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Inconsistency of the MLE and inference based on

weighted LS for LARCH models.

Christian Francq∗, Jean-Michel Zakoïan†

Abstract

This paper considers a class of finite-order autoregressive linear ARCH models. The

model captures the leverage effect, allows the volatility to be arbitrarily close to

zero and to reach its minimum for non-zero innovations, and is appropriate for long-

memory modeling when infinite orders are allowed. However, the (quasi-)maximum

likelihood estimator is, in general, inconsistent. A self-weighted least-squares esti-

mator is proposed and is shown to be asymptotically normal. A score test for condi-

tional homoscedasticity and diagnostic portmanteau tests are developed. Their per-

formance is illustrated via simulation experiments. It is also investigated whether

stock market returns exhibit some of the characteristic features of the linear ARCH

model.
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1 Introduction

Since their introduction, the standard GARCH models of Engle (1982) and Boller-

slev (1986) have been extended and generalized in various directions, in particular

to accommodate the asymmetry in the response of the variance to positive and

negative shocks, or other nonlinearities typically observed in the financial series.

On the other hand, the statistical literature devoted to the estimation of GARCH

models has focused on the classical GARCH models. For such models, optimal

conditions for the consistency and asymptotic normality of the quasi-maximum

likelihood estimator (QMLE) seem to have been obtained (see Berkes, Horváth and

Kokoszka (2003), Francq and Zakoïan (2004)). The main finding is that the strict

stationarity and positivity constraints on the coefficients are essentially necessary

and sufficient for the asymptotic normality of the QMLE of standard GARCH mod-

els. It is therefore tempting to consider that for the various GARCH extensions,

mild conditions will also be sufficient for the asymptotic normality of the QMLE.

Through the study of the class of linear ARCH models considered in this paper,

it will be seen that the behavior of the MLE/QMLE can be very pathological in

certain situations and that phrases such that "(Q)MLE is consistent under usual

regularity conditions" should be taken with caution in general.

Robinson (1991), Giraitis, Robinson and Surgailis (2000), Giraitis and Surgailis

(2002), Berkes and Horváth (2003) and Giraitis, Leipus, Robinson and Surgailis

(2004) proposed and analyzed a long memory alternative to the standard GARCH,

called "linear ARCH" (LARCH), defined by

ut = σtǫt, σt = b0 +
∞∑
i=0

biut−i, ǫt iid (0, 1). (1.1)

Under appropriate conditions, this model is consistent with long memory in u2
t ,

whereas an infinite order ARCH model fails to capture this property. From another

point of view, this model has the advantage over standard ARCH formulations to

be free of any positivity constraint on the volatility coefficients. Moreover, it is

amenable to multivariate extensions (see Doukhan, Teyssière and Winant, 2006).

Finite-order LARCH models were considered in Francq, Makarova and Zakoïan
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(2007) (hereinafter FMZ) in the purpose of analyzing the properties of unit root

tests in the presence of conditional heteroscedasticity. M-estimators of the location

parameter when the error process is LARCH has been considered by Beran (2006).

To our knowledge, only two recent papers deal with the estimation of the full pa-

rameter in LARCH models. Beran and Schützner (2008) consider in particular the

estimation of the parameters C and d when the LARCH(∞) coefficients have the

form bi = Cid, both in the short and long memory cases. One of the estimators

considered by these authors is a modified conditional maximum likelihood estima-

tor. Truquet (2008) employs the same approach, but focuses on the short memory

case and considers the estimation of general LARCH(q) models with finite order q.

The present paper attempts to contribute further to the statistical inference of

finite-order LARCH models, pointing out that the standard QMLE is not appropri-

ate for LARCH models, and investigating the properties of an attractive alternative

method. Indeed, as counterpart of the model flexibility, QMLE encounters serious

difficulties which can only be avoided by strict conditions on the parameter space.

It will be seen that, for the LARCH models, an approach which is more fruitful

than the QMLE is to consider weighted least-squares estimation (WLSE), as was

done by Horváth and Liese (2004) and Ling (2007) in the context of ARCH and

ARMA-GARCH models.

The paper is organized as follows. In Section 2, we give the basic assumptions

on the model and we establish the consistency and asymptotic normality of the

QMLE. Section 3 illustrates the possible inconsistency of the MLE/QMLE when

the stringent conditions used for the first theorem are in failure. Section 4 is devoted

to the weighted least-squares estimation. Section 5 considers specification testing.

Diagnostic checks are studied in Section 6. Section 7 reports simulation results and

an application on stock indices. Concluding remarks are given in Section 8 and all

proofs are relegated to Appendix A.
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2 Model specification and QML estimation

The AR(p)-LARCH(q) model considered in this paper assumes that
xt = ψ01xt−1 + · · ·+ ψ0pxt−p + ut,

ut = (1 + b01ut−1 + · · ·+ b0qut−q)ǫt, ǫt iid (0, σ2
0ǫ), σ0ǫ > 0

(2.1)

where ψ01, . . . , ψ0p, b01, . . . , b0q are unknown real numbers.

The model for (ut) is a particular case of quadratic ARCH, as introduced by

Sentana (1995). Apart from the absence of positivity constraints on the coefficients,

this formulation has several distinctive feature compared to the standard ARCH.

The volatility is not bounded below by a positive constant, it is able to capture the

so-called leverage effect and it is not minimum at zero (see FMZ). This is illustrated

in Figure 1 for the LARCH(1) model.

[Figure 1 about here.]

Let

A0t =

 b1:q−1ǫt b0qǫt

Iq−1 0q−1

 ,

where b1:q−1 = (b01, . . . , b0q−1) and Ik is the k × k identity matrix. By convention

A0t = b01ǫt when q = 1. Let γ(A0) be the top-Lyapunov exponent of the sequence

A0 = (A0t), that is, for any norm ‖ · ‖ on the space of the q× q matrices, γ(A0) =

limt→∞ 1
t log ‖A0tA0t−1 . . . A01‖ a.s. In FMZ, it was shown, following the approach

of Bougerol and Picard (1992a, 1992b) that the second equation of (2.1) admits a

strictly stationary solution (ut) if and only if

A1: γ(A0) < 0.

In the case q = 1, this condition reduces to |b01| < exp{−E log |ǫ1|}. Under A1, the

strictly stationary solution is unique, nonanticipative and ergodic. This solution

admits a second order moment if and only if
∑q

i=1 b
2
0iσ

2
0ǫ < 1. In this case, the

solution is a conditionally heteroskedastic white noise. We also make the following

standard assumption on the AR part.
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A2: the zeroes of the polynomial ψ0(z) := 1 −∑p
i=1 ψ0iz

i are outside the unit

disk.

We now turn to the QMLE of

θ0 = (ψ01, . . . , ψ0p, b01, . . . , b0q, σ
2
0ǫ).

Assume we observe x−q−p+1, x−q−p+2, . . . , xn generated by Model (2.1), where the

first p+ q variables are considered as initial values. We consider a parameter space

Θ ⊂ Rp+q × (0,∞) and we denote by θ = (ψ1, . . . , ψp, b1, . . . , bq, σ
2
ǫ )
′ a generic

element of Θ. We assume

A3: θ0 ∈ Θ and Θ is a compact set,

and the identifiability condition

A4: the support of the law of ǫt does not reduce to a set of 2 points.

Let ut(θ) = xt −
∑p

i=1 ψixt−i and

σ2
t (θ) = σ2

ǫ {1 + b1ut−1(θ) + · · ·+ bqut−q(θ)}2 .

Denoting by Ln(θ) the quasi-likelihood, a QMLE of θ is a measurable solution of

θ̂n = arg max
θ∈Θ

Ln(θ) = arg min
θ∈Θ

ln(θ), (2.2)

where

ln(θ) = n−1
n∑
t=1

ℓt(θ), and ℓt(θ) =
u2
t (θ)
σ2
t (θ)

+ log σ2
t (θ) ∈ [−∞,∞], (2.3)

with the conventions 1/0 + log 0 = +∞, 0/0 + log 0 = −∞ and +∞−∞ = +∞.

These conventions are required because ut(θ) and σ2
t (θ) may be equal to zero.

When σ2
t (θ) = 0 and ut(θ) 6= 0, the value θ can be precluded for the parameter.

This justifies the conventions, which lead to ln(θ) = ∞ for such values of θ. The

following "high-level" assumption, to be discussed below, can be made to avoid

such problems.

A5: The variable infθ∈Θ σ
2
t (θ) is almost surely (a.s.) bounded away from 0.
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Consider the case where p = 0, q = 1 and ǫt has a compact support [−c, c]. This case

is quite artificial, and is just given for illustrating A5. When |b01c| < 1, the white

noise ut = ǫt +
∑∞
i=1 b

i
01ǫtǫt−1 · · · ǫt−i belongs to [−c/(1− b01c), c/(1 − b01c)] with

probability one. Thus, it is easy to see that A5 holds when {supθ∈Θ |b1|}c < 1/2.

We will consider later the case where A5 does not hold. The spectral radius of

a square matrix A is denoted by ρ(A) and ⊗ denotes the Kronecker product of

matrices. To establish the asymptotic normality, we need the following additional

assumptions.

A6: θ0 belongs to the interior of Θ,

A7: Eǫ41 <∞ and ρ{E(A01 ⊗A01 ⊗A01 ⊗A01)} < 1.

It can be shown that Assumption A7 entails the existence of Eu4
1 and, under

A2, that of Ex4
1. When q = 1, the condition is simply b401Eǫ

4
1 < 1. Writing

A0t = Bǫt + J , where B and J are non-random matrices, the second part of A7

takes the more explicit form :

ρ


4∑
j=1

∑
ij∈{0,1}

E(ǫi1+···+i4
1 )(Bi1 + J1−i1)⊗ · · · ⊗ (Bi4 + J1−i4)

 < 1.

Theorem 2.1 Under A1–A5 we have θ̂n → θ0 a.s. as n → ∞. Under the addi-

tional Assumptions A6-A7,
√
n(θ̂n − θ0) is asymptotically distributed as N (0,Σ),

where Σ = J −1IJ −1,

I = E

(
∂ℓ1(θ0)
∂θ

∂ℓ1(θ0)
∂θ′

)
, J = E

(
∂2ℓ1(θ0)
∂θ∂θ′

)
.

3 Inconsistency of the QML estimator

Assumption A5 is essential for the consistency of the QMLE. For illustration pur-

poses, consider the simplest version of Model (2.1), i.e. the AR(0)-LARCH(1) given

by

xt = ut = ǫt(1 + b0ut−1). (3.1)

6
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When ǫt follows a uniform distribution on [−1/2, 1/2] say, Assumption A5 is sat-

isfied for sufficiently small Θ ⊂ (−2, 2) × (0,∞) because σt(θ)/σǫ ∈ (0, 2). The

likelihood is then well-behaved (see the left panel in Figure 2). On the other hand,

when ǫt has a continuous distribution with a non compact support, Assumption

A5 is not satisfied because σ2
t (θ) = σ2

ǫ (1 + but−1)2 cancels for θ = (−1/xt−1, σ
2
ǫ ).

Moreover, when xt 6= 0 the true value b0 cannot be equal to −1/xt−1, which ex-

plains that the likelihood is null at these points (see the right panel of Figure 2). It

should be noted that the non-smoothness of the likelihood is not due to the small

sample size n = 10. On the contrary, the number of points where the likelihood

vanishes increases with n, which would entail enormous computational burden for

any reasonable sample size.

For more general models, we can even show the inconsistency of the QMLE

when A5 is violated.

Proposition 3.1 Consider the general AR(p)-LARCH(q) model (2.1) with

min(p, q) > 0. Assume that the distribution of ǫt is absolutely continuous with

respect to the Lebesgue measure, with positive density over the real line. Assume

that the interior of Θ is non empty. Then, there exists an infinite number of QMLE

sequences which, with probability one, do not converge to θ0.

Remark 3.1 This inconsistency result is very general for the model considered in

this paper. It applies in particular when ǫt is Gaussian. This shows that, even the

maximum likelihood estimator is inconsistent in this situation. In fact, although

σt(θ0) > 0 almost surely, with probability 1 there exists θ such that σt(θ) = 0.

This explains the problems encountered with the ML and QML methods in this

model when the support of the distribution of ǫt is the real line. This also shows

that Assumption A5, though restrictive, is essential for the consistency result of

Theorem 2.1.

Remark 3.2 The inconsistency of the ML/QMLE may seem surprising. In the iid

case, frameworks where the QMLE is inconsistent include that of a mixture of two

Gaussian distributions (Kiefer and Wolfowitz (1956), Redner and Walker (1984)),

7
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a one-parameter mixture (Ferguson (1982)), life distributions (Boyles, Marshall

and Proschan (1985)), distributions with nuisance parameters (Neyman and Scott

(1948)), the Rasch model (Ghosh, (1985)). In dynamic models however, examples

of inconsistency seem much less frequent.

[Figure 2 about here.]

4 Weighted least squares estimators

We have seen that the QMLE is in failure without restrictive assumptions on the

distribution of ǫt. Another popular estimation method in time series is the least

squares procedure. To avoid unnecessary moment conditions and to gain in effi-

ciency we will consider Weighted Least Squares Estimators (WLSE). The asymp-

totic properties of weighted M-estimators have been studied by Horváth and Liese

(2004), in the context of ARCH models. The asymptotic properties of weighted

LSE and QMLE have been studied, in the context of ARMA-GARCH models, by

Ling (2005).

4.1 WSLE of the AR parameter

The WLSE of the AR parameter ψ = (ψ1, . . . , ψp)′ are defined by

ψ̂WLS = arg min
ψ∈Θψ

1
n

n∑
t=1

ωtu
2
t (ψ), ut(ψ) = xt −

p∑
i=1

ψixt−i, (4.1)

where Θψ is the compact parameter space of the AR coefficients and the ωt’s are

weights, which are allowed to depend on the past values {xs, s < t} but not on ψ.

For simplicity, we assume that ωt only depends on r past values:

A8: ωt = f(xt−1, . . . , xt−r) for some function f : Rr → (0,+∞) and some

integer r ≥ 1.

The initial values x1−r, . . . , x0 required to compute ω1 are supposed to be available.

An attractive feature of the WLSE is that the minimization problem (4.1) does not

8
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require optimization routine. Under A6, the solution is explicitly given by

ψ̂WLS = (X′ΩX)−1 X′ΩY, (4.2)

where Ω = Diag(ω1, . . . , ωn), X is a n × p matrix with generic term xi−j and

Y′ = (x1, . . . , xn). We introduce the following conditions.

A9: Eω1

∑p
i=1 x

2
1−i <∞ and Eω1|σ1(θ0)|

∑p
i=1 |x1−i| <∞.

A10: Eω2
1σ

2
1(θ0)

∑p
i=1 x

2
1−i <∞.

We also introduce the notation X ′
t = (xt−1, · · · , xt−p). We denote by

L→ the con-

vergence in distribution.

Theorem 4.1 Under A1, A2, A8, A9, ψ̂WLS → ψ0 a.s. as n → ∞. If, in

addition, A10 holds, then

√
n(ψ̂WLS − ψ0)

L→ N (0,ΣψWLS),

where ΣψWLS = A−1
ψ BψA

−1
ψ , Aψ = E (ω1X1X

′
1) , Bψ = E

(
ω2

1σ
2
1(θ0)X1X

′
1

)
.

Remark 4.1 When applied with ωt ≡ 1, the Weighted Least Squares (WLS) pro-

cedure yields the usual least squares estimator (LSE) and, for the asymptotic nor-

mality, the fourth-order moments are required. Such moment conditions can be

avoided by choosing, for instance, ω−1
t = c0 +

∑q+p
i=1 cix

2
t−i where the ci are strictly

positive constants. In this case, no moment is needed since A9 and A10 are always

satisfied.

Remark 4.2 Under A5, it is well-known that the optimal choice of the weighting

matrix (leading to the smallest asymptotic variance ΣψWLS , in the sense of positive

definite matrices) is

Ω∗ = Diag(1/σ2
1(θ0), . . . , 1/σ

2
n(θ0)).

Of course the resulting estimator is infeasible because σ2
t (θ0) depends on the un-

known b0i coefficients. A two-step estimation procedure as in Ling (2007) could be

9



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

employed to get a more efficient estimator, i.e. using one-step iteration with the

weighting matrix Ω̂∗, obtained by replacing θ0 by any consistent estimator θ̂n. How-

ever, we would face the same difficulties as with the QMLE: avoiding cancelation

of the σ2
t (θ̂n) would require a strong assumption, such as A5.

4.2 WSLE of the LARCH parameter

We now consider the estimation of the LARCH coefficients. Let ût = ut(ψ̂), t =

1 − q, . . . , n, where ψ̂ denotes any consistent estimator of ψ. The WLS estimators

of the volatility parameter β = (b1, . . . , bq, σ2
ǫ )
′ ∈ Θβ are defined by

β̂WLS = arg min
β∈Θβ

1
n

n∑
t=1

τtν
2
t (ψ̂, β), νt(ψ, β) = u2

t (ψ)− σ2
t (ψ, β) (4.3)

where the positive weights τt ∈ Ft−1, the σ-field generated by ǫt−i, i > 0. We

introduce the following conditions.

A11: Eǫ41 <∞ and Eτ1σ
4
1(θ0) <∞.

A12: E supθ∈V(θ0)

∥∥∥τ1 ∂ν2
1(θ)
∂θ

∂ν2
1(θ)
∂θ′

∥∥∥ < ∞ for some neighborhood V(θ0) of θ0,

Eτ1|x1−i|ℓ < ∞, Eτ2
1σ

4
1(θ0)|x1−i|ℓ < ∞, and Eτ1ω1 |σ1(θ0)|3 |x1−i|ℓ′ < ∞

for all 1 ≤ i ≤ p+ q, all 0 ≤ ℓ ≤ 4 and all 0 ≤ ℓ′ ≤ 3.

Theorem 4.2 Under A1−A3, A8 with ωt replaced by τt, and A11, β̂WLS → β0

a.s. as n→∞.

If, in addition, A9, A10, A12 hold and ψ̂ = ψ̂WLS,

√
n

 ψ̂WLS − ψ0

β̂WLS − β0

 L→ N
0,ΣWLS :=

 ΣψWLS ΣψβWLS

ΣβψWLS ΣβWLS

 ,

where

ΣβWLS = A−1
β

{
Bβ +AβψA

−1
ψ B′

βψ +BβψA
−1
ψ A′βψ +AβψA

−1
ψ BψA

−1
ψ A′βψ

}
A−1
β ,

ΣψβWLS = A−1
ψ

{
B′
βψ +BψA

−1
ψ A′βψ

}
A−1
β =

(
ΣβψWLS

)′
,

10
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with µ4 = Eǫ41/σ
4
ǫ , Yt = ∂σ2

t (ψ0,β0)
∂β , Zt = ∂νt(ψ0,β0)

∂ψ and

Aβ = E (τ1Y1Y
′
1) , Aβψ = E (τ1Y1Z

′
1) ,

Bβ = (µ4 − 1)E
(
τ2
1σ

4
1(θ0)Y1Y

′
1

)
, Bβψ =

Eǫ31
σ3
ǫ

E
(
τ1ω1σ

3
1(θ0)Y1X

′
1

)
.

Remark 4.3 A remark similar to 4.1 holds. When ωt and τt are (strictly posi-

tive) constants, eighth-order moments are required for the asymptotic normality.

Choosing, for instance, ω−1
t = c0 +

∑q+p
i=1 cix

2
t−i and τ−1

t = c∗0 +
∑q+p
i=1 c

∗
i x

4
t−i where

the ci and c∗i are strictly positive constants, no moment is needed on the observed

process.

Remark 4.4 When the distribution of ǫt is symmetric, it can be seen that ΣψβWLS =

0 and ΣβWLS = A−1
β BβA

−1
β . In this case, under A5, the optimal weights are

τt = 1/σ4
1(θ0) (see Remark 4.2). The comments made concerning the difficulties in

estimating the optimal weights apply.

4.3 Choice of the weights

As argued by Horváth and Liese (2004), a natural choice of the weight functions is

ωt =
1

1 + ‖X∗
t ‖2

, τt =
1

1 + ‖X∗
t ‖4

, (4.4)

whereX∗
t = (xt−1, . . . , xt−p−q)′. Many other sequences of weights satisfy A8−A12.

In the spirit of Ling (2007), and in connection to Huber’s robust estimator for the

regression model, one can consider sequences of weigths of the form

ωt =
1

max
{

1, C−1
(∑p+q

i=1 |xt−i|1{|xt−1|>C}
)}2 , τt = ω2

t , (4.5)

where C is a positive constant. For the numerical illustrations we follow the sug-

gestion of Ling (2007), taking C as the 90% quantile of the absolute values of the

observations |x1|, . . . , |xn|. In view of Remarks 4.2 and 4.4, one can also propose

weights of the form

ωt =
1

ĥt
, τt = ω2

t , (4.6)

where ĥt is a strictly positive proxy of the volatility. In the sequel we choose ĥt as

being the implied volatility based on a standard ARCH(p+ q) model.

11
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5 Specification Testing

As we have seen, the QML estimator has a pathological behavior in our framework,

so we cannot consider the standard tests (Wald, score, likelihood ratio). Instead,

we will base our tests on the WLS criterion. For notational convenience we will

omit the subscript "WLS" in the estimators.

5.1 Wald tests

To test an assumption of the form Rθ0 = r, where r ∈ Rd and R is a full row-rank

d×(p+q+1) matrix, the asymptotic normality results of Theorem 4.2 can be used.

Under H0 and the assumptions of this theorem, the Wald-type statistics

Wn = n(Rθ̂ − r)′(RΣ̂R′)−1(Rθ̂ − r) L→ χ2
d,

where θ̂ = (ψ̂′, β̂′)′, and Σ̂ denotes any consistent estimator of Σ. Empirical esti-

mates of Aβ , Aβψ, Bβ , Bβψ can be considered to construct such an estimator.

To test the nullity of all the coefficients bi it seems much more appropriate to

consider a score-type test, which does not require estimating the general model.

This is considered in the next section.

5.2 Testing for conditional homoscedasticity

The aim is to test for

H0 : b0 = 0

where b0 = (b01, . . . , b0q)′. Under H0 the model reduces to a simple AR(p) model

with independent errors. Let θ̂c = (ψ̂′, 0′p, σ̂
2c
ǫ )′ denote the estimator constrained

by H0, where ψ̂ is defined in (4.2) and σ̂2c
ǫ is the constrained WLS estimator of σ2

ǫ

defined by

σ̂2c
ǫ =

1∑n
t=1 τt

n∑
t=1

τtû
2
t . (5.1)

A Rao score-type (or Lagrange multiplier) statistic is based on the derivative of

the second-step criterion at θ̂c. To derive the statistic, we start by evaluating the

12
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asymptotic distribution of this derivative under H0. Let

Aβ =

 Ab Abσ

Aσb Aσ

 , A∗ = −Ab +
1
Aσ

AbσAσb.

Under the assumptions of Theorem 4.2, we have

∆c
n :=

1√
n

n∑
t=1

τt
∂ν2

t (ψ̂, 0q, σ̂
2c
ǫ )

∂b

L→ N (0,Σ∆ := A∗ΣbA′∗), (5.2)

where Σb is the top-left q × q block of the matrix Σβ . A Rao score-type statistic is

then given by

Rn = (∆c
n)
′ Σ̂−1

∆ ∆c
n

where Σ̂∆ denotes any H0-consistent estimator of Σ∆. This statistic follows asymp-

totically a χ2
q distribution under the null and the critical region at the asymptotic

level α is given by

{Rn > χ2
q(1− α)}

where χ2
q(1− α) denotes the 1− α quantile of the χ2

q distribution.

We will now derive an explicit form for this statistic. It is known that, under

quite general assumptions, a version of the score test statistic based on the LSE

can be interpreted as the uncentred coefficient of determination of the regression

of the constant 1 on the components of the score vector (see for instance Godfrey,

1988, p.15). We will show that a similar interpretation holds for the statistic Rn

based on the WLSE. First notice that

∆c
n =

−4σ̂2c
ǫ√
n

n∑
t=1

τt(û2
t − σ̂2c

ǫ )ût−1

where ût−1 = (ût−1, . . . , ût−q)
′
. Note also that, under the null,

Σ∆ = 16σ4
0ǫVar ǫ21E

(
τ2
1u0u

′
0

)
,

where ut−1 = (ut−1, . . . , ut−q)
′
. Writing ∆c

n = −4σ̂2c
ǫ n

−1/2U′V with

U′ =
(
τ1û0, . . . , τnûn−1

)
, V =

(
û2

1 − σ̂2c
ǫ , . . . , û

2
n − σ̂2c

ǫ

)′

13
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and using the estimator of Σ∆ defined by

Σ̂∆ = 16
(
σ̂2c
ǫ

)2
n−1V′Vn−1U′U,

we obtain the test statistic

Rn = n
V′U (U′U)−1 U′V

V′V
,

which is n times the uncentred coefficient of determination of the regression of

û2
t − σ̂2c

ǫ on τtût−1, . . . , τtût−q.

This test has of course similarities with the standard test for conditional het-

eroskedasticity of (ut) in the ARCH(q) (or GARCH(p, q)) framework. In this case,

a Rao-score test statistic is n times the R2 of the regression of u2
t over a constant

and u2
t−1, . . . , u

2
t−q.

6 Diagnostic checks

In this section we develop some diagnostic tools for the AR(p)-LARCH(q) model

(2.1). We first consider adequacy of the AR equation.

6.1 Diagnostic checking for the AR part

Conventional ways of testing adequacy of linear models involve checks that the

residuals are approximately uncorrelated. To this aim the portmanteau tests of Box-

Pierce (1970) and Ljung-Box (1978) are the most popular tools. We only consider

the Ljung-Box statistic (hereafter LB) which has the same asymptotic behavior as

the Box-Pierce statistic, but is the most widely used by the practitioners. The LB

statistic is defined by

Qûm = n(n+ 2)
m∑
h=1

ρ̂2
û(h)
n− h

(6.1)

where ρ̂û(h) is the residual autocorrelation at lag h and m is a fixed integer.

The standard test procedure consists, for m > p, in rejecting the AR(p) model if

Qûm > χ2
m−p(1− α). The procedure is (approximately) valid when (i) the residuals

14
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are obtained by least-squares, and (ii) the error terms of the AR equation are

iid. Because none of these conditions is satisfied in our framework, the standard

portmanteau tests require an adaptation. In the more general setting of weak

ARMA models, Francq, Roy and Zakoïan (2005) relaxed condition (ii), but we can

not directly use their results because we consider here WLS estimators.

For p > 0, let ût = ut(ψ̂WLS) = ut(ψ̂), t = 1− q, . . . , n, be the AR(p) residuals,

where ψ̂WLS = ψ̂ is the WLS estimator defined in (4.2). For p = 0, one can set

ût = ut = xt. The residuals autocovariances and autocorrelations are defined by

γ̂û(ℓ) =
1
n

n−ℓ∑
t=1

ûtût+ℓ and ρ̂û(ℓ) =
γ̂û(ℓ)
γ̂û(0)

. (6.2)

Let ρ̂ûm = (ρ̂û(1), . . . , ρ̂û(m))′ and Ut = (ut−1, . . . , ut−m)′. We denote by φ∗i the

coefficients defined by

ψ−1(z) =
∞∑
i=0

φ∗i z
i, |z| ≤ 1.

Take φ∗i = 0 when i < 0. Let λi = (φ∗i−1, . . . , φ
∗
i−p)

′ ∈ Rp and let the p×m matrix

Λ = (λ1 λ2 · · · λm). (6.3)

The following lemma gives the asymptotic distribution of a vector of residual auto-

correlations of an AR(p) model, when the Data Generating Process (DGP) actually

follows an AR(p)-LARCH(q) model.

Lemma 6.1 Under the assumptions of Theorem 4.1,
√
nρ̂ûm

L→ N (0,Σρ̂ûm), where

Σρ̂ûm =
1
σ4
u

E(u2
1U1U

′
1) when p = 0,

and when p > 0,

Σρ̂ûm = Λ′A−1
ψ BψA

−1
ψ Λ +

1
σ4
u

E(u2
1U1U

′
1)

− 1
σ2
u

{
Λ′A−1

ψ E(ω1u
2
1X1U

′
1) + E(ω1u

2
1U1X

′
1)A

−1
ψ Λ

}
, (6.4)

where σ2
u = Eu2

1.
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The following theorem is an obvious consequence of Lemma 6.1.

Theorem 6.1 Suppose that the assumptions of Theorem 4.1 hold, in particular

that the AR order is correctly specified. Then the portmanteau statistic Qûm
L→∑m

i=1 ξi,mZ
2
i , where ξm = (ξ1,m, . . . , ξm,m)′ is the eigenvalues vector of the matrix

Σρ̂ûm and Z1, . . . , Zm are independent N (0, 1) variables.

It should be noted that an estimator Σ̂ρ̂ûm of Σρ̂ûm can be straightforwardly obtained

from the estimation of the sole AR part in model (2.1). Indeed, by inversion of the

estimated AR polynomial, an estimator of Λ is obtained. The matrices Aψ and Bψ

can be estimated by

Âψ =
1
n

n+1∑
t=r∧p+1

ωtXtX
′
t, B̂ψ =

1
n

n+1∑
t=r∧p+1

ω2
t û

2
tXtX

′
t, (6.5)

noting that Eω2
t σ

2
t (θ0)XtX

′
t = Eω2

t u
2
tXtX

′
t. Similarly the other matrices involved

in the right-hand side of (6.4) have the form of expectations and can therefore be

estimated by empirical means (with Ut replaced by Ût = (ût−1, . . . , ût−m)′). Finally

σ2
u is estimated by the empirical mean of the û2

t . Thus the diagnostic checking of the

AR part can be made at the end of the first stage of the WLS procedure, and does

not require estimating the LARCH parameter β. The distribution of the quadratic

form
∑m

i=1 ξ̂i,mZ
2
i , where the ξ̂i,m are the eigenvalues of the matrix Σ̂ρ̂ûm , can then

be computed using the algorithm by Imhof (1961).

Remark 6.1 When q = 0 and ωt = 1, i.e. when a standard AR model is estimated

by LS, the asymptotic distribution of Qûm is often approximated by a χ2
m−p. Such

an approximation is not justified with the general WLS, even in the case q = 0.

Similarly the law can be far from a χ2 when ωt = 1 and q > 0 (see the remark

below), which is in accordance with the results obtained by Francq et al. (2005) in

the general framework of weak ARMA models.

Remark 6.2 It can be noticed that when p = 0 and b0 = (b01, . . . , b0q) = 0, the

process (Xt) is an iid white noise and the asymptotic distribution of the portman-

teau statistic is the usual χ2
m distribution, because Σρ̂ûm reduces to the m × m
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identity matrix. Still when p = 0 but b 6= 0, the matrix Σρ̂ûm is not the identity

matrix. For instance if q = 1 and the distribution of ǫt is symmetric, elementary

computations show that the first diagonal term of Σρ̂ûm is

1− b201σ
2
0ǫ

1− b401Eǫ
4
1

{
1 +

b201Eǫ
4
1

σ2
0ǫ

(1 + 4b201σ
2
0ǫ)
}
6= 1 when b01 6= 0,

so that Qûm does not asymptotically follow the χ2
m distribution.

Remark 6.3 Note that when Σρ̂ûm is regular, the modified Box-Pierce statistic

Q̃ûm := nρ̂ûm
′Σ̂−1
ρ̂ûm
ρ̂ûm

asymptotically follows a χ2
m distribution, under the null hypothesis of adequacy of

the order p for the AR part. Since the asymptotic distribution of Q̃ûm is simpler than

that of Qûm, the former seems more attractive for testing the overall significance of

ρ̂û(h), h = 1, . . . ,m. Note however that the regularity assumption on Σρ̂ûm is

not very explicit, because the invertibility of this matrix depends on the unknown

coefficients and on the choice of the weights in the estimation procedure.

6.2 Diagnostic checking for the LARCH part

As proposed by Higgins and Bera (1992), the adequacy of ARCH-type models

can be assessed by means of the Box-Pierce statistic Qǫ̂
2

m on the first m squared

standardized residual autocorrelations. The asymptotic distribution ofQǫ̂
2

m has been

established by Li and Mak (1994), under regularity conditions which do not hold in

our framework. Because we use WLS estimators instead of the maximum-likelihood

estimator, the asymptotic distribution ofQǫ̂
2

m will be different from that obtained by

Li and Mak. References dealing with the properties of squared residuals in GARCH

models are Horváth and Kokoszka (2001), Horváth, Kokoszka and Teyssière (2001),

Berkes, Horváth and Kokoszka (2003).

Recall that the WLS estimator defined in Theorem 4.2 is denoted by θ̂ =

(ψ̂′, β̂′)′, with ψ̂ = ψ̂WLS = (ψ̂1, . . . , ψ̂p)′ and β̂ = β̂WLS = (b̂1, . . . , b̂q, σ̂2
ǫ )
′. The

autocovariances and autocorrelations of the squared (standardized) residuals are

17
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defined by

γ̂ǫ2(ℓ) =
1
n

n∑
t=ℓ+1

(
ǫ̂2t − ǫ2

)(
ǫ̂2t−ℓ − ǫ2

)
and ρ̂ǫ2(ℓ) =

γ̂ǫ2(ℓ)
γ̂ǫ2(0)

, (6.6)

for 0 ≤ ℓ < n, where for q > 0

ǫ̂t = ǫt(θ̂), ǫt(θ) =
ut(ψ)

1 +
∑q
i=1 biut−i(ψ)

, ǫ2 =
1
n

n∑
t=1

ǫ̂2t . (6.7)

When q = 0, we set ǫt(θ) = ut(ψ). In order to guarantee that ǫ̂t be almost surely

well defined, at least for n large enough, we make the following assumption

P

(
1 +

q∑
i=1

b0iut−i = 0

)
= 0. (6.8)

Note that (6.8) is satisfied when the distribution of ǫt has a density with respect

to the Lebesgue measure. This assumption entails the (almost sure) existence of

(∂ǫt/∂θ) (θ0). Let ρ̂ǫ̂
2

m = (ρ̂ǫ2(1), . . . , ρ̂ǫ2(m))′ and

Vt =
(
ǫ2t − σ2

0ǫ

) (
ǫ2t−1 − σ2

0ǫ, . . . , ǫ
2
t−m − σ2

0ǫ

)′
.

We also define the matrices

S =

 A−1
ψ E(ω1u1X1V

′
1 )

A−1
β AβψA

−1
ψ E(ω1u1X1V

′
1) +A−1

β E(τ1ν1
∂σ2

1(ψ0,β0)
∂β V ′

1 )


and

Λǫ
2

=
(
λǫ

2

1 , . . . , λ
ǫ2

m

)′
, where λǫ

2

ℓ = 2Eǫ1
∂ǫ1
∂θ

(θ0)(ǫ21−ℓ − σ2
0ǫ).

The existence of these matrices requires moment conditions. Note that S = 0 when

Eǫ3t = 0. We also need to reinforce Assumption (6.8). Thus we make the following

assumptions.

A13: If q > 0, there exist a neighborhood V (θ0) of θ0 and a positive number ι > 0 such that

P

(
inf

θ=(ψ′,β′)′∈V (θ0)

∣∣∣∣∣1 +
q∑
i=1

biut−i(ψ)

∣∣∣∣∣ > ι

)
= 1.

A14: Ex6
t <∞.
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With these notations and assumptions we have the following result.

Theorem 6.2 Suppose that the assumptions of Theorem 4.2 hold, in particular

that the AR order p and the LARCH order q are correctly specified. Assume also

that the assumptions A13 and A14 hold true. Then
√
nρ̂ǫ̂

2

m
L→ N (0,Σρ̂ǫ̂2m ), where

Σρ̂ǫ̂2m =
1

σ8
ǫ (µ4 − 1)2

{
σ8
ǫ (µ4 − 1)2Im + Λǫ

2
ΣWLSΛǫ

2 ′
+ S′Λǫ

2 ′
+ Λǫ

2
S
}

when q 6= 0, and

Σρ̂ǫ̂2m = Im (6.9)

when q = 0.

Moreover the portmanteau statistic

Qǫ̂
2

m := n(n+ 2)
m∑
h=1

ρ̂2
ǫ2(h)
n− h

L→
m∑
i=1

ξǫ
2

i,mZ
2
i ,

where ξǫ
2

1,m, . . . , ξ
ǫ2

m,m are the eigenvalues of the matrix Σρ̂ǫ̂2m and Z1, . . . , Zm are

independent N (0, 1) variables.

Remark 6.4 Assumption A13 is restrictive, but seems unavoidable since the port-

manteau statistics relies on rescaled residuals in which the inverses of σt(θ) are taken

in a neighborhood of θ0. However, simulation experiments show that the portman-

teau test behaves well in finite sample when (most of) the 1 +
∑q

i=1 b̂iût−i are far

enough from 0.

Remark 6.5 In Remark 6.1 it was seen that the asymptotic distribution of Qûm

depends, in a complicated way, of the weights and the coefficients, even in the case

q = 0. By contrast, (6.9) shows that the asymptotic distribution of Qǫ̂
2

m is χ2
m when

the DGP is an AR model with iid innovations, whatever the AR order p and the

weights ωt. The χ2
m-asymptotic distribution for Qǫ̂

2

m was obtained by McLeod and

Li (1983) in the case q = 0 and ωt = 1, which corresponds to the standard LSE.

Remark 6.6 A remark similar to 6.3 holds. When Σρ̂ǫ̂2m is regular and Σ̂ρ̂ǫ̂2m denotes

any consistent estimator of Σρ̂ǫ̂2m , the modified statistic

Q̃ǫ̂
2

m := nρ̂ǫ̂
2 ′
m Σ̂−1

ρ̂ǫ̂2m
ρ̂ǫ̂

2

m
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asymptotically follows a χ2
m distribution, under the null hypothesis of adequacy of

the orders p and q.

7 Numerical Illustrations

7.1 Monte Carlo study

This section examines the performance of the asymptotic estimation results in finite

samples through Monte Carlo experiments. Data are generated through the AR(1)-

LARCH(1) model

xt = ψ01xt−1 + ut, ut = (1 + b01ut−1)ǫt, ǫt iid (0, σ2
0ǫ), σ0ǫ > 0. (7.1)

We start by considering a case when A5 is satisfied, that is a case where the QMLE

is consistent, provided Θ is sufficiently small. The true parameter is taken to be

φ01 = 0.9, b01 = −0.5 and ǫt ∼ U(−0.5,0.5) (thus σ2
0ǫ = 1/12). As can be seen from

Figure 3 and other experiments not reported here, the performances of the QMLE

and WLSE are comparable.

We now investigate the properties of the QMLE and WLSE when the errors

distribution is Gaussian. In this case, A5 is never satisfied.

[Figure 3 about here.]

[Table 1 about here.]

[Table 2 about here.]

Table 1 compares the distributions of the QML, LS and WLS estimates of the three

parameters ψ01, b01 and σ2
0ǫ overN = 500 independent simulations of the model, for

the sample sizes n = 100 and n = 1, 000. We used the version of the WLSE defined

by the weights (4.6) based on an ARCH proxy of the volatility. The failure of the

QMLE is not surprising in view of Proposition 3.1, since Assumption A5 is not

satisfied by the DGP. With the particular choice of parameters in these simulations

experiments, the LSE and WLSE provide very close results.
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Table 2 compares the performance of four versions of the WLSE: the LSE

in which the weights are constant, the WLSE based on an ARCH proxy of the

volatility, the WLSEHL with the weights (4.4) of Horváth and Liese (2004), and

the WLSEL defined by the weights (4.5) proposed by Ling (2007) in a similar

context. With the value b01 = −0.54 the simulated process (xt) admits moments of

order eight, with b01 = −0.63 we have Ex6
t <∞ but Ex8

t = ∞, with b01 = −0.75 we

have Ex4
t <∞ and Ex6

t = ∞, with b01 = −0.99 we have Ex2
t <∞ and Ex4

t = ∞,

and with b01 = −1.1 the second order moments do not exist. In the table, the

best (i.e. minimal) root mean squared error (RMSE) and the best estimation

bias are displayed in bold. As expected the performance of the four versions is

equivalent when the DGP admits high order moments, and the performance of

the LSE decreases dramatically when |b01| increases. Overall, the behavior of the

WLSE and WLSEHL remains satisfactory whatever the value of b01, with a slight

advantage for the WLSE in terms of RMSE. We thus used this WLSE version for

the application of the next section.

7.2 Nonlinearities in the volatility of stock indices

The aim of this section is to point out, in the volatility of financial returns, the

presence of some non linear effects discussed in Section 2. We consider the daily

returns of the following nine indices: the CAC, Shanghai, DAX, DJA, DJT, FTSE,

Nasdaq, Nikkei, and SP500, from January 2, 1990, to March 25, 2008 (except for

the indices for which such historical data do not exist).

We first applied the conditional homoscedasticity test defined in Section 5.2.

The results displayed in Table 3 show that the null hypothesis of conditional ho-

moscedasticity is clearly rejected, for all the indices, except for Shanghai and Nas-

daq. These results are in accordance with those typically obtained for financial

series, with more standard conditional homoscedasticity tests, such as the score

test of Engle (1982) or the Li and Mak (1994) portmanteau test. It can be noted

that the null of conditional homoscedasticity is in general more clearly rejected in

favor of a LARCH(q) model when q ≥ 5 than for small values of q.
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Several AR(p)-LARCH(q) models have been fitted to the nine series. In view

of the portmanteau tests displayed in Table 4 for the adequacy of the AR part, it

seems that an AR(0) (i.e. no AR part) is sufficient for most of the series, which

is in accordance with the standard economic theory of efficient markets. In Table

5 estimation results for the AR(0)-LARCH(5) have been reported. The most sig-

nificant features are the following. First, note that smaller-order LARCH models

would not be appropriate for such series, as can be seen from the t-ratio for the

higher-order coefficients. For some of these series, an order q > 5 would be relevant

but for the simplicity of the presentation we do not give results for such higher-order

models. Second, for almost all series, all the estimated coefficients are significantly

negative. This a strong evidence of asymmetry in the volatility of such series. Since

the works of Black (1976) and Christie (1982) this property, known as the leverage

effect, is well documented for financial series. Typically, a negative return has a

higher impact on the future volatility than a positive one of the same magnitude.

Indeed, taking for simplicity the LARCH(1) example, it can be seen that

|1 + b1ut−1| > |1 + b1(−ut−1)| when b1ut−1 > 0.

Finally, recall that the main characteristic of the LARCH model, compared to all

standard ARCH-type formulations, is that the volatility is not bounded below. It is

therefore interesting to see if the estimated models allow the volatility to approach

zero. Surprisingly, the answer strongly depends on the series, as shown in Figure 4.

More precisely, the volatility of the Nikkei index is always far away from zero (which

is related to the very small estimated coefficients, in magnitude, for this series). On

the contrary, the volatilities of the Nasdaq, DJA, SP500 are frequently close to zero.

The remaining series, namely the DAX, FTSE, CAC, Shangai, and DJT, have a

volatility which occasionally approaches zero. Is should however be underlined that,

as can be seen from Table 6, the estimated LARCH volatilities are never exactly

equal to zero. We want to point out that such small estimated volatilities could

not be obtained with standard ARCH models. For instance, with GARCH(1,1)

models, we found that the minimal estimated volatility of the nine series of returns
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ranges from 0.17 to 0.97, whereas Table 6 shows that it ranges from 0.0001 to 0.15

with LARCH(5) models. More flexibility is thus allowed with LARCH models. Of

course, we do not claim that such a simple model as the finite-order LARCH is

sufficient to capture all the sophisticated features of financial series. Extensions of

these models, including a persistence term βσt−1 in the volatility, or allowing for

long memory, have to be considered.

Many complementary results on this real application, as well as on the simula-

tion study, are available from the authors. The R code allowing to implement all

the numerical applications of this paper is also available.

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Figure 4 about here.]

[Table 6 about here.]

8 Conclusion

LARCH is an attractive class of models for conditional heteroscedasticity, which

is able to capture different effects of the volatility, keeping the parsimony of the

standard ARCH and avoiding the positivity constraints on the coefficients. How-

ever, the QMLE is not recommended for these models. This may seem surprising,

since QML is undoubtedly the most successful method for GARCH-type models.

The "supremacy" of this method is justified, in general, because it does not require

specifying the errors distribution and because its asymptotic properties hold un-

der mild conditions. However, for the LARCH model, the QML method produces

inconsistent estimator. The theoretical results were confirmed by finite-sample ex-

periments. It is interesting to note that a major estimation technique, which is
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very robust under change of the distribution of the iid noise, fails for a class of

conditionally heteroscedastic models. To our knowledge, this is the only example

of failure of the QMLE, in GARCH-type models, that is not due to the lack of a

moment condition.

To overcome this problem, we proposed a self-weighted LSE. For AR-LARCH

models, this estimator was shown to be asymptotically normal without any mo-

ment condition on the observed process. The choice of the weights is discussed

and, from our Monte-Carlo experiments, weights obtained from an ARCH proxy

of the volatility can be recommended. These results were used to construct Wald

and score tests for testing conditional homoscedasticity. Furthermore, diagnostic

portmanteau tests were developed. Their asymptotic distribution was shown to be

far from the standard chi-square. It is possible to extend the class to GARCH-type

models, allowing the volatility to depend on its own past values. This is left for

future research.

Appendix: Proofs

A.1 Proof of Theorem 2.1

The scheme of the proof is standard (see e.g. Francq and Zakoïan, 2004, Theorems

2.1 and 3.1), and consists in showing

i) ut(θ) = ut(θ0) and σ2
t (θ) = σ2

t (θ0) Pθ0 a.s. for all t =⇒ θ = θ0,

ii) E|ℓt(θ0)| <∞, and if θ 6= θ0, Eℓt(θ) > Eℓt(θ0),

iii) any θ 6= θ0 has a neighborhood V (θ) such that

lim inf
n→∞ inf

θ∗∈V (θ)
ln(θ∗) > Eℓ1(θ0), a.s.

We first prove i). In view of A2 and A5, we have σ2
t (θ0) = Var(xt | Ft−1) > 0

with probability 1, and it can be shown that ut(θ) = ut(θ0) entails that the first p

components of θ and θ0 are the same. Let θ such that σ2
t = σ2

t (θ) = σ2
t (θ0) 6= 0

and ut = ut(θ) = ut(θ0) a.s. Writing σt(θ) = σǫ{b1ut−1 + vt−2(θ)} where vt−2(θ) =
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1 +
∑q

i=2 biut−i, we have

σ2
t (θ0) = σ2

t (θ)

⇔ σ2
0ǫ{b01ut−1 + vt−2(θ0)}2 = σ2

ǫ{b1ut−1 + vt−2(θ)}2

⇔ (σ2
ǫ b

2
1 − σ2

0ǫb
2
01)σ

2
t−1η

2
t−1 + 2σt−1{σ2

ǫ b1vt−2(θ)− σ2
0ǫb01vt−2(θ0)}ηt−1

+{σ2
ǫ vt−2(θ)− σ2

0ǫvt−2(θ0)} := at−2η
2
t−1 + bt−2ηt−1 + ct−2 = 0.

By taking the expectation of the last equality conditionally on Ft−2 we get at−2 +

ct−2 = 0. We thus have

at−2(η2
t−1 − 1) = −bt−2ηt−1 a.s. (A.1)

Suppose that σ2
ǫ b

2
1 6= σ2

0ǫb
2
01, that is at−2 6= 0 a.s. It follows that ηt−1 6= 0 and

(η2
t−1 − 1)/ηt−1 = −bt−2/at−2 a.s. Because the two sides of this equality involve

independent variables, these variables are constant. Hence there is a constant c

such that η2
t−1 − 1 = cηt−1, but this contradicts A5. We thus have proved that

σ2
ǫ b

2
1 = σ2

0ǫb
2
01. If b1 = 0 we have b1 = b01. Now suppose b01 6= 0. Since at−2 = 0

a.s. we have, from (A.1),

bt−2 = 0 = {σ2
ǫ b1vt−2(θ)− σ2

0ǫb01vt−2(θ0)}σt−1ηt−1.

Multiplying the last equation by ηt−1 and taking the expectation conditional to

Ft−2 yields

σ2
ǫ b1σt−1vt−2(θ) = σ2

0ǫb01σt−1vt−2(θ0)

and thus, since by assumption σt−1 6= 0 and since we have σ2
ǫ b

2
1 = σ2

0ǫb
2
01,

b01vt−2(θ) = b1vt−2(θ0)

which, by taking the expectation, implies b01 = b1. Proceeding similarly we get,

recursively, b0i = bi for all i. Finally, σǫ = σ0ǫ and θ = θ0.

Now we turn to ii). Note that, by A1 and A2, the process (xt) is station-

ary and ergodic (see e.g. Billingsley (1995, Theorem 36.4)). Since ℓt(θ) is a

measurable function of xt, . . . , xt−p−q, the process {ℓt(θ)} is also stationary and
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ergodic. Moreover, in view of A5, Eℓt(θ) exists in R ∪ {+∞}. Thus the objec-

tive function ln(θ) converges a.s. to Eℓt(θ) as n → ∞. In FMZ it was shown

that under A1, Eσ2s
t (θ0) < ∞ for some sufficiently small s > 0. It follows that

Eℓt(θ0) = 1 + 1
sE log σ2s

t (θ0) exists in R. The limit criterion is minimum at the

true value because

Eℓt(θ) − Eℓt(θ0) = E

{
log

σ2
t (θ)

σ2
t (θ0)

+
σ2
t (θ0)
σ2
t (θ)

− 1
}

+E
{ut(θ) − ut(θ0)}2

σ2
t (θ)

+ E
2ǫtσt(θ0) {ut(θ) − ut(θ0)}

σ0ǫσ2
t (θ)

≥ 0

using the fact that the last expectation is null (ǫt being orthogonal to the random

variable σt(θ0) {ut(θ) − ut(θ0)}σ−2
t (θ) ∈ Ft−1), and using the elementary inequality

log x ≤ x−1. Moreover the inequality is an equality if and only if ut(θ)−ut(θ0) = 0

and σ2
t (θ0) = σ2

t (θ) with probability 1, which by ii) implies θ = θ0.

As in Francq and Zakoïan (2004) we can show that the ergodic theorem and

the continuity of θ 7→ Eθℓ1(θ) entail iii). A standard compactness argument allows

to complete the proof of the consistency.

Now we turn to the asymptotic normality. It is easy to see that the proof follows

from the following properties:

i) E
∥∥∥∥∂ℓt(θ0)∂θ

∂ℓt(θ0)
∂θ′

∥∥∥∥ <∞ and n−1/2
n∑
t=1

∂ℓt
∂θ

(θ0) ⇒ N (0, I) ,

ii) E
∥∥∥∥∂2ℓt(θ0)
∂θ∂θ′

∥∥∥∥ <∞ and n−1
n∑
t=1

∂2ℓt
∂θi∂θj

(θ∗) → J (i, j) a.s.,

for any θ∗ between θ̂n and θ0,

iii) I and J are not singular.
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Differentiating (2.3) we obtain

∂ℓt(θ)
∂θ

=
{

1− u2
t (θ)
σ2
t (θ)

}
1

σ2
t (θ)

∂σ2
t (θ)
∂θ

+ 2
ut(θ)
σ2
t (θ)

∂ut(θ)
∂θ

=
{

1− u2
t (θ)
σ2
t (θ)

}
2

1 +
∑q

i=1 biut−i(θ)



−∑q
i=1 biXt−i

ut−1(θ)
...

ut−q(θ)
1+

Pq
i=1 biut−i(θ)

2σ2
ǫ


+2

ut(θ)
σ2
t (θ)

 −Xt

0q+1

 (A.2)

with Xt = (xt−1, . . . , xt−p)
′
. Noting that

{
1− u2

t (θ0)/σ
2
t (θ0)

}
= 1 − ǫ2t/σ

2
ǫ and

ut(θ0)/σt(θ0) = ǫt/σǫ are centered and independent of the other random vari-

ables involved in ∂ℓt(θ0)/∂θ, it can be shown that, under A2, A5 and A7,

(∂ℓt(θ0)/∂θ,Ft) is a square integrable stationary martingale difference. Thus i)

comes from the Central Limit Theorem (CLT) of Billingsley (1961).

Differentiating (A.2) we obtain

∂2ℓt(θ)
∂θ∂θ′

=
(

1− u2
t (θ)
σ2
t (θ)

)
1

σ2
t (θ)

∂2σ2
t (θ)

∂θ∂θ′
+
(

2
u2
t (θ)
σ2
t (θ)

− 1
)

1
σ4
t (θ)

∂σ2
t (θ)
∂θ

∂σ2
t (θ)
∂θ′

+
2

σ2
t (θ)

∂ut(θ)
∂θ

∂ut(θ)
∂θ′

+
2ut(θ)
σ2
t (θ)

∂2ut(θ)
∂θ∂θ′

−2ut(θ)
σ4
t (θ)

(
∂ut(θ)
∂θ

∂σ2
t (θ)
∂θ′

+
∂σ2

t (θ)
∂θ

∂ut(θ)
∂θ′

)
.

Using the Hölder inequality, the compactness assumption A3, the existence of

fourth-order moments for xt and ut(θ) and Assumption A5, it can be shown that

sup
θ∈Θ

∥∥∥∥∂ℓt(θ)∂θ

∥∥∥∥
4/3

<∞.

With the same arguments it can be shown that

sup
θ∈Θ

∥∥∥∥∂2ℓt(θ)
∂θ∂θ′

∥∥∥∥
1

<∞. (A.3)

The continuity of θ 7→ ∂2ℓt(θ)/∂θ∂θ′, the ergodic theorem and the dominated

convergence theorem now entail that for any ε > 0 there exists a neighborhood
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V(θ0) of θ0 such that, a.s.

lim
n→∞

1
n

n∑
t=1

sup
θ∈V(θ0)

∥∥∥∥∂2ℓt(θ)
∂θ∂θ′

− ∂2ℓt(θ0)
∂θ∂θ′

∥∥∥∥ ≤ ε. (A.4)

A direct application of the ergodic theorem entails

lim
n→∞

1
n

n∑
t=1

∂2ℓt(θ0)
∂θ∂θ′

= J a.s. (A.5)

Thus ii) comes from (A.3), (A.4),(A.5) and the strong consistency of θ̂n.

The arguments used by Francq and Zakoïan (2004, p 631) show that if I is

singular then there exists λ = (λ′1, λ
′
2)
′, with λ1 ∈ Rp and λ2 ∈ Rq+1, such that a.s.

λ′
∂ut(θ0)
∂θ

= 0 and λ′
∂σ2

t (θ0)
∂θ

= 0. (A.6)

Because ∂ut(θ0)/∂θ = (−X ′
t, 0

′
q+1)

′ the first equality entails λ1 = 0, and the second

equality reduces to

0 = λ′2



∂σ2
t (θ0)
∂b1
...

∂σ2
t (θ0)
∂bq

∂σ2
t (θ0)
∂σ2
ǫ

 = λ′2


2σ2

0ǫ (1 +
∑q

i=1 b0iut−i)ut−1

...

2σ2
0ǫ (1 +

∑q
i=1 b0iut−i)ut−q

(1 +
∑q

i=1 b0iut−i)
2

 a.s.

Using the stationarity, we deduce that, conditional on {ǫu, u < t} there exists a

polynomial of degree 2, P2(x) = a0 + a1x + a2x
2, such that P2(ut) = 0, which

contradicts A5. Moreover

J = E

(
1
σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′
(θ0)

)
+ 2E

(
1
σ2
t

∂ut
∂θ

∂ut
∂θ′

(θ0)
)

:= A+ B

where A is strictly positive definite, by the previous arguments, and B is positive

semi-definite. Thus I and J are invertible.

A.2 Proof of Proposition 3.1

For any fixed integer t0, with probability one we have xt0−1 6= 0, xt0/xt0−1 6= ψ01

and x2
t0−1 − xt0xt0−2 6= 0. Note that, conditionally to present and past values of
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xt0−2 such that σt0−1(θ0) 6= 0, the couple (xt0−1, xt0−1) admits a positive den-

sity with respect to the Lebesgue measure of R2. It follows that, with positive

probability, we have

θ(t0) :=

(
xt0
xt0−1

, 0′p−1,−
1

xt0−1 − xt0
xt0−1

xt0−2

, 0′q−1, 1

)
∈ Θ.

Thus, for almost all trajectories, there exists θ(t0) ∈ Θ. Note that ut0 {θ(t0)} =

σ2
t0 {θ(t0)} = 0 and that, for t 6= t0, σ

2
t {θ(t0)} 6= 0 almost surely. It follows that,

with the conventions given after (2.3), Ln{θ(t0)} = +∞. The measurable sequences

(θ̂n)n≥1 such that θ̂n = θ(t0) for all n ≥ t0 are inconsistent sequences of QMLE.

A.3 Proof of Theorem 4.1.

Writing Y = Xψ0 + U with U′ = (u1, . . . , un), we have

ψ̂WLS = (X′ΩX)−1 X′Ω(Xψ0 + U) = ψ0 + (X′ΩX)−1 X′ΩU = ψ0 + o(1)

a.s., because in view of the ergodic theorem

n−1X′ΩX → Aψ, n−1X′ΩU → EωtutXt = Eǫtσ
−1
ǫ Eσt(θ0)ωtXt = 0.

The consistency is shown. Applying the CLT of Billingsley (1961) to the square in-

tegrable stationary martingale difference (ωtutXt,Ft), we obtain that n−1/2X′ΩU

converges in law to the N (0, Bψ) distribution. To complete the proof, it remains to

show that Aψ is invertible. If Aψ were singular then there would exist λ 6= 0 ∈ Rp
such that λ′

√
ωtXt = 0 which would imply λ′Xt = 0 with probability one. This

would entail that xt, ut and ǫt belong to Ft−1, and ǫt would be independent of ǫt.

This is clearly impossible because Eǫt = 0 and Eǫ2t 6= 0. Thus Aψ is invertible, and

the proof is complete.

A.4 Proof of Theorem 4.2.

Let

Q̂n(β) =
1
n

n∑
t=1

τtν
2
t (ψ̂, β), Qn(β) =

1
n

n∑
t=1

τtν
2
t (ψ0, β).
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We first show that

lim
n→∞ sup

β∈Θβ

∣∣∣Q̂n(β)−Qn(β)
∣∣∣ = 0 a.s. (A.7)

We have, for some constant K∣∣∣ν2
t (ψ̂, β)− ν2

t (ψ0, β)
∣∣∣

≤
∣∣∣νt(ψ̂, β)− νt(ψ0, β)

∣∣∣ 2 sup
θ∈Θ

|νt(ψ, β)|

≤ K

{∣∣∣ut(ψ̂)− ut

∣∣∣ sup
ψ∈Θψ

|ut(ψ)|

+

(
q∑
i=1

|bi|
∣∣∣ut−i(ψ̂)− ut−i

∣∣∣) sup
θ∈Θ

σ2
t (ψ, β)|

}
sup
θ∈Θ

|νt(ψ, β)|

and ∣∣∣ut(ψ̂)− ut

∣∣∣ ≤ p∑
i=1

|ψ̂i − ψ0i||xt−i|.

It follows that

sup
β∈Θβ

∣∣∣ν2
t (ψ̂, β)− ν2

t (ψ0, β)
∣∣∣ ≤Mt‖ψ̂ − ψ0‖,

where (Mt) is a strictly stationary process. For t fixed, the strong consistency of ψ̂

implies Mt‖ψ̂−ψ0‖ → 0 a.s. Therefore the Cesaro sum n−1
∑n

t=1 τtMt‖ψ̂−ψ0‖ → 0

a.s. and (A.7) is shown.

This result and the ergodic theorem show that Q̂n(β) → Q∞(β) :=

Eτtν
2
t (ψ0, β) ∈ R+ ∪{+∞}, a.s. and uniformly in a neighborhood of β, as n→∞.

Since τtνt(ψ0, β0) = τt(1 +
∑
b0iut−i)2(ǫ2t − σ2

0ǫ) and τt {νt(ψ0, β)− νt(ψ0, β0)} =

τt
{
σ2
t (ψ0, β0)− σ2

t (ψ0, β)
} ∈ Ft−1 are orthogonal (when Q∞(β) is finite, which

is the case at β = β0 in view of the moment condition A11), it can be shown

that under the identifiability condition A4, Q∞(β) > Q∞(β0) when β 6= β0. The

consistency follows from standard arguments.

Under A6, the derivative of the criterion defined in (4.3) vanishes at β̂ = β̂WLS ,

for sufficiently large n. A Taylor expansion at the order 1 of the derivative around

β0 yields

0 =
1√
n

n∑
t=1

τt
∂ν2

t (ψ̂, β0)
∂β

+

(
1
n

n∑
t=1

τt
∂2ν2

t (ψ̂, β0)
∂β∂β′

+Rn

)
√
n
(
β̂ − β0

)
,
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where the element of the matrix Rn are of the form

Rn(i, j) =
1
n

n∑
t=1

τt

{
∂2ν2

t (ψ̂, β
∗)

∂βi∂βj
− ∂2ν2

t (ψ̂, β0)
∂βi∂βj

}
for some β∗ between β̂ and β0. In view of the consistency result, the moment

condition E supθ∈V(θ0)

∥∥∥τt ∂2ν2
t (θ)

∂θ∂θ′

∥∥∥ < ∞, and the continuity of the derivative,

Rn(i, j) → 0 a.s. Similar arguments and a Taylor expansion around ψ0 yields

0 =
1√
n

n∑
t=1

τt
∂ν2

t (ψ0, β0)
∂β

+
1
n

n∑
t=1

τt
∂2ν2

t (ψ0, β0)
∂β∂ψ′

√
n(ψ̂ − ψ0)

+oP (1) +

(
1
n

n∑
t=1

τt
∂2ν2

t (ψ0, β0)
∂β∂β′

+ oP (1)

)
√
n
(
β̂ − β0

)
.

Applying the CLT of Billingsley (1961) to the square integrable stationary martin-

gale difference {(τtνt∂νt(ψ0, β0)/∂β′, ωtutX ′
t)′,Ft}, we obtain 1√

n

∑n
t=1 τt

∂ν2
t (ψ0,β0)
∂β√

n
(
ψ̂ − ψ0

)
 =

 −2√
n

∑n
t=1 τtνt

∂σ2
t (ψ0,β0)
∂β

A−1
ψ

1√
n

∑n
t=1 ωtutXt


L→

 Zβ

Zψ

 ∼ N
0,

 4Bβ −2BβψA−1
ψ

−2A−1
ψ B′

βψ A−1
ψ BψA

−1
ψ

 .

Applying the ergodic theorem we have a.s.

1
n

n∑
t=1

τt
∂2ν2

t (ψ0, β0)
∂β∂ψ′

→ −2Aβψ,
1
n

n∑
t=1

τt
∂2ν2

t (ψ0, β0)
∂β∂β′

→ 2Aβ.

By arguments already given Aβ is invertible. Thus

√
n

 β̂ − β0

ψ̂ − ψ0

 L→
 (−2Aβ)−1 (Zβ − 2AβψZψ)

Zψ


and the proof follows.

A.5 Proof of (5.2)

A Taylor expansion at the order 1 around θ0 yields

0q+1 =
1√
n

n∑
t=1

τt
∂ν2

t (ψ̂, b̂, σ̂
2
ǫ )

∂β
=

1√
n

n∑
t=1

τt
∂ν2

t (ψ̂, 0q, σ̂
2c
ǫ )

∂β

+
1
n

n∑
t=1

τt
∂2ν2

t (θ0)
∂β∂β′

√
n

 b̂

σ̂2
ǫ − σ̂2c

ǫ

+ oP (1). (A.8)
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Notice that the last component of the first term in the right-hand side is null. It

follows that
√
n(σ̂2

ǫ − σ̂2c
ǫ ) = − 1

Aσ
Aσb

√
nb̂ + oP (1).

Now using the first q components of (A.8) we get ∆c
n = A∗

√
nb̂ + oP (1), from

which the convergence in (5.2) follows.

A.6 Proof of Lemma 6.1.

We start by establishing a lemma which will be used to show Lemma 6.1. Let, for

0 ≤ ℓ < n,

γ(ℓ) =
1
n

n−ℓ∑
t=1

utut+ℓ and ρ(ℓ) =
γ(ℓ)
γ(0)

denote the white noise “empirical” autocovariances and autocorrelations. Let γm =

(γ(1), . . . , γ(m))′ and ρm = (ρ(1), . . . , ρ(m))′.

Lemma A.1 Under the assumptions of Theorem 4.1,
√
n(ψ̂ − ψ0, γm)′ L→

N (0,Σψ̂,γm) when p > 0, where

Σψ̂,γm =


A−1
ψ BψA

−1
ψ A−1

ψ E(ωtu2
tXtU

′
t)

E(ωtu2
tUtX

′
t)A

−1
ψ E(u2

tUtU
′
t)

 .

Proof. From the proof of Theorem 4.1, we have

√
n(ψ̂ − ψ0) = A−1

ψ

1√
n

n∑
t=1

ωtutXt + oP (1).

We have
√
nγm =

1√
n

n∑
t=1

utUt.

Applying the CLT of Billingsley (1961) to the square integrable stationary martin-

gale difference {(ωtutX ′
t, utU

′
t)′,Ft}, Lemma A.1 is proved.

Now, in view of Francq et al. (2004, proof of Theorem 2) we have

γ̂m := (γ̂(1), . . . , γ̂(m))′ = γm − σ2
uΛ

′(ψ̂ − ψ0) +Op(1/n).
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Hence, by Lemma A.1, the asymptotic distribution of
√
nγ̂m is normal, with mean

zero and covariance matrix

Varas(
√
nγ̂m) = Varas(

√
nγm) + σ4

uΛ
′ Varas(

√
nψ̂)Λ

−σ2
uΛ

′ Covas(
√
nψ̂,

√
nγm)− σ2

u Covas(
√
nγm,

√
nψ̂)Λ.

Finally, we have

ρ̂m = γ̂m/σ
2
u +Op(1/n),

from which Lemma 6.1 straightforwardly follows.

A.7 Proof of Theorem 6.2.

To show Theorem 6.2 we establish an intermediate result which is the analog of

Lemma A.1. We set

γǫ2(ℓ) =
1
n

n∑
t=ℓ+1

(ǫ2t − σ2
ǫ )(ǫ

2
t−ℓ − σ2

ǫ ) and ρǫ2(ℓ) =
γǫ2(ℓ)
γǫ2(0)

for 0 ≤ ℓ < n. Let γǫ
2

m = (γǫ2(1), . . . , γǫ2(m))′ and ρǫ
2

m = (ρǫ2(1), . . . , ρǫ2(m))′.

Write θ̂ = (ψ̂′WLS , β̂
′
WLS)′.

Lemma A.2 Under the assumptions of Theorem 4.2, when p+ q 6= 0,

√
n

 θ̂ − θ0

γǫ
2

m

 L→ N
0,Σθ̂,γǫ2m :=

 ΣWLS S

S′ E(VtV ′
t )

 .

Proof. The proof is written for pq 6= 0, but can be straightforwardly modified

when p = 0 or q = 0. From the proof of Theorem 4.2, we have

√
n(θ̂ − θ0) =

 A−1
ψ 0

A−1
β AβψA

−1
ψ A−1

β

 1√
n

∑n
t=1 ωtutXt

1√
n

∑n
t=1 τtνt

∂σ2
t (ψ0,β0)
∂β

+ oP (1).

Noting that
√
nγǫ

2

m =
1√
n

n∑
t=1

Vt,

and applying the CLT of Billingsley (1961) to the square integrable stationary

martingale difference

{(
ωtutX

′
t, τtνt

∂σ2
t (ψ0,β0)
∂β′ , V ′

t

)′
,Ft
}

, Lemma A.2 is proved.
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Now remark that Assumptions A13 and A14 entail the existence Λǫ
2
. Consider

for simplicity the case of an AR(0)-BL(1), then

E‖ǫt∂ǫt
∂b

(θ0)‖2 = E

(
u2
tut−1

(1 + b01ut−1)2

)2

≤ Eu6
t

ι4
<∞.

In the general case, one can similarly check that E‖ǫt ∂ǫt∂θ ‖2 < ∞, from which the

existence of λǫ
2

ℓ = 2Eǫt ∂ǫt∂θ (ǫ2t−ℓ−σ2
ǫ )(θ0), and thus of Λǫ

2
, follow. The existence of

S is a consequence of A9-A12.

Replacing ǫ2 by σ2
ǫ in γ̂ǫ2(ℓ), we define

γ̃ǫ2(ℓ) =
1
n

n∑
t=ℓ+1

(ǫ̂2t − σ2
ǫ )(ǫ̂

2
t−ℓ − σ2

ǫ ), ℓ = 0, . . . , n− 1.

We similarly define ρ̃ǫ2(ℓ), γ̃m and ρ̃m. It is easy to check that γ̃ǫ2(ℓ) − γ̂ǫ2(ℓ) =

op(1). Consequently
√
nγ̃m and

√
nγ̂m have the same asymptotic distribution, when

existing. The same is true for
√
nρ̃m and

√
nρ̂m.

Note that γ̃ǫ2(ℓ) is a function of θ̂ which takes the value γǫ2(ℓ) at the point θ0.

Assumption A 13 entails that γ̃ǫ2(ℓ) is well defined, and even derivable, when n is

large enough for θ̂ ∈ V (θ0). Moreover, the ergodic theorem entails that a.s.

∂γ̃ǫ2(ℓ)
∂θ

(θ0) =
1
n

n∑
t=ℓ+1

(ǫ2t − σ2
ǫ )
∂ǫ2t−ℓ
∂θ

(θ0) +
2
n

n∑
t=ℓ+1

ǫt
∂ǫt
∂θ

(ǫ2t−ℓ − σ2
ǫ )(θ0)

→ λǫ
2

ℓ

for ℓ > 0. A Taylor expansion then gives

γ̃ǫ
2

m := (γ̂ǫ2(1), . . . , γ̂ǫ2(m))′ = γǫ
2

m + Λǫ
2
(θ̂ − θ0) +Op(1/n).

It follows from Lemma A.2 that
√
nγ̂ǫ

2

m converges in law to a Gaussian distribution

with mean zero and covariance matrix

E(VtV ′
t ) + Λǫ

2
ΣWLSΛǫ

2 ′
+ S′Λǫ

2 ′
+ Λǫ

2
S.

Since

γ̂ǫ2(0) → Var ǫ2t = σ4
ǫ (µ4 − 1) a.s.,
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and

E(VtV ′
t ) = σ8

ǫ (µ4 − 1)2Im,

the first result of Theorem 6.2 follows. In the case q = 0, the vector (∂ǫt/∂θ) (θ0)

belongs to Ft−1, which implies λǫ
2

ℓ = 0. The simplification of the asymptotic

variance when q = 0 follows. The last result is obvious.
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Figure 1: News impact curve of ut in Model (2.1) with q = 1, b01 = −0.2 and

σǫ = 1 (full line) compared with the news impact curve of the ARCH(1) model

ut =
√

1 + b201u
2
t−1ǫt (dotted line). Source FMZ.
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Figure 2: Likelihood (as a function of b with σ2
ǫ fixed) of a simulation of length

n = 10 of Model (3.1) with b0 = 0.5 and, in the left panel ǫt ∼ U[−1/2,1/2], and in

the right panel ǫt ∼ N (0, 1).
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Figure 3: boxplots of 500 estimation errors, for the QMLE (left panel) the LSE

(middle panel) and a WLSE (right panel). The sample size is n = 100.
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Figure 4: Absolute value of the estimated volatility of the stock market indices.
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Table 1: Comparison of the QML, LS and WLS estimators of the AR(1)-LARCH(1)

model (7.1) with ǫt Gaussian. The number of replications is N = 500.

QMLE LSE WLSE

n = 100
Min Max Bias RMSE Min Max Bias RMSE Min Max Bias RMSE

ψ01 = 0.9 -136.71 29.69 -0.415 7.531 0.58 1.14 0.022 0.062 0.69 1 0.017 0.051
b01 = −0.5 -101.51 61.91 0.185 8.693 -1.03 -0.13 -0.111 0.18 -0.98 -0.13 -0.104 0.18
σ2
0ǫ = 1 -0.09 48.21 5.009 7.03 0.44 6.15 -0.121 0.368 0.53 2.14 -0.095 0.275

n = 1000
ψ01 = 0.9 -166.42 34.11 -0.327 9.265 0.7 0.88 0.004 0.028 0.72 0.86 0.002 0.022
b01 = −0.5 -215.38 942.05 2.009 43.999 -0.91 -0.3 -0.027 0.104 -0.62 -0.34 -0.028 0.058
σ2
0ǫ = 1 2.25 6.53 2.686 2.756 0.53 1.43 -0.036 0.118 0.82 1.27 -0.019 0.076
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Table 2: Comparison of four different versions of the WLS estimator. The DGP is an

AR(1)-LARCH(1) process with a Gaussian iid noise ǫt. The number of replications is

N = 500 and the length of the simulations is n = 100.

LSE WLSE WLSEHL WLSEL

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ψ01 = 0.9 -0.020 0.057 0.016 0.052 0.006 0.069 0.010 0.053
b01 = −0.54 0.294 1.967 -0.071 0.205 0.011 0.340 -0.082 0.223
σ2

0ǫ = 1 0.127 0.340 -0.045 0.336 -0.029 0.387 -0.083 0.291

ψ01 = 0.9 -0.022 0.061 0.016 0.053 0.007 0.072 0.010 0.055
b01 = −0.63 0.383 2.218 -0.079 0.226 -0.014 0.338 -0.096 0.481
σ2

0ǫ = 1 0.210 0.497 -0.067 0.333 -0.059 0.427 -0.139 0.392

ψ01 = 0.9 -0.026 0.068 0.016 0.054 0.008 0.077 0.01 0.058
b01 = −0.75 0.495 4.315 -0.059 0.277 -0.038 0.363 0.021 2.411
σ2

0ǫ = 1 0.403 1.109 -0.066 0.355 -0.107 0.497 -0.238 0.621

ψ01 = 0.9 -0.035 0.094 0.012 0.054 0.004 0.094 0.010 0.070
b01 = −0.99 2.200 9.022 -0.069 0.282 -0.009 0.576 1.864 8.840
σ2

0ǫ = 1 2.864 11.589 -0.069 0.282 -0.241 0.828 -1.400 7.050

ψ01 = 0.9 -0.040 0.110 0.012 0.067 0.004 0.110 0.010 0.080
b01 = −1.1 2.417 9.138 -0.065 0.304 0.254 2.665 4.372 12.547
σ2

0ǫ = 1 13.896 65.483 -0.096 0.708 -0.286 1.035 -5.591 44.282
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Table 3: Test of conditional homoscedasticity against a LARCH(q) model for stock

market indices.
m 1 2 3 4 5 6 7 8 9

CAC Rn 5 10.1 18.9 24.9 31.1 31 35.8 40 55.6
p-value 0.025 0.006 0 0 0 0 0 0 0

Shanghai Rn 0.5 0.6 1.7 5.1 8.4 8.8 8.8 12.4 15
p-value 0.479 0.728 0.643 0.28 0.136 0.186 0.267 0.132 0.092

DAX Rn 8.3 14.4 17.7 19.3 21 21 22.4 23.1 30.1
p-value 0.004 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0

DJA Rn 5.5 23.9 26 26.2 29.8 30.8 36.7 38.7 41
p-value 0.019 0 0 0 0 0 0 0 0

DJT Rn 1.1 8.6 11.1 11.2 11.9 14.2 16.2 16.3 22.2
p-value 0.303 0.014 0.011 0.025 0.036 0.028 0.023 0.039 0.008

FTSE Rn 6.3 12.9 15.8 21 25.5 25.7 33.4 33.5 51.4
p-value 0.012 0.002 0.001 0 0 0 0 0 0

Nasdaq Rn 3.2 8.1 8.2 8.3 11.5 11.5 11.6 11.6 12
p-value 0.075 0.018 0.043 0.08 0.043 0.074 0.116 0.172 0.216

Nikkei Rn 11.6 28.5 32 32.1 44 45.8 50.7 53.1 57.2
p-value 0.001 0 0 0 0 0 0 0 0

SP 500 Rn 6.7 27.8 29.6 29.6 38.1 45.1 47.1 48.4 55.4
p-value 0.009 0 0 0 0 0 0 0 0
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Table 4: Portmanteau test of adequacy of the AR(0) model (absence of linear part) for

the linear dynamics of nine stock market returns.

m 1 2 3 4 5 6 7 8

CAC Q̃û
m 0.1 0.4 5.1 5.8 10.6 11.3 12.6 12.8

p-val 0.816 0.824 0.163 0.212 0.059 0.08 0.083 0.12

Shanghai Q̃û
m 0 1.1 3.3 5.8 6.1 8.3 8.6 8.7

p-val 0.853 0.577 0.351 0.218 0.292 0.219 0.283 0.371

DAX Q̃û
m 0.2 0.2 3.5 6 7.3 10.4 10.6 11.3

p-val 0.634 0.893 0.316 0.202 0.199 0.107 0.156 0.186

DJA Q̃û
m 0.6 1.2 1.2 1.4 1.9 4.2 8.4 8.5

p-val 0.458 0.547 0.751 0.847 0.859 0.65 0.297 0.384

DJT Q̃û
m 8.1 10.3 11.3 12.6 12.8 17.3 20.8 21.4

p-val 0.004 0.006 0.01 0.013 0.025 0.008 0.004 0.006

FTSE Q̃û
m 1.1 1.8 14.4 16.1 17.7 19.9 20 20.6

p-val 0.303 0.399 0.002 0.003 0.003 0.003 0.005 0.008

Nasdaq Q̃û
m 1.4 4 4 4.3 4.7 4.9 5.5 7.1

p-val 0.243 0.138 0.265 0.367 0.449 0.555 0.6 0.528

Nikkei Q̃û
m 0.4 9.3 9.5 9.5 9.5 10.9 10.9 11.2

p-val 0.532 0.01 0.024 0.05 0.091 0.091 0.142 0.192

SP 500 Q̃û
m 0.6 1.4 2.6 2.6 4.6 6.2 9.6 9.6

p-val 0.431 0.499 0.456 0.623 0.461 0.403 0.215 0.292
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Table 5: LARCH(5) models for stock market indices.

b1 b2 b3 b4 b5 σ2
ǫ

CAC Estimate -0.086 -0.075 -0.159 -0.136 -0.123 1.424
Standard Error 0.013 0.013 0.014 0.014 0.013 0.036
t-ratio -6.66 -5.65 -11.48 -10.04 -9.22 -

Shanghai Estimate -0.084 -0.074 -0.104 -0.096 -0.110 1.878
Standard Error 0.025 0.025 0.025 0.025 0.025 0.095
t-ratio -3.40 -2.99 -4.15 -3.85 -4.35 -

DAX Estimate -0.141 -0.209 -0.164 -0.206 -0.139 1.228
Standard Error 0.017 0.018 0.018 0.019 0.018 0.038
t-ratio -8.29 -11.43 -9.10 -10.98 -7.66 -

DJA Estimate -0.219 -0.500 -0.421 0.218 -0.071 0.453
Standard Error 0.036 0.045 0.043 0.037 0.034 0.020
t-ratio -6.06 -11.08 -9.91 5.93 -2.09 -

DJT Estimate -0.034 -0.132 -0.114 0.044 -0.041 1.577
Standard Error 0.019 0.021 0.020 0.019 0.018 0.062
t-ratio -1.78 -6.42 -5.80 2.33 -2.25 -

FTSE Estimate -0.186 -0.113 -0.218 -0.211 -0.213 0.871
Standard Error 0.018 0.018 0.018 0.019 0.018 0.022
t-ratio -10.51 -6.38 -11.83 -11.33 -11.62 -

Nasdaq Estimate -0.344 -0.673 -0.099 -0.034 -0.051 0.691
Standard Error 0.024 0.03 0.022 0.022 0.023 0.025
t-ratio -14.33 -22.25 -4.43 -1.51 -2.26 -

Nikkei Estimate -0.042 -0.064 -0.056 -0.035 -0.055 1.762
Standard Error 0.013 0.014 0.014 0.013 0.014 0.057
t-ratio -3.19 -4.70 -4.11 -2.62 -4.06 -

SP 500 Estimate -0.323 -0.545 -0.257 0.086 -0.081 0.531
Standard Error 0.028 0.033 0.027 0.026 0.025 0.018
t-ratio -11.69 -16.63 -9.50 3.35 -3.22 -

50



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 6: Quantiles of |σ̂t| for the stock market indices.

CAC Shanghai DAX DJA DJT FTSE Nasdaq Nikkei SP 500
min 0.0008 0.0223 0.0012 0.0001 0.0020 0.0005 0.0002 0.1539 0.0010
1% 0.2425 0.1790 0.0571 0.0278 0.3663 0.1010 0.0248 0.5928 0.0403

50% 0.9841 1.0032 0.9599 1.0038 1.0028 0.9698 0.9857 0.9935 0.9822
99% 1.9423 1.8532 2.5638 2.7709 1.6253 2.2868 4.5250 1.4085 2.7900
max 2.8451 2.5511 3.8813 5.3177 3.3579 3.8816 7.3556 1.7742 5.1484
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