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1 Introduction

Copulas have become an important tool for modeling multivariate distributions, with ap-

plications in economics and particularly finance expanding rapidly, see Cherubini et al.

(2004), Patton (2009) and Genest et al. (2009) for recent surveys. The recent account

of structured finance instruments by Coval et al. (2009) emphasizes once more that the

dependence structure among random variables is crucial for pricing and risk assessment.

The main attractive property of using copulas is that they allow for modeling the marginal

distributions and the dependence structure of the variables of interest separately. Many

parametric copula families are available, with rather different dependence properties. An

important issue in empirical applications therefore is the choice of an appropriate copula

specification. Not surprisingly then, considerable interest in goodness-of-fit testing for

copulas has arisen recently. Several different types of specification tests have been put

forward. Examples include goodness-of-fit tests based on the probability integral trans-

form (PIT) of Rosenblatt (1952) by Breymann et al. (2003), Malevergne and Sornette

(2003), Fermanian (2005), and Berg and Bakken (2007); and based on distance measures

between (a function of) the empirical (nonparametric) copula (DeHeuvels, 1979) and the

candidate (parametric) copula by Panchenko (2005), Genest et al. (2006), Genest and

Rémillard (2008), and Genest et al. (2009). We refer the interested reader to Berg (2009)

for a detailed review of these approaches and a power comparison based on extensive

simulation experiments.

The related problem of selecting among alternative copula specifications from two or

more parametric families has mostly been approached in an indirect way. Typically, one

or several goodness-of-fit tests are applied to each of the competing specifications, and

the copula that performs best on these statistics is selected; see Kole et al. (2007) for an

empirical example. A direct comparison of two alternative copulas has only been consid-

ered by Chen and Fan (2006) and Patton (2006), adopting the approach based on pseudo

likelihood ratio (PLR) tests for model selection originally developed by Vuong (1989)

and Rivers and Vuong (2002). These tests compare the candidate copula specifications

in terms of their Kullback-Leibler Information Criterion (KLIC), which measures the dis-
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tance from the true (but unknown) copula. Similar to the goodness-of-fit tests, these PLR

tests are based on the in-sample fit of the competing copulas.

In this paper we approach the copula selection problem from an out-of-sample fore-

casting perspective. In particular, we extend the PLR testing approach of Chen and Fan

(2006) and Patton (2006) to compare the predictive accuracy of alternative copula specifi-

cations, by using out-of-sample log-likelihood scores obtained using copula density fore-

casts rather than in-sample scores. An important motivation for considering the (relative)

predictive accuracy of copulas is that multivariate density forecasting is one of the main

purposes of copula applications in economics and finance, in particular in risk manage-

ment.

Comparison of out-of-sample KLIC scores for assessing relative predictive accuracy

has recently become popular for evaluation of univariate density forecasts, see Mitchell

and Hall (2005), Amisano and Giacomini (2007) and Bao et al. (2007). Amisano and

Giacomini (2007) provide an interesting interpretation of the KLIC-based comparison

in terms of scoring rules, which are loss functions depending on the density forecast and

the actually observed data. In particular, the difference between the log-likelihood scoring

rule for two competing density forecasts corresponds exactly to their relative KLIC values.

The same interpretation continues to hold in the multivariate density case considered in

this paper.

Our test of equal predictive accuracy can be applied to fully parametric, semi-parametric

and nonparametric copula-based multivariate density models. The test is valid under gen-

eral conditions on the competing copulas, which is achieved by adopting the framework

of Giacomini and White (2006). This assumes that any unknown model parameters are

estimated on the basis of a moving window of fixed size. The finite estimation win-

dow essentially allows us to treat competing density forecasts based on different copula

specifications, including the time-varying estimated model parameters, as two competing

forecast methods. Comparing scores for forecast methods rather than for models simpli-

fies the resulting test procedures considerably, because parameter estimation uncertainty

does not play a role (it simply is part of the respective competing forecast methods). In

addition, the asymptotic distribution of our test statistic in this case does not depend on
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whether or not the competing copulas belong to nested families.

We examine the size and power properties of our copula predictive accuracy test via

Monte Carlo simulations. Here we adopt the framework of semi-parametric copula-based

multivariate dynamic (SCOMDY) models developed in Chen and Fan (2005, 2006), which

combines parametric specifications for the conditional mean and conditional variance with

a semi-parametric specification for the distribution of the (standardized) innovations, con-

sisting of a parametric copula with nonparametric univariate marginal distributions. Our

simulation results demonstrate that the predictive accuracy test has satisfactory size and

power properties in realistic sample sizes.

We consider an empirical application to daily exchange rate returns of the Canadian

dollar, Swiss franc, Euro, British pound, and Japanese yen against the US dollar over the

period January 1980 - June 2008. Based on the relative predictive accuracy of one-step

ahead forecasts we find that the Student-t copula is favored over Gaussian, Gumbel and

Clayton copulas.

The paper is organized as follows. In Section 2 we briefly review copula-based mul-

tivariate density models. We develop our predictive accuracy test for copulas based on

out-of-sample log-likelihood scores in Section 3. In Section 4 we investigate its size and

power properties by means of Monte Carlo simulations. In Section 5 we illustrate our

test with an application to daily exchange rate returns for several major currencies. We

summarize and conclude in Section 6.

2 Copula-based multivariate density models

Consider a vector stochastic process {(Y ′
t, X

′
t)}, t = 1, 2, . . ., in which Y t = (Y1,t, Y2,t, . . . , Yd,t)

′

represents the d-dimensional vector of central interest, and X t a vector of exogenous or

pre-determined variables. Sklar (1959)’s theorem states that we can express the joint dis-

tribution F (y) of Y t in terms of the marginal distributions F1, F2, . . . , Fd and a copula

function C, that is

F (y) = C(F1(y1), F2(y2), . . . , Fd(yd)). (1)
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The decomposition in (1) clearly shows the attractiveness of the copula approach for mod-

eling multivariate distributions. Given that the marginal distributions Fj , j = 1 . . . , d,

only contain univariate information on the individual variables Yj , their dependence is

governed completely by the copula function C. As the choice of marginal distributions

does not restrict the choice of dependence function, or vice versa, a wide range of joint

distributions can be obtained by combining different marginals with different copulas.

In the context of time series variables Y t, instead of the unconditional distribution

F (y) it is more natural to consider the conditional distribution F (y|Ft−1), where Ft−1

denotes the sigma-field generated by {Y t−1, Y t−2, . . . ; X t, X t−1, . . .}. Patton (2006)

provides an extension of Sklar’s theorem to this case, allowing F (yt|Ft−1) to be decom-

posed into conditional marginal distributions Fj(yjt|Ft−1), j = 1, . . . , d, and a conditional

copula C(·|Ft−1), that is

F (y|Ft−1) = C(F1(y1,t|Ft−1), F2(y2,t|Ft−1), . . . , Fd(yd,t|Ft−1)|Ft−1). (2)

The unconditional and conditional copula-based multivariate distributions in (1) and

(2) can be specified in various ways. For instance, one may specify the (conditional)

marginal distributions Fj , j = 1, . . . , d, and the (conditional) copula function C para-

metrically, up to a finite-dimensional vector of parameters. Popular parametric copulas

include the Gaussian, Student-t, Clayton, and Gumbel specifications, see Joe (1997) and

Nelsen (2006) for overviews. Each of these copulas has rather different dependence prop-

erties, as characterized by the presence or absence of symmetry and/or tail dependence.

To summarize some of these properties for a number of copulas briefly, it is convenient

to introduce the notation C̃ for the copula of −Y , known as the survival copula of Y .

The lower tail dependence coefficient is defined as λL = limq↓0 C(q, . . . , q)/q. The up-

per tail dependence coefficient is defined analogously as λU = limq↓0 C̃(q, . . . , q)/q. The

Gaussian copula is symmetric, in the sense that C(u1, . . . , ud) = C̃(u1, . . . , ud) for all

0 ≤ ui ≤ 1, and has no tail dependence, that is, λL = λU = 0. The Student-t copula also

is symmetric but with positive tail dependence. On the other hand, the Gumbel copula is

asymmetric (C(u1, . . . , ud) �= C̃(u1, . . . , ud)) and has upper but no lower tail dependence,

while the reverse holds for (the tail dependence of) the Clayton copula.
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The flexibility of the parametric approach may be further increased by allowing for

time-variation in the parameters of the (conditional) copula, see Patton (2006) and Jon-

deau and Rockinger (2006) for instance. Alternatively, a mixture copula may be consid-

ered by taking a linear combination of several parametric copulas, possibly with time-

varying weights, as in Rodriguez (2007) and Okimoto (2008), among others.

The advantage of a fully parametric copula-based multivariate density model is that

maximum likelihood (ML) can be applied to obtain efficient estimates of the parameters

characterizing the (conditional) marginal distributions and the (conditional) copula. The

contribution to the log-likelihood function for the conditional copula specification in (2),

for example, is given by

d∑
j=1

log fj(yj,t|Ft−1) + log c(F1(y1,t|Ft−1), F2(y2,t|Ft−1), . . . , Fd(yd,t|Ft−1)|Ft−1), (3)

where fj(yj,t|Ft−1), j = 1, . . . , d, are the conditional marginal densities and c is the

conditional copula density, defined as

c(u1, u2, . . . , ud|Ft−1) =
∂d

∂u1∂u2 . . . ∂ud

C(u1, u2, . . . , ud|Ft−1),

which we will assume to exist throughout.

The parameters in the conditional marginal distributions and the conditional copula

may be estimated simultaneously by maximizing the log-likelihood based on a sample

of T observations. If the parameters of the marginal distributions can be separated from

each other and from those of the copula function, a two-stage estimation procedure is an

alternative. This so-called inference functions for margins (IFM) method boils down to

first estimating the parameters of the conditional marginals by means of univariate ML,

followed by estimating the parameters of the copula by maximizing the sum over the

observations of the rightmost term in (3) conditional on the parameter estimates for the

marginal distributions. Many parametric copulas have only a low-dimensional parameter

vector, so that the copula estimation problem is low-dimensional if the IFM method can

be used.1

1On the other hand, this also implies that the dependence structure of such copulas can be (too) restric-
tive.

5



The drawback of a fully parametric model obviously is that the results depend on

the assumption that both the marginal distributions and the copula function are correctly

specified. Misspecification of the marginal distributions, for example, can lead to severely

biased estimates of the copula parameters, see Fermanian and Scaillet (2005).

This consideration in fact leads to an alternative approach for specifying a copula-

based multivariate density model by combining a parametric copula specification with

non- or semi-parametric marginal distributions. This avoids the adverse effects of mis-

specified parametric marginal distributions, which seems attractive especially in case most

interest is in the dependence structure of Y t. The most popular nonparametric estimator

in the context of copula-based models is the (rescaled) empirical CDF

F̂j(y) =
1

T + 1

T∑
t=1

I[yj,t ≤ y], (4)

where I[A] is an indicator function for the event A and T denotes the sample size. Esti-

mates of the copula parameters may then be obtained by means of maximum likelihood,

plugging in the estimates F̂j(y) from (4). Chen et al. (2006) demonstrate that more ef-

ficient estimates may be obtained by using sieve estimates for the marginal distributions

instead of the empirical CDF.

A compromise between a fully parametric specification of the marginal distribution

and a nonparametric estimate such as (4) is offered by the class of semi-parametric copula-

based multivariate dynamic (SCOMDY) models introduced by Chen and Fan (2006). We

discuss this approach in some detail here, as we use it in the Monte Carlo simulations

and the empirical application in subsequent sections. The SCOMDY models combine

parametric specifications for the conditional mean and conditional variance of Y t with a

semi-parametric specification for the distribution of the (standardized) innovations, con-

sisting of a parametric copula with nonparametric univariate marginal distributions. The

general SCOMDY model is specified as

Y t = μt(θ1) +
√

Ht(θ)εt, (5)

where

μt(θ1) = (μ1,t(θ1), . . . , μd,t(θ1))
′ = E [Y t|Ft−1]
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is a specification of the conditional mean, parameterized by a finite dimensional vector of

parameters θ1, and

Ht(θ) = diag(h1,t(θ), . . . , hd,t(θ)),

where

hj,t(θ) = hj,t(θ1, θ2) = E
[
(Yj,t − μj,t(θ1))

2|Ft−1

]
, j = 1, . . . , d,

is the conditional variance of Yj,t given Ft−1, parameterized by a finite dimensional vector

of parameters θ2, where θ1 and θ2 do not have common elements. The innovations εt =

(ε1,t, . . . , εd,t)
′ are independent of Ft−1 and independent and identically distributed (i.i.d.)

with E(εj,t) = 0 and E(ε2
j,t) = 1 for j = 1, . . . , d. Applying Sklar’s theorem, the joint

distribution function F (ε) of εt can be written as

F (ε) = C(F1(ε1), . . . , F1(εd);α) ≡ C(u1, . . . , ud;α), (6)

where C(u1, . . . , ud;α): [0, 1]d → [0, 1] is a member of a parametric family of copula

functions with finite dimensional parameter vector α.

An important characteristic of SCOMDY models is that the univariate marginal den-

sities Fj(·), j = 1, . . . , d are not specified parametrically (up to an unknown parameter

vector) but are estimated nonparametrically. Specifically, Chen and Fan (2006) suggest

the following three-stage procedure to estimate the SCOMDY model parameters. First,

univariate quasi maximum likelihood under the assumptions of normality of the standard-

ized innovations εj,t is used to estimate the parameters θ1 and θ2. Second, estimates of

the marginal distributions Fj(·) are obtained by means of the empirical CDF transforma-

tion of the residuals ε̂j,t ≡ (yj,t − μj,t(θ̂1))/
√

hj,t(θ̂). Finally, the parameters of a given

copula specification are estimated by maximizing the corresponding copula log-likelihood

function.

In case of large uncertainty about the functional form of the copula, one may con-

sider nonparametric estimation of the copula. The marginal distributions in this case may

be modeled either parametrically or nonparametrically. DeHeuvels (1979) proposed an

empirical copula estimator, which is similar to the empirical CDF estimator in (4) and is
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given by

Ĉ(u1, u2, . . . , ud) =
1

T + 1

T∑
t=1

I[û1,t ≤ u1]I[û2,t ≤ u2] . . . I[ûd,t ≤ ud],

where ûj,t is an estimate of the PIT Fj(yj,t|Ft−1). Smoother alternatives to the empirical

copula include approximations with kernel estimators, as proposed by Fermanian and

Scaillet (2003), with Bernstein polynomials, suggested by Sancetta and Satchell (2004),

and with splines as in Shen et al. (2008) and Dimitrova et al. (2008). Nonparametric

estimators of copulas generally are subject to the curse of dimensionality, such that their

applicability is limited to low dimensions.

3 Equal predictive accuracy test for copulas

As mentioned in the introduction, the KLIC, measuring the divergence between the true

probability density and a candidate density, has become a popular tool for evaluating the

(relative) predictive performance of univariate density forecasts. In this section we extend

the KLIC-based tests of equal predictive accuracy to the context of multivariate copula-

based density forecasts.

The KLIC of a one-step-ahead predictive density f̂t for Y t+1 is given by

KLIC(f̂t) =

∫
Rd

pt(yt+1) log
pt(yt+1)

f̂t(yt+1)
dyt+1 = Et

(
log pt(Y t+1)− log f̂t(Y t+1)

)
,

where pt denotes the true but unknown conditional density of Y t+1. The KLIC is a mea-

sure of divergence between f̂t and pt; it is non-negative, and equal to zero only if f̂t

corresponds with the true conditional density pt. The smaller the KLIC or, in other words,

the larger Et(log f̂t(Y t+1)), the closer the predictive density is to the true conditional den-

sity. In practice pt, and hence Et(log f̂t(Y t+1)), is unknown. However, we can observe

the so-called KLIC score St+1 = log f̂t(Y t+1), which has the same conditional mean:

Et(St+1) = Et(log f̂t(Y t+1)).

In case the density forecast is obtained from a copula-based model as in (1) or (2), the

KLIC score can be decomposed as

St+1 =
d∑

j=1

log f̂j,t(Yj,t+1) + log ĉt(Û t+1), (7)
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where ĉt is the conditional copula density associated with the density forecast, and Û t+1 =

(F̂1,t(Y1,t+1), . . . , F̂d,t(Yd,t+1))
′ its multivariate conditional PIT. The terms log f̂j,t(Yj,t+1),

j = 1, . . . , d, are KLIC scores of the conditional marginals, while the term log ĉt(Û t+1),

is a score assigned to the copula based on the obtained PIT Û t+1.

Our aim is to develop a formal test for equal predictive ability of two competing

copula-based multivariate density models A and B, say, based on their relative KLIC

scores SA
t+1 and SB

t+1, respectively. We assume that the two competing multivariate density

forecasts differ only in their copula specifications and have identical predictive marginal

densities f̂j,t, j = 1, . . . , d (but we return to this point below). The two competing copula

specifications are assumed to have well-defined densities ĉA,t and ĉB,t. The null hypoth-

esis we consider here is that for each t the two models have equal predictive ability on

average: H0 : E(SA
t+1) = E

(
Et

(
SA

t+1

))
= E

(
Et

(
SB

t+1

))
= E(SB

t+1), t = 1, 2, . . ..

Since the conditional marginals are identically specified under both density forecasts, the

parts of the scores in (7) that correspond to the marginals are identical and cancel out, so

that an equivalent formulation of the null hypothesis is

H0 : E(log ĉA,t(Û t+1)) = E(log ĉB,t(Û t+1)), t = 1, 2, . . . . (8)

A formal test of equal predictive ability can be based on an observed sequence of score

differences dt+1 = SA
t+1−SB

t+1 = log ĉA,t(Û t+1)− log ĉB,t(Û t+1), for the null hypothesis

E(dt+1) = 0 corresponding to (8). Assume that any parameters in the multivariate condi-

tional density (both in the marginal distributions and in the copula function) are estimated

using a moving window of fixed length R, and that P observations of dt+1 are available

for t+ 1 = R+ 1, . . . , T = R+P . A test of equal KLIC scores can then be based on the

test statistic

QR,P =
√

P
d̄R,P

σ̂R,P

, (9)

where d̄R,P = 1
P

∑T−1
t=R dt+1 is the sample mean of the KLIC score difference, and σ̂R,P

is a heteroskedasticity and autocovariance consistent (HAC) estimate of the asymptotic

standard deviation of
√

P d̄R,P . Under the assumption of an in-sample estimation window

of fixed length R and appropriate mixing conditions on {dt+1}, Theorem 4 of Giacomini

and White (2006) applies, which states that QR,P is asymptotically standard normally
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distributed. The sign of QR,P obviously indicates which of the two copula specifications

cA and cB performs better, as a higher average copula score is preferred.

The test statistic as derived above in fact is a special case of the predictive ability test

of Giacomini and White (2006). Their framework is more generally applicable and, for

example, allows for dynamics in the predictive distributions, and hence for time varying

copulas. However, for clarity of presentation we focus on the case of two competing para-

metric copula families, only allowing for dynamic updating of the unknown parameters.

Also, focus in this paper is on the unconditional version of Giacomini and White’s test,

but it is possible to extend the approach to the case of testing for equal conditional predic-

tive accuracy. Additionally, the test statistic (9) may also be applied for comparing two

copula-based multivariate density forecasts that also (or even only) have different predic-

tive marginal densities f̂j,t, j = 1, . . . , d. In that case, however, the evaluation not only

concerns the specification of the dependence structure, as captured by the copula function,

but also the models applied for the marginal characteristics.

Note that the assumption that the two competing multivariate density forecasts dif-

fer only in their copula specifications and have identical predictive marginal densities

implicitly requires that the parameters in the marginals and the copula can be separated

from each other, so that they can be estimated in a multi-stage procedure such as the

IFM method discussed in Section 2. Apart from this, no other restrictions are put on

the marginals. In particular, they may be specified parametrically, nonparametrically, or

semi-parametrically as in the SCOMDY model in (5). An advantage of using nonpara-

metric marginal distributions is that it allows one to test for equal predictive accuracy of

copula specifications without the possible side-effects of misspecification of the marginal

densities.

We conclude this section with a few remarks concerning the practical implementation

of the test statistic in (9). First, a standard HAC-estimator can be used for the asymptotic

variance of
√

P d̄R,P , for example σ̂2 = γ̂0 + 2
∑K−1

k=1 akγ̂k, where γ̂k denotes the lag-

k sample covariance of the sequence {dt+1}T−1
t=R and ak are the Bartlett weights ak =

1− k/K with K = �P−1/4	.
Second, if the conditional marginal densities are modeled parametrically, the corre-
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sponding PITs Û t+1 =
(
F̂1,t(Y1,t+1), . . . , F̂d,t(Yd,t+1)

)′
can be evaluated directly, or, if

no closed-form expression is available for the CDFs, by numerical integration. If the

marginal densities are nonparametric, as may be the case for semi-parametric models, the

PITs can be estimated nonparametrically. We illustrate this point by describing how the

PITs Û t are obtained for the SCOMDY model in (5). Let θ̂t denote a point estimate of

the parameter vector θ = (θ′1, θ
′
2)
′ characterizing the conditional means and variances,

obtained at time t using the R observations Y t−R+1, . . . ,Y t. These estimates can be used

to compute the sequence of in-sample residuals {ε̂s}t
s=t−R+1 as

ε̂j,s =
Yj,s − μj,s(θ̂1,t)√

hj,s(θ̂t)
.

In addition, the one-step ahead forecast error can be obtained as ε̂j,t+1|t = (Yj,t+1 −
μj,t+1(θ̂1,t))/

√
hj,t+1(θ̂t). The PIT Û t+1 associated with the forecast errors ε̂t+1|t is then

given by Û t+1 = (Û1,t+1, . . . , Ûd,t+1)
′ where

Ûj,t+1 =
rank of ε̂j,t+1|t among {ε̂j,t−R+1, . . . , ε̂j,t, ε̂j,t+1|t}

R + 2
. (10)

The division by R + 2 rather than by the estimation sample size R + 1 ensures that the

estimated PITs do not fall at the boundaries of the unit cube, where some copula densities

diverge.

4 Monte Carlo simulations

In this section we examine the finite-sample behavior of our predictive accuracy test for

comparing alternative copula specifications. We conduct our simulation experiments in

the context of the SCOMDY model (5), for dimensions d = 2, 3 and 5. For all data

generating processes (DGPs) we use an AR(1) specification for the conditional means

and a GARCH(1,1) specification for the conditional variances with coefficients that are

typical for daily exchange rates, in particular

Yj,t = 0.1Yj,t−1 +
√

hj,tεj,t (11)

hj,t = 0.1 + 0.05 (Yj,t−1 − 0.1Yj,t−2)
2 + 0.85hj,t−1, (12)
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for j = 1, . . . , d. The innovations εj,t are i.i.d. and drawn from the univariate Student-t

distributions with 5 degrees of freedom, which are standardized to have variance equal to

1.2

In the size and power experiments reported below, we use the Gaussian copula, the

Student-t copula, the Clayton copula, the survival Clayton copula, and a mixture of the

latter two.

The Gaussian and Student-t copulas can be obtained using the so-called inversion

method, that is

CG(u1, u2, . . . , ud) = F (F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
d (ud)), (13)

where F is the joint CDF and F−1
i (u) = min{x|u ≤ Fi(x)} is the (quasi)-inverse of the

corresponding marginal CDF Fi.

The Gaussian copula is obtained from (13) by taking F to be a multivariate normal

distribution with mean zero, unit variances, and correlations ρij , i, j = 1, . . . , d, and

standard normal marginals Fi. The corresponding copula density is given by

cG(u;Σ) = |Σ|−1/2 exp

(
−1
2
(Φ−1(u))

′
(Σ−1 − Id)Φ

−1(u)

)
, (14)

where Id is the d-dimensional identity matrix, Σ is the correlation matrix, and Φ−1(u) =

(Φ−1(u1), . . . ,Φ
−1(ud))

′, with Φ−1(·) denoting the inverse of the standard normal CDF.

In the bivariate case d = 2, the correlation coefficient ρ12 = ρ21 is the only parameter of

the Gaussian copula.

The Student-t copula is obtained similarly, but using a multivariate Student-t distribu-

tion instead of the Gaussian. The corresponding copula density is given by

ct(u,Σ, ν) = |Σ|−1/2 Γ([ν + d]/2)Γd−1(ν/2)

Γd((ν + 1)/2)

(
1 +

T−1
ν (u)′Σ−1T−1

ν (u)
ν

)−(ν+d)/2

∏d
i=1

(
1 +

(T−1
ν (ui))

2

ν

)−(ν+1)/2
,

(15)

2We repeat all experiments reported in this section for DGPs with constant conditional means and vari-
ances. The results of these experiments are qualitatively and quantitatively similar to results reported here
for the case of time-varying conditional means and variances. Further details are available upon request.
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where T−1
ν (u) = (T−1

ν (u1), . . . , T
−1
ν (ud))

′, and T−1
ν (·) is the inverse of the univariate

Student-t CDF, Σ is the correlation matrix and ν is the number of degrees of freedom.

In the bivariate case the Student-t copula has two parameters, the number of degrees of

freedom ν and the correlation coefficient ρ12. Note that the Student-t copula nests the

Gaussian copula when ν =∞.

A major difference between the Gaussian copula and the Student-t copula is their

ability to capture tail dependence, which may be important for financial applications. As

mentioned in Section 2, for the Gaussian copula both tail dependence coefficients are

equal to zero, while for the Student-t copula the tail dependence is symmetric and positive.

Specifically, in the bivariate case d = 2, the tail dependence coefficients are given by

λL = λU = 2Tν+1

(
−
√
(ν + 1)(1− ρ12)/(1 + ρ12)

)
,

which is increasing in the correlation coefficient ρ12 and decreasing in the degrees of

freedom ν.

The Clayton and survival Clayton copulas belong to the family of Archimedean cop-

ulas (see Nelsen (2006) for details). The d-dimensional Clayton copula is given by

CC(u1, u2, . . . , ud;α) =

(
d∑

j=1

u−α
j − d+ 1

)−1/α

, with α > 0.

In contrast to the Gaussian and Student-t copulas, the Clayton copula is able to capture

asymmetric tail dependence. In fact, it only exhibits lower tail dependence, while upper

tail dependence is absent. In the bivariate case the lower tail dependence coefficient for

the Clayton copula is λL = 2−1/α, which is increasing in the parameter α. The density

function of the Clayton copula is

cC(u, α) =

(
d∏

j=1

(1 + (j − 1)α)

)(
d∏

j=1

u
−(α+1)
j

)(
d∑

j=1

u−α
j − d+ 1

)−(α−1+d)

.

The survival Clayton copula is obtained as a mirror image of the Clayton copula, with

its density function given by

c̃ C(u, α) = cC(1− u, α).
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Consequently, in the bivariate case the upper tail dependence coefficient for the survival

Clayton copula is λU = 2−1/α, and is increasing in the parameter α, while the lower tail

dependence coefficient is zero.

Finite mixture copulas are constructed by using a convex combination of several para-

metric copulas. Here we use a mixture of the Clayton and survival Clayton copula, that

is

Cmix(u, α1, α2, w) = wCC(u, α1) + (1− w)C̃ C(u, α2), (16)

where 0 ≤ w ≤ 1 is the mixture weight for the Clayton copula. The mixture copula

inherits the tail dependence properties of its basis copulas. Thus, the mixture of the Clay-

ton and the survival Clayton copulas will exhibit both upper and lower tail dependence.

The strength of the dependence is determined by the parameters of both copulas and the

mixture weight, w.

We evaluate the properties of the copula predictive accuracy test for different com-

binations of the length of the moving in-sample window R ∈ {100, 1000} to estimate

the parameters in the marginal models given by (11) and (12), and the number of out-of-

sample evaluations P ∈ {100, 1000, 5000}. The in-sample PITs Û s, s = t−R+1, . . . , t

are obtained from the empirical CDF transformation Ûj,s =
Rj,s

R+1
where Rj,s is the rank

of ε̂j,s among the residuals ε̂j,t−R+1, . . . , ε̂j,t, for j = 1, . . . , d. The parameters of the

competing copulas then are estimated using maximum likelihood. Finally, the PIT Û t+1

corresponding to the one-step ahead forecast errors ε̂j,t+1|t is obtained from (10). The

number of replications in each experiment is set equal to 1000.

4.1 Size

In order to assess the size properties of the test a case is required with two competing

copulas that are both ‘equally (in)correct’. We achieve this by taking the innovations εj,t,

j = 1, . . . , d in the DGP to be independent. We then test the null hypothesis of equal

predictive accuracy of two Student-t copulas with the correlation parameter fixed at either

ρ12 = 0.3 or ρ12 = −0.3. For the copulas with dimension d > 2, we set all other

correlation coefficients to 0. This is done to assure equal distance from the independence

(product) copula. We consider two possibilities for the degrees of freedom parameter: (i)
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ν is also fixed for both copulas and set equal to 5, and (ii) ν is estimated at each point in

time based on a moving window of length R. In either case the two copulas considered in

the test are equally distant from the true copula.

[Table 1 about here.]

The observed rejection rates of the test for nominal sizes 0.01, 0.05 and 0.10 are re-

ported in Table 1, where the null hypothesis is tested against the two-sided alternative that

the average scores of the two copulas are not equal. Panel I in the table corresponds to

case (i) where the degrees of freedom parameter ν is fixed at 5, while Panel II corresponds

to case (ii) with ν being estimated. In the absence of any parameter estimation uncertainty

in the copula parameters, we observe that the empirical rejection rate is close to the nom-

inal size when the number of out-of-sample evaluations is relatively large, that is, when

P = 1000 or 5000. The test is somewhat liberal and rejects the correct null hypothesis

too frequently when P = 100 and R = 100. Adding parameter uncertainty due to the

estimation of the copula parameter ν results in larger deviations from the nominal size in

the P = 100, R = 100 case. For other P/R combinations the results are similar. We do

not observe systematic differences in size for different copula dimensions d.

4.2 Power

We evaluate the power of the test of equal predictive accuracy by performing two simu-

lation experiments where one of the competing copula specifications is approaching the

correct specification as we vary one of the parameters of the DGP. Firstly, we consider the

Gaussian copula and the Student-t copula. Hence, we focus on the question whether the

QR,P test statistic can distinguish between copulas with and without tail dependence.

[Figure 1 about here.]

The DGPs are specified with Student-t copulas of dimensions d = 2, d = 3 and d = 5

with all correlation coefficients set to ρ = 0.3 and varying values of the degrees of freedom

parameter ν in the interval [5, 50]. We test the t copula specification (with both parameters

Σ and ν estimated) against the Gaussian copula specification (with the correlation matrix
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Σ estimated). The Student-t copula approaches the Gaussian copula as ν increases, and

the tail dependence disappears with the coefficients λL and λU converging to zero. Intu-

itively, the higher the value of ν in the DGP, the more difficult it is to distinguish between

these two copulas.

The results are shown in Figure 1 in the form of a power plot, showing the observed

rejection rates for nominal size of 0.05 as a function of the degrees of freedom param-

eter, ν, in the DGP. Different panels relate to different P/R combinations. The results

displayed are for the null hypothesis that the Gaussian copula and Student-t copula per-

form equally well, against the one-sided alternative hypothesis that the correctly specified

Student-t copula has a higher average score. Intuitively, one might expect the Student-t

copula to perform better, since the true DGP uses the Student-t copula. Note, however,

that as the number of degrees of freedom parameter ν in the copula of the DGP becomes

large, the Gaussian copula might outperform the Student-t copula because the Gaussian

copula is almost equivalent to the Student-t copula for large ν, but requires one parameter

(ν) less to be estimated. Indeed, it can be observed that the rejection rates become smaller

than the nominal size for large values of ν. This does not indicate that the test is flawed,

but is merely illustrating the fact that the finite sample performance of more complex (in

terms of parameters) copulas can be expected to be affected more heavily by parameter

estimation uncertainty.

Figure 1 shows that the test has higher power for smaller values of ν. Increasing the di-

mension d of the copula improves the power for all values of ν and all P/R combinations

considered. The power of the test reaches values close to one for P = 5000, R = 1000,

even when the Student-t copula is relatively close to the Gaussian copula (ν = 20). By

comparing the panels it can be seen that the power is increasing in P as well as R. The

region of ν for which the power exceeds the nominal size is smallest for P = 100 and

R = 100, in which case the power exceeds the nominal size only for ν ≤ 7. For P = 1000

and R = 100 the situation is similar. We attribute this to the fact that a smaller in-sample

size R is characterized by larger parameter estimation uncertainty. Apparently for small

in-sample values and relatively large values of ν the less parsimonious Student-t copula is

affected by parameter estimation uncertainty more than the parsimonious Gaussian cop-
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ula, even to the extent that the latter performs better on average. The ν-regions with power

exceeding the nominal size are larger for higher dimensions d, which may be explained by

the fact that the ratio of the number of parameters to be estimated for the Student-t copula

relative to the Gaussian copula becomes smaller.

[Figure 2 about here.]

In our final experiment we consider a DGP with varying asymmetric tail dependence

by using a SCOMDY model with the mixture copula (16) based on Clayton copula with

coefficient α1 = 1.5 and a survival Clayton copula with α2 = 1.5 and weight w varying

within the interval [0.5, 1]. The conditional mean and variance are specified as in (11)

and (12) with standard normal innovations εt. The Clayton copula specification is tested

against the survival Clayton copula in a one-sided test. We examine whether the test can

distinguish between the upper tail dependence and the lower tail dependence copulas.

Since the survival Clayton copula density is a point reflection of the Clayton copula den-

sity, the parameter estimation uncertainty is identical for both copulas. When w = 0.5

both copulas are equally distant from the correct mixture copula. As w approaches unity,

the Clayton copula becomes closer to the DGP. We use mixture copulas of dimensions

d = 2, d = 3 and d = 5 in this simulation experiment. The parameter α is estimated for

both copulas. Figure 2 shows power curves for this experiment for the different values of

the mixture weight, w, three different dimentions d, and different combinations of P and

R. When w = 0.5 the rejection rates are close to the nominal size of 0.05 for all P/R

combinations except for P = 100, R = 100, in which case the test over-rejects. In all

cases the power of the test increases with w. For P = 5000 and R = 1000 the power of

the test quickly reaches unity, while the convergence to unity is slowest for P = 100 and

R = 100. The power of the test increases with the dimension of the mixture copula for all

P/R combinations considered.

From the above simulation experiments we conclude that the test of equal predictive

accuracy has good finite sample properties when the number of out-of-sample evaluations

is sufficiently large (P = 1000, 5000).
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5 Empirical application

We illustrate the use of the predictive accuracy test for comparing alternative copula spec-

ifications with an empirical application to exchange rate returns for several major curren-

cies. Specifically, we consider daily returns on US dollar exchange rates of the Canadian

dollar (CAD), Swiss franc (CHF), euro (EUR), British pound (GBP) and Japanese yen

(JPY) over the period from January 1, 1980 until June 25, 2008 (7160 observations). Up

to December 31, 1998, the euro series actually concerns the exchange rate of the German

Deutschmark, while the euro is used as of January 1, 1999. The data are noon buy-

ing rates in New York and are obtained from the Federal Reserve Bank of New York.

We work with two groups of three exchange rates each, that is, GBP-CHF-EUR, and

CAD-JPY-EUR. The first, inter-European group presumably has a relatively high level of

dependence compared to the second, inter-continental group. This is confirmed by the

unconditional correlations between the daily returns series.3

We use SCOMDY models as discussed in Section 2 to model the exchange rate returns

and their dependence. The conditional means and the conditional variances for the three

series in each group are specified by an AR(5)-GARCH(1,1) model given by

Yj,t = cj +
5∑

l=1

φj,lYj,t−l +
√

hj,tεj,t (17)

hj,t = κj + γj

(
Yj,t−1 − cj −

5∑
l=1

φj,lYj,t−1−l

)2

+ βjhj,t−1, (18)

where κj > 0, βj ≥ 0, γj > 0 and βj + γj < 1, for j = 1, . . . , 3.

The joint distribution of the standardized innovations εj,t is specified semi-parametrically,

combining nonparametric univariate marginal distributions Fj with a parametric copula

C. We consider four alternative copula specifications, which we compare in terms of their

relative performance in out-of-sample density forecasting. In particular, we consider the

Gaussian copula, the Student-t copula, the Clayton copula and the Gumbel copula. The

Gaussian, Student-t and Clayton copula were introduced earlier in Section 4. The Gum-

3The unconditional correlations between the exchange rates of the GBP and CHF, GBP and EUR, and
CHF and EUR equal 0.69, 0.72 and 0.92, respectively. The unconditional correlations between exchange
rates of the CAD and JPY, CAD and EUR, and JPY and EUR equal 0.11, 0.22 and 0.54, respectively.
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bel copula is another copula from the family of Archimedean copulas popular in financial

time-series applications and is specified as

CGumbel(u1, u2, . . . , ud;α) = exp

⎛⎝−[
d∑

i=1

(− lnui)
a

]1/α
⎞⎠ , with α > 1.

The Gumbel copula exhibits asymmetric tail dependence, but in contrast to the Clayton

copula it only allows upper tail dependence, while lower tail dependence is absent. In

the bivariate case the upper tail dependence coefficient for the Gumbel copula is λU =

2 − 21/α, which is increasing in the parameter α. The expression for the multivariate

Gumbel copula density is rather cumbersome and we do not show it here. Note that both

the Clayton copula and the Gumbel copula impose equi-dependence between all pairs of

variables and, thus, may not always be suitable for modeling.

We compare the one-step ahead density forecasting performance of the four copu-

las using a rolling window scheme. We estimate the SCOMDY model parameters using

the three-stage procedure described in Section 2. The length of the in-sample rolling es-

timation window is set to R = 2000 observations, which leaves P = 5160 observations

for out-of-sample evaluation, covering the period January 1988 - July 2008. Patton (2006)

documents a structural break in the dependence between the EUR and JPY exchange rates

after the introduction of the euro on January 1, 1999. We therefore partition our evaluation

period at this date into two sub-periods, called the pre-euro and post-euro period, respec-

tively, to explore whether the (relative) forecasting performance of the different copula

specifications also is affected by the euro introduction. The number of observations dif-

fers slightly for the pre- and post-euro periods, being equal to P = 2772 and P = 2388,

respectively.

[Table 2 about here.]

[Table 3 about here.]

Table 2 reports the values of the pairwise QR,P test statistic for the full sample, as well

as the pre- and post-euro sub-periods, for the two groups of three exchange rates. In most

cases the test makes a clear judgment about the two copulas being compared, in the sense
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that the null of equal predictive accuracy is generally rejected at the 1% significance level

or better. The Clayton copula shows the worst performance in comparison to any other

copula. The Gumbel copula is dominated by the Gaussian copula in all cases except for

the CAD-JPY-EUR group during the post-euro subperiod, where the equal performance

of these two copulas is not rejected at the 10% level. The Gaussian copula is, in turn,

outperformed by the Student-t copula in all cases except for the GBP-CHF-EUR group

during the post-euro subperiod, where again there is insufficient evidence to reject the null

of equal performance of these two copulas. For comparison, Table 3 presents the average

values of the KLIC scores St+1 given in (7). Thus, overall we conclude that the Student-t

copula performs best in terms of out-of-sample multivariate density forecasts. A similar

conclusion is reached by Chen and Fan (2006) based on the in-sample versions of our

tests.

[Figure 3 about here.]

To provide more insight into these results, in Figure 3 we show the rolling window

parameter estimates of the Student-t copula for the GBP-CHF-EUR group in the left panel

and for the CAD-JPY-EUR group in the right panel. The dates on the horizontal axis

correspond with the end of the estimation window, that is, the moment these estimates

are used for constructing the density forecast. For presentation purposes the parameter

estimates are reported for every 100th day in the evaluation period. Three aspects are

worth discussing in more detail. First, the estimates of the degrees of freedom parameter

ν exhibit substantial variation over time, ranging between 6 and 18 for the CAD-JPY-EUR

group and between 4 and 10 for the GBP-CHF-EUR group. Recall that lower values of ν

indicate stronger tail dependence; this is found to be the major reason for the rejection of

the Gaussian copula against the t copula.

Second, the correlation estimates clearly differ among the exchange rate pairs within

each group. This suggests that the one-parameter Clayton and Gumbel copulas are not

suitable as they are not able to capture these differences. This explains the inferior fore-

casting performance of these two copulas relative to the Gaussian and t specifications.

Note that it would be too premature, however, to conclude that the exchange rates ex-
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hibit symmetric rather than asymmetric tail dependence. It is possible that there is indeed

asymmetric tail dependence, but that the restrictive nature of the Clayton and Gumbel

copulas (which impose equi-dependence between all exchange rate pairs) leads to worse

performance than the more flexible (but symmetric) Student-t copula. To truly conclude

that these exchange rates have symmetric tail dependence we would need to consider a

copula which is as flexible as the Student-t copula, and which allows for asymmetric tail

dependence.

Third, we observe slowly changing correlations over time. There is some evidence for

a structural break due to the euro introduction on January 1, 1999. The post-euro period is

characterized by increasing correlations for CAD-EUR, CAD-JPY and JPY-EUR, while

they were decreasing before. The same is true for the exchange rate pairs in the other

group, that is, the GBP-CHF and GBP-EUR correlations also start increasing after the

introduction of the euro. The CHF-EUR correlations are close to unity over the whole

sample period, with a slight tendency to increase during the post-euro period. This cre-

ates some challenges for the maximization procedure used to maximize the likelihood,

and results in somewhat unstable estimates around 2006-2008. It is also more difficult to

distinguish the Gaussian copula from the Student-t copula when the correlation is close to

one, as the Gaussian copula also has tail dependence in the limiting case of unit correla-

tion.4 All these factors contribute to the inability of the test to reject the equal performance

between the Gaussian copula and the Student-t during this subperiod.

6 Summary and discussion

In this paper we have introduced a new statistical test for comparing alternative copula

specifications in the context of multivariate density forecasts. The test is based on the

KLIC, which is a measure of distance of the candidate copula specifications to the true

copula. Although the true copula is unknown, score differences can be used to compare

copulas pair-wise; the copula with the smallest average KLIC is considered to be superior.

The main difference with other tests for competing copula specifications is that we use an

4The correlation estimates obtained for the Gaussian copula specifications are very similar to the values
shown in Figure 3 for the Student-t copula.
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out-of-sample measure for the suitability of the copulas.

Following Giacomini and White (2006), the potential problem that parameter estima-

tion uncertainty might affect the distribution of test statistics is avoided by considering

parameter estimation as an integral part of the forecasting method. The resulting test

is valid under general conditions on the competing copulas, allowing for parameter es-

timation uncertainty and for comparing either nested or non-nested copula families. In

addition, the conditional marginal densities, which are assumed to be the same for the

two competing copula specifications, may be specified parametrically, nonparametrically,

or semi-parametrically. This implies that the test may be applied to a wide variety of

copula-based multivariate density models.

Monte Carlo simulation results suggest that the proposed test has satisfactory size

and power properties in finite samples. Rejection rates smaller than the nominal size

are observed, but this phenomenon can be understood in terms of parameter estimation

uncertainty and model complexity; an incorrectly specified but more parsimonious model

may perform better than a correctly specified model, when the difference in dependence

structure described by these models is small.

In an empirical application to daily exchange rate returns of several major currencies

against the US dollar we found that the Student-t copula is clearly favored over Gaussian,

Gumbel and Clayton specifications.

In this paper, we have limited ourselves to copula specifications for which the density

exists and is well-defined. This is the case, for example, when the copula function is ab-

solutely continuous. For copulas that are not, it may also be possible to develop Kullback-

Leibler type scoring rules, as these merely correspond to likelihood ratio scores. If the

likelihood ratio for two competing copulas can be calculated, so can the corresponding

score. We leave it for future research to investigate how the likelihood ratio scores per-

form for such copula specifications.
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Bao, Y., Lee, T.-H. and Saltoğlu, B. (2007). Comparing density forecast models. Journal

of Forecasting, 26, 203–225.

Berg, D. (2009). Copula goodness-of-fit testing: An overview and power comparison.

European Journal of Finance, 15, 675–701.

Berg, D. and Bakken, H. (2007). A copula goodness-of-fit approach based on the condi-

tional probability integral transform. Working paper, Norwegian Computing Center.

Breymann, W., Dias, A. and Embrechts, P. (2003). Dependence structures for multivariate

high-frequency data in finance. Quantitative Finance, 3, 1–14.

Chen, X. and Fan, Y. (2005). Pseudo-likelihood ratio tests for semiparametric multivariate

copula model selection. Canadian Journal of Statistics, 33, 389–414.

Chen, X. and Fan, Y. (2006). Estimation and model selection of semiparametric copula-

based multivariate dynamic models under copula misspecification. Journal of Econo-

metrics, 135, 125–154.

Chen, X., Fan, Y. and Tsyrennikov, V. (2006). Efficient estimation of semiparamet-

ric multivariate copula models. Journal of the American Statistical Association, 101,

1228–1240.

Cherubini, U., Luciano, E. and Vecchiato, E. (2004). Copula Methods in Finance. Wiley

Finance Series. Wiley, Chicester.

Coval, J.D., Jurek, J.W. and Stafford, E. (2009). Economic catastrophe bonds. American

Economic Review, 99, 628–666.
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Figure 1: Power of the test. The figure displays observed rejection rates (on the vertical axis) of a
one-sided test of equal performance of the Gaussian and Student-t copula, against the alternative
hypothesis that the correctly specified Student-t copula has higher average score. The horizontal
axis displays the degrees of freedom parameter of the Student-t copula in the DGP. The DGP
is the SCOMDY model (5) with marginal distributions specified in (17)-(18) and a Student-t
copula with dimensions d = 2, d = 3 and d = 5, all correlation coefficients set to ρ = 0.3 and
varying degrees of freedom ν. The test of equal predictive accuracy compares a t copula with both
parameters Σ and ν estimated against a Gaussian copula with parameter Σ estimated. The four
panels correspond to different P/R combinations. R denotes the number of observations in the
moving in-sample window and P denotes the number of out-of-sample evaluations. The nominal
size of 0.05 is indicated by the horizontal line. Results are based on 1000 replications.

27



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  0.6  0.7  0.8  0.9  1

p
o

w
e

r

weight

P=100, R=100

d=2
d=3
d=5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  0.6  0.7  0.8  0.9  1
p

o
w

e
r

weight

P=1000, R=100

d=2
d=3
d=5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  0.6  0.7  0.8  0.9  1

p
o

w
e

r

weight

P=1000, R=1000

d=2
d=3
d=5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  0.6  0.7  0.8  0.9  1

p
o

w
e

r

weight

P=5000, R=1000

d=2
d=3
d=5

Figure 2: Power of the test. The figure displays power curves, showing the rejection rate of
a one-sided test against the alternative hypothesis that the correctly specified copula has higher
average score (on the vertical axis) for the varying mixture copula weights (on the horizontal axis).
The DGP is the SCOMDY model (5) marginal distributions specified in (17)-(18) and a mixture
Clayton-survival Clayton copula of dimensions d = 2, d = 3 and d = 5 with coefficients α1 =
α2 = 1.5 and the varying weight w. The test of equal predictive accuracy compares the Clayton
copula against the survival Clayton copula when the parameters in both copulas are estimated. R
denotes the number of observations in the moving in-sample window and P denotes the number
of out-of-sample evaluations. Results are based on 1000 replications.
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Figure 3: Parameter estimates of the Student-t copula over time for the two groups of exchange
rates: GBP-CHF-EUR in the left panel and CAD-JPY-EUR in the right panel. The first three
parameters presented in the graphs are pairwise correlations between the indicated exchange rates,
while the fourth is the degrees of freedom parameter. The parameter estimates are reported for
every 100th day in the evaluation period. Year labels (on the horizontal axis) indicate the beginning
of the corresponding year.
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Table 1: Observed size of the test for equal predictive accuracy
Nominal P/R
size 100/100 1000/100 1000/1000 5000/1000
Panel I: ν fixed

a) d = 2
0.01 0.014 0.009 0.010 0.012
0.05 0.062 0.045 0.060 0.056
0.10 0.121 0.093 0.115 0.111

b) d = 3
0.01 0.014 0.007 0.008 0.014
0.05 0.049 0.039 0.049 0.046
0.10 0.103 0.079 0.099 0.091

c) d = 5
0.01 0.012 0.013 0.012 0.007
0.05 0.055 0.052 0.044 0.037
0.10 0.105 0.114 0.099 0.097

Panel I: ν estimated
a) d = 2

0.01 0.017 0.012 0.014 0.009
0.05 0.069 0.054 0.059 0.055
0.10 0.120 0.104 0.109 0.099

b) d = 3
0.01 0.015 0.008 0.008 0.013
0.05 0.064 0.045 0.044 0.047
0.10 0.109 0.115 0.097 0.093

c) d = 5
0.01 0.020 0.009 0.008 0.012
0.05 0.063 0.054 0.042 0.039
0.10 0.125 0.105 0.096 0.084

Note: The table presents two-sided rejection rates of the test for equal
predictive accuracy of two competing copula specifications as given in
(9) for nominal sizes 0.01,0.05 and 0.10 and dimensions d = 2, d = 3
and d = 5. The DGP is the SCOMDY model (5) with marginal distri-
butions following AR(1)-GARCH(1,1) process with Student-t inno-
vations with 5 degrees of freedom. The innovations for the different
series are independent. The test of equal predictive accuracy compares
a Student-t copula with ρ12 = 0.3 against a t copula with ρ12 = −0.3.
For dimension d > 2, the remaining correlation coefficients are set to
0. The results are given for two cases: (i) ν is fixed at 5 (Panel I) and
(ii) ν is estimated (Panel II). R denotes the number of observations in
the moving in-sample estimation window and P denotes the number
of out-of-sample evaluations. Results are based on 1000 replications.
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Table 2: Pair-wise tests for out-of-sample perfor-
mance of copulas

Copula B
Copula A Gumbel Student-t Gaussian
Panel I: GBP-CHF-EUR

a) Full sample
Clayton −5.91∗∗∗ −23.16∗∗∗ −23.53∗∗∗
Gumbel −19.61∗∗∗ −19.73∗∗∗
Student-t 2.46∗∗

b) Pre-euro
Clayton −5.34∗∗∗ −17.33∗∗∗ −18.26∗∗∗
Gumbel −14.50∗∗∗ −14.00∗∗∗
Student-t 3.17∗∗∗

c) Post-euro
Clayton −2.71∗∗∗ −13.13∗∗∗ −12.69∗∗∗
Gumbel −11.69∗∗∗ −12.12∗∗∗
Student-t 0.52

Panel II: CAD-JPY-EUR
a) Full sample

Clayton −1.41 −8.95∗∗∗ −7.42∗∗∗
Gumbel −8.11∗∗∗ −6.65∗∗∗
Student-t 4.04∗∗∗

b) Pre-euro
Clayton −1.06 −8.37∗∗∗ −7.62∗∗∗
Gumbel −7.61∗∗∗ −6.91∗∗∗
Student-t 1.82∗

c) Post-euro
Clayton −0.94 −4.00∗∗∗ −1.90∗
Gumbel −3.35∗∗∗ −1.28
Student-t 4.44∗∗∗

Note: The table presents values of the QR,P test statis-
tic of the null hypothesis of equal predictive accuracy
of two alternative copula specifications. Positive (Neg-
ative) values indicate better performance of copula A
(B). The asterisks ∗, ∗∗ and ∗∗∗ indicate significance
at (two-sided) 10%, 5% and 1% levels respectively.
The length of the moving in-sample estimation win-
dow is equal to R = 2000 in all cases. The number
of observations in the out-of-sample period is equal to
P = 5160 for the full sample, P = 2772 for the pre-
euro period and P = 2388 for the post-euro period.
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Table 3: Average out-of-sample KLIC scores for four copulas

Sample Clayton Gumbel Student-t Gaussian
Panel I: GBP-CHF-EUR
Full sample 0.775 0.889 1.244 1.217
Pre-Euro 0.766 0.923 1.270 1.229
Post-Euro 0.785 0.849 1.214 1.204

Panel II: CAD-JPY-EUR
Full sample 0.055 0.062 0.147 0.134
Pre-Euro 0.041 0.050 0.183 0.174
Post-Euro 0.071 0.077 0.106 0.088

Note: The table presents average values of out-of-sample KLIC
scores for four considered copulas. The length of the moving
in-sample estimation window is equal to R = 2000 in all cases.
The number of observations in the out-of-sample period is equal
to P = 5160 for the full sample, P = 2772 for the pre-euro period
and P = 2388 for the post-euro period.
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