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This paper considers a class of finite-order autoregressive linear ARCH models. The model captures the leverage effect, allows the volatility to be arbitrarily close to zero and to reach its minimum for non-zero innovations, and is appropriate for longmemory modeling when infinite orders are allowed. However, the (quasi-)maximum likelihood estimator is, in general, inconsistent. A self-weighted least-squares estimator is proposed and is shown to be asymptotically normal. A score test for conditional homoscedasticity and diagnostic portmanteau tests are developed. Their performance is illustrated via simulation experiments. It is also investigated whether stock market returns exhibit some of the characteristic features of the linear ARCH model.

Introduction

Since their introduction, the standard GARCH models of [START_REF] Engle | Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation[END_REF] and [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF] have been extended and generalized in various directions, in particular to accommodate the asymmetry in the response of the variance to positive and negative shocks, or other nonlinearities typically observed in the financial series.

On the other hand, the statistical literature devoted to the estimation of GARCH models has focused on the classical GARCH models. For such models, optimal conditions for the consistency and asymptotic normality of the quasi-maximum likelihood estimator (QMLE) seem to have been obtained (see Berkes, Horváth and Kokoszka (2003), [START_REF] Francq | Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH Processes[END_REF]). The main finding is that the strict stationarity and positivity constraints on the coefficients are essentially necessary and sufficient for the asymptotic normality of the QMLE of standard GARCH models. It is therefore tempting to consider that for the various GARCH extensions, mild conditions will also be sufficient for the asymptotic normality of the QMLE.

Through the study of the class of linear ARCH models considered in this paper, it will be seen that the behavior of the MLE/QMLE can be very pathological in certain situations and that phrases such that "(Q)MLE is consistent under usual regularity conditions" should be taken with caution in general. [START_REF] Robinson | Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression[END_REF], [START_REF] Giraitis | A model for long memory conditional heteroscedasticity[END_REF], [START_REF] Giraitis | ARCH-type bilinear models with double long memory[END_REF], Berkes and Horváth (2003) and Giraitis, Leipus, [START_REF] Giraitis | LARCH, Leverage, and Long Memory[END_REF] proposed and analyzed a long memory alternative to the standard GARCH, called "linear ARCH" (LARCH), defined by

u t = σ t ǫ t , σ t = b 0 + ∞ i=0 b i u t-i ,
ǫ t iid (0, 1).

(1.1)

Under appropriate conditions, this model is consistent with long memory in u 2 t , whereas an infinite order ARCH model fails to capture this property. From another point of view, this model has the advantage over standard ARCH formulations to be free of any positivity constraint on the volatility coefficients. Moreover, it is amenable to multivariate extensions (see [START_REF] Doukhan | Vector valued ARCH infinity processes[END_REF].

Finite-order LARCH models were considered in [START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF] (hereinafter FMZ) in the purpose of analyzing the properties of unit root tests in the presence of conditional heteroscedasticity. M-estimators of the location parameter when the error process is LARCH has been considered by [START_REF] Beran | On location estimation for LARCH processes[END_REF].

To our knowledge, only two recent papers deal with the estimation of the full parameter in LARCH models. [START_REF] Beran | On Approximate Pseudo Maximum Likelihood Estimation for LARCH-Processes[END_REF] consider in particular the estimation of the parameters C and d when the LARCH(∞) coefficients have the form b i = Ci d , both in the short and long memory cases. One of the estimators considered by these authors is a modified conditional maximum likelihood estimator. [START_REF] Truquet | A new smoothed quasi maximum likelihood estimator for autoregressive process with LARCH errors[END_REF] employs the same approach, but focuses on the short memory case and considers the estimation of general LARCH(q) models with finite order q.

The present paper attempts to contribute further to the statistical inference of finite-order LARCH models, pointing out that the standard QMLE is not appropriate for LARCH models, and investigating the properties of an attractive alternative method. Indeed, as counterpart of the model flexibility, QMLE encounters serious difficulties which can only be avoided by strict conditions on the parameter space.

It will be seen that, for the LARCH models, an approach which is more fruitful than the QMLE is to consider weighted least-squares estimation (WLSE), as was done by [START_REF] Horváth | L p -estimators in ARCH-models[END_REF] and [START_REF] Ling | Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models[END_REF] in the context of ARCH and ARMA-GARCH models.

The paper is organized as follows. In Section 2, we give the basic assumptions on the model and we establish the consistency and asymptotic normality of the QMLE. Section 3 illustrates the possible inconsistency of the MLE/QMLE when the stringent conditions used for the first theorem are in failure. Section 4 is devoted to the weighted least-squares estimation. Section 5 considers specification testing.

Diagnostic checks are studied in Section 6. Section 7 reports simulation results and an application on stock indices. Concluding remarks are given in Section 8 and all proofs are relegated to Appendix A.

The AR(p)-LARCH(q) model considered in this paper assumes that         

x t = ψ 01 x t-1 + • • • + ψ 0p x t-p + u t , u t = (1 + b 01 u t-1 + • • • + b 0q u t-q )ǫ t , ǫ t iid (0, σ 2 0ǫ ), σ 0ǫ > 0 (2.1)
where ψ 01 , . . . , ψ 0p , b 01 , . . . , b 0q are unknown real numbers.

The model for (u t ) is a particular case of quadratic ARCH, as introduced by [START_REF] Sentana | Quadratic ARCH models[END_REF]. Apart from the absence of positivity constraints on the coefficients, this formulation has several distinctive feature compared to the standard ARCH.

The volatility is not bounded below by a positive constant, it is able to capture the so-called leverage effect and it is not minimum at zero (see FMZ). This is illustrated in Figure 1 for the LARCH(1) model.

[Figure 1 about here.]

Let

A 0t =   b 1:q-1 ǫ t b 0q ǫ t I q-1 0 q-1   ,
where b 1:q-1 = (b 01 , . . . , b 0q-1 ) and I k is the k × k identity matrix. By convention A 0t = b 01 ǫ t when q = 1. Let γ(A 0 ) be the top-Lyapunov exponent of the sequence

A 0 = (A 0t
), that is, for any norm • on the space of the q × q matrices, γ(A 0 ) = lim t→∞ 1 t log A 0t A 0t-1 . . . A 01 a.s. In FMZ, it was shown, following the approach of Bougerol andPicard (1992a, 1992b) that the second equation of (2.1) admits a strictly stationary solution (u t ) if and only if

A1:

γ(A 0 ) < 0.

In the case q = 1, this condition reduces to |b 01 | < exp{-E log |ǫ 1 |}. Under A1, the strictly stationary solution is unique, nonanticipative and ergodic. This solution admits a second order moment if and only if q i=1 b 2 0i σ 2 0ǫ < 1. In this case, the solution is a conditionally heteroskedastic white noise. We also make the following standard assumption on the AR part.

A2:

the zeroes of the polynomial ψ 0 (z) := 1 -p i=1 ψ 0i z i are outside the unit disk.

We now turn to the QMLE of

θ 0 = (ψ 01 , . . . , ψ 0p , b 01 , . . . , b 0q , σ 2 0ǫ ).
Assume we observe x -q-p+1 , x -q-p+2 , . . . , x n generated by Model (2.1), where the first p + q variables are considered as initial values. We consider a parameter space Θ ⊂ R p+q × (0, ∞) and we denote by θ = (ψ 1 , . . . , ψ p , b 1 , . . . , b q , σ 2 ǫ ) ′ a generic element of Θ. We assume

A3: θ 0 ∈ Θ and Θ is a compact set,
and the identifiability condition

A4:

the support of the law of ǫ t does not reduce to a set of 2 points.

Let u t (θ) = x t - p i=1 ψ i x t-i and σ 2 t (θ) = σ 2 ǫ {1 + b 1 u t-1 (θ) + • • • + b q u t-q (θ)} 2 .
Denoting by L n (θ) the quasi-likelihood, a QMLE of θ is a measurable solution of

θn = arg max θ∈Θ L n (θ) = arg min θ∈Θ l n (θ), (2.2) 
where

l n (θ) = n -1 n t=1 ℓ t (θ), and ℓ t (θ) = u 2 t (θ) σ 2 t (θ) + log σ 2 t (θ) ∈ [-∞, ∞], (2.3) 
with the conventions 1/0 + log 0 = +∞, 0/0 + log 0 = -∞ and +∞ -∞ = +∞.

These conventions are required because u t (θ) and σ 2 t (θ) may be equal to zero. When σ 2 t (θ) = 0 and u t (θ) = 0, the value θ can be precluded for the parameter. This justifies the conventions, which lead to l n (θ) = ∞ for such values of θ. The following "high-level" assumption, to be discussed below, can be made to avoid such problems.

A5:

The variable inf θ∈Θ σ 2 t (θ) is almost surely (a.s.) bounded away from 0.

Consider the case where p = 0, q = 1 and ǫ t has a compact support [-c, c]. This case is quite artificial, and is just given for illustrating A5. When |b 01 c| < 1, the white

noise u t = ǫ t + ∞ i=1 b i 01 ǫ t ǫ t-1 • • • ǫ t-i belongs to [-c/(1 -b 01 c), c/(1 -b 01 c
)] with probability one. Thus, it is easy to see that A5 holds when {sup θ∈Θ |b 1 |}c < 1/2.

We will consider later the case where A5 does not hold. The spectral radius of a square matrix A is denoted by ρ(A) and ⊗ denotes the Kronecker product of matrices. To establish the asymptotic normality, we need the following additional assumptions.

A6:

θ 0 belongs to the interior of Θ,

A7: Eǫ 4 1 < ∞ and ρ{E(A 01 ⊗ A 01 ⊗ A 01 ⊗ A 01 )} < 1.
It can be shown that Assumption A7 entails the existence of Eu 4 1 and, under A2, that of Ex 4 1 . When q = 1, the condition is simply b 4 01 Eǫ 4 1 < 1. Writing A 0t = Bǫ t + J, where B and J are non-random matrices, the second part of A7 takes the more explicit form :

ρ    4 j=1 ij ∈{0,1} E(ǫ i1+•••+i4 1 )(B i1 + J 1-i1 ) ⊗ • • • ⊗ (B i4 + J 1-i4 )    < 1.
Theorem 2.1 Under A1-A5 we have θn → θ 0 a.s. as n → ∞. Under the additional Assumptions A6-A7, √ n( θn -θ 0 ) is asymptotically distributed as N (0, Σ),

where Σ = J -1 IJ -1 ,

I = E ∂ℓ 1 (θ 0 ) ∂θ ∂ℓ 1 (θ 0 ) ∂θ ′ , J = E ∂ 2 ℓ 1 (θ 0 ) ∂θ∂θ ′ .
3 Inconsistency of the QML estimator Assumption A5 is essential for the consistency of the QMLE. For illustration purposes, consider the simplest version of Model (2.1), i.e. the AR(0)-LARCH(1) given by

x t = u t = ǫ t (1 + b 0 u t-1 ). (3.1)
When ǫ t follows a uniform distribution on [-1/2, 1/2] say, Assumption A5 is satisfied for sufficiently small Θ ⊂ (-2, 2) × (0, ∞) because σ t (θ)/σ ǫ ∈ (0, 2). The likelihood is then well-behaved (see the left panel in Figure 2). On the other hand, when ǫ t has a continuous distribution with a non compact support, Assumption A5 is not satisfied because σ 2 t (θ) = σ 2 ǫ (1 + bu t-1 ) 2 cancels for θ = (-1/x t-1 , σ 2 ǫ ). Moreover, when x t = 0 the true value b 0 cannot be equal to -1/x t-1 , which explains that the likelihood is null at these points (see the right panel of Figure 2). It should be noted that the non-smoothness of the likelihood is not due to the small sample size n = 10. On the contrary, the number of points where the likelihood vanishes increases with n, which would entail enormous computational burden for any reasonable sample size.

For more general models, we can even show the inconsistency of the QMLE when A5 is violated.

Proposition 3.1 Consider the general AR(p)-LARCH(q) model (2.1) with min(p, q) > 0. Assume that the distribution of ǫ t is absolutely continuous with respect to the Lebesgue measure, with positive density over the real line. Assume that the interior of Θ is non empty. Then, there exists an infinite number of QMLE sequences which, with probability one, do not converge to θ 0 .

Remark 3.1 This inconsistency result is very general for the model considered in this paper. It applies in particular when ǫ t is Gaussian. This shows that, even the maximum likelihood estimator is inconsistent in this situation. In fact, although σ t (θ 0 ) > 0 almost surely, with probability 1 there exists θ such that σ t (θ) = 0.

This explains the problems encountered with the ML and QML methods in this model when the support of the distribution of ǫ t is the real line. This also shows that Assumption A5, though restrictive, is essential for the consistency result of Theorem 2.1.

Remark 3.2 The inconsistency of the ML/QMLE may seem surprising. In the iid case, frameworks where the QMLE is inconsistent include that of a mixture of two Gaussian distributions [START_REF] Kiefer | Consistency of the Maximum Likelihood Estimator in the Presence of Infinitely Many Incidental Parameters[END_REF], [START_REF] Redner | Mixture densities, maximum likelihood and the EM algorithm[END_REF]),

A C C E P T E D M A N U S C R I P T

ACCEPTED MANUSCRIPT

a one-parameter mixture [START_REF] Ferguson | An inconsistent maximum likelihood estimate[END_REF]), life distributions [START_REF] Boyles | Inconsistency of the maximum likelihood estimator of a distribution having increasing failure rate average[END_REF]), distributions with nuisance parameters [START_REF] Neyman | Consistent estimates based on partially consistent observations[END_REF]), the Rasch model [START_REF] Ghosh | Inconsistent maximum likelihood estimators for the Rasch model[END_REF]). In dynamic models however, examples of inconsistency seem much less frequent.

[Figure 2 about here.]

Weighted least squares estimators

We have seen that the QMLE is in failure without restrictive assumptions on the distribution of ǫ t . Another popular estimation method in time series is the least squares procedure. To avoid unnecessary moment conditions and to gain in efficiency we will consider Weighted Least Squares Estimators (WLSE). The asymptotic properties of weighted M-estimators have been studied by [START_REF] Horváth | L p -estimators in ARCH-models[END_REF], in the context of ARCH models. The asymptotic properties of weighted LSE and QMLE have been studied, in the context of ARMA-GARCH models, by [START_REF] Ling | Self-weighted LSE and MLE for ARMA-GARCH models[END_REF].

WSLE of the AR parameter

The WLSE of the AR parameter ψ = (ψ 1 , . . . , ψ p ) ′ are defined by

ψW LS = arg min ψ∈Θ ψ 1 n n t=1 ω t u 2 t (ψ), u t (ψ) = x t - p i=1 ψ i x t-i , (4.1)
where Θ ψ is the compact parameter space of the AR coefficients and the ω t 's are weights, which are allowed to depend on the past values {x s , s < t} but not on ψ.

For simplicity, we assume that ω t only depends on r past values:

A8: ω t = f (x t-1 , . . . , x t-r
) for some function f : R r → (0, +∞) and some integer r ≥ 1.

The initial values x 1-r , . . . , x 0 required to compute ω 1 are supposed to be available.

An attractive feature of the WLSE is that the minimization problem (4.1) does not require optimization routine. Under A6, the solution is explicitly given by

ψW LS = (X ′ ΩX) -1 X ′ ΩY, (4.2) 
where Ω = Diag(ω 1 , . . . , ω n ), X is a n × p matrix with generic term x i-j and Y ′ = (x 1 , . . . , x n ). We introduce the following conditions.

A9: Eω 1 p i=1 x 2 1-i < ∞ and Eω 1 |σ 1 (θ 0 )| p i=1 |x 1-i | < ∞. A10: Eω 2 1 σ 2 1 (θ 0 ) p i=1 x 2 1-i < ∞.
We also introduce the notation 

X ′ t = (x t-1 , • • • , x t-p
√ n( ψW LS -ψ 0 ) L → N (0, Σ ψ W LS ),
where

Σ ψ W LS = A -1 ψ B ψ A -1 ψ , A ψ = E (ω 1 X 1 X ′ 1 ) , B ψ = E ω 2 1 σ 2 1 (θ 0 )X 1 X ′ 1 .
Remark 4.1 When applied with ω t ≡ 1, the Weighted Least Squares (WLS) procedure yields the usual least squares estimator (LSE) and, for the asymptotic normality, the fourth-order moments are required. Such moment conditions can be avoided by choosing, for instance, ω -1

t = c 0 + q+p i=1 c i x 2 t-i
where the c i are strictly positive constants. In this case, no moment is needed since A9 and A10 are always satisfied.

Remark 4.2 Under A5, it is well-known that the optimal choice of the weighting matrix (leading to the smallest asymptotic variance Σ ψ W LS , in the sense of positive definite matrices) is

Ω * = Diag(1/σ 2 1 (θ 0 ), . . . , 1/σ 2 n (θ 0 )).
Of course the resulting estimator is infeasible because σ 2 t (θ 0 ) depends on the unknown b 0i coefficients. A two-step estimation procedure as in [START_REF] Ling | Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models[END_REF] could be employed to get a more efficient estimator, i.e. using one-step iteration with the weighting matrix Ω * , obtained by replacing θ 0 by any consistent estimator θn . However, we would face the same difficulties as with the QMLE: avoiding cancelation of the σ 2 t ( θn ) would require a strong assumption, such as A5.

WSLE of the LARCH parameter

We now consider the estimation of the LARCH coefficients. Let ût = u t ( ψ), t = 1 -q, . . . , n, where ψ denotes any consistent estimator of ψ. The WLS estimators of the volatility parameter

β = (b 1 , . . . , b q , σ 2 ǫ ) ′ ∈ Θ β are defined by βW LS = arg min β∈Θ β 1 n n t=1 τ t ν 2 t ( ψ, β), ν t (ψ, β) = u 2 t (ψ) -σ 2 t (ψ, β) (4.3)
where the positive weights τ t ∈ F t-1 , the σ-field generated by ǫ t-i , i > 0. We introduce the following conditions.

A11: Eǫ 4 1 < ∞ and Eτ 1 σ 4 1 (θ 0 ) < ∞. A12: E sup θ∈V(θ0) τ 1 ∂ν 2 1 (θ) ∂θ ∂ν 2 1 (θ) ∂θ ′ < ∞ for some neighborhood V(θ 0 ) of θ 0 , Eτ 1 |x 1-i | ℓ < ∞, Eτ 2 1 σ 4 1 (θ 0 )|x 1-i | ℓ < ∞, and Eτ 1 ω 1 |σ 1 (θ 0 )| 3 |x 1-i | ℓ ′ < ∞
for all 1 ≤ i ≤ p + q, all 0 ≤ ℓ ≤ 4 and all 0 ≤ ℓ ′ ≤ 3.

Theorem 4.2 Under A1-A3, A8 with ω t replaced by τ t , and A11, βW LS → β 0 a.s. as n → ∞.

If, in addition, A9, A10, A12 hold and ψ = ψW LS ,

√ n   ψW LS -ψ 0 βW LS -β 0   L → N    0, Σ W LS :=   Σ ψ W LS Σ ψβ W LS Σ βψ W LS Σ β W LS      ,
where ψ0,β0) ∂ψ and

Σ β W LS = A -1 β B β + A βψ A -1 ψ B ′ βψ + B βψ A -1 ψ A ′ βψ + A βψ A -1 ψ B ψ A -1 ψ A ′ βψ A -1 β , Σ ψβ W LS = A -1 ψ B ′ βψ + B ψ A -1 ψ A ′ βψ A -1 β = Σ βψ W LS ′ , with µ 4 = Eǫ 4 1 /σ 4 ǫ , Y t = ∂σ 2 t (ψ0,β0) ∂β , Z t = ∂νt(
A β = E (τ 1 Y 1 Y ′ 1 ) , A βψ = E (τ 1 Y 1 Z ′ 1 ) , B β = (µ 4 -1)E τ 2 1 σ 4 1 (θ 0 )Y 1 Y ′ 1 , B βψ = Eǫ 3 1 σ 3 ǫ E τ 1 ω 1 σ 3 1 (θ 0 )Y 1 X ′ 1 .
Remark 4.3 A remark similar to 4.1 holds. When ω t and τ t are (strictly positive) constants, eighth-order moments are required for the asymptotic normality.

Choosing, for instance, ω -1

t = c 0 + q+p i=1 c i x 2 t-i and τ -1 t = c * 0 + q+p i=1 c * i x 4 t-i
where the c i and c * i are strictly positive constants, no moment is needed on the observed process.

Remark 4.4 When the distribution of ǫ t is symmetric, it can be seen that

Σ ψβ W LS = 0 and Σ β W LS = A -1 β B β A -1 β .
In this case, under A5, the optimal weights are τ t = 1/σ 4 1 (θ 0 ) (see Remark 4.2). The comments made concerning the difficulties in estimating the optimal weights apply.

Choice of the weights

As argued by [START_REF] Horváth | L p -estimators in ARCH-models[END_REF], a natural choice of the weight functions is

ω t = 1 1 + X * t 2 , τ t = 1 1 + X * t 4 , (4.4) 
where X * t = (x t-1 , . . . , x t-p-q ) ′ . Many other sequences of weights satisfy A8-A12. In the spirit of [START_REF] Ling | Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models[END_REF], and in connection to Huber's robust estimator for the regression model, one can consider sequences of weigths of the form

ω t = 1 max 1, C -1 p+q i=1 |x t-i |1 {|xt-1|>C} 2 , τ t = ω 2 t , (4.5)
where C is a positive constant. For the numerical illustrations we follow the suggestion of [START_REF] Ling | Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models[END_REF] 

ω t = 1 ĥt , τ t = ω 2 t , (4.6)
where ĥt is a strictly positive proxy of the volatility. In the sequel we choose ĥt as being the implied volatility based on a standard ARCH(p + q) model.

As we have seen, the QML estimator has a pathological behavior in our framework, so we cannot consider the standard tests (Wald, score, likelihood ratio). Instead, we will base our tests on the WLS criterion. For notational convenience we will omit the subscript "WLS" in the estimators.

Wald tests

To test an assumption of the form Rθ 0 = r, where r ∈ R d and R is a full row-rank d × (p + q + 1) matrix, the asymptotic normality results of Theorem 4.2 can be used.

Under H 0 and the assumptions of this theorem, the Wald-type statistics

W n = n(R θ -r) ′ (R ΣR ′ ) -1 (R θ -r) L → χ 2 d ,
where θ = ( ψ′ , β′ ) ′ , and Σ denotes any consistent estimator of Σ. Empirical estimates of A β , A βψ , B β , B βψ can be considered to construct such an estimator.

To test the nullity of all the coefficients b i it seems much more appropriate to consider a score-type test, which does not require estimating the general model. This is considered in the next section.

Testing for conditional homoscedasticity

The aim is to test for

H 0 : b 0 = 0 where b 0 = (b 01 , . . . , b 0q ) ′ .
Under H 0 the model reduces to a simple AR(p) model with independent errors. Let θc = ( ψ′ , 0 ′ p , σ2c ǫ ) ′ denote the estimator constrained by H 0 , where ψ is defined in (4.2) and σ2c ǫ is the constrained WLS estimator of σ 2 ǫ defined by

σ2c ǫ = 1 n t=1 τ t n t=1 τ t û2 t .
(5.1)

A Rao score-type (or Lagrange multiplier) statistic is based on the derivative of the second-step criterion at θc . To derive the statistic, we start by evaluating the
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asymptotic distribution of this derivative under H 0 . Let

A β =   A b A bσ A σb A σ   , A * = -A b + 1 A σ A bσ A σb .
Under the assumptions of Theorem 4.2, we have

∆ c n := 1 √ n n t=1 τ t ∂ν 2 t ( ψ, 0 q , σ2c ǫ ) ∂b L → N (0, Σ ∆ := A * Σ b A ′ * ), (5.2)
where Σ b is the top-left q × q block of the matrix Σ β . A Rao score-type statistic is then given by

R n = (∆ c n ) ′ Σ-1 ∆ ∆ c n
where Σ∆ denotes any H 0 -consistent estimator of Σ ∆ . This statistic follows asymptotically a χ 2 q distribution under the null and the critical region at the asymptotic level α is given by

{R n > χ 2 q (1 -α)}
where χ 2 q (1 -α) denotes the 1 -α quantile of the χ 2 q distribution. We will now derive an explicit form for this statistic. It is known that, under quite general assumptions, a version of the score test statistic based on the LSE can be interpreted as the uncentred coefficient of determination of the regression of the constant 1 on the components of the score vector (see for instance Godfrey, 1988, p.15). We will show that a similar interpretation holds for the statistic R n based on the WLSE. First notice that

∆ c n = -4σ 2c ǫ √ n n t=1 τ t (û 2 t -σ2c ǫ )û t-1
where ût-1 = (û t-1 , . . . , ût-q ) ′ . Note also that, under the null,

Σ ∆ = 16σ 4 0ǫ Var ǫ 2 1 E τ 2 1 u 0 u ′ 0 , where u t-1 = (u t-1 , . . . , u t-q ) ′ . Writing ∆ c n = -4σ 2c ǫ n -1/2 U ′ V with U ′ = τ 1 û0 , . . . , τ n ûn-1 , V = û2 1 -σ2c ǫ , . . . , û2 n -σ2c ǫ ′
and using the estimator of Σ ∆ defined by

Σ∆ = 16 σ2c ǫ 2 n -1 V ′ Vn -1 U ′ U,
we obtain the test statistic

R n = n V ′ U (U ′ U) -1 U ′ V V ′ V ,
which is n times the uncentred coefficient of determination of the regression of û2 t -σ2c ǫ on τ t ût-1 , . . . , τ t ût-q . This test has of course similarities with the standard test for conditional heteroskedasticity of (u t ) in the ARCH(q) (or GARCH(p, q)) framework. In this case, a Rao-score test statistic is n times the R 2 of the regression of u 2 t over a constant and u 2 t-1 , . . . , u 2 t-q .

6 Diagnostic checks

In this section we develop some diagnostic tools for the AR(p)-LARCH(q) model (2.1). We first consider adequacy of the AR equation.

Diagnostic checking for the AR part

Conventional ways of testing adequacy of linear models involve checks that the residuals are approximately uncorrelated. To this aim the portmanteau tests of Box-Pierce (1970) and Ljung-Box (1978) are the most popular tools. We only consider the Ljung-Box statistic (hereafter LB) which has the same asymptotic behavior as the Box-Pierce statistic, but is the most widely used by the practitioners. The LB statistic is defined by

Q û m = n(n + 2) m h=1 ρ2 û(h) n -h (6.1)
where ρû (h) is the residual autocorrelation at lag h and m is a fixed integer.

The standard test procedure consists, for m > p, in rejecting the AR(p) model if

Q û m > χ 2 m-p (1 -α).
The procedure is (approximately) valid when (i) the residuals are obtained by least-squares, and (ii) the error terms of the AR equation are iid. Because none of these conditions is satisfied in our framework, the standard portmanteau tests require an adaptation. In the more general setting of weak ARMA models, Francq, Roy and Zakoïan (2005) relaxed condition (ii), but we can not directly use their results because we consider here WLS estimators.

For p > 0, let ût = u t ( ψW LS ) = u t ( ψ), t = 1 -q, . . . , n, be the AR(p) residuals,

where ψW LS = ψ is the WLS estimator defined in (4.2). For p = 0, one can set ût = u t = x t . The residuals autocovariances and autocorrelations are defined by

γû (ℓ) = 1 n n-ℓ t=1 ût ût+ℓ and ρû (ℓ) = γû (ℓ) γû (0) . (6.2)
Let ρû m = (ρ û(1), . . . , ρû (m)) ′ and U t = (u t-1 , . . . , u t-m ) ′ . We denote by φ * i the coefficients defined by

ψ -1 (z) = ∞ i=0 φ * i z i , |z| ≤ 1. Take φ * i = 0 when i < 0. Let λ i = (φ * i-1 , . . . , φ * i-p ) ′ ∈ R p and let the p × m matrix Λ = (λ 1 λ 2 • • • λ m ). (6.3)
The following lemma gives the asymptotic distribution of a vector of residual autocorrelations of an AR(p) model, when the Data Generating Process (DGP) actually follows an AR(p)-LARCH(q) model.

Lemma 6.1 Under the assumptions of Theorem 4.1,

√ nρ û m L → N (0, Σ ρû m ),
where

Σ ρû m = 1 σ 4 u E(u 2 1 U 1 U ′ 1 ) when p = 0,
and when p > 0,

Σ ρû m = Λ ′ A -1 ψ B ψ A -1 ψ Λ + 1 σ 4 u E(u 2 1 U 1 U ′ 1 ) - 1 σ 2 u Λ ′ A -1 ψ E(ω 1 u 2 1 X 1 U ′ 1 ) + E(ω 1 u 2 1 U 1 X ′ 1 )A -1 ψ Λ , (6.4) where σ 2 u = Eu 2 1 .
The following theorem is an obvious consequence of Lemma 6.1.

Theorem 6.1 Suppose that the assumptions of Theorem 4.1 hold, in particular that the AR order is correctly specified. Then the portmanteau statistic

Q û m L → m i=1 ξ i,m Z 2 i
, where ξ m = (ξ 1,m , . . . , ξ m,m ) ′ is the eigenvalues vector of the matrix Σ ρû m and Z 1 , . . . , Z m are independent N (0, 1) variables.

It should be noted that an estimator Σρ û m of Σ ρû m can be straightforwardly obtained from the estimation of the sole AR part in model (2.1). Indeed, by inversion of the estimated AR polynomial, an estimator of Λ is obtained. The matrices A ψ and B ψ can be estimated by

Âψ = 1 n n+1 t=r∧p+1 ω t X t X ′ t , Bψ = 1 n n+1 t=r∧p+1 ω 2 t û2 t X t X ′ t , (6.5) noting that Eω 2 t σ 2 t (θ 0 )X t X ′ t = Eω 2 t u 2 t X t X ′ t .
Similarly the other matrices involved in the right-hand side of (6.4) have the form of expectations and can therefore be estimated by empirical means (with U t replaced by Ût = (û t-1 , . . . , ût-m ) ′ ). Finally

σ 2
u is estimated by the empirical mean of the û2 t . Thus the diagnostic checking of the AR part can be made at the end of the first stage of the WLS procedure, and does not require estimating the LARCH parameter β. The distribution of the quadratic form m i=1 ξi,m Z 2 i , where the ξi,m are the eigenvalues of the matrix Σρ û m , can then be computed using the algorithm by Imhof (1961). Remark 6.1 When q = 0 and ω t = 1, i.e. when a standard AR model is estimated by LS, the asymptotic distribution of Q û m is often approximated by a χ 2 m-p . Such an approximation is not justified with the general WLS, even in the case q = 0.

Similarly the law can be far from a χ 2 when ω t = 1 and q > 0 (see the remark below), which is in accordance with the results obtained by [START_REF] Francq | Diagnostic checking in ARMA Models with Uncorrelated Errors[END_REF] in the general framework of weak ARMA models. Remark 6.2 It can be noticed that when p = 0 and b 0 = (b 01 , . . . , b 0q ) = 0, the process (X t ) is an iid white noise and the asymptotic distribution of the portmanteau statistic is the usual χ 2 m distribution, because Σ ρû m reduces to the m × m identity matrix. Still when p = 0 but b = 0, the matrix Σ ρû m is not the identity matrix. For instance if q = 1 and the distribution of ǫ t is symmetric, elementary computations show that the first diagonal term of

Σ ρû m is 1 -b 2 01 σ 2 0ǫ 1 -b 4 01 Eǫ 4 1 1 + b 2 01 Eǫ 4 1 σ 2 0ǫ
(1 + 4b 2 01 σ 2 0ǫ ) = 1 when b 01 = 0, so that Q û m does not asymptotically follow the χ 2 m distribution.

Remark 6.3 Note that when Σ ρû m is regular, the modified Box-Pierce statistic

Qû m := nρ û m ′ Σ-1 ρû m ρû m
asymptotically follows a χ 2 m distribution, under the null hypothesis of adequacy of the order p for the AR part. Since the asymptotic distribution of Qû m is simpler than that of Q û m , the former seems more attractive for testing the overall significance of ρû (h), h = 1, . . . , m. Note however that the regularity assumption on Σ ρû m is not very explicit, because the invertibility of this matrix depends on the unknown coefficients and on the choice of the weights in the estimation procedure.

Diagnostic checking for the LARCH part

As proposed by [START_REF] Higgins | A class of nonlinear ARCH models[END_REF], the adequacy of ARCH-type models can be assessed by means of the Box-Pierce statistic Q ǫ2 m on the first m squared standardized residual autocorrelations. The asymptotic distribution of Q ǫ2 m has been established by [START_REF] Li | On the squared residual autocorrelations in non-linear time series with conditional heteroscedasticity[END_REF], under regularity conditions which do not hold in our framework. Because we use WLS estimators instead of the maximum-likelihood estimator, the asymptotic distribution of Q ǫ2 m will be different from that obtained by Li and Mak. References dealing with the properties of squared residuals in GARCH models are Horváth and Kokoszka (2001), [START_REF] Horváth | Empirical process of the squared residuals of an ARCH sequence[END_REF], Berkes, Horváth and Kokoszka (2003).

Recall that the WLS estimator defined in Theorem 4.2 is denoted by θ = ( ψ′ , β′ ) ′ , with ψ = ψW LS = ( ψ1 , . . . , ψp ) ′ and β = βW LS = ( b1 , . . . , bq , σ2 ǫ ) ′ . The autocovariances and autocorrelations of the squared (standardized) residuals are defined by

γǫ 2 (ℓ) = 1 n n t=ℓ+1 ǫ2 t -ǫ 2 ǫ2 t-ℓ -ǫ 2 and ρǫ 2 (ℓ) = γǫ 2 (ℓ) γǫ 2 (0) , (6.6) 
for 0 ≤ ℓ < n, where for q > 0 ǫt = ǫ t ( θ),

ǫ t (θ) = u t (ψ) 1 + q i=1 b i u t-i (ψ) , ǫ 2 = 1 n n t=1 ǫ2 t .
(6.7)

When q = 0, we set ǫ t (θ) = u t (ψ). In order to guarantee that ǫt be almost surely well defined, at least for n large enough, we make the following assumption

P 1 + q i=1 b 0i u t-i = 0 = 0. (6.8)
Note that (6.8) is satisfied when the distribution of ǫ t has a density with respect to the Lebesgue measure. This assumption entails the (almost sure) existence of

(∂ǫ t /∂θ) (θ 0 ). Let ρǫ 2 m = (ρ ǫ 2 (1), . . . , ρǫ 2 (m)) ′ and V t = ǫ 2 t -σ 2 0ǫ ǫ 2 t-1 -σ 2 0ǫ , . . . , ǫ 2 t-m -σ 2 0ǫ ′ .
We also define the matrices

S =   A -1 ψ E(ω 1 u 1 X 1 V ′ 1 ) A -1 β A βψ A -1 ψ E(ω 1 u 1 X 1 V ′ 1 ) + A -1 β E(τ 1 ν 1 ∂σ 2 1 (ψ0,β0) ∂β V ′ 1 )   and 
Λ ǫ 2 = λ ǫ 2 1 , . . . , λ ǫ 2 m ′ , where λ ǫ 2 ℓ = 2Eǫ 1 ∂ǫ 1 ∂θ (θ 0 )(ǫ 2 1-ℓ -σ 2 0ǫ ).
The existence of these matrices requires moment conditions. Note that S = 0 when Eǫ 3 t = 0. We also need to reinforce Assumption (6.8). Thus we make the following assumptions.

A13:

If q > 0, there exist a neighborhood V (θ 0 ) of θ 0 and a positive number ι > 0 such that

P inf θ=(ψ ′ ,β ′ ) ′ ∈V (θ0) 1 + q i=1 b i u t-i (ψ) > ι = 1. A14: Ex 6 t < ∞.
With these notations and assumptions we have the following result.

Theorem 6.2 Suppose that the assumptions of Theorem 4.2 hold, in particular that the AR order p and the LARCH order q are correctly specified. Assume also that the assumptions A13 and A14 hold true. Then √ nρ

ǫ2 m L → N (0, Σ ρǫ 2 m ),
where

Σ ρǫ 2 m = 1 σ 8 ǫ (µ 4 -1) 2 σ 8 ǫ (µ 4 -1) 2 I m + Λ ǫ 2 Σ W LS Λ ǫ 2 ′ + S ′ Λ ǫ 2 ′ + Λ ǫ 2 S
when q = 0, and

Σ ρǫ 2 m = I m (6.9)
when q = 0.

Moreover the portmanteau statistic

Q ǫ2 m := n(n + 2) m h=1 ρ2 ǫ 2 (h) n -h L → m i=1 ξ ǫ 2 i,m Z 2 i ,
where ξ ǫ 2 1,m , . . . , ξ ǫ 2 m,m are the eigenvalues of the matrix Σ ρǫ 2 m and Z 1 , . . . , Z m are independent N (0, 1) variables.

Remark 6.4 Assumption A13 is restrictive, but seems unavoidable since the portmanteau statistics relies on rescaled residuals in which the inverses of σ t (θ) are taken in a neighborhood of θ 0 . However, simulation experiments show that the portmanteau test behaves well in finite sample when (most of) the 1 + q i=1 bi ût-i are far enough from 0. Remark 6.5 In Remark 6.1 it was seen that the asymptotic distribution of Q û m depends, in a complicated way, of the weights and the coefficients, even in the case q = 0. By contrast, (6.9) shows that the asymptotic distribution of Q ǫ2 m is χ 2 m when the DGP is an AR model with iid innovations, whatever the AR order p and the weights ω t . The χ 2 m -asymptotic distribution for Q ǫ2 m was obtained by [START_REF] Mcleod | Diagnostic Checking ARMA Time Series Models Using Squared-Residual Autocorrelations[END_REF] in the case q = 0 and ω t = 1, which corresponds to the standard LSE. 7 Numerical Illustrations

Monte Carlo study

This section examines the performance of the asymptotic estimation results in finite samples through Monte Carlo experiments. Data are generated through the AR(1)-LARCH(1) model

x t = ψ 01 x t-1 + u t , u t = (1 + b 01 u t-1 )ǫ t , ǫ t iid (0, σ 2 0ǫ ), σ 0ǫ > 0. (7.1)
We start by considering a case when A5 is satisfied, that is a case where the QMLE is consistent, provided Θ is sufficiently small. The true parameter is taken to be φ 01 = 0.9, b 01 = -0.5 and ǫ t ∼ U (-0.5,0.5) (thus σ 2 0ǫ = 1/12). As can be seen from Figure 3 and other experiments not reported here, the performances of the QMLE and WLSE are comparable.

We now investigate the properties of the QMLE and WLSE when the errors distribution is Gaussian. In this case, A5 is never satisfied.

[Figure 3 1 compares the distributions of the QML, LS and WLS estimates of the three parameters ψ 01 , b 01 and σ 2 0ǫ over N = 500 independent simulations of the model, for the sample sizes n = 100 and n = 1, 000. We used the version of the WLSE defined by the weights (4.6) based on an ARCH proxy of the volatility. The failure of the QMLE is not surprising in view of Proposition 3.1, since Assumption A5 is not satisfied by the DGP. With the particular choice of parameters in these simulations experiments, the LSE and WLSE provide very close results.

Table 2 compares the performance of four versions of the WLSE: the LSE in which the weights are constant, the WLSE based on an ARCH proxy of the volatility, the WLSE HL with the weights (4.4) of [START_REF] Horváth | L p -estimators in ARCH-models[END_REF], and the WLSE L defined by the weights (4.5) proposed by [START_REF] Ling | Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models[END_REF] 

Nonlinearities in the volatility of stock indices

The aim of this section is to point out, in the volatility of financial returns, the presence of some non linear effects discussed in Section 2. We consider the daily returns of the following nine indices: the CAC, Shanghai, DAX, DJA, DJT, FTSE, Nasdaq, Nikkei, and SP500, from January 2, 1990, to March 25, 2008 (except for the indices for which such historical data do not exist).

We first applied the conditional homoscedasticity test defined in Section 5.2.

The results displayed in Table 3 show that the null hypothesis of conditional homoscedasticity is clearly rejected, for all the indices, except for Shanghai and Nasdaq. These results are in accordance with those typically obtained for financial series, with more standard conditional homoscedasticity tests, such as the score test of [START_REF] Engle | Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation[END_REF] or the [START_REF] Li | On the squared residual autocorrelations in non-linear time series with conditional heteroscedasticity[END_REF] portmanteau test. It can be noted that the null of conditional homoscedasticity is in general more clearly rejected in favor of a LARCH(q) model when q ≥ 5 than for small values of q.

Several AR(p)-LARCH(q) models have been fitted to the nine series. In view of the portmanteau tests displayed in Table 4 for the adequacy of the AR part, it seems that an AR(0) (i.e. no AR part) is sufficient for most of the series, which is in accordance with the standard economic theory of efficient markets. In Table 5 estimation results for the AR(0)-LARCH( 5) have been reported. The most significant features are the following. First, note that smaller-order LARCH models would not be appropriate for such series, as can be seen from the t-ratio for the higher-order coefficients. For some of these series, an order q > 5 would be relevant but for the simplicity of the presentation we do not give results for such higher-order models. Second, for almost all series, all the estimated coefficients are significantly negative. This a strong evidence of asymmetry in the volatility of such series. Since the works of [START_REF] Black | Studies of Stock Price Volatility Changes[END_REF] and [START_REF] Christie | The Stochastic Behavior of Common Stock Variances: Value, Leverage and Interest Rate Effects[END_REF] this property, known as the leverage effect, is well documented for financial series. Typically, a negative return has a higher impact on the future volatility than a positive one of the same magnitude. Indeed, taking for simplicity the LARCH(1) example, it can be seen that

|1 + b 1 u t-1 | > |1 + b 1 (-u t-1 )| when b 1 u t-1 > 0.
Finally, recall that the main characteristic of the LARCH model, compared to all standard ARCH-type formulations, is that the volatility is not bounded below. It is therefore interesting to see if the estimated models allow the volatility to approach zero. Surprisingly, the answer strongly depends on the series, as shown in Figure 4.

More precisely, the volatility of the Nikkei index is always far away from zero (which is related to the very small estimated coefficients, in magnitude, for this series). On the contrary, the volatilities of the Nasdaq, DJA, SP500 are frequently close to zero.

The remaining series, namely the DAX, FTSE, CAC, Shangai, and DJT, have a volatility which occasionally approaches zero. Is should however be underlined that, as can be seen from Table 6, the estimated LARCH volatilities are never exactly equal to zero. We want to point out that such small estimated volatilities could not be obtained with standard ARCH models. For instance, with GARCH(1,1) models, we found that the minimal estimated volatility of the nine series of returns ranges from 0.17 to 0.97, whereas Table 6 shows that it ranges from 0.0001 to 0.15 with LARCH(5) models. More flexibility is thus allowed with LARCH models. Of course, we do not claim that such a simple model as the finite-order LARCH is sufficient to capture all the sophisticated features of financial series. Extensions of these models, including a persistence term βσ t-1 in the volatility, or allowing for long memory, have to be considered.

Many complementary results on this real application, as well as on the simulation study, are available from the authors. The R code allowing to implement all the numerical applications of this paper is also available.

[Table 3 

Conclusion

LARCH is an attractive class of models for conditional heteroscedasticity, which is able to capture different effects of the volatility, keeping the parsimony of the standard ARCH and avoiding the positivity constraints on the coefficients. However, the QMLE is not recommended for these models. This may seem surprising, since QML is undoubtedly the most successful method for GARCH-type models.

The "supremacy" of this method is justified, in general, because it does not require specifying the errors distribution and because its asymptotic properties hold under mild conditions. However, for the LARCH model, the QML method produces inconsistent estimator. The theoretical results were confirmed by finite-sample experiments. It is interesting to note that a major estimation technique, which is very robust under change of the distribution of the iid noise, fails for a class of conditionally heteroscedastic models. To our knowledge, this is the only example of failure of the QMLE, in GARCH-type models, that is not due to the lack of a moment condition.

To overcome this problem, we proposed a self-weighted LSE. For AR-LARCH models, this estimator was shown to be asymptotically normal without any moment condition on the observed process. The choice of the weights is discussed and, from our Monte-Carlo experiments, weights obtained from an ARCH proxy of the volatility can be recommended. These results were used to construct Wald and score tests for testing conditional homoscedasticity. Furthermore, diagnostic portmanteau tests were developed. Their asymptotic distribution was shown to be far from the standard chi-square. It is possible to extend the class to GARCH-type models, allowing the volatility to depend on its own past values. This is left for future research.

Appendix: Proofs

A.1 Proof of Theorem 2.1

The scheme of the proof is standard (see e.g. Francq and Zakoïan, 2004, Theorems 2.1 and 3.1), and consists in showing

i) u t (θ) = u t (θ 0 ) and σ 2 t (θ) = σ 2 t (θ 0 ) P θ0 a.s. for all t =⇒ θ = θ 0 , ii) E|ℓ t (θ 0 )| < ∞, and if θ = θ 0 , Eℓ t (θ) > Eℓ t (θ 0 ), iii) any θ = θ 0 has a neighborhood V (θ) such that lim inf n→∞ inf θ * ∈V (θ) l n (θ * ) > Eℓ 1 (θ 0 ), a.s.
We first prove i). In view of A2 and A5, we have σ 2 t (θ 0 ) = Var(x t | F t-1 ) > 0 with probability 1, and it can be shown that u t (θ) = u t (θ 0 ) entails that the first p components of θ and θ 0 are the same. Let θ such that

σ 2 t = σ 2 t (θ) = σ 2 t (θ 0 ) = 0 and u t = u t (θ) = u t (θ 0 ) a.s. Writing σ t (θ) = σ ǫ {b 1 u t-1 + v t-2 (θ)} where v t-2 (θ) = 1 + q i=2 b i u t-i , we have σ 2 t (θ 0 ) = σ 2 t (θ) ⇔ σ 2 0ǫ {b 01 u t-1 + v t-2 (θ 0 )} 2 = σ 2 ǫ {b 1 u t-1 + v t-2 (θ)} 2 ⇔ (σ 2 ǫ b 2 1 -σ 2 0ǫ b 2 01 )σ 2 t-1 η 2 t-1 + 2σ t-1 {σ 2 ǫ b 1 v t-2 (θ) -σ 2 0ǫ 01 v t-2 (θ 0 )}η t-1 +{σ 2 ǫ v t-2 (θ) -σ 2 0ǫ v t-2 (θ 0 )} := a t-2 η 2 t-1 + b t-2 η t-1 + c t-2 = 0.
By taking the expectation of the last equality conditionally on F t-2 we get a t-2 + c t-2 = 0. We thus have

a t-2 (η 2 t-1 -1) = -b t-2 η t-1 a.s. (A.1) Suppose that σ 2 ǫ b 2 1 = σ 2 0ǫ b 2 01 , that is a t-2 = 0 a.s. It follows that η t-1 = 0 and (η 2 t-1 -1)/η t-1 = -b t-2 /a t-2 a.s.
Because the two sides of this equality involve independent variables, these variables are constant. Hence there is a constant c such that η 2 t-1 -1 = cη t-1 , but this contradicts A5. We thus have proved that

σ 2 ǫ b 2 1 = σ 2 0ǫ b 2 01 . If b 1 = 0 we have b 1 = b 01 . Now suppose b 01 = 0. Since a t-2 = 0 a.s. we have, from (A.1), b t-2 = 0 = {σ 2 ǫ b 1 v t-2 (θ) -σ 2 0ǫ b 01 v t-2 (θ 0 )}σ t-1 η t-1 .
Multiplying the last equation by η t-1 and taking the expectation conditional to

F t-2 yields σ 2 ǫ b 1 σ t-1 v t-2 (θ) = σ 2 0ǫ b 01 σ t-1 v t-2 (θ 0 )
and thus, since by assumption σ t-1 = 0 and since we have

σ 2 ǫ b 2 1 = σ 2 0ǫ b 2 01 , b 01 v t-2 (θ) = b 1 v t-2 (θ 0 )
which, by taking the expectation, implies b 01 = b 1 . Proceeding similarly we get, recursively, b 0i = b i for all i. Finally, σ ǫ = σ 0ǫ and θ = θ 0 . Now we turn to ii). Note that, by A1 and A2, the process (x t ) is stationary and ergodic (see e.g. Billingsley (1995, Theorem 36.4)). Since ℓ t (θ) is a measurable function of x t , . . . , x t-p-q , the process {ℓ t (θ)} is also stationary and ergodic. Moreover, in view of A5, Eℓ t (θ) exists in R ∪ {+∞}. Thus the objective function l n (θ) converges a.s. to Eℓ t (θ) as n → ∞. In FMZ it was shown that under A1, Eσ 2s t (θ 0 ) < ∞ for some sufficiently small s > 0. It follows that Eℓ t (θ 0 ) = 1 + 1 s E log σ 2s t (θ 0 ) exists in R. The limit criterion is minimum at the true value because

Eℓ t (θ) -Eℓ t (θ 0 ) = E log σ 2 t (θ) σ 2 t (θ 0 ) + σ 2 t (θ 0 ) σ 2 t (θ) -1 +E {u t (θ) -u t (θ 0 )} 2 σ 2 t (θ) + E 2ǫ t σ t (θ 0 ) {u t (θ) -u t (θ 0 )} σ 0ǫ σ 2 t (θ)
≥ 0 using the fact that the last expectation is null (ǫ t being orthogonal to the random

variable σ t (θ 0 ) {u t (θ) -u t (θ 0 )}σ -2 t (θ) ∈ F t-1
), and using the elementary inequality log x ≤ x-1. Moreover the inequality is an equality if and only if u t (θ)-u t (θ 0 ) = 0 and σ 2 t (θ 0 ) = σ 2 t (θ) with probability 1, which by ii) implies θ = θ 0 . As in [START_REF] Francq | Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH Processes[END_REF] we can show that the ergodic theorem and the continuity of θ → E θ ℓ 1 (θ) entail iii). A standard compactness argument allows to complete the proof of the consistency. Now we turn to the asymptotic normality. It is easy to see that the proof follows from the following properties:

i) E ∂ℓ t (θ 0 ) ∂θ ∂ℓ t (θ 0 ) ∂θ ′ < ∞ and n -1/2 n t=1 ∂ℓ t ∂θ (θ 0 ) ⇒ N (0, I) , ii) E ∂ 2 ℓ t (θ 0 ) ∂θ∂θ ′ < ∞ and n -1 n t=1 ∂ 2 ℓ t ∂θ i ∂θ j (θ * ) → J (i, j) a.s.,
for any θ * between θn and θ 0 , iii) I and J are not singular.

∂ℓ t (θ) ∂θ = 1 - u 2 t (θ) σ 2 t (θ) 1 σ 2 t (θ) ∂σ 2 t (θ) ∂θ + 2 u t (θ) σ 2 t (θ) ∂u t (θ) ∂θ = 1 - u 2 t (θ) σ 2 t (θ) 2 1 + q i=1 b i u t-i (θ)            -q i=1 b i X t-i u t-1 (θ) . . . u t-q (θ) 1+ P q i=1 biut-i(θ) 2σ 2 ǫ            +2 u t (θ) σ 2 t (θ)   -X t 0 q+1   (A.2) with X t = (x t-1 , . . . , x t-p ) ′ . Noting that 1 -u 2 t (θ 0 )/σ 2 t (θ 0 ) = 1 -ǫ 2 t /σ 2
ǫ and u t (θ 0 )/σ t (θ 0 ) = ǫ t /σ ǫ are centered and independent of the other random variables involved in ∂ℓ t (θ 0 )/∂θ, it can be shown that, under A2, A5 and A7, (∂ℓ t (θ 0 )/∂θ, F t ) is a square integrable stationary martingale difference. Thus i) comes from the Central Limit Theorem (CLT) of [START_REF] Billingsley | The Lindeberg-Levy theorem for martingales[END_REF].

Differentiating (A.2) we obtain ∂ 2 ℓ t (θ) ∂θ∂θ ′ = 1 - u 2 t (θ) σ 2 t (θ) 1 σ 2 t (θ) ∂ 2 σ 2 t (θ) ∂θ∂θ ′ + 2 u 2 t (θ) σ 2 t (θ) -1 1 σ 4 t (θ) ∂σ 2 t (θ) ∂θ ∂σ 2 t (θ) ∂θ ′ + 2 σ 2 t (θ) ∂u t (θ) ∂θ ∂u t (θ) ∂θ ′ + 2u t (θ) σ 2 t (θ) ∂ 2 u t (θ) ∂θ∂θ ′ - 2u t (θ) σ 4 t (θ) ∂u t (θ) ∂θ ∂σ 2 t (θ) ∂θ ′ + ∂σ 2 t (θ) ∂θ ∂u t (θ) ∂θ ′ .
Using the Hölder inequality, the compactness assumption A3, the existence of fourth-order moments for x t and u t (θ) and Assumption A5, it can be shown that

sup θ∈Θ ∂ℓ t (θ) ∂θ 4/3 < ∞.
With the same arguments it can be shown that

sup θ∈Θ ∂ 2 ℓ t (θ) ∂θ∂θ ′ 1 < ∞. (A.
3)

The continuity of θ → ∂ 2 ℓ t (θ)/∂θ∂θ ′ , the ergodic theorem and the dominated convergence theorem now entail that for any ε > 0 there exists a neighborhood V(θ 0 ) of θ 0 such that, a.s.

lim n→∞ 1 n n t=1 sup θ∈V(θ0) ∂ 2 ℓ t (θ) ∂θ∂θ ′ - ∂ 2 ℓ t (θ 0 ) ∂θ∂θ ′ ≤ ε. (A.4)
A direct application of the ergodic theorem entails

lim n→∞ 1 n n t=1 ∂ 2 ℓ t (θ 0 ) ∂θ∂θ ′ = J a.s. (A.5)
Thus ii) comes from (A.3), (A.4),(A.5) and the strong consistency of θn .

The arguments used by Francq and Zakoïan (2004, p 631) show that if I is singular then there exists λ = (λ ′ 1 , λ ′ 2 ) ′ , with λ 1 ∈ R p and λ 2 ∈ R q+1 , such that a.s.

λ ′ ∂u t (θ 0 ) ∂θ = 0 and λ ′ ∂σ 2 t (θ 0 ) ∂θ = 0. (A.6)
Because ∂u t (θ 0 )/∂θ = (-X ′ t , 0 ′ q+1 ) ′ the first equality entails λ 1 = 0, and the second equality reduces to

0 = λ ′ 2         ∂σ 2 t (θ0) ∂b1
. . .

∂σ 2 t (θ0) ∂bq ∂σ 2 t (θ0) ∂σ 2 ǫ         = λ ′ 2         2σ 2 0ǫ (1 + q i=1 b 0i u t-i ) u t-1 . . . 2σ 2 0ǫ (1 + q i=1 b 0i u t-i ) u t-q (1 + q i=1 b 0i u t-i ) 2         a.s.
Using the stationarity, we deduce that, conditional on {ǫ u , u < t} there exists a polynomial of degree 2, P 2 (x) = a 0 + a 1 x + a 2 x 2 , such that P 2 (u t ) = 0, which contradicts A5. Moreover

J = E 1 σ 4 t ∂σ 2 t ∂θ ∂σ 2 t ∂θ ′ (θ 0 ) + 2E 1 σ 2 t ∂u t ∂θ ∂u t ∂θ ′ (θ 0 ) := A + B
where A is strictly positive definite, by the previous arguments, and B is positive semi-definite. Thus I and J are invertible.

A.2 Proof of Proposition 3.1

For any fixed integer t 0 , with probability one we have x t0-1 = 0, x t0 /x t0-1 = ψ 01 and x 2 t0-1 -x t0 x t0-2 = 0. Note that, conditionally to present and past values of
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x t0-2 such that σ t0-1 (θ 0 ) = 0, the couple (x t0-1 , x t0-1 ) admits a positive density with respect to the Lebesgue measure of R 2 . It follows that, with positive probability, we have

θ(t 0 ) := x t0 x t0-1 , 0 ′ p-1 , - 1 x t0-1 - xt 0 xt 0 -1 x t0-2 , 0 ′ q-1 , 1 ∈ Θ.
Thus, for almost all trajectories, there exists θ(t 0 ) ∈ Θ. Note that u t0 {θ(t 0 )} = σ 2 t0 {θ(t 0 )} = 0 and that, for t = t 0 , σ 2 t {θ(t 0 )} = 0 almost surely. It follows that, with the conventions given after (2.3), L n {θ(t 0 )} = +∞. The measurable sequences ( θn ) n≥1 such that θn = θ(t 0 ) for all n ≥ t 0 are inconsistent sequences of QMLE.

A.3 Proof of Theorem 4.1.

Writing Y = Xψ 0 + U with U ′ = (u 1 , . . . , u n ), we have ψW LS = (X ′ ΩX) -1 X ′ Ω(Xψ 0 + U) = ψ 0 + (X ′ ΩX) -1 X ′ ΩU = ψ 0 + o(1)
a.s., because in view of the ergodic theorem

n -1 X ′ ΩX → A ψ , n -1 X ′ ΩU → Eω t u t X t = Eǫ t σ -1 ǫ Eσ t (θ 0 )ω t X t = 0.
The consistency is shown. Applying the CLT of [START_REF] Billingsley | The Lindeberg-Levy theorem for martingales[END_REF] to the square integrable stationary martingale difference (ω t u t X t , F t ), we obtain that n -1/2 X ′ ΩU converges in law to the N (0, B ψ ) distribution. To complete the proof, it remains to show that A ψ is invertible. If A ψ were singular then there would exist λ = 0 ∈ R p such that λ ′ √ ω t X t = 0 which would imply λ ′ X t = 0 with probability one. This would entail that x t , u t and ǫ t belong to F t-1 , and ǫ t would be independent of ǫ t . This is clearly impossible because Eǫ t = 0 and Eǫ 2 t = 0. Thus A ψ is invertible, and the proof is complete.

A.4 Proof of Theorem 4.2.

Let

Qn (β) = 1 n n t=1 τ t ν 2 t ( ψ, β), Q n (β) = 1 n n t=1 τ t ν 2 t (ψ 0 , β).
We first show that

lim n→∞ sup β∈Θ β Qn (β) -Q n (β) = 0 a.s. (A.7)
We have, for some constant K

ν 2 t ( ψ, β) -ν 2 t (ψ 0 , β) ≤ ν t ( ψ, β) -ν t (ψ 0 , β) 2 sup θ∈Θ |ν t (ψ, β)| ≤ K u t ( ψ) -u t sup ψ∈Θ ψ |u t (ψ)| + q i=1 |b i | u t-i ( ψ) -u t-i sup θ∈Θ σ 2 t (ψ, β)| sup θ∈Θ |ν t (ψ, β)| and u t ( ψ) -u t ≤ p i=1 | ψi -ψ 0i ||x t-i |.
It follows that

sup β∈Θ β ν 2 t ( ψ, β) -ν 2 t (ψ 0 , β) ≤ M t ψ -ψ 0 ,
where (M t ) is a strictly stationary process. For t fixed, the strong consistency of ψ implies M t ψ-ψ 0 → 0 a.s. Therefore the Cesaro sum n -1 n t=1 τ t M t ψ-ψ 0 → 0 a.s. and (A.7) is shown. This result and the ergodic theorem show that Qn (β) → Q ∞ (β) := Eτ t ν 2 t (ψ 0 , β) ∈ R + ∪ {+∞}, a.s. and uniformly in a neighborhood of β, as n → ∞.

Since τ t ν t (ψ 0 , β 0 ) = τ t (1 + b 0i u t-i ) 2 (ǫ 2 t -σ 2 0ǫ ) and τ t {ν t (ψ 0 , β) -ν t (ψ 0 , β 0 )} = τ t σ 2 t (ψ 0 , β 0 ) -σ 2 t (ψ 0 , β) ∈ F t-1 are orthogonal (when Q ∞ (β)
is finite, which is the case at β = β 0 in view of the moment condition A11), it can be shown that under the identifiability condition A4, Q ∞ (β) > Q ∞ (β 0 ) when β = β 0 . The consistency follows from standard arguments. Under A6, the derivative of the criterion defined in (4.3) vanishes at β = βW LS , for sufficiently large n. A Taylor expansion at the order 1 of the derivative around

β 0 yields 0 = 1 √ n n t=1 τ t ∂ν 2 t ( ψ, β 0 ) ∂β + 1 n n t=1 τ t ∂ 2 ν 2 t ( ψ, β 0 ) ∂β∂β ′ + R n √ n β -β 0 ,
where the element of the matrix R n are of the form

R n (i, j) = 1 n n t=1 τ t ∂ 2 ν 2 t ( ψ, β * ) ∂β i ∂β j - ∂ 2 ν 2 t ( ψ, β 0 ) ∂β i ∂β j
for some β * between β and β 0 . In view of the consistency result, the moment

condition E sup θ∈V(θ0) τ t ∂ 2 ν 2 t (θ) ∂θ∂θ ′
< ∞, and the continuity of the derivative, R n (i, j) → 0 a.s. Similar arguments and a Taylor expansion around ψ 0 yields

0 = 1 √ n n t=1 τ t ∂ν 2 t (ψ 0 , β 0 ) ∂β + 1 n n t=1 τ t ∂ 2 ν 2 t (ψ 0 , β 0 ) ∂β∂ψ ′ √ n( ψ -ψ 0 ) +o P (1) + 1 n n t=1 τ t ∂ 2 ν 2 t (ψ 0 , β 0 ) ∂β∂β ′ + o P (1) √ n β -β 0 .
Applying the CLT of [START_REF] Billingsley | The Lindeberg-Levy theorem for martingales[END_REF] to the square integrable stationary martin-

gale difference {(τ t ν t ∂ν t (ψ 0 , β 0 )/∂β ′ , ω t u t X ′ t ) ′ , F t }, we obtain   1 √ n n t=1 τ t ∂ν 2 t (ψ0,β0) ∂β √ n ψ -ψ 0   =   -2 √ n n t=1 τ t ν t ∂σ 2 t (ψ0,β0) ∂β A -1 ψ 1 √ n n t=1 ω t u t X t   L →   Z β Z ψ   ∼ N    0,   4B β -2B βψ A -1 ψ -2A -1 ψ B ′ βψ A -1 ψ B ψ A -1 ψ      .
Applying the ergodic theorem we have a.s.

1 n n t=1 τ t ∂ 2 ν 2 t (ψ 0 , β 0 ) ∂β∂ψ ′ → -2A βψ , 1 n n t=1 τ t ∂ 2 ν 2 t (ψ 0 , β 0 ) ∂β∂β ′ → 2A β .

By arguments already given

A β is invertible. Thus √ n   β -β 0 ψ -ψ 0   L →   (-2A β ) -1 (Z β -2A βψ Z ψ ) Z ψ  
and the proof follows.

A.5 Proof of (5.2)

A Taylor expansion at the order 1 around θ 0 yields

0 q+1 = 1 √ n n t=1 τ t ∂ν 2 t ( ψ, b, σ2 ǫ ) ∂β = 1 √ n n t=1 τ t ∂ν 2 t ( ψ, 0 q , σ2c ǫ ) ∂β + 1 n n t=1 τ t ∂ 2 ν 2 t (θ 0 ) ∂β∂β ′ √ n   b σ2 ǫ -σ2c ǫ   + o P (1). (A.8) A C C E P T E D M A N U S C R I P T
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Notice that the last component of the first term in the right-hand side is null. It

follows that √ n(σ 2 ǫ -σ2c ǫ ) = - 1 A σ A σb √ n b + o P (1).
Now using the first q components of (A.8) we get ∆ c n = A * √ n b + o P (1), from which the convergence in (5.2) follows.

A.6 Proof of Lemma 6.1.

We start by establishing a lemma which will be used to show Lemma 6.1. Let, for

0 ≤ ℓ < n, γ(ℓ) = 1 n n-ℓ t=1 u t u t+ℓ and ρ(ℓ) = γ(ℓ) γ(0)
denote the white noise "empirical" autocovariances and autocorrelations. Let γ m = (γ(1), . . . , γ(m)) ′ and ρ m = (ρ(1), . . . , ρ(m)) ′ .

Lemma A.1 the assumptions of Theorem 4.1,

√ n( ψ -ψ 0 , γ m ) ′ L → N (0, Σ ψ,γm ) when p > 0, where Σ ψ,γm =      A -1 ψ B ψ A -1 ψ A -1 ψ E(ω t u 2 t X t U ′ t ) E(ω t u 2 t U t X ′ t )A -1 ψ E(u 2 t U t U ′ t )      .
Proof. From the proof of Theorem 4.1, we have

√ n( ψ -ψ 0 ) = A -1 ψ 1 √ n n t=1 ω t u t X t + o P (1).
We have

√ nγ m = 1 √ n n t=1 u t U t .
Applying the CLT of [START_REF] Billingsley | The Lindeberg-Levy theorem for martingales[END_REF] to the square integrable stationary martin- Francq et al. (2004, proof of Theorem 2) we have

gale difference {(ω t u t X ′ t , u t U ′ t ) ′ , F t }, Lemma A.1 is proved. Now, in view of
γm := (γ(1), . . . , γ(m)) ′ = γ m -σ 2 u Λ ′ ( ψ -ψ 0 ) + O p (1/n).
Hence, by Lemma A.1, the asymptotic distribution of √ nγ m is normal, with mean zero and covariance matrix

Var as ( √ nγ m ) = Var as ( √ nγ m ) + σ 4 u Λ ′ Var as ( √ n ψ)Λ -σ 2 u Λ ′ Cov as ( √ n ψ, √ nγ m ) -σ 2 u Cov as ( √ nγ m , √ n ψ)Λ.
Finally, we have

ρm = γm /σ 2 u + O p (1/n),
from which Lemma 6.1 straightforwardly follows.

A.7 Proof of Theorem 6.2.

To show Theorem 6.2 we establish an intermediate result which is the analog of Lemma A.1. We set

γ ǫ 2 (ℓ) = 1 n n t=ℓ+1 (ǫ 2 t -σ 2 ǫ )(ǫ 2 t-ℓ -σ 2 ǫ ) and ρ ǫ 2 (ℓ) = γ ǫ 2 (ℓ) γ ǫ 2 (0) for 0 ≤ ℓ < n. Let γ ǫ 2 m = (γ ǫ 2 (1), . . . , γ ǫ 2 (m))
′ and ρ ǫ 2 m = (ρ ǫ 2 (1), . . . , ρ ǫ 2 (m)) ′ . Write θ = ( ψ′ W LS , β′ W LS ) ′ .

Lemma A.2 Under the assumptions of Theorem 4.2, when p + q = 0,

√ n   θ -θ 0 γ ǫ 2 m   L → N    0, Σ θ,γ ǫ 2 m :=   Σ W LS S S ′ E(V t V ′ t )      .
Proof. The proof is written for pq = 0, but can be straightforwardly modified when p = 0 or q = 0. From the proof of Theorem 4.2, we have Note that γǫ 2 (ℓ) is a function of θ which takes the value γ ǫ 2 (ℓ) at the point θ 0 .

√ n( θ -θ 0 ) =   A -1 ψ 0 A -1 β A βψ A -1 ψ A -1 β     1 √ n n t=1 ω t u t X
Assumption A 13 entails that γǫ 2 (ℓ) is well defined, and even derivable, when n is large enough for θ ∈ V (θ 0 ). Moreover, the ergodic theorem entails that a.s. It follows from Lemma A.2 that √ nγ ǫ 2 m converges in law to a Gaussian distribution with mean zero and covariance matrix

E(V t V ′ t ) + Λ ǫ 2 Σ W LS Λ ǫ 2 ′ + S ′ Λ ǫ 2 ′ + Λ ǫ 2 S.
Since γǫ 2 (0) → Var ǫ 2 t = σ 4 ǫ (µ 4 -1) a.s., and

E(V t V ′ t ) = σ 8 ǫ (µ 4 -1) 2 I m ,
the first result of Theorem 6.2 follows. In the case q = 0, the vector (∂ǫ t /∂θ) (θ 0 ) belongs to F t-1 , which implies λ ǫ 2 ℓ = 0. The simplification of the asymptotic variance when q = 0 follows. The last result is obvious.
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  , taking C as the 90% quantile of the absolute values of the observations |x 1 |, . . . , |x n |. In view of Remarks 4.2 and 4.4, one can also propose weights of the form

  χ 2 m distribution, under the null hypothesis of adequacy of the orders p and q.

  0. A Taylor expansion then givesγǫ 2 m := (γ ǫ 2 (1), . . . , γǫ 2 (m)) ′ = γ ǫ 2 m + Λ ǫ 2 ( θ -θ 0 ) + O p (1/n).
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 23 Figure 2: Likelihood (as a function of b with σ 2 ǫ fixed) of a simulation of length n = 10 of Model (3.1) with b 0 = 0.5 and, in the left panel ǫ t ∼ U [-1/2,1/2] , and in the right panel ǫ t ∼ N (0, 1).

  

  ). We denote by

		L → the con-
	vergence in distribution.	
	Theorem 4.1 Under A1, A2, A8, A9,	ψW LS → ψ 0 a.s. as n → ∞. If, in
	addition, A10 holds, then	

  in a similar context. With the value b 01 = -0.54 the simulated process (x t ) admits moments of order eight, with b 01 = -0.63 we have Ex 6 t < ∞ but Ex 8 t = ∞, with b 01 = -0.75 we have Ex 4 t < ∞ and Ex 6 t = ∞, with b 01 = -0.99 we have Ex 2 t < ∞ and Ex 4 t = ∞, and with b 01 = -1.1 the second order moments do not exist. In the table, the best (i.e. minimal) root mean squared error (RMSE) and the best estimation bias are displayed in bold. As expected the performance of the four versions is equivalent when the DGP admits high order moments, and the performance of the LSE decreases dramatically when |b 01 | increases. Overall, the behavior of the WLSE and WLSE HL remains satisfactory whatever the value of b 01 , with a slight advantage for the WLSE in terms of RMSE. We thus used this WLSE version for the application of the next section.

  Now remark that Assumptions A13 and A14 entail the existence Λ ǫ 2 . Consider for simplicity the case of an AR(0)-BL(1), then -σ 2 ǫ )(θ 0 ), and thus of Λ ǫ 2 , follow. The existence of S is a consequence of A9-A12.Replacing ǫ 2 by σ 2 ǫ in γǫ 2 (ℓ), we define -σ 2 ǫ ), ℓ = 0, . . . , n -1.We similarly define ρǫ 2 (ℓ), γm and ρm . It is easy to check that γǫ 2 (ℓ)-γǫ 2 (ℓ) = o p (1). Consequently √ nγ m and √ nγ m have the same asymptotic distribution, when existing. The same is true for √ nρ m and √ nρ m .

	E ǫ t	∂ǫ t ∂b	(θ 0 ) 2 = E	u 2 t u t-1 (1 + b 01 u t-1 ) 2	2	≤	Eu 6 t ι 4 < ∞.
	In the general case, one can similarly check that E ǫ t	∂ǫt ∂θ	2 < ∞, from which the
	existence of λ ǫ 2 ℓ = 2Eǫ t t-ℓ γǫ 2 (ℓ) = ∂ǫt ∂θ (ǫ 2 n 1 t=ℓ+1 n (ǫ 2 t -σ 2 ǫ )(ǫ 2 t-ℓ	
								t
							1 √ n	n t=1 τ t ν t	∂σ 2 t (ψ0,β0) ∂β
	Noting that		√	nγ ǫ 2 m =	1 √ n	n t=1	V t ,
	and applying the CLT of Billingsley (1961) to the square integrable stationary
	martingale difference	ω t u t X ′ t , τ t ν t	∂σ 2 t (ψ0,β0) ∂β ′	, V ′ t	′	, F t , Lemma A.2 is proved.

  + o P (1).

Table 4 :

 4 Portmanteau test of adequacy of the AR(0) model (absence of linear part) for the linear dynamics of nine stock market returns.

	m		1	2	3	4	5	6	7	8
	CAC	Qû m	0.1	0.4	5.1	5.8	10.6	11.3	12.6	12.8
		p-val 0.816 0.824 0.163 0.212 0.059	0.08	0.083	0.12
	Shanghai	Qû m	0	1.1	3.3	5.8	6.1	8.3	8.6	8.7
		p-val 0.853 0.577 0.351 0.218 0.292 0.219 0.283 0.371
	DAX	Qû m	0.2	0.2	3.5	6	7.3	10.4	10.6	11.3
		p-val 0.634 0.893 0.316 0.202 0.199 0.107 0.156 0.186
	DJA	Qû m	0.6	1.2	1.2	1.4	1.9	4.2	8.4	8.5
		p-val 0.458 0.547 0.751 0.847 0.859	0.65	0.297 0.384
	DJT	Qû m	8.1	10.3	11.3	12.6	12.8	17.3	20.8	21.4
		p-val 0.004 0.006	0.01	0.013 0.025 0.008 0.004 0.006
	FTSE	Qû m	1.1	1.8	14.4	16.1	17.7	19.9	20	20.6
		p-val 0.303 0.399 0.002 0.003 0.003 0.003 0.005 0.008
	Nasdaq	Qû m	1.4	4	4	4.3	4.7	4.9	5.5	7.1
		p-val 0.243 0.138 0.265 0.367 0.449 0.555	0.6	0.528
	Nikkei	Qû m	0.4	9.3	9.5	9.5	9.5	10.9	10.9	11.2
		p-val 0.532	0.01	0.024	0.05	0.091 0.091 0.142 0.192
	SP 500	Qû m	0.6	1.4	2.6	2.6	4.6	6.2	9.6	9.6
		p-val 0.431 0.499 0.456 0.623 0.461 0.403 0.215 0.292

Table 6 :

 6 Quantiles of |σt| for the stock market indices.

		CAC	Shanghai	DAX	DJA	DJT	FTSE	Nasdaq	Nikkei	SP 500
	min 0.0008	0.0223	0.0012	0.0001	0.0020	0.0005	0.0002	0.1539	0.0010
	1%	0.2425	0.1790	0.0571	0.0278	0.3663	0.1010	0.0248	0.5928	0.0403
	50%	0.9841	1.0032	0.9599	1.0038	1.0028	0.9698	0.9857	0.9935	0.9822
	99%	1.9423	1.8532	2.5638	2.7709	1.6253	2.2868	4.5250	1.4085	2.7900
	max	2.8451	2.5511	3.8813	5.3177	3.3579	3.8816	7.3556	1.7742	5.1484

Acknowledgment: The authors gratefully acknowledge the Editor and anonymous reviewers for their helpful comments

List of Figures

List of Tables 

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT