mizrach (1991) and Amman and Kendrick (1995) with the computational findings
in Tucci (1998, 2004) and to shed some light on the outlier problem mentioned in
Amman et al. (2007).

In the following a simple, but fairly general, one-state, one-control, one unknown
parameter, quadratic linear adaptive control problem is presented first (Section 2).
Then the probing, cautionary and deterministic components of its dynamic pro-

5 By parameter set is here intended both the value of the parameters and their covariances
and the values used for the penalty matrices, desired paths for the states and controls and
the initial state.
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gramming cost-to-go are characterized (Sections 3 through 5). This is done for
the case in which the planning time horizon is 2, following closely Amman and
Kendrick (1994, 1995). In Section 6 it is shown that this model encompasses as
special cases both the MacRae (1972) and Beck and Wieland (2002) models and
parameter sets and the characteristics of the representative cost-to-go associated
with these two problems are discussed. At this point the impact of a certain param-
eter set on the individual runs of a Monte Carlo experiment is investigated (Section
7). Its impact on the OF and EOF solutions is discussed in Section 8. Conclusions
are summarized in Section 9.

2 The Problem

Consider a simple control problem with one state, one control and a time horizon
of N periods in which the policy maker wants to find u0, u1, . . . , uN−1 to minimize

J = E

{
1

2
wN (xN − x̃N)2 +

1

2

N−1∑
k=0

[
wk (xk − x̃k)

2 + λk (uk − ũk)
2
]}

(1)

where E is the expectation operator, subject to

xk+1 = αxk + βkuk + γ + εk+1 for k = 0, 1, ..., N − 1 (2)

with xk and uk the state and control variables, respectively. Also α, βk and γ are
the parameters of the system equation and εk+1 is an error term identically and
independently distributed (i.i.d.) normal with mean zero and variance q. Finally,
the initial state x0 and the penalty weights w’s and λ’s are given constants. The
parameter associated with the control is assumed time-varying with the following
law of motion 6

βk+1 = dβk + (1 − d)β + ηk+1 for k = 0, 1, ..., N − 1 (3)

where d is the transition parameter, β is the unconditional mean of the stochastic
parameter and ηk+1 is the additive error term i.i.d. normal with mean zero and
variance σ2

η . Also, the states are measured without error. 7

6 Tucci (1997, 1998) uses a similar model for the parameter associated with the control
variable. Tucci (2004) and Tucci et al (2007) consider the case where all the parameters
may be time-varying.
7 This is equivalent to setting H = I and R = 0 in Kendrick (1981, Chapters 10-11) or
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It is worth while to point out that equation (3) includes as special cases several
relevant situations. For instance, when d and σ2

η are zero, βk reduces to the usual
time-invariant case. On the other hand, if d = 0 but σ2

η �= 0 equation (3) describes
a random parameter, i.e. a parameter varying randomly about the fixed mean β.
When β = 0, equation (3) describes the usual vector-autoregressive process of
order one with mean zero. 8 Finally, parameters following a random walk are mod-
eled setting d = 1. Alternatively, equation (3) may be used to model the lack of
knowledge about the parameters. For instance when the true parameter associated
with the control is constant but unknown, setting d = 0 and σ2

η �= 0 in the parame-
ter transition equation allows one to interpret βk in equation (2) as the time-varying
estimate, based on observations up to time k, of the unknown β used to determine
optimal control. In this case σ2

η should be interpreted as the variance of the estimate
based on all information available at time k. 9

Following the Tse and Bar-Shalom (1973) method for solving active learning stochas-
tic control problems, Kendrick (1981, 2002) and Tucci (1997, 2004) compute the
approximate cost-to-go at different values of the control and then choose that value
which yields the minimum approximate cost. 10 This approximate cost-to-go can
be decomposed into three terms and, for the present problem, written as

JN = JD,N + JC, N + JP, N (4)

where JN is the total cost-to-go with N periods remaining and JD, N , JC, N and
JP, N are the deterministic, cautionary and probing components, respectively. In
equation (4) the deterministic component includes only terms which are not stochas-
tic. The cautionary term includes uncertainty only in the next time period and the
probing term contains uncertainty in all future time periods. Thus the probing term
includes the motivation to perturb the controls in the present time period in order
to reduce future uncertainty about parameter values. 11

3 The Probing Component

Amman and Kendrick (1994, 1995) consider the case where the planning horizon
is N = 2 and all the parameters in equation (2) are constant, but β is unknown.

Tucci (2004, Chapters 2-5).
8 See, e.g., Harvey (1981, Chapter 2).
9 Sometimes the more cumbersome notation σ2

b,k , with σ2
b,k ≡ σ2

η , may be preferred to
stress the fact that it is the variance of the estimate of the unknown parameter β based on
the information available at time k, when this is the appropriate interpretation.
10 See Kendrick (1981, 2002, Chapters 9-10) or Tucci (2004, Chapter 2) for details.
11 See Kendrick (1981, pages 97-98)) for an introduction to this decomposition.
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Therefore the optimal control is determined using the estimate of β based on all the
information available at time 0, i.e. β0 ≡ b, with a variance equal to σ2

η ≡ σ2
b . They

show that the probing component takes the form 12

JP, 2 =
1

2

[
g(u0)

h(u0)

]
(5)

where g(u0) is a quadratic function reflecting the effect of the control u0 on future
states x1 and x2. 13 Also, h(u0) is a quadratic function whose inverse defines the
relationship between the control and the updated variance of the unknown parame-
ter b. 14 Consequently the probing component is the ratio of two quadratic functions
that can be written as 15

h(u0) =

(
1

σ2
bq

)
(σ2

bu
2
0 + q) (6)

and

g(u0) =

(
w2

2

λ1 + b2w2

)
(bu01 + x02 − x̃2)

2 (7)

with u01 and x02 the nominal, or CE, values of u1 and x2 defined as 16

u01 =
(
− 1

λ1 + b2w2

) [
αb2w2u0 + α2bw2x0 + αbγw2 + bw2 (γ − x̃2) − λ1ũ1

]
(8)

x02 = b
(
α − αb2w2

λ1+b2w2

)
u0 + α2x0 + αγ + γ

+ b
(
− 1

λ1+b2w2

)
[α2bw2x0 + αbγw2 + bw2 (γ − x̃2) − λ1ũ1]

(9)

12 See Amman and Kendrick (1994) for a detailed derivation.
13 The term g(u0) is the same as the script R term in Mizrach (1991) and Amman and
Kendrick (1995) and the Θ term in Tucci (2004, Chapters 2-5).
14 The updated variance of the parameter can be obtained using the Kalman filter and is
independent of the actual observations. See, e.g., Tucci (2004, Chapter 2) for a brief dis-
cussion or Harvey (1981, Chapter 4) for a more technical presentation.
15 See Amman and Kendrick (1994) for details.
16 Equations (8)-(9) correspond to (2.17) and (2.19) in Amman and Kendrick (1994), re-
spectively.
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Substituting (8)-(9) into (7) and simplifying yields

g(u0) = φ1 (φ2u0 + φ3)
2 (10)

with

φ1 =
(

w2
2

λ1+b2w2

)
φ2 = αb

(
1 − 2b2w2

λ1+b2w2

)
φ3 = 2b

(
− 1

λ1+b2w2

)
[α2bw2x0 + αbγw2 + bw2 (γ − x̃2) − λ1ũ1]

+ α2x0 + αγ + γ − x̃2

(11)

So the probing component of the cost-to-go is the ratio of two quadratic functions
in u0. 17

From (5) with h and g defined as in (6) and (10)-(11), respectively, it follows that
the probing function in this case is

JP,2 =

(
σ2

bqφ1

2

)
(φ2u0 + φ3)

2

σ2
bu

2
0 + q

(12)

From equation (11) φ1 will be positive regardless of b and u0 when the λ’s and w’s
are positive. Under this condition the first term in parenthesis on the right-hand side
of (12) will be positive provided that the variances σ2

b and q are nonzero. If these
conditions are met, JP,2 is non-negative for all values of u0.

Next Amman and Kendrick (1994, 1995) consider the roots of the probing term.
The first derivative of equation (12) with respect to the control is

17 To investigate the behavior of this component of the probing cost, Mizrach (1991)
studies its partial derivative with respect to the control at time 0, i.e. [∂g(u0)/∂u0] =
2φ1 (φ2u0 + φ3) [∂ (φ2u0 + φ3) /∂u0] . Given that φ1 is positive regardless of b and u0

when the λ’s and w’s are positive, the signs of the term in parenthesis and of the par-
tial derivative appearing on the right-hand side are critical. If both of them are posi-
tive an increase in the control increases the volatility of the future states path and, de-
pending upon how fast the variance of the uncertain parameter decreases when the con-
trol is increased, this can cause the appearance of nonconvexities in the probing compo-
nent of the cost-to-go. This derivative is indeed positive when the set of parameters is
α = .7, b = −3.5, c = 3.5, q = −3.5, σ2

b = 2.5, x0 = 2, λ1 = λ2 = w1 = w2 = 1 ,
x̃0 = x̃1 = x̃2 = 0 and ũ0 = ũ1 = ũ2 = 0 . In this case movements in the control variable
produce changes in g(u0) large enough to overcome the drop in the updated variance of b
caused by the same movement in the control and give rise to nonconvexities in the probing
component Mizrach (1991).
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∂JP,2

∂u0

=
σ2

bqφ1

[
(φ2

2u0 + φ2 φ3) (σ2
bu

2
0 + q) − σ2

bu0 (φ2u0 + φ3)
2
]

(σ2
bu

2
0 + q)

2 (13)

Since both the term outside the square brackets in the numerator of equation (13)
and the denominator are strictly positive as long as the λ’s, w’s, σ2

b and q are pos-
itive, they focus on the condition under which the bracketed term would be zero.
Expansion of the term in brackets yields

−φ2φ3σ
2
bu

2
0 +

(
φ2

2q − σ2
bφ

2
3

)
u0 + φ2φ3q (14)

This expression is in general a quadratic function in u0 with roots

r1 = − φ3

φ2

and r2 =
φ2q

φ3σ2
b

(15)

So the first derivative of the probing function with respect to the control in period
zero has two roots. In other words the probing function has two extreme points.

At this point Amman and Kendrick (1994, 1995) evaluate the function at these two
extremes. Substitution of the first root r1 into equation (12) yields JP,2 = 0. To
evaluate the function at the second root they substitute r2 into (12) to obtain

JP,2 =
(

σ2
b qφ1

2

) (
φ2

2q+φ2
3σ2

b

φ3σ2
b

)2 {
φ2

2q2+φ2
3σ2

b q

φ2
3σ2

b

}−1

A B C
(16)

If the variance of the parameter, σ2
b , and the variance of the additive error term, q,

are nonzero then the term A will be strictly positive given the fact from equation
(11) that φ1 is positive. Term B is a square so it will be strictly positive provided that
either of the variances are non-zero. Term C will also be positive under the same
restriction. Therefore the probing function JP,2 in general will be strictly positive
at the second root provided that σ2

b and q are non-zero.

To check the limit of the probing term as u0 goes to either plus or minus infinity
use (5) with h and g defined as in (6) and (10)-(11), respectively, to obtain

lim
u0→±∞ JP,2 =

σ2
bqφ1φ

2
2

2σ2
b

=
qφ1φ

2
2

2
(17)

The right hand side of (17) is positive so long as q is nonzero so the probing term
approaches a positive limit when u0 approaches either plus or minus infinity.
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Figure 1.
The probing cost function JP, 2

Summarizing the probing function (5) with h and g defined as in (6) and (10)-(11),
respectively, has the general form shown in Figure 1, page 10. 18 The function is
non-negative at all values of u0. The first derivative of the function has two roots
which correspond to the maximum and minimum shown. At the minimum the value
of the function is zero. The limits of the function as u0 approaches plus or minus
infinity are strictly positive and identical. The intuition associated with this function
is that the probing component is decreased by actions which make u0 large in either
the positive or negative directions. Thus the perturbations to the system which come
from making u0 large in absolute value decrease the variance of the parameters in
future time periods and therefore decrease the total cost-to-go.

4 The Cautionary Component

Following Amman and Kendrick (1994, equation 5.17), the cautionary component
of the approximate cost-to-go can be written as

18 As pointed out by an anonymous referee, it is also possible that the curve cuts the axis
with a positive slope.
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JC,2 =
σ2

bw2

2
(αu0 + u01)

2 +
σ2

b

2

(
− 1

λ1+b2w2

)
(αbw2u0 + bw2u01 + w2x02 − w2x̃2)

2

+ q
2

[
α2w2 + w2 + w1 +

(
− 1

λ1+b2w2

)
(αbw2)

2
]
+

σ2
bw1

2
u2

0

(18)

with u01 and x02 defined as in (8) and (9), respectively. As is shown in Appendix
A, when these quantities are replaced by their definitions, equation (18) takes the
form 19

JC,2 = δ1u
2
0 + δ2u0 + δ3 (19)

with

δ1 =
σ2

b

2

[
ν2

1

(
w2 − 4b2w2

2

λ1+b2w2

)
+ w1

]
δ2 = σ2

bw2ν1

{
ν2 −

2bw2(2bν2+ν3)
λ1+b2w2

}

δ3 =
σ2

b

2
w2

{
ν2

2 −
w2(2bν2+ν3)

2

λ1+b2w2

}
+ q

2

{
α2w2 + w2 + w1 − (αbw2)2

λ1+b2w2

} (20)

where

ν1 = α
(
1 − b2w2

λ1+b2w2

)
ν2 =

(
− 1

λ1+b2w2

)
[α2bw2x0 + αbγw2 + bw2 (γ − x̃2) − λ1ũ1]

ν3 = α2x0 + αγ + γ − x̃2

(21)

This component of the cost-to-go is convex if δ1 > 0. When the penalty weights w1

and w2 are positive

1 − 4b2w2

λ1 + b2w2

=
λ1 − 3b2w2

λ1 + b2w2

> 0 (22)

or, alternatively, λ1 > 3b2w2 is a sufficient condition for δ1 to be positive. 20 In
summary, even if the cautionary term is concave, the cost-to-go will usually be
convex because the deterministic term is always convex and is frequently larger

19 See also Amman and Kendrick (1995).
20 This condition however is not necessary. It may happen that it is not satisfied and δ1 is
still positive. The bracket term in (20) may be positive thanks to the squared term in (21),
or to w2 , being sufficiently small to make the effect of w1 overwhelming.
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in magnitude than the cautionary term. Only when the parameter variance gets
large the concave cautionary term can overcome the deterministic oneto produce a
concave cost-to-go (see Amman and Kendrick, 1995, page 466).

5 The Deterministic Component and the Total Cost-to-Go

Finally Amman and Kendrick (1994, equation 6.8) write the deterministic compo-
nent as

JD,2 =
λ0

2
(u0 − ũ0)

2 +
w2

2
(x02 − x̃2)

2 +
w1

2
(x01 − x̃1)

2 +
λ1

2
(u01 − ũ1)

2 (23)

with u01 and x02 defined as in (8) and (9), respectively and

x01 = αx0 + bu0 + γ

.

Replacing these quantities in equation (23), squaring and rearranging the terms
yields a convex quadratic function of the initial control value u0 which can be
written

JD,2 = ψ1u
2
0 + ψ2u0 + ψ3 (24)

with

ψ1 = λ0

2
+ w2

2
(bν1)

2 + w1

2
b2 + λ1

2

(
− 1

λ1+b2w2

)2
(αb2w2)

2

ψ2 = −λ0ũ0 + w2bν1 (bν2 + ν3) + w1 (αx0 + γ − x̃1) b +
(
− λ1

λ1+b2w2

)
αb2w2 (ν2 − ũ1)

ψ3 = λ0

2
ũ2

0 + w2

2
(bν2 + ν3)

2 + w1

2
(αx0 + γ − x̃1)

2 + λ1

2
(ν2 − ũ1)

2 .

(25)

Then, as in equation (4), the total cost-to-go for period k = 0, i.e. with two periods
remaining, can be written as

J2 = JD,2 + JC,2 + JP,2 (26)
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Substitution of (12), (19) and (24) into (26) yields 21

J2 = (ψ1 + δ1) u2
0 + (ψ2 + δ2) u0 + (ψ3 + δ3) +

(
σ2

bq

2

)
φ1 (φ2u0 + φ3)

2

(σ2
bu

2
0 + q)

(27)

6 The Representative Cost-to-Go

The model analyzed in the previous sections encompasses as special cases both the
MacRae (1972) and Beck and Wieland (2002) models and parameter sets. 22 It is
therefore possible to characterize the representative cost-to-go of these two popular
problems. The parameter set used in MacRae (1972) is

α = .7 β0 ≡ b = −.5 γ = 3.5 σ2
ε = q = .2

wk = 1 ∀k λk = 1 ∀k σ2
η ≡ σ2

b = .5 x0 = σ2
α = σ2

γ = 0

(28)

and the desired path for the state and control is set equal to zero. Then, as already
noticed in Amman and Kendrick (1994, 1995), the coefficients of the probing cost
are

φ1 =
(

1

1 + b2

)
= .8

φ2 = αb

(
1 − b2

1 + b2

)
= −.21 (29)

φ3 = (αγ + γ)

(
1 − b2

1 + b2

)
= 3.57

and this function reaches its minimum 0 at r1 = 17 and its maximum JP,2 = 2.553
at r2 = −.023529. The limits of the probing cost function as u0 approaches plus

21 As noticed in Amman and Kendrick (1994, 1995), the derivative of this function is a
complex function of u0 and the function has several extreme points. However by taking the
second derivative of the cost-to-go at u0 = 0 it yields

(
∂2J2

/
∂u2

0

)∣∣
u0=0

= 2ψ1 + 2δ1 +
σ2

bψ1ψ
2
2−

(
σ4

bφ1φ
2
3

/
q
)
. Then they conclude that a higher variance, as well as a lower value

of q, usually makes nonconvexities more likely.
22 The Excel spreadsheet that we have used for many of the calculations and the creation of
the graphs in this and the following section is available from Marco Tucci (tucci@unisi.it).
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or minus infinity are equal to JP,2 = .0035 and it has the general form shown in
Figure 1, page 10.

The coefficients for the cautionary component of the approximate cost-to-go are

ν1 = α
(

1

1 + b2

)
= .56

ν2 =
(
− 1

1 + b2

)
b (αγ + γ) = 2.38 (30)

ν3 = αγ + γ = 5.95

therefore

δ1 =
σ2

b

2

[
ν2

1

(
1−3b2

1+b2

)
+ 1

]
= .2657

δ2 = σ2
bν1

{
ν2 −

2b(2bν2+ν3)
1+b2

}
= 1.4661

δ3 =
σ2

b

2

[
ν2

2 − (2bν2+ν3)
2

1+b2

]
+ q

2

[
α2 + 2 − (αb)2

1+b2

]
= −.8937

(31)

and the cautionary component is convex. Finally the deterministic component

JD,2 = ψ1u
2
0 + ψ2u0 + ψ3 (32)

has coefficients

ψ1 = 1
2

[
1 + (bν1)

2 + b2 +
(
− 1

1+b2

)2
(αb2)

2
]

= .674

ψ2 = bν1 (bν2 + ν3) + γb +
(
− 1

1+b2

)
αb2ν2 = −3.416

ψ3 = 1
2
(bν2 + ν3)

2 + 1
2
γ2 + 1

2
ν2

2 = 20.286 .

(33)

Using these values the representative cost-to-go for the MacRae (1972) problem
can be plotted as in Figure 2, page 15, with the flat looking portion around control
0 due to the fact that in that portion the cost-to-go decreases at a slower pace. The
optimal cost in Figure 2, page 15, is 18.8605 at u0 = 1.32691. 23

Next we shift from the MacRae (1972) model to the Beck and Wieland (2002)
model. The parameter set for that model is

23 We thank an anonymous referee for providing a better approximation of the optimal cost
than the one originally found by the authors.
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Figure 2. Approximate cost-to-go in the first
time period for the MacRae (1972) model in
the Monte Carlo representative run, i.e. when
b is -0.5.

Figure 3. Approximate cost-to-go in the first
time period for the Beck and Wieland (2002)
model in the Monte Carlo representative run,
i.e. when b is -0.5.

α = 1. β0 ≡ b = −.5 γ = 0.0 σ2
ε = q = 1 .0

wk = 1 ∀k λk = 0 ∀k σ2
η ≡ σ2

b = .25 σ2
α = σ2

γ = 0

(34)

and the desired paths for the state and control variables are set equal to zero. Also
the initial state is x0 = 1 as set in Amman et al. (2007). In this case the coefficients
of the probing component are

φ1 =
(

1

b2

)
= 4, φ2 = αb (−1) = .5, φ3 = −x0 = −1 (35)

and this function reaches its minimum 0 at r1 = −2 and its maximum JP,2 = 1
at r2 = 2. The limits of the probing cost function as u0 approaches plus or minus
infinity are equal to JP,2 = .5 and, again, it has the general form shown in Figure
1, page 10. From equation (35) it follows that setting no penalty on the use of
the control variable, i.e. λk = 0, makes the probing component of the cost-to-
go extremely sensitive to the value of b. Thus in equation (11) with w2 = 1, the
parameter φ1 reduces to the inverse of b2. Furthermore assuming a null intercept
in equation (11) with w2 = 1, i.e. γ = 0, makes φ3 solely dependent on the initial
state.

The coefficients for the cautionary component of the approximate cost-to-go are

15



ν1 = α

(
1 − b2

b2

)
= 0, ν2 =

(
− 1

b2

)
α2bx0 = −1

b
= 2, ν3 = α2x0 = 1

(36)

therefore

δ1 =
σ2

b

2

[
ν2

1

(
1 − 4b2

b2

)
+ 1

]
= .125

δ2 = σ2
bν1

{
ν2 −

2(2bν2+ν3)
b

}
= 0

δ3 =
σ2

b

2

[
ν2

2 − (2bν2+ν3)
2

b2

]
+ q = q = 1

(37)

and the cautionary component is convex. From equation (37) it is apparent that
δ3 is always equal to q in this model. Moreover these coefficients appear to be
independent of the value of b with δ2 always equal to zero. Finally the deterministic
component

JD,2 = ψ1u
2
0 + ψ2u0 + ψ3 (38)

has coefficients

ψ1 = 1
2
(bν1)

2 + 1
2
b2 = .125

ψ2 = bν1 (bν2 + ν3) + αx0b = −.5

ψ3 = 1
2
(bν2 + ν3)

2 + 1
2
(αx0)

2 = .5

(39)

and the representative cost-to-go function for the Beck and Wieland (2002) model
can be plotted as in Figure 3, page 15. The optimum cost in Figure 3, page 15, is
1.32 at u0 = 1.25.

7 The Parameter Set and Monte Carlo Experiments

The analysis carried out in the last section focuses on the shape of the represen-
tative cost-to-go. Therefore it sheds little light on the results obtained in each run
of a Monte Carlo experiments carried out using the MacRae (1972), or Beck and
Wieland (2002), models and parameter sets. In a typical Monte Carlo experiment
the initial estimate of the unknown parameter β, i.e. b, in each run is drawn from
a distribution having the true value of the unknown parameter as mean and the es-
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timated variance σ2
b as variance (Figure 4, page 18). 24 This means that, when the

MacRae problem is used, the actual value for b is between -1.2 and 0.2 in approxi-
mately 68% of the Monte Carlo runs, in the interval (-1.9, 0.9) approximately 95%
of times and over 99% of time between -2.6 and 1.6. 25 The same intervals for the
Beck and Wieland problem are, respectively, (-1.0, 0.0), (-1.5, 0.5) and (-2.0, 1.0).

It is therefore useful to study the shape of the approximate cost-to-go when the
parameter b takes on values in these different intervals. Even though the probability
that b takes on a specific value is zero, as is well known, the probability that it falls
in a certain interval, no matter how small, is not. Amman and Kendrick (1995, page
470) consider the effects of changes in the b parameter and they notice that for
the MacRae problem the cost-to-go function will be convex for values of b either
substantially above or below zero but will be nonconvex for values of b close to
zero. However they do not explicate the relationship between this result and the
outcome of Monte Carlo experiments. This is the main task of the present section.

In the MacRae problem, as originally suggested in Amman and Kendrick (1995),
the approximate cost-to-go shows a nonconvexity when b is close to 0. Indeed a
nonconvexity appears in all those runs where the value of b is between -0.45 and
0.45 and it becomes more pronounced as b gets closer to 0 (Figure 5, page 19, and
Figure 6, page 19). 26 The probability for b to fall in the interval (-0.45, 0.45) in
this problem is equal to the probability for the standard normal to be in the interval
(0.07143, 1.3571). Therefore in a Monte Carlo experiment based on the MacRae
(1972) problem nonconvexities will be encountered in about 38% of the runs which
is even higher than the result, namely 28%, reported in Tucci (1998, page 216) and
Tucci (2004, page 105). When the value for b is outside the interval (-0.45, 0.45)
the cost-to-go appears as in Figure 7, page 19.

Some relevant information about a certain set of parameters may be gained studying
the relationship between the stochastic parameter b and the optimal control, for the
first period, and its associated cost-to-go. This can be done, for each value of b, by
computing the coefficients of the approximated cost-to-go, see Appendix B, and

24 This is equivalent to assuming that the estimator of the unknown parameter is unbiased.
25 In the first time period (0 time period) when computing u0 the only uncertain element is
the b , i.e. θ0 . Therefore u0 depends only on the uncertain b but u1 will depend also on the
additive noise terms as well as the uncertain parameter.
26 In the MacRae (1972) problem the optimal control for period 0 is -1.25, with an associ-
ated cost of 19.163, when b = 0.4. A local optimum is at u0 = 0.75 with a cost of 21.96.
The maximum cost between these two optima is 22.68 and is associated with u0 = 0. When
b = −0.4 the cost function looks like in a mirror with the global optimum at u0 = 1.25,
the local optimum at u0 = −0.75 with a cost of 19.163 and 21.96, respectively, and the
maximum cost between the two optima is again 22.68 at u0 = 0. The cost function is per-
fectly symmetric around u0 = 0 when b = 0. In this case there are two global optima at
u0 = −1.25 and u0 = 1.25 with a cost equal to 18.392, and the maximum cost between
the two optima is 24.075 at u0 = 0.
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Figure 4.
Probability density function of the unknown parameter b with the Beck and

Wieland (2002) parameter set (NORMAL.25), with the MacRae (1972) parameter
set (NORMAL.5) and with the Amman et al. (2007) parameter set

(NORMAL1.25)

selecting the optimal control. When b is in the interval (-3.0, -0.02), the optimal
control is always between 1.00 and 2.00 with a cost ranging from 2.08 to 19.16
(Figure 8, page 20). 27

In the Beck and Wieland problem, it follows from equation (35) that when b = 0
the parameter φ1 is infinity and as reported in Appendix B most of the relevant co-
efficients of the approximate total cost-to go are not available because they include
a division by zero term. When the parameter b happens to be around 0, say 0.02
as in Figure 9, page 21, φ1 is extremely high and the approximate total cost-to go
takes on almost completely the shape of its probing component, see Appendix B.

27 The optimal control associated with b = 3.0 is the opposite of the optimal control for b
= -3.0 and the approximate cost-to-go is the same for the two controls. The same is true for
all the positive values of b.
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Figure 5. Approximate cost-to-go in the first
time period for the MacRae (1972) problem
in the Monte Carlo run where b is 0.4.

Figure 6. Approximate cost-to-go in the first
time period for the MacRae (1972) problem
in the Monte Carlo run where b is 0.0.

Figure 7. Approximate cost-to-go in the first
time period for the MacRae (1972) problem
in the Monte Carlo run where b is 0.9. The
optimal control is -1.75 with a cost of 14.127.

Also recall that in the Beck and Wieland model the weight λ1 on the control vari-
able deviation in the criterion function is set to zero. When this is combined with
a Monte Carlo run in which the coefficient b on the control variable term in the
systems equations is near zero as was discussed above, then from equation (11) the
coefficient

φ1 =

(
w2

2

λ1 + b2w2

)

in the probing term of the cost-to-go becomes very large. As Figure 9, page 21,
shows the probing term is large enough in this case to make the entire cost-to-go
function nonconvex.

The intuition here is that the probing component in the cost-to-go provides a mea-
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Figure 8.
Relationship between b and the optimal control in the first time period, and its

approximate cost-to-go, for the MacRae (1972) problem.

sure of future cost depending on the amount of probing. If there is not enough
probing to move the state variable x1 around, the cost is high because the unknown
parameter value is not learned effectively and its variance remains high. Thus there
is an incentive, as Figure 9, page 21, shows, for the control to be made large in ei-
ther the positive or negative direction in order to learn the parameter and reduce the
cost. However, when b is very small it takes large movements in the control vari-
able u0 to bring about shifts in the state variable x1 in order to learn the coefficient
b and reduce its variance. Also, in the Beck and Wieland model, with λ1 equal to
zero there is no cost in the criterion function associated with using large positive or
negative values of the control. Thus there is a need, when b is near zero, for large
values of the control in order to learn and there is no constraint from the criterion
cost. These two factors together bring about the shape of the cost-to-go function
shown in Figure 9, page 21.

Moreover it should be noticed that in the Beck and Wieland (2002) problem the
cautionary cost is constant in the various runs, i.e. is independent of b, as indicated
by the δ coefficients reported in Table B.2, page 33, of Appendix B. When the
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Figure 9. Approximate cost-to-go in the first
time period for the Beck and Wieland (2002)
problem in the Monte Carlo run where b is
0.02.

Figure 10. Approximate cost-to-go in the first
time period for the Beck and Wieland (2002)
problem in the Monte Carlo run where b is
0.1.

Figure 11. Approximate cost-to-go in the first
time period for the Beck and Wieland (2002)
problem in the Monte Carlo run where b is
0.2.

Figure 12. Approximate cost-to-go in the first
time period for the Beck and Wieland (2002)
problem in the Monte Carlo run where b is
0.5.

absolute value of b is in the interval (0.03, 0.19) the cost-to-go function has a som-
brero like shape as in Figure 10, page 21. 28 The nonconvexity is very pronounced
for values of b close to the lower end of the interval and it becomes less and less
prominent as b moves toward the higher end of the interval. For b = 0.2 the cost-
to-go appears as in Figure 11, page 21. The flat looking portion around a control
equal to 1 is due to the fact that in that portion the cost-to-go increases at a slower
pace. Namely, when the control at time zero is increased from 0.5 to 0.75, 1, 1.25,

28 In the Beck and Wieland (2002) problem the optimal control for period 0 is 3.75, with
an associated cost of 4.034, when b = −0.1. A local optimum is at u0 = -4.25 with a cost
of 8.875. The maximum cost between these two optima is 14.55 and is associated with
u0 = −0.50. From Figure 10, page 21, when b = 0.1 the cost function looks like in a
mirror with the global optimum at u0 = −3.75, the local optimum at u0 = 4.25 with
a gobal optimum cost of 4.034 and a local optimum cost of 8.875, respectively, and the
maximum cost between the two optima is again 14.55 at u0 = 0.50.
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1.5, 1.75 and 2 the approximate cost-to-go increases from 5.20 to 5.35, 5.45, 5.49,
5.51, 5.52 and 5.54 respectively.

The probability for b to fall in the interval (-0.2, 0.2) in the Beck and Wieland prob-
lem is equal to the probability for the standard normal to be in the interval (0.6,
1.4). Therefore, in a Monte Carlo experiment based on this model and parameter
set, from mild to severe nonconvexities will be encountered in about 20% of the
runs. Half of them will be severe and around 2% will be associated with a cost-to-
go as in Figure 9, page 21. When the value for b is outside the interval (-0.2, 0.2)
the cost-to-go appears as in Figure 12, page 21. When the value for b is outside the
interval (-0.2, 0.2) the cost-to-go appears as in Figure 12, page 21.

The probability that the value of b used in the Monte Carlo run falls in the intervals
(-0.1, 0.1) and (-0.02, 0.02) in the Beck and Wieland (2002) problem is equal to the
probability for the standard normal to be in the intervals (0.8, 1.2) and (.96, 1.04),
respectively.

Summarizing (as shown in Figure 13, page 23) when b is in the interval (-3.0, -0.1),
the optimal control goes from .25 to 3.75 with a cost ranging from 1.04 to 4.03. 29

As b gets closer to 0 both the optimal control and its associated cost skyrocket. At
b = -.02 the former is 9.25 and the latter is 21.30.

The discussion of this section reveals that the variance of the unknown parameter
estimate plays a dual role in making nonconvexities more or less likely to occur
in a certain Monte Carlo experiment. On one hand it enters the coefficients of the
approximate cost-to-go and its second order derivative with respect to the control,
as pointed out in Amman and Kendrick (1994, 1995), effecting directly the shape
of the cost function. On the other hand it affects the probability with which values
of the parameter drawn from certain intervals of the parameter space are used.
Therefore the role of σ2

b is more subtle then so far expected. Nonconvexities may
appear frequently even in cases where the representative run shows no indication
of it and a smaller variance does not necessarily imply fewer nonconvexities. For
instance, in the Beck and Wieland (2002) problem when σ2

b = 1.25 the probability
that b is drawn from the interval (-0.02, 0.02) is approximately 1%, instead of 2%
as with the original data set where σ2

b = 0.25. 30 This means that cost functions
similar to that reported in Figure 9, page 21, will be encountered less frequently
with this higher variance.

This completes the discussion of the main line of argument of this paper about

29 Again the optimal control associated with a positive b is the opposite of the optimal
control for a negative b and the approximate cost-to-go is the same in both cases.
30 This probability is approximately equal to the probability that the standard normal is in
the interval (0.43, 0.47).
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Figure 13.
Relationship between b and the optimal control in the first time period, and its

approximate cost-to-go, for the Beck and Wieland (2002) problem.

the effect of parameter sets on the adaptive or dual control solutions. However,
before closing it is appropriate to add a short additional section on the effect of the
parameter set selected for a certain numerical experiment on the optimal feedback
(OF) and expected optimal feedback (EOF) solutions since it is anticipated that
comparisons of these two methods may occur with some frequency in the future.

8 The Importance of Penalty Weights on the OF and EOF Solutions

Suppose that the optimal feedback (OF) control, the expected optimal feedback
(EOF) control and Dual control (DC) are compared. 31 Dual control minimizes the
approximate cost-to-go defined in equation (27). The EOF control is determined
using the feedback rule

31 See Kendrick and Amman (2006) for a description of the three different methods.
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u0 = G0x0 + g0 (40)

with

G0 = − [λ0 + K1 (b2 + σ2
b )]

−1
(αK1b)

g0 = − [λ0 + K1 (b2 + σ2
b )]

−1
(bK1γ + bp1)

(41)

and the Riccati quantities K1 and p1 defined as

K1 = w1 + α2K2 − (αbK2)
[
λ1 + K2

(
b2 + σ2

b

)]−1
(αbK2)

p1 = (αγK2) + αp2 − (αbK2)
[
λ1 + K2

(
b2 + σ2

b

)]−1
[bγK2 + bp2] (42)

where the terminal conditions are given by K2 = 1 and p2 = 0. 32 The OF control
is obtained using equations (40)-(42) with σ2

b = 0. When the parameter b is very
close to zero, say b = 0.02, the EOF control is equal to 0, OF control is infinity and
the DUAL control diverges toward very high or low values trying to minimize a
function like that depicted in Figure 9 on page 21. Consequently, in a Monte Carlo
experiment based on the Beck and Wieland (2002) problem both OF and Dual
control will exhibit around 10% of very unfavorable runs and around 2% of severe
outliers compared with EOF. As indicated in the sixth column of Table 1, page 32,
the EOF control is not too affected by a parameter value for b close or equal to 0 in
the Beck and Wieland (2002) problem. It goes from a maximum of 1 to a minimum
of minus 1 for the selected b’s.

Completely different is the situation for the OF control which, for the set of selected
values of b, ranges from infinity to -100 as reported in the last column of Table 1,
page 32. The situation looks more balanced when the MacRae problem is used. As
reported in Table 2, page 33, the difference between EOF and OF control is not too
big and as shown in Figure 6, page 19, the shape of the cost-to-go is not such as to
cause the Dual algorithm to diverge.

9 Conclusion

As work on the application of various stochastic control methods to economic mod-
els proceeds Monte Carlo and similar stochastic methods will probably be used to
compare the performance of the various methods on simple models. When this is

32 See, e.g., Kendrick (1981, 2002, Chapter 6).
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done outliers of the type we have encountered in doing such studies on the MacRae
(MacRae (1972)) and the Beck and Wieland (Beck and Wieland (2002)) models
are likely to occur. We have traced a major cause of these outliers to the choice of
parameter sets and in particular to the weight on the control term in the criterion
function and the estimate of the unknown parameter that is multiplied by the con-
trol variable. When λ = 0 and b is drawn near zero in the Monte Carlo runs the
cost-to-go function is likely to be nonconvex and the criterion value may be large.

Therefore, in conducting Monte Carlo experiments to compare various methods
of solving stochastic control methods in quadratic-linear tracking models it is im-
portant to be careful in the choice of parameter sets. We would recommend that
whenever possible that calculations similar to those we have performed here be
done before large Monte Carlo runs are done. As indicated above, we are happy to
provide to interested users the spreadsheet we have used to make the calculations in
Sections 7 and 8 in this paper and which can easily be modified for other parameter
sets in one-state, one-control, one uncertain parameter cases.
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A Appendix: Intermediate Steps in the Derivation of the Cautionary and
Deterministic Components of the Cost-To-Go

First derive equation (19) and equation (20) – the cautionary cost term. To do so
begin with equation (18), namely

JC,2 =
σ2

bw2

2
(αu0 + u01)

2 +
σ2

b

2

(
− 1

λ1+b2w2

)
(αbw2u0 + bw2u01 + w2x02 − w2x̃2)

2

+ q
2

[
α2w2 + w2 + w1 +

(
− 1

λ1+b2w2

)
(αbw2)

2
]
+

σ2
bw1

2
u2

0 ,

(A-1)

and replacing u01 and x02 by their definition, that is (8) and (9) respectively, it yields

JC,2 =
σ2

bw2

2

(
αu0 +

(
− 1

λ1+b2w2

)
[αb2w2u0 + α2bw2x0 + αbγw2 + bw2 (γ − x̃2) − λ1ũ1]

)2

+
σ2

b

2

(
− 1

λ1+b2w2

) {
αbw2u0 + bw2

(
− 1

λ1+b2w2

)
[αb2w2u0+ α2bw2x0 + αbγw2
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[
b
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(
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(A-2)

or
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σ2

bw2

2
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(A-3)

Use the quantities ν1, ν2 and ν3 as defined in equation (21), i.e.

28



ν1 = α
(
1 − b2w2

λ1+b2w2

)
ν2 =

(
− 1

λ1+b2w2

)
[α2bw2x0 + αbγw2 + bw2 (γ − x̃2) − λ1ũ1]

ν3 = α2x0 + αγ + γ − x̃2

(A-4)

and rewrite equation (A-3) as
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(A-5)

Squaring the terms in equation (A-5) yields
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(A-6)

or, alternatively,
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(A-7)

which is identical to equation (19) when the δ’s are defined as in (20).

Next derive equation (24) and equation (25) – the deterministic component. Begin
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with equation (23) i.e.

JD,2 =
λ0

2
(u0 − ũ0)

2+
w2

2
(x02 − x̃2)

2+
w1

2
(x01 − x̃1)

2+
λ1

2
(u01 − ũ1)

2 (A-8)

Again by replacing u01 and x02 by their definition, that is (8) and (9) respectively,
using x01 = αx0 + bu0 + γ , and equation (21) one obtains

JD,2 = λ0

2
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2 + w2

2
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}2

(A-9)

Squaring and rearranging the terms in equation (A-9) yields
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αb2w2 (ν2 − ũ1) u0 + (ν2 − ũ1)
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(A-10)

or, alternatively,

JD,2 =
[
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2
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2
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2
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2
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2
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2 .

(A-11)

Equation (A-11) is identical to (24) when the ψ’s are defined as in (25).
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B Appendix: The Coefficients of the Cost-To-Go Function for Selected Val-
ues of b

This appendix contains some of the coefficients of the cost-to-go function, at se-
lected values of b, used to derive Figure 8, page 20, and Figure 13, page 23. Table
B.1, page 32, contains the coefficients for the MacRae (1972) problem. It is worth-
while to point out that the sign of b affects only the sign of the linear coefficients
in the approximate cost-to-go, namely φ2, δ2 and ψ2. Table B.2, page 33, contains
the coefficients for the Beck and Wieland (2002) problem. For b = 0 most of the
relevant coefficients of the approximate total cost-to go are not available because
they include a division by zero term. When the parameter b happens to be around 0,
say 0.02 as in Figure 9, page 21, is extremely high and the approximate total cost-to
go takes on almost completely the shape of its probing component.
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