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Abstract

A recursion for the joint moments of the external branch lengths for coalescents with multi-
ple collisions (Λ-coalescents) is provided. This recursion is used to derive asymptotic expansions
as the sample size n tends to infinity for the moments of the total external branch length of
the Bolthausen–Sznitman coalescent. The proof is based on an elementary difference method.
An alternative differential equation method is developed which can be used to obtain exact
solutions for the joint moments of the external branch lengths for the Bolthausen–Sznitman
coalescent. The results for example show that the lengths of two randomly chosen external
branches are positively correlated for the Bolthausen–Sznitman coalescent, whereas they are
negatively correlated for the Kingman coalescent provided that n ≥ 4.
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1 Introduction and main results

Let Π = (Πt)t≥0 be a coalescent process with multiple collisions (Λ-coalescent). For fundamental
information on Λ-coalescents we refer the reader to [23] and [24]. For n ∈ N := {1, 2, . . .} we denote

with Π(n) = (Π
(n)
t )t≥0 the coalescent process restricted to [n] := {1, . . . , n}. Note that Π(n) is

Markovian with state space En, the set of all equivalence relations (partitions) on [n]. For ξ ∈ En we
write |ξ| for the number of equivalence classes (blocks) of ξ. For m ∈ {1, . . . , n− 1} let gnm be the

rate at which the block counting process N (n) := (N
(n)
t )t≥0 := (|Π

(n)
t |)t≥0 jumps at its first jump

time from n to m. It is well known (see, for example, [20, Eq. (13)]) that

gnm =

(

n

m− 1

)
∫

[0,1]

xn−m−1(1− x)m−1 Λ(dx) (1)

for all n,m ∈ N with m < n. We furthermore introduce the total rates

gn :=

n−1
∑

m=1

gnm =

∫

[0,1]

1− (1 − x)n − nx(1 − x)n−1

x2
Λ(dx), n ∈ N. (2)
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We are interested in the external branches of the restricted coalescent process Π(n). More precisely,
for n ∈ N and i ∈ {1, . . . , n} let

τn,i := inf{t > 0 : {i} is a singleton block of Π
(n)
t } (3)

denote the length of the ith external branch of the restricted coalescent Π(n). Our first main result
(Theorem 1.1) provides a general recursion for the joint moments

µn(k1, . . . , kj) := E(τk1

n,1 · · · τ
kj

n,j), j ∈ {1, . . . , n}, k1, . . . , kj ∈ N0 := {0, 1, . . .}, (4)

of the external branch lengths. The proof of Theorem 1.1 is provided in Section 2.

Theorem 1.1 (Recursion for the joint moments of the external branch lengths)
For all n ∈ {2, 3, . . .}, j ∈ {1, . . . , n} and k1, . . . , kj ∈ N the joint moments µn(k1, . . . , kj) :=

E(τk1

n,1 · · · τ
kj

n,j) of the lengths τn,1, . . . , τn,n of the external branches of a Λ-coalescent Π(n) satisfy
the recursion

µn(k1, . . . , kj)

=
1

gn

j
∑

i=1

ki µn(k1, . . . , ki−1, ki − 1, ki+1, . . . , kj) +

n−1
∑

m=2

pnm
(m− 1)j
(n)j

µm(k1, . . . , kj), (5)

where pnm := gnm/gn and gnm and gn are defined via (1) and (2).

Remarks.

1. The recursion (5) works as follows. Let us call k := k1 + · · ·+ kj the order (or degree) of the
moment µn(k1, . . . , kj). Provided that all the moments of order k − 1 are already computed,
(5) is a recursion on n for the joint moments of order k, which can be solved iteratively. So
one starts with k = 1 (and hence j = 1), in which case the recursion (5) reduces to µn(1) =

1/gn+
∑n−1

m=2 pnm((m−1)/n)µm(1), n ∈ {2, 3, . . .}. Since µ2(1) = E(τ2,1) = 1/g2 = 1/Λ([0, 1]),
this recursion determines the moments of order 1 completely. Now choose k = 2 in (5) which
leads to a recursion for the second order moments. Iteratively, one can move to larger values
of k.

2. For j = 2 and k1 = k2 = 1 the recursion (5) reduces to

E(τn,1τn,2) =
2

gn
E(τn,1) +

n−1
∑

m=2

pnm
(m− 1)2
(n)2

E(τm,1τm,2), n ∈ {2, 3, . . .}, (6)

with initial value E(τ2,1τ2,2) = 2/g22. Provided that E(τn,1) is known, (6) is a recursion on n
for E(τn,1τn,2).

Note that Theorem 1.1 holds for arbitrary Λ-coalescents. For particular Λ-coalescents the recursion
(5) can be used to derive exact solutions and asymptotic expansions for the joint moments of the
lengths of the external branches. In the following we briefly discuss the star-shaped coalescent
and the Kingman coalescent. Afterwards we intensively study the external branch lengths of the
Bolthausen–Sznitman coalescent. For related results on external branches for beta coalescents we
refer the reader to [7] and [8].
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Example. (Star-shaped coalescent) For the star-shaped coalescent, where Λ is the Dirac mea-
sure at 1, the time Tn of the first jump of Π(n) is exponentially distributed with parameter
gn = 1, n ∈ {2, 3, . . .}. Furthermore, pn1 = 1 and pnm = 0 for n,m ∈ N with 1 < m < n.

Thus, (5) reduces to µn(k1, . . . , kj) =
∑j

i=1 ki µn(k1, . . . , ki−1, ki − 1, ki+1, . . . , kj) with solution
µn(k1, . . . , kj) = (k1 + · · · + kj)!, which is obviously correct, since τn,i = Tn for all i ∈ {1, . . . , n}

and, therefore, µn(k1, . . . , kj) = E(T
k1+···+kj
n ) = (k1 + · · · + kj)!, n ∈ {2, 3, . . .}, j ∈ {1, . . . , n},

k1, . . . , kj ∈ N.

Example. (Kingman coalescent) For the Kingman coalescent [19], where Λ is the Dirac measure at
0, the time Tn of the first jump of Π(n) is exponentially distributed with parameter gn = n(n−1)/2,
n ∈ {2, 3, . . .}. Furthermore, pn,n−1 = 1, n ∈ {2, 3, . . .} and pnm = 0 for all m,n ∈ N with m < n−1.
Caliebe et al. [5, Theorem 1] verified that nτn,1 → Z in distribution as n → ∞, where Z has density
x 7→ 8/(2+ x)3, x ≥ 0. Janson and Kersting [18, Theorem 1] showed that the total external branch
length Lexternal

n :=
∑n

i=1 τn,i satisfies (1/2)
√

n/(logn)(Lexternal
n − 2) → N(0, 1) in distribution as

n → ∞. We are instead interested here in the moments of τn,1. The recursion (5) for j = 1 reduces
to

µn(k) =
2k

n(n− 1)
µn(k − 1) +

n− 2

n
µn−1(k), n ∈ {2, 3, . . .}, k ∈ N.

Rewriting this recursion in terms of an(k) := n(n− 1)µn(k) yields an(k) = 2k µn(k− 1) + an−1(k),
n ∈ {2, 3, . . .}, k ∈ N, with solution an(k) = 2k

∑n
m=2 µm(k − 1). Thus,

µn(k) =
2k

n(n− 1)

n
∑

m=2

µm(k − 1), n ∈ {2, 3, . . .}, k ∈ N.

The first two moments are therefore E(τn,1) = µn(1) = 2/(n(n− 1))
∑n

m=2 1 = 2/n and

E(τ2n,1) = µn(2) =
4

n(n− 1)

n
∑

m=2

2

m
=

8(hn − 1)

n(n− 1)
= 8

logn

n2
+

8(γ − 1)

n2
+O

(

logn

n3

)

,

where γ ≈ 0.577216 denotes the Euler constant and hn :=
∑n

i=1 1/i the n-th harmonic number,
n ∈ N. Note that these results are in agreement with those of Caliebe et al. [5, Eq. (2)] and Janson
and Kersting [18, p. 2205]. For the third moment we obtain

µn(3) =
6

n(n− 1)

n
∑

m=2

8(hm − 1)

m(m− 1)
=

48

n(n− 1)

n
∑

m=2

hm − 1

m(m− 1)
.

The last sum simplifies considerably to

n
∑

m=2

hm − 1

m(m− 1)
=

n
∑

m=2

(

hm

m− 1
−

hm

m
−

1

m(m− 1)

)

=
n−1
∑

m=1

hm+1

m
−

n
∑

m=2

hm

m
−

(

1−
1

n

)

= h2 +
n−1
∑

m=2

hm + 1
m+1

m
−

n−1
∑

m=2

hm

m
−

hn

n
− 1 +

1

n
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=
3

2
+

n−1
∑

m=2

1

m(m+ 1)
−

hn

n
− 1 +

1

n

=
3

2
+

1

2
−

1

n
−

hn

n
− 1 +

1

n
= 1−

hn

n
,

Thus, the third moment of τn,1 is

E(τ3n,1) = µn(3) =
48

n(n− 1)

(

1−
hn

n

)

=
48

n2
− 48

logn

n3
+O

(

1

n3

)

.

For the fourth moment we obtain

E(τ4n,1) = µn(4) =
8

n(n− 1)

n
∑

m=2

µm(3) =
384

n(n− 1)

n
∑

m=2

1− hm/m

m(m− 1)
,

a formula which does not seem to simplify much further. One may also introduce the generating
functions gk(t) :=

∑∞

n=2 µn(k)t
n, k ∈ N, |t| < 1. For all k ≥ 2 we have

t2g′′k (t) =

∞
∑

n=2

n(n− 1)µn(k)t
n =

∞
∑

n=2

2k

n
∑

m=2

µm(k − 1)tn

= 2k

∞
∑

m=2

µm(k − 1)tm
∞
∑

n=m

tn−m =
2k

1− t
gk−1(t),

so these generating functions satisfy the recursion

gk(t) = 2k

∫ t

0

∫ s

0

gk−1(u)

u2(1− u)
du ds, k ≥ 2, 0 ≤ t < 1,

with initial function g1(t) =
∑∞

n=2(2/n)t
n = −2t − 2 log(1 − t). Using this recursion, gk(t) can

be computed iteratively, however, the expressions become quite involved with increasing k. For
example, g2(t) = 8t − 4(1 − t) log2(1 − t) − 8(1 − t)Li2(t), |t| < 1, where Li2(t) := −

∫ t

0 (log(1 −

x))/x dx =
∑∞

k=1 t
k/k2 denotes the dilogarithm function. In principle higher order moments and as

well joint moments can be calculated analogously, however the expressions become more and more
nasty with increasing order. In the following we exemplary derive an exact formula for µn(1, 1) =
E(τn,1τn,2). The recursion (5) for j = 2 and k1 = k2 = 1 reduces to (see (6))

µn(1, 1) =
2

gn
µn(1) +

(n− 2)2
(n)2

µn−1(1, 1) =
8

n2(n− 1)
+

(n− 2)(n− 3)

n(n− 1)
µn−1(1, 1), n ≥ 2.

It is readily checked by induction on n that the solution of this recursion is given by µ2(1, 1) = 2
and

µn(1, 1) =
4(n2 − 5n+ 4hn)

n(n− 1)2(n− 2)
, n ∈ {3, 4, . . .}.

In particular, the asymptotic expansion µn(1, 1) = 4/n2 − 4/n3 + O((log n)/n4), n → ∞, holds.
Moreover, Cov(τn,1, τn,2) = µn(1, 1)− (µn(1))

2 = 4(n2−5n+4hn)/(n(n−1)2(n−2))−4/n2 < 0 for
all n ≥ 4. Thus, for the Kingman coalescent, the lengths of two randomly chosen external branches
are (slightly) negatively correlated for all n ≥ 4. We have used the derived formulas to compute the
following table.
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n µn(1) = E(τn,1) µn(1, 1) = E(τn,1τn,2) Cov(τn,1, τn,2)
2 1 2 1
3 2

3 ≈ 0.666667 4
9 ≈ 0.444444 0

4 1
2 = 0.5 13

54 ≈ 0.240741 − 1
108 ≈ −0.009259

5 2
5 = 0.4 137

900 ≈ 0.152222 − 7
900 ≈ −0.007778

10 1
5 = 0.2 38881

1020600 ≈ 0.038096 − −1943
1020600 ≈ −0.001904

100 1
50 = 0.02 ≈ 0.000396 ≈ −0.000004

∞ 2
n

4
n2 − 4

n3 +O( log n
n4 ) − 4

n3 +O( log n
n4 )

Table 1: Covariance of τn,1 and τn,2 for the Kingman coalescent

In the following we focus on the Bolthausen–Sznitman coalescent [4], where Λ is the uniform distri-
bution on [0, 1]. Our second main result (Theorem 1.2) provides asymptotic expansions for all the
joint moments of the external branch lengths for the Bolthausen–Sznitman coalescent.

Theorem 1.2 (Expansion for the joint moments of the external branch lengths)

For the Bolthausen–Sznitman coalescent, the joint moments µn(k1, . . . , kj) := E(τk1

n,1 · · · τ
kj

n,j) of the
lengths τn,1, . . . , τn,n of the external branches satisfy the asymptotic expansion

µn(k1, . . . , kj) =
k1! · · · kj !

logk1+···+kj n

(

1 +
κj(k1, . . . , kj)

logn
+O

(

1

log2 n

))

, j ∈ N, k1, . . . , kj ∈ N0, (7)

where the coefficients κj(k1, . . . , kj), j ∈ N, k1, . . . , kj ∈ N0, are recursively defined via κ1(0) :=
0, κj(k1, . . . , ki−1, 0, ki+1, . . . , kj) := κj−1(k1, . . . , ki−1, ki+1, . . . , kj), j ∈ N \ {1}, i ∈ {1, . . . , j},
k1, . . . , ki−1, ki+1, . . . , kj ∈ N0, and

κj(k1, . . . , kj) :=
1

j

( j
∑

i=1

ki + jΨ(j)− j + 1 +

j
∑

i=1

κj(k1, . . . , ki−1, ki − 1, ki+1, . . . , kj)

)

for j, k1, . . . , kj ∈ N. Here Ψ := Γ′/Γ denotes the derivative of log Γ (also called the digamma
function).

Remarks.

1. For j = 1 the recursion for κj(k1, . . . , kj) reduces to κ1(k) = k − γ + κ1(k − 1), k ∈ N,
where γ = −Ψ(1) ≈ 0.577216 denotes the Euler constant. By induction on k it follows that
κ1(k) = k(k + 1)/2− kγ, k ∈ N0, in agreement with [11, Theorem 1.2].

2. For k1 = · · · = kj = 1 the recursion for κj(k1, . . . , kj) reduces to κ1(1) = 1 + Ψ(1) + κ1(0) =
1 − γ and κj(1, . . . , 1) = Ψ(j) + 1/j + κj−1(1, . . . , 1) for j ∈ {2, 3, . . .}. An induction on j it

follows that κj(1, . . . , 1) = (j + 1)hj − j − jγ, j ∈ N, where hj :=
∑j

i=1 1/i denotes the jth
harmonic number, j ∈ N.

3. For j = 2 and k1 = k2 = 1 the expansion (7) has the form

E(τn,1τn,2) = µn(1, 1) =
1

log2 n
+

κ2(1, 1)

log3 n
+O

(

1

log4 n

)

, n → ∞, (8)

with κ2(1, 1) = 5/2 − 2γ ≈ 1.345569. In particular, Cov(τn,1, τn,2) = µn(1, 1) − (µn(1))
2 =

1/(2 log3 n) + O(1/ log4 n), n → ∞. Thus, for the Bolthausen–Sznitman coalescent, τn,1 and
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τn,2 are asymptotically positively correlated. With some more effort (see Corollary 3.3 and
the remark thereafter) exact solutions for E(τn,1) and E(τn,1τn,2) are obtained and it follows
that τn,1 and τn,2 are positively correlated for all n ≥ 2. Note that this positive correlation
differs substantially from the situation for the Kingman coalescent, where τn,1 and τn,2 are
slightly negatively correlated for all n ≥ 4.

The following convergence result is a direct consequence of Theorem 1.2.

Corollary 1.3 (Weak limiting behavior of the external branch lengths)
For the Bolthausen–Sznitman coalescent, (log n)(τn,1, . . . , τn,n, 0, 0, . . .) → (τ1, τ2, . . .) in distribution
as n → ∞, where τ1, τ2, . . . are independent and all exponentially distributed with parameter 1.

The following result is as well a direct consequence of Theorem 1.2 and concerns the asymptotics of
the moments of the total external branch length Lexternal

n :=
∑n

i=1 τn,i of the Bolthausen–Sznitman
coalescent.

Corollary 1.4 (Asymptotics of the moments of the total external branch length)
Fix k ∈ N. For the Bolthausen–Sznitman coalescent, the kth moment of Lexternal

n has the asymptotic
expansion

E((Lexternal
n )k) =

nk

logk n

(

1 +
ck

logn
+O

(

1

log2 n

))

, n → ∞, (9)

where ck := (k + 1)hk − k − kγ.

Remarks.

1. Note that c1 = 1− γ, c2 = 5/2− 2γ, c3 = 13/3− 3γ, and c4 = 77/12− 4γ. The expansion (9)
quasi coincides with the expansion of the kth moment of the total branch length Ln (see, for
example, [9, Corollary 4.3]), only the coefficient ck is of an additive term k smaller than the
corresponding coefficient mk = (k+1)hk− kγ (see [9]) in the asymptotic expansion of E(Lk

n).

2. As in the proof of [9, Corollary 4.4] it follows that n−1(log n)Lexternal
n → 1 in probability as

n → ∞. The same argument as given in [22, p. 277] yields the asymptotic expansion

E((Lexternal
n − E(Lexternal

n ))k) =
(−1)k

k(k − 1)

nk

logk+1 n
+O

(

nk

logk+2 n

)

, k ≥ 2,

of the centered moments of Lexternal
n , which coincide with those (see [9, Eq. (28)]) of the

centered moments of the total branch length Ln. In particular,

Var(Lexternal
n ) =

1

2

n2

log3 n
+O

(

n2

log4 n

)

, n → ∞. (10)

The moments of Lexternal
n unfortunately do not provide much information on the distributional

limiting behavior of Lexternal
n as n → ∞. Nevertheless, the asymptotic expansions of the centered

moments of Ln and Lexternal
n coincide, which supports (or at least does not contradict) our intuition

that the distributional limiting behavior of Lexternal
n coincides with that of Ln. Based on the weak

convergence result [9, Theorem 5.2] for Ln we therefore state the same convergence result for
Lexternal
n as a conjecture.
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Conjecture 1.5 (Weak convergence of the total external branch length)
For the Bolthausen–Sznitman coalescent,

log2 n

n
Lexternal
n − logn− log logn → L (11)

in distribution as n → ∞, where L is a 1-stable random variable with characteristic function t 7→
exp(it log |t| − π|t|/2), t ∈ R.

Remark. The same scaling and limiting behavior as in (11) is known for the number of cuts to
isolate the root of a random recursive tree ([10], [16]). Essentially the same scaling and convergence
result has been obtained for random records and cuttings in binary search trees by Holmgren [14,
Theorem 1.1] and more generally in split trees (Holmgren [13, Theorem 1.1] and [15, Theorem 1.1])
introduced by Devroye [6]. The logarithmic height of the involved trees seems to be one of the main
sources for the occurrence of such scalings and of the 1-stable limiting law.

2 Proofs

Proof. (of Theorem 1.1) Let Tn denote the time of the first jump of the block counting process
N (n) and let In denote the state of the block counting process N (n) after its first jump. Note that
Tn is exponentially distributed with parameter gn and that P(In = m) = pnm := gnm/gn for all
m ∈ {1, . . . , n−1}. Moreover, Tn and In are independent. We verify (5) by induction on the number
j of involved external branches.

Step 1. The case j = 1:
We have to verify that

E(τkn,1) =
k

gn
E(τk−1

n,1 ) +

n−1
∑

m=2

pnm
m− 1

n
E(τkm,1), n ∈ {2, 3, . . .}, k ∈ N. (12)

Note that (12) was already verified in [11], however we provide a proof which turns out to be
generalizable to an arbitrary number j of external branches. We verify (12) by induction on k ∈ N.
Conditional on In = m, the external branch 1 is involved in the first collision event with probability
q1 := (n−m+1)/n and it is not involved in the first collision event with complementary probability
q0 := (m− 1)/n. Thus,

E(τkn,1 | In = m) = q1 E(T
k
n ) + q0 E((Tn + τm,1)

k),

where τm,1 is independent of Tn. Binomial expansion yields

E(τkn,1 | In = m) = q1E(T
k
n ) + q0

k
∑

i=0

(

k

i

)

E(T i
n)E(τ

k−i
m,1 ) = E(T k

n ) + q0

k−1
∑

i=0

(

k

i

)

E(T i
n)E(τ

k−i
m,1 ).

Multiplication with pnm = P(In = m) and summation over all m ∈ {1, . . . , n− 1} leads to

E(τkn,1) = E(T k
n ) +

k−1
∑

i=0

(

k

i

)

E(T i
n)

n−1
∑

m=2

pnm
m− 1

n
E(τk−i

m,1 )

= E(T k
n ) +

k−1
∑

i=1

(

k

i

)

E(T i
n)

n−1
∑

m=2

pnm
m− 1

n
E(τk−i

m,1 ) +
n−1
∑

m=2

pnm
m− 1

n
E(τkm,1). (13)
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For k = 1 this equation reduces to

E(τn,1) =
1

gn
+

n−1
∑

m=2

pnm
m− 1

n
E(τm,1).

Thus, (12) holds for k = 1. The induction step from {1, . . . , k − 1} to k (≥ 2) works as follows. By
induction it is allowed to replace the first sum over m in (13) by E(τk−i

n,1 ) − (k − i)g−1
n E(τk−i−1

n,1 ).
We therefore obtain

E(τkn,1) = E(T k
n ) +

k−1
∑

i=1

(

k

i

)

E(T i
n)
(

E(τk−i
n,1 )−

k − i

gn
E(τk−i−1

n,1 )
)

+

n−1
∑

m=2

pnm
m− 1

n
E(τkm,1)

=
k

∑

i=1

(

k

i

)

E(T i
n)E(τ

k−i
n,1 )−

k−1
∑

i=1

(

k

i

)

E(T i
n)

k − i

gn
E(τk−i−1

n,1 ) +
n−1
∑

m=2

pnm
m− 1

n
E(τkm,1)

= kE(Tn)E(τ
k−1
n,1 ) +

k
∑

i=2

(

k

i

)

E(T i
n)E(τ

k−i
n,1 )−

k
∑

i=2

(

k

i− 1

)

E(T i−1
n )

k − i+ 1

gn
E(τk−i

n,1 )

+
n−1
∑

m=2

pnm
m− 1

n
E(τkm,1)

=
k

gn
E(τk−1

n,1 ) +
n−1
∑

m=2

pnm
m− 1

n
E(τkm,1),

since, for all i ∈ {2, . . . , k},
(

k

i

)

E(T i
n)−

(

k

i− 1

)

E(T i−1
n )

k − i+ 1

gn
=

(

k

i

)

i!

gin
−

(

k

i− 1

)

(i− 1)!

gi−1
n

k − i+ 1

gn
= 0.

This finishes the induction and completes the proof of (12). Thus, (5) holds for j = 1.

The induction step from to {1, . . . , j − 1} to j (≥ 2) for general number j of involved external
branches is somewhat technical. We therefore consider next the case j = 2.

Step 2. The case j = 2.
The proof works again by induction on the order k := k1 + k2. We thus first have to verify (6),
which is the particular case j = 2 and k1 = k2 = 1 of the general recursion (5).
Conditional on In = m, the two external branches 1 and 2 are both involved in the first collision event
with probability q11 := (n−m+1)2/(n)2, the external branch 1 is involved and the external branch
2 is not involved in the first collision event with probability q10 := (n−m+1)(m−1)/(n)2, and both
external branches are not involved in the first collision event with probability q00 := (m− 1)2/(n)2.
Note that q10 = q01, that q11 + q10 + q01 + q00 = 1 and that q10 + q00 = (m− 1)/n. Thus,

E(τn,1τn,2 | In = m) = q11E(T
2
n) + q10E(Tn(Tn + τm,2))

+q01E((Tn + τm,1)Tn) + q00E((Tn + τm,1)(Tn + τm,2))

= E(T 2
n) + 2E(Tn)E(τm,1)(q10 + q00) + q00E(τm,1τm,2)

=
2

g2n
+

2

gn
E(τm,1)

m− 1

n
+ E(τm,1τm,2)

(m− 1)2
(n)2

.
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Multiplication of both sides with pnm = P(In = m) and summation over all m ∈ {1, . . . , n − 1}
yields

E(τn,1τn,2) =
2

gn

(

1

gn
+

n−1
∑

m=2

pnm
m− 1

n
E(τm,1)

)

+

n−1
∑

m=2

pnm
(m− 1)2
(n)2

E(τm,1τm,2)

=
2

gn
E(τn,1) +

n−1
∑

m=2

pnm
(m− 1)2
(n)2

E(τm,1τm,2),

which is (6). Concerning the induction step from {1, . . . , k1 + k2 − 1} to k := k1 + k2 ∈ {3, 4, . . .}
we have to verify that

E(τk1

n,1τ
k2

n,2) =
k1
gn

E(τk1−1
n,1 τk2

n,2) +
k2
gn

E(τk1

n,1τ
k2−1
n,2 ) +

n−1
∑

m=2

pnm
(m− 1)2
(n)2

E(τk1

m,1τ
k2

m,2).

We have

E(τk1

n,1τ
k2

n,2 | In = m) = q11E(T
k1+k2

n ) + q01E((Tn + τm,1)
k1T k2

n )

+q10E(T
k1

n (Tn + τm,2)
k2) + q00E((Tn + τm,1)

k1(Tn + τm,2)
k2).

Binomial expansion together with the fact that Tn is independent of (τm,1, τm,2) leads to

E(τk1

n,1τ
k2

n,2 | In = m) = q11E(T
k1+k2

n ) + q01

k1
∑

i1=0

(

k1
i1

)

E(T i1+k2

n )E(τk1−i1
m,1 )

+q10

k2
∑

i2=0

(

k2
i2

)

E(T k1+i2
n )E(τk2−i2

m,2 )

+q00

k1
∑

i1=0

k2
∑

i2=0

(

k1
i1

)(

k2
i2

)

E(T i1+i2
n )E(τk1−i1

m,1 τk2−i2
m,2 )

= E(T k1+k2

n ) + (q01 + q00)

k1−1
∑

i1=0

(

k1
i1

)

E(T i1+k2

n )E(τk1−i1
m,1 )

+(q10 + q00)

k2−1
∑

i2=0

(

k2
i2

)

E(T k1+i2
n )E(τk2−i2

m,2 )

+q00

k1−1
∑

i1=0

k2−1
∑

i2=0

(

k1
i1

)(

k2
i2

)

E(T i1+i2
n )E(τk1−i1

m,1 τk2−i2
m,2 ).

Note that q10 = q01 and that q01 + p00 = (m − 1)/n. Multiplication with pnm = P(In = m) and
summation over all m ∈ {1, . . . , n− 1} leads to

E(τk1

n,1τ
k2

n,2) = E(T k1+k2

n ) +

k1−1
∑

i1=0

(

k1
i1

)

E(T i1+k2

n )

n−1
∑

m=2

pnm
m− 1

n
E(τk1−i1

m,1 )

9



+

k2−1
∑

i2=0

(

k2
i2

)

E(T k1+i2
n )

n−1
∑

m=2

pnm
m− 1

n
E(τk2−i2

m,2 )

+

k1−1
∑

i1=0

k2−1
∑

i2=0

(

k1
i1

)(

k2
i2

)

E(T i1+i2
n )

n−1
∑

m=2

pnm
(m− 1)2
(n)2

E(τk1−i1
m,1 τk2−i2

m,2 ).

By (12), the first two sums over m are equal to E(τk1−i1
n,1 )−(k1− i1)g

−1
n E(τk1−i1−1

n,1 ) and E(τk2−i2
n,2 )−

(k2− i2)g
−1
n E(τk2−i2−1

n,2 ) respectively. Moreover, by induction it is allowed to replace the third (last)

sum over m (except for the case i1 = i2 = 0) by E(τk1−i1
n,1 τk2−i2

n,2 )− (k1 − i1)g
−1
n E(τk1−i1−1

n,1 τk2−i2
n,2 )−

(k2 − i2)g
−1
n E(τk1−i1

n,1 τk2−i2−1
n,2 ). We therefore obtain

E(τk1

n,1τ
k2

n,2) = E(T k1+k2

n ) +

k1−1
∑

i1=0

(

k1
i1

)

E(T i1+k2

n )
(

E(τk1−i1
n,1 )−

k1 − i1
gn

E(τk1−i1−1
n,1 )

)

+

k2−1
∑

i2=0

(

k2
i2

)

E(T k1+i2
n )

(

E(τk2−i2
n,2 )−

k2 − i2
gn

E(τk2−i2−1
n,2 )

)

+
∑

i1<k1,i2<k2
i1+i2>0

(

k1
i1

)(

k2
i2

)

E(T i1+i2
n )×

×
(

E(τk1−i1
n,1 τk2−i2

n,2 )−
k1 − i1
gn

E(τk1−i1−1
n,1 τk2−i2

n,2 )−
k2 − i2
gn

E(τk1−i1
n,1 τk2−i2−1

n,2 )
)

+
n−1
∑

m=2

pnm
(m− 1)2
(n)2

E(τk1

m,1τ
k2

m,2).

The last sum is already what we need. For the other sums the main task is to reorder all the
summands in terms of the moments of τn,1 and τn,2. The coefficient in front of E(τk1−1

n,1 τk2

n,2) is
(

k1

1

)(

k2

0

)

E(T 1+0
n ) = k1/gn and the coefficient in front of E(τk1

n,1τ
k2−1
n,2 ) is

(

k1

0

)(

k2

1

)

E(T 0+1
n ) = k2/gn as

required. It remains to verify that all the other coefficients are equal to zero. Careful investigation
shows that the coefficient in front of E(τk1−i1

n,1 ) (with i1 < k1) is
(

k1
i1

)

E(T i1+k2

n )

−

(

k1
i1 − 1

)

E(T (i1−1)+k2

n )
k1 − (i1 − 1)

gn
−

(

k1
i1

)(

k2
k2 − 1

)

E(T i1+(k2−1)
n )

k2 − (k2 − 1)

gn

=

(

k1
i1

)

(i1 + k2)!

gi1+k2
n

−

(

k1
i1 − 1

)

(i1 + k2 − 1)!

gi1+k2−1
n

k1 − i1 + 1

gn
−

(

k1
i1

)

k2
(i1 + k2 − 1)!

gi1+k2−1
n

1

gn

=

(

k1
i1

)

(i1 + k2 − 1)!

gi1+k2
n

(

(i1 + k2)− i1 − k2
)

= 0.

In the same manner it follows that the coefficient in front of E(τk2−i2
n,2 ) (with i2 < k2) vanishes. The

coefficient in front of E(τk1−i1
n,1 τk2−i2

n,2 ) (with 1 ≤ i1 < k1 and 1 ≤ i2 < k2) is
(

k1
i1

)(

k2
i2

)

E(T i1+i2
n )
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−

(

k1
i1 − 1

)(

k2
i2

)

E(T (i1−1)+i2
n )

k1 − (i1 − 1)

gn
−

(

k1
i1

)(

k2
i2 − 1

)

E(T i1+(i2−1)
n )

k2 − (i2 − 1)

gn

=

(

k1
i1

)(

k2
i2

)

(i1 + i2)!

gi1+i2
n

−

(

k1
i1 − 1

)(

k2
i2

)

(i1 + i2 − 1)!

gi1+i2−1
n

k1 + i1 + 1

gn
−

(

k1
i1

)(

k2
i2 − 1

)

(i1 + i2 − 1)!

gi1+i2−1
n

k2 − i2 + 1

gn

=

(

k1
i1

)(

k2
i2

)

(i1 + i2 − 1)!

gi1+i2
n

(

(i1 + i2)− i1 − i2
)

= 0.

The last coefficient to consider is that in front of E(τ0n,1τ
0
n,2) (= 1), which is

E(T k1+k2

n )−

(

k1
k1 − 1

)

E(T (k1−1)+k2

n )
k1 − (k1 − 1)

gn
−

(

k2
k2 − 1

)

E(T k1+(k2−1)
n )

k2 − (k2 − 1)

gn

=
(k1 + k2)!

gk1+k2
n

− k1
(k1 + k2 − 1)!

gk1+k2−1
n

1

gn
− k2

(k1 + k2 − 1)!

gk1+k2−1
n

1

gn
= 0.

This finishes the induction and the proof of (5) for j = 2 is complete. Note that we have used (12),
so in order to verify (5) for j = 2, we have used (5) for j = 1.

Step 3. The general case j ≥ 2:
The proof of the induction step for general number j (≥ 2) of involved external branches works
essentially the same (induction over the order k := k1 + · · · + kj of the moments), however, the
details become more involved and a bit nasty to write down. We leave the details to the interested
reader. 2

Proof. (of Theorem 1.2) For the Bolthausen–Sznitman coalescent, gnm = n/((n−m)(n−m+1)),
m ∈ {1, . . . , n− 1} and gn = n− 1, n ∈ N. Thus, the random state In of the block counting process
after its first jump has distribution

pnm = P(In = m) =
n

(n− 1)(n−m)(n−m+ 1)
, n ∈ N,m ∈ {1, . . . , n− 1}.

We verify (7) by induction on the sum k := k1 + · · · + kj ∈ N0. Obviously (7) holds for k = 0. In
order to verify the induction step from k− 1 to k ∈ N fix k1, . . . , kj ∈ N0 with k1 + · · ·+ kj = k and
for n ∈ N define an := µn(k1, . . . , kj) for convenience. We apply the difference method used in [17]
to the recursion (5), which is of the form

an = qn +

n−1
∑

m=1

pnm
(m− 1)j
(n)j

am

= qn +

n−1
∑

m=1

n

(n− 1)(n−m)(n−m+ 1)

(m− 1)j
(n)j

am

= qn +
n

(n− 1)(n)j

n−1
∑

m=1

(m− 1)j
(n−m)(n−m+ 1)

am,

11



where

qn :=
1

gn

j
∑

i=1

kiµn(k1, . . . , ki−1, ki − 1, ki+1, . . . , kj)

=
1

gn

j
∑

i=1

k1! · · · kj !

logk−1 n

(

1 +
κj(k1, . . . , ki−1, ki − 1, ki+1, . . . , kj)

logn
+O

(

1

log2 n

))

=
1

gn

k1! · · · kj !

logk−1 n

j
∑

i=1

(

1 +
κj(k1, . . . , ki−1, ki − 1, ki+1, . . . , kj)

logn
+O

(

1

log2 n

))

.

From 1/gn = 1/(n− 1) =
∑∞

i=1(1/n)
i = 1/n+O(1/n2) it follows that

qn =
jk1! · · · kj !

n logk−1 n
+

k1! · · · kj !
∑j

i=1 κj(k1, . . . , ki−1, ki − 1, ki+1, . . . , kj)

n logk n
+O

(

1

n logk+1 n

)

.

The difference bn := an − k1! · · · kj !/ log
k n satisfies the recursion

bn = an −
k1! · · · kj !

logk n

= qn +
n

(n− 1)(n)j

n−1
∑

m=1

(m− 1)j
(n−m)(n−m+ 1)

(

bm +
k1! · · · kj !

logk m

)

−
k1! · · · kj !

logk n

= q′n +
n

(n− 1)(n)j

n−1
∑

m=2

(m− 1)j
(n−m)(n−m+ 1)

bm,

with

q′n := qn + k1! · · · kj !
n

(n− 1)(n)j

n−1
∑

m=2

(m− 1)j

(n−m)(n−m+ 1) logk m
−

k1! · · · kj !

logk n
.

Corollary 4.2 in the appendix yields

n−1
∑

m=2

(m− 1)j

(n−m)(n−m+ 1) logk m
=

nj

logk n
−

jnj−1

logk−1 n
+

(

k+jΨ(j)−
j(j + 1)

2

)

nj−1

logk n
+O

(

nj−1

logk+1 n

)

and hence

n

(n− 1)(n)j

n−1
∑

m=2

(m− 1)j

(n−m)(n−m+ 1) logk m

=

(

1

nj
+

(

j
2

)

+ 1

nj+1
+O

(

1

nj+2

))

×

×

(

nj

logk n
− j

nj−1

logk−1 n
+ (k + jΨ(j)− j(j + 1)/2)

nj−1

logk n
+O

( nj−1

logk+1 n

)

)

=
1

logk n
−

j

n logk−1 n
+

(

k + jΨ(j)− j + 1

)

1

n logk n
+O

(

1

n logk+1 n

)

.
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We therefore obtain

q′n = k1! · · · kj !

( j
∑

i=1

κj(k1, . . . , ki−1, ki − 1, ki+1, . . . , kj) + k + jΨ(j)− j + 1

)

1

n logk n

+O

(

1

n logk+1 n

)

= jK
1

n logk n
+O

(

1

n logk+1 n

)

with

K := k1! · · · kj !
1

j

(

k + jΨ(j)− j + 1 +

j
∑

i=1

κj(k1, . . . , ki−1, ki − 1, ki+1, . . . , kj)

)

= k1! · · · kj !κj(k1, . . . , kj)

by the recursive definition of the coefficients κj(k1, . . . , kj). We now proceed with the recursion for

bn in the same manner. The difference cn := bn −K/ logk+1 n satisfies the recursion

cn = bn −
K

logk+1 n

= q′n +
n

(n− 1)(n)j

n−1
∑

m=2

(m− 1)j
(n−m)(n−m+ 1)

(

cm +
K

logk+1 m

)

−
K

logk+1 n

= q′′n +
n

(n− 1)(n)j

n−1
∑

m=2

(m− 1)j
(n−m)(n−m+ 1)

cm

with

q′′n := q′n +K
n

(n− 1)(n)j

n−1
∑

m=2

(m− 1)j

(n−m)(n−m+ 1) logk+1 m
−

K

logk+1 n
.

Corollary 4.2 yields

n−1
∑

m=2

(m− 1)j

(n−m)(n−m+ 1) logk+1 m
=

nj

logk+1 n
− j

nj−1

logk n
+O

(

nj−1

logk+1 n

)

such that we obtain

q′′n = (jK − jK)
1

n logk n
+O

(

1

n logk+1 n

)

= O

(

1

n logk+1 n

)

.

By Lemma 4.3, applied with k replaced by k + 1, it follows that cn = O(1/ logk+2 n), and the
induction step is established. 2

Proof. (of Corollary 1.3) Theorem 1.2 clearly implies that, for j ∈ N and k1, . . . , kj ∈ N0,

E((τn,1 log n)
k1 · · · (τn,j logn)

kj ) = (log n)k1+···+kjµn(k1, . . . , kj) → k1! · · · kj ! = E(τk1

1 · · · τ
kj

j ) as

n → ∞. For all i ∈ {1, . . . , j} and all 0 ≤ θ < 1 we have
∑∞

r=0(θ
r/r!)E(τri ) =

∑∞

r=0 θ
r = 1/(1−θ) <

∞. Therefore (see [2], Theorems 30.1 and 30.2 for the one-dimensional case and Problem 30.6 on
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p. 398 for the multi-dimensional case) the above convergence of moments implies the convergence
(log n)(τn,1, . . . , τn,j) → (τ1, . . . , τj) in distribution as n → ∞ for each j ∈ N. The convergence of all
these j-dimensional distributions is already equivalent (see Billingsley [3, p. 19]) to the convergence
of the full processes (log n)(τn,1, . . . , τn,n, 0, 0, . . .) → (τ1, τ2, . . .) in distribution as n → ∞. 2

Proof. (of Corollary 1.4) The total external branch length Lexternal
n satisfies (see, for example, [21,

p. 2165]

E((Lexternal
n )k) =

k
∑

j=1

(

n

j

)

∑

k1,...,kj∈N

k1+···+kj=k

k!

k1! · · · kj !
µn(k1, . . . , kj), n ∈ {2, 3, . . .}, k ∈ N.

By Theorem 1.2 it follows that

E((Lexternal
n )k) =

k
∑

j=1

(

n

j

)

∑

k1,...,kj∈N

k1+···+kj=k

k!

k1! · · · kj !

k1! · · · kj !

logk n

(

1 +
κj(k1, . . . , kj)

logn
+O

(

1

log2 n

))

.

From this representation it follows immediately that asymptotically all the summands with in-
dices j < k can be disregarded, so only the summand with index j = k is asymptotically of any
importance. Thus, we obtain

E((Lexternal
n )k) =

(

n

k

)

k!

logk n

(

1 +
κk(1, . . . , 1)

logn
+O

(

1

log2 n

))

=
nk

logk n

(

1 +
κk(1, . . . , 1)

logn
+O

(

1

log2 n

))

,

where κk(1, . . . , 1) = (k + 1)hk − k − kγ by the second remark after Theorem 1.2. 2

3 Differential equations approach

The expansions of Theorem 1.2 in Section 1 are essentially based on the difference method used in
the proof of Theorem 1.2. An alternative method based on generating functions is now provided.
This approach yields for example exact expressions for E(τn,1τn,2) in terms of Stirling numbers. For
j ∈ N and k = (k1, . . . , kj) ∈ Nj define the generating function

fk(z) :=

∞
∑

n=j

E(τk1

n,1 · · · τ
kj

n,j)z
n−1.

Note that f
(l)
k (0) = 0 for l ∈ {1, . . . , j − 2} and that f

(j−1)
k (0) = (j − 1)!E(τk1

j,1 · · · τ
kj

j,j). We shall
see soon, that the functions fk are analytic in the domain D := {s ∈ C : |s| < 1}. The functions
fk even have analytic continuations on C \ [1,∞), but we will not use these continuations in our
approach. We start with the following lemma, which is well known (see [11, Lemma 3.1, Eq. (3.3)]).

Lemma 3.1 For all z ∈ D, f1(z) =

∫ z

0

t

(1− t)2(− log(1− t))
dt.

14



Proof. Define the auxiliary function

a(z) :=

∞
∑

n=1

1

n(n+ 1)
zn = 1− log(1− z) +

log(1− z)

z
, z ∈ D.

For z ∈ D we have

zf ′
1(z) =

∞
∑

n=2

(n− 1)E(τn,1)z
n−1

=

∞
∑

n=2

(n− 1)
( 1

n− 1
+

n−1
∑

m=1

m− 1

(n− 1)(n−m)(n−m+ 1)
E(τm,1)

)

zn−1

=

∞
∑

n=2

zn−1 +

∞
∑

n=2

n−1
∑

m=1

m− 1

(n−m)(n−m+ 1)
E(τm,1)z

n−1

=
z

1− z
+

∞
∑

n=2

n−1
∑

l=1

n− l − 1

l(l+ 1)
E(τn−l,1)z

n−1

=
z

1− z
+

∞
∑

l=1

zl

l(l+ 1)

∞
∑

n=l+1

(n− l − 1)E(τn−l,1)z
n−l−1

=
z

1− z
+

∞
∑

l=1

zl

l(l+ 1)

∞
∑

m=1

(m− 1)E(τm,1)z
m−1

=
z

1− z
+ a(z)zf ′

1(z).

Thus z(1− a(z))f ′
1(z) = z/(1− z) or, equivalently,

f ′
1(z) =

1

(1 − z)(1− a(z))
=

z

(1 − z)2(− log(1 − z))
, z ∈ D,

since 1− a(z) = (1− z)(− log(1− z))/z. The result follows by integration, since f1(0) = 0. 2

In the following a solution for f(1,1) is presented. As a corollary, an exact formula for E(τn,1τn,2) is
provided.

Lemma 3.2 The function f := f(1,1) satisfies the differential equation

(1− z)(− log(1− z))f ′′(z) + f ′(z) =
2z

(1− z)2(− log(1− z))
, z ∈ D. (14)

with initial conditions f(0) = 0 and f ′(0) = 2. The solution f satisfies

f ′(z) =
2

− log(1− z)

∫ z

0

t

(1 − t)3(− log(1− t))
dt, z ∈ D \ {0}. (15)
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Proof. For n ∈ {2, 3, . . .} we write an := E(τn,1τn,2) for convenience. Note that f(z) =
∑∞

n=2 anz
n−1. In particular, f(0) = 0 and f ′(0) = a2 = E(τ2,1τ2,2) = E(T 2

2 ) = 2/g22 = 2. For
z ∈ D we have

z2f ′′(z) + zf ′(z) =

∞
∑

n=2

(n− 1)2anz
n−1

=

∞
∑

n=2

(n− 1)2
( 2

gn
E(τn,1) +

n−1
∑

m=1

pnm
(m− 1)2
(n)2

am

)

zn−1

= 2

∞
∑

n=2

(n− 1)E(τn,1)z
n−1 +

∞
∑

n=2

n−1
∑

m=1

(m− 1)(m− 2)

(n−m)(n−m+ 1)
amzn−1

= 2zf ′
1(z) +

∞
∑

n=2

n−1
∑

l=1

(n− l− 1)(n− l − 2)

l(l + 1)
an−lz

n−1

= 2zf ′
1(z) +

∞
∑

l=1

zl

l(l + 1)

∞
∑

n=l+1

(n− l − 1)(n− l − 2)an−lz
n−l−1

= 2zf ′
1(z) +

∞
∑

l=1

zl

l(l + 1)

∞
∑

m=1

(m− 1)(m− 2)amzm−1

= 2zf ′
1(z) + a(z)z2f ′′(z),

or, equivalently,

z2(1− a(z))f ′′(z) + zf ′(z) = 2zf ′
1(z) =

2z2

(1 − z)2(− log(1− z))
, z ∈ D,

which yields the differential equation (14), since 1− a(z) = (1− z)(− log(1− z))/z. Division of (14)
by 1− z shows that

2z

(1 − z)3(− log(1 − z))
= − log(1− z)f ′′(z) +

1

1− z
f ′(z) =

d

dz
(− log(1− z)f ′(z))

and integration together with the initial condition f ′(0) = 2 yields (15). 2

Corollary 3.3 (Exact formula for E(τn,1τn,2))
Fix n ∈ {2, 3, . . .}. For the Bolthausen–Sznitman coalescent,

E(τn,1τn,2) =
2

(n− 1)!

n−1
∑

k=1

2k − 1

k2
s(n− 2, k − 1), (16)

where the s(n, k) denote the absolute Stirling numbers of the first kind.

Remark. Together with the exact formula E(τn,1) = ((n−1)!)−1
∑n−1

k=1 s(n−1, k)/k for the mean of
τn,1 (see, for example, Proposition 1.2 of [11]) it can be checked that Cov(τn,1, τn,2) = E(τn,1τn,2)−
(E(τn,1))

2 > 0 for all n ≥ 2. Thus, for all n ≥ 2, τn,1 and τn,2 are positively correlated. We have
used the exact formulas for E(τn,1) and E(τn,1τn,2) to compute the entries of the following table.
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n E(τn,1) E(τn,1τn,2) Cov(τn,1, τn,2)
2 1 2 1
3 3

4 = 0.75 3
4 = 0.75 3

16 = 0.1875
4 23

36 ≈ 0.638889 55
108 ≈ 0.509259 131

1296 ≈ 0.101080
5 55

96 ≈ 0.572917 229
576 ≈ 0.397569 71

1024 ≈ 0.069336
10 ≈ 0.431647 ≈ 0.215119 ≈ 0.028800
100 ≈ 0.228368 ≈ 0.057067 ≈ 0.004915
200 ≈ 0.198537 ≈ 0.042758 ≈ 0.003341
300 ≈ 0.184283 ≈ 0.036676 ≈ 0.002716
400 ≈ 0.175300 ≈ 0.033092 ≈ 0.002362
500 ≈ 0.168891 ≈ 0.030652 ≈ 0.002128

1000 ≈ 0.151582 ≈ 0.024546 ≈ 0.001568

∞ = 1
log n + 1−γ

log2 n
+O( 1

log3 n
) = 1

log2 n
+ 5/2−2γ

log3 n
+O( 1

log4 n
) = 1

2 log3 n
+O( 1

log4 n
)

Table 2: Covariance of τn,1 and τn,2 for the Bolthausen–Sznitman coalescent

Proof. (of Corollary 3.3) The substitution u = − log(1 − t) in the integral on the right hand side
in (15) yields

f ′(z) =
2

− log(1− z)

∫ − log(1−z)

0

e2u − eu

u
du

=
2

− log(1− z)

∫ − log(1−z)

0

1

u

( ∞
∑

k=0

(2u)k

k!
−

∞
∑

k=0

uk

k!

)

du

=
2

− log(1− z)

∞
∑

k=1

2k − 1

k!

∫ − log(1−z)

0

uk−1 du

=
2

− log(1− z)

∞
∑

k=1

2k − 1

k!

(− log(1− z))k

k

= 2

∞
∑

k=1

2k − 1

kk!
(− log(1 − z))k−1.

This series expansion of f ′ in particular shows that f has an analytic continuation on C \ [1,∞).
From (see [1, p. 824]) (− log(1− z))k/k! =

∑∞

i=k z
i/i!s(i, k) we conclude that

f ′(z) = 2

∞
∑

k=1

2k − 1

k2

∞
∑

i=k−1

zi

i!
s(i, k − 1) = 2

∞
∑

i=0

zi

i!

i+1
∑

k=1

2k − 1

k2
s(i, k − 1).

Thus, using the notation [zi]f ′(z) for the coefficient in front of zi in the series expansion of f ′(z),

(i+ 1)ai+2 = [zi]f ′(z) =
2

i!

i+1
∑

k=1

2k − 1

k2
s(i, k − 1)

or, equivalently,

ai+2 =
2

(i+ 1)!

i+1
∑

k=1

2k − 1

k2
s(i, k − 1).
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It remains to substitute n = i+ 2. 2

Final remarks and open problems.

1. Based on the solution (15) for f(1,1) it is possible to derive the asymptotic expansion (8) of
E(τn,1τn,2) alternatively via expansions of the functions and integrals occurring in (15). We
leave the details to the reader.

2. Without to much effort it should be possible to derive differential equations in analogy to (14)
for fk for arbitrary k = (k1, . . . , kj) and to gain information on (the coefficients of the series
expansion of) fk from these differential equations (exact solutions and asymptotic expansions
of the coefficients via singularity analysis).

4 Appendix

Basic expansions (Lemma 4.1 and Corollary 4.2) are provided which are needed in the proof of
Theorem 1.2. We furthermore provide a result (see Lemma 4.3), which may serve as a stopping rule
for difference procedures of the form used in the proof of Theorem 1.2.

Lemma 4.1 For all k ∈ N, as n → ∞,

n−2
∑

l=1

1

logk(n− l)
=

n

logk n
+O

( n

logk+1 n

)

, (17)

n−2
∑

l=1

1

l

1

logk(n− l)
=

1

logk−1 n
+

γ

logk n
+O

( 1

logk+1 n

)

, (18)

n−2
∑

l=1

1

l + 1

1

logk(n− l)
=

1

logk−1 n
+

γ − 1

logk n
+O

( 1

logk+1 n

)

, (19)

and
n−2
∑

l=1

1

l(l+ 1)

1

logk(n− l)
=

1

logk n
+

k − 1

n logk n
+O

( 1

n logk+1 n

)

. (20)

Proof. Eq. (17) is a special case of Panholzer’s summation formula (see [22, Lemma 4.1, Eq. (16)])
and probably as well a consequence of Euler’s summation formula (see, for example, [12, p. 469]).
We prefer here to verify (17) via a direct decomposition method, which will turn out to work as

well for (18), (19), and (20). We basically split sums of the form
∑n−2

l=1 . . . into two parts
∑an

l=1 . . .

and
∑n−2

n=an+1 . . ., and handle these two parts separately. We will work with the sequence (an)n∈N

defined via a1 := 1 and an := n− ⌊n/ logk+1 n⌋ for n ≥ 2. We will furthermore need the constants
ck := 1/ logk 2 > 0, k ∈ N. In order to verify (17) it is sufficient to show that

n−2
∑

l=1

( 1

logk(n− l)
−

1

logk n

)

= O
( n

logk+1 n

)

.
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The sequence (an)n∈N is chosen such that

0 ≤

n−2
∑

l=an+1

( 1

logk(n− l)
−

1

logk n

)

≤

n−2
∑

l=an+1

1

logk(n− l)

≤

n−2
∑

l=an+1

ck ≤ ck(n− an) = O
( n

logk+1 n

)

.

Moreover,

an
∑

l=1

( 1

logk(n− l)
−

1

logk n

)

=

an
∑

l=1

logk n− logk(n− l)

logk n logk(n− l)

≤
1

logk n logk(n− an)

n−1
∑

l=1

(logk n− logk(n− l))

∼
1

log2k n

n−1
∑

l=1

(logk n− logk(n− l)),

since log(n− an) ∼ logn as n → ∞. Thus, in order to verify (17), it remains to show that

n−1
∑

l=1

(logk n− logk(n− l)) = O(n logk−1 n). (21)

Applying the formula bk − ak = bk − (a− b+ b)k = −
∑k

j=1

(

k
j

)

(a− b)jbk−j with a := log(n− l) and
b := logn yields

n−1
∑

l=1

(logk n− logk(n− l)) = −

n−1
∑

l=1

k
∑

j=1

(

k

j

)

logk−j n logj(1− l/n)

=
k

∑

j=1

(

k

j

)

logk−j n
n−1
∑

l=1

(− logj(1 − l/n)).

Since for each j ∈ {1, . . . , k},

1

n

n−1
∑

l=1

(− logj(1− l/n)) →

∫ 1

0

(− logj(1 − x)) dx = (−1)j+1j!,

it follows that (21) holds, and (17) is established.

Let us now verify (18). We essentially apply the same decomposition method. Note that
∑n−2

l=1 1/l =
logn+ γ +O(1/n). Thus, (18) holds if we can verify that

n−2
∑

l=1

1

l

( 1

logk(n− l)
−

1

logk n

)

= O
( 1

logk+1 n

)

.
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The sequence (an)n∈N is chosen such that

0 ≤

n−2
∑

l=an+1

1

l

( 1

logk(n− l)
−

1

logk n

)

≤ ck

n−2
∑

l=an+1

1

l
= O

( 1

logk+1 n

)

.

Moreover,

an
∑

l=1

1

l

( 1

logk(n− l)
−

1

logk n

)

=

an
∑

l=1

1

l

logk n− logk(n− l)

logk n logk(n− l)

≤
1

logk n logk(n− an)

n−1
∑

l=1

logk n− logk(n− l)

l

∼
1

log2k n

n−1
∑

l=1

logk n− logk(n− l)

l
,

since log(n− an) ∼ logn as n → ∞. Thus, it remains to verify that

n−1
∑

l=1

logk n− logk(n− l)

l
= O(logk−1 n). (22)

Applying the formula bk − ak = bk − (a− b + b)k = −
∑k

j=1

(

k
j

)

(a− b)jbk−j to a := log(n− l) and
b := logn yields

n−1
∑

l=1

logk n− logk(n− l)

l
= −

n−1
∑

l=1

1

l

k
∑

j=1

(

k

j

)

logk−j n logj(1− l/n)

=

k
∑

j=1

(

k

j

)

logk−j n

n−1
∑

l=1

− logj(1− l/n)

l
.

Since for each j ∈ {1, . . . , k},

n−1
∑

l=1

− logj(1− l/n)

l
→

∫ 1

0

− logj(1 − x)

x
dx = (−1)j+1j!ζ(j + 1) ∈ R,

it follows that (22) holds and (18) is established. Eq. (19) is shown similarly. Let us finally come to
(20). Note first that

n

n−2
∑

l=1

− log(1− l/n)

l(l + 1)
=

1

n

n−2
∑

l=1

− log(1− l/n)

(l/n)(l+ 1)/n
=

∫ 1−1/n

1/n

− log(1− x)

x2
dx+ O(1)

=
[

log x+
(1 − x) log(1− x)

x

]1−1/n

1/n
+O(1) = logn+O(1)

and, therefore,

n−2
∑

l=1

1

l(l+ 1)

( 1

logk n
+ k

− log(1− l/n)

logk+1 n

)
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=
1

logk n

n−2
∑

l=1

(1

l
−

1

l + 1

)

+
k

logk+1 n

n−2
∑

l=1

− log(1 − l/n)

l(l + 1)

=
1

logk n

(

1−
1

n− 1

)

+
k

logk+1 n

n−2
∑

l=1

− log(1− l/n)

l(l+ 1)

=
1

logk n

(

1−
1

n
+O

( 1

n2

))

+
k

logk+1 n

( logn

n
+O

( 1

n

))

=
1

logk n
+

k − 1

n logk n
+O

( 1

n logk+1 n

)

.

Thus, in order to verify (20), it suffices to verify that

n−2
∑

l=1

1

l(l+ 1)

( 1

logk(n− l)
−

1

logk n
− k

− log(1− l/n)

logk+1 n

)

= O
( 1

n logk+1 n

)

.

The function fnk : [0, n) → R, defined via

fnk(x) :=
1

logk(n− x)
−

1

logk n
− k

− log(1− x/n)

logk+1 n

has derivative

f ′
nk(x) =

k

n− x

( 1

logk+1(n− x)
−

1

logk+1 n

)

≥ 0

and satisfies fnk(0) = 0. Thus, fnk ≥ 0 and it follows that (an)n∈N is chosen such that

0 ≤

n−2
∑

l=an+1

1

l(l+ 1)

( 1

logk(n− l)
−

1

logk n
− k

− log(1− l/n)

logk+1 n

)

≤

n−2
∑

l=an+1

1

l(l+ 1)

1

logk(n− l)
≤ ck

n−2
∑

l=an+1

(1

l
−

1

l + 1

)

= ck

( 1

an + 1
−

1

n− 1

)

= ck
n− an − 2

(an + 1)(n− 1)

∼ ck
n/ logk+1 n

n2
= O

( 1

n logk+1 n

)

.

Moreover,

an
∑

l=1

1

l(l+ 1)

( 1

logk(n− l)
−

1

logk n
− k

− log(1− l/n)

logk+1 n

)

=

an
∑

l=1

1

l(l + 1)

logk n− logk(n− l)− k(− log(1− l/n)) logk(n− l)/ logn

logk n logk(n− l)

≤
1

logk n logk(n− an)

an
∑

l=1

logk n− logk(n− l) + k log(1 − l/n) logk(n− l)/ logn

l(l + 1)
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∼
1

log2k n

an
∑

l=1

logk n− logk(n− l) + k log(1− l/n) logk(n− l)/ logn

l(l + 1)
,

since log(n− an) ∼ logn as n → ∞. Thus, it remains to verify that

an
∑

l=1

logk n− logk(n− l) + k log(1− l/n) logk(n− l)/ logn

l(l + 1)
= O

( logk−1 n

n

)

. (23)

Applying the formula bk − ak + k(a− b)ak/b = (1− k(a− b)/b)(bk− ak)+ k(a− b)bk−1 = (1− k(a−

b)/b)(−
∑k

j=1

(

k
j

)

(a−b)jbk−j)+k(a−b)bk−1 =
∑k+1

j=2

(

k
(

k
j−1

)

−
(

k
j

))

(a−b)jbk−j with a := log(n− l)
and b := logn yields

0 ≤

an
∑

l=1

logk n− logk(n− l) + k log(1− l/n) logk(n− l)/ logn

l(l + 1)

≤

n−1
∑

l=1

logk n− logk(n− l) + k log(1− l/n) logk(n− l)/ logn

l(l + 1)

=

n−1
∑

l=1

1

l(l+ 1)

k+1
∑

j=2

(

k

(

k

j − 1

)

−

(

k

j

))

logk−j n logj(1− l/n)

=

k+1
∑

j=2

(

k

(

k

j − 1

)

−

(

k

j

))

logk−j n

n−1
∑

l=1

logj(1 − l/n)

l(l+ 1)
.

Since for each j ∈ {2, . . . , k + 1},

n

n−1
∑

l=1

logj(1− l/n)

l(l+ 1)
=

1

n

n−1
∑

l=1

logj(1− l/n)

(l/n)((l + 1)/n)
→

∫ 1

0

logj(1− x)

x2
dx ∈ R,

it follows that the expression on the left hand side in (23) is even equal to O((logk−2 n)/n). In
particular, (23) holds, and, hence, (20) is established. 2

Corollary 4.2 For all j, k ∈ N, as n → ∞,

n−1
∑

m=2

(m− 1)j

(n−m)(n−m+ 1) logk m

=
nj

logk n
− j

nj−1

logk−1 n
+
(

k + jΨ(j)−
j(j + 1)

2

) nj−1

logk n
+O

( nj−1

logk+1 n

)

.

Proof. We have

n−1
∑

m=2

(m− 1)j

(n−m)(n−m+ 1) logk m
=

n−2
∑

l=1

(n− l − 1)j

l(l + 1) logk(n− l)
.
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Plugging in

(n− l − 1)j =

j
∏

i=1

(n− (l + i))

= nj − nj−1

j
∑

i=1

(l + i) +

j
∑

r=2

(−1)rnj−r
∑

1≤i1<···<ir≤j

(l + i1) · · · (l + ir)

= nj − nj−1
(

jl +
j(j + 1)

2

)

+

j
∑

r=2

(−1)rnj−r

((

j

r

)

lr +O(lr−1)

)

it follows that

n−1
∑

m=2

(m− 1)j

(n−m)(n−m+ 1) logk m
= nj

n−2
∑

l=1

1

l(l+ 1) logk(n− l)

−jnj−1
n−2
∑

l=1

1

(l + 1) logk(n− l)
−

j(j + 1)

2
nj−1

n−2
∑

l=1

1

l(l + 1) logk(n− l)

+

j
∑

r=2

(−1)rnj−r
n−2
∑

l=1

(

j
r

)

lr +O(lr−1)

l(l+ 1) logk(n− l)
.

Applying Lemma 4.1 to all the sums over l on the right hand side yields

n−1
∑

m=2

(m− 1)j

(n−m)(n−m+ 1) logk m
= nj

( 1

logk n
+

k − 1

n logk n
+O

( 1

n logk+1 n

))

−jnj−1
( 1

logk−1 n
+

γ − 1

logk n
+O

( 1

logk+1 n

))

−
j(j + 1)

2
nj−1

( 1

logk n
+O

( 1

n logk n

))

+

j
∑

r=2

(−1)rnj−r

((

j

r

)

1

r − 1

nr−1

logk n
+O

( nr−1

logk+1 n

)

)

=
nj

logk n
− j

nj−1

logk−1 n

+

(

k − 1− j(γ − 1)−
j(j + 1)

2
+

j
∑

r=2

(−1)r
(

j

r

)

1

r − 1

)

nj−1

logk n
+O

(

nj−1

logk+1 n

)

.

The result follows, since
∑j

r=2(−1)r
(

j
r

)

1
r−1 = jhj−1 − j + 1 = jΨ(j) + jγ − j + 1 for all j ∈ N. 2

The following Lemma 4.3 serves as a stopping rule for difference procedures of the form as for
example used in the proof of Theorem 1.2. For similar stopping rules we refer the reader to [17,
Lemma A.2].

Lemma 4.3 Fix j ∈ N and let (an)n∈N be a sequence of real numbers satisfying the recursion

an = qn +
n−1
∑

m=2

pnm
(m− 1)j
(n)j

am, n ∈ {2, 3, . . .}
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for some given sequence (qn)n∈N. If qn = O(1/(n logk n)) for some fixed k ∈ N, then an =
O(1/ logk+1 n).

Proof. By assumption there exists a constant C > 0 such that |qn| ≤ C/(n logk n) for all n ∈ N\{1}.
Moreover, by Corollary 4.2,

n−1
∑

m=2

pnm
(m− 1)j
(n)j

1

logk+1 m
=

n

(n− 1)(n)j

n−1
∑

m=2

(m− 1)j

(n−m)(n−m+ 1) logk+1 m

=
( 1

nj
+O

( 1

nj+1

))( nj

logk+1 n
− j

nj−1

logk n
+O

( nj−1

logk+1 n

))

=
1

logk+1 n
− j

1

n logk n
+O

( 1

n logk+1 n

)

.

Thus, there exists a constant n0 ∈ N such that the inequality

n−1
∑

m=2

pnm
(m− 1)j
(n)j

1

logk+1 m
≤

1

logk+1 n
−

j

2

1

n logk n

holds for all integers n > n0. Choose a constant D > 2C/j sufficiently large such that

|an| ≤
D

logk+1 n
(24)

for all n ∈ {2, 3, . . . , n0}. In the following it is verified by induction on n that (24) holds for all
n ∈ N \ {1}. For n ∈ {2, 3, . . . , n0}, (24) holds by the choice of D. Suppose now that n > n0 and
that |am| ≤ D/ logk+1 m is already verified for all m ∈ {2, 3, . . . , n− 1}. Then,

|an| ≤ |qn|+
n−1
∑

m=2

pnm
(m− 1)j
(n)j

|am| ≤
C

n logk n
+

n−1
∑

m=2

pnm
(m− 1)j
(n)j

D

logk+1 m

≤
C

n logk n
+D

( 1

logk+1 n
−

j

2

1

n logk n

)

=
D

logk+1 n
+

C − jD/2

n logk n
≤

D

logk+1 n
,

since C − jD/2 < 0. Thus, the induction is completed and the lemma is established. 2
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[17] Iksanov, A., Marynych, A., and Möhle, M. (2009) On the number of collisions in
beta(2,b)-coalescents. Bernoulli 15, 829–845. MR2555201

[18] Janson, S. and Kersting, G. (2011) On the total external length of the Kingman coalescent.
Electron. J. Probab. 16, 2203–2218. MR2861672

[19] Kingman, J.F.C. (1982) The coalescent. Stoch. Process. Appl. 13, 235–248. MR0671034
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