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Abstract: Many structural break and regime-switching models have been used with
macroeconomic and �nancial data. In this paper, we develop an extremely �exible modeling
approach which can accommodate virtually any of these speci�cations. We build on ear-
lier work showing the relationship between �exible functional forms and random variation
in parameters. Our contribution is based around the use of priors on the time variation
that is developed from considering a hypothetical reordering of the data and distance be-
tween neighboring (reordered) observations. The range of priors produced in this way can
accommodate a wide variety of nonlinear time series models, including those with regime-
switching and structural breaks. By allowing the amount of random variation in parameters
to depend on the distance between (reordered) observations, the parameters can evolve in
a wide variety of ways, allowing for everything from models exhibiting abrupt change (e.g.
threshold autoregressive models or standard structural break models) to those which allow
for a gradual evolution of parameters (e.g. smooth transition autoregressive models or time
varying parameter models). Bayesian econometric methods for inference are developed for
estimating the distance function and types of hypothetical reordering. Conditional on a
hypothetical reordering and distance function, a simple reordering of the actual data allows
us to estimate our models with standard state space methods by a simple adjustment to
the measurement equation. We use arti�cial data to show the advantages of our approach,
before providing two empirical illustrations involving the modeling of real GDP growth.
JEL classi�cation: C11, C22, E17
Keywords: Bayesian, structural break, threshold autoregressive, regime switching, state

space model
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1 Introduction

Many recent developments in empirical macroeconomics are based on statistical models which
are nonlinear or exhibit structural breaks or time variation in parameters. For instance,
Cogley and Sargent (2001, 2005), Boivin and Giannoni (2006) and Primiceri (2005) use
structural break or time varying parameter models to examine whether monetary policy
rules have changed over time. Other authors (e.g. Sims and Zha, 2006 and Koop and
Potter, 2006) develop regime-switching models to analyze similar issues relating to monetary
policy. The potential empirical importance of departures from constant parameter linear
models is undeniable. However, in practice, a problem arises since the set of possible models
which exhibit time variation or regime-switching in coe¢ cients is huge and the potential
for data mining is commensurately large. These considerations have lead to an interest in
developing �exible parametric models1 which nest common nonlinear time series and time
varying parameter speci�cations (see, e.g., Hamilton, 2001, 2003, Lundbergh, Terasvirta and
van Dijk, 2003 and Rahbek and Shephard, 2008 and Giordani, Kohn and van Dijk, 2007).
Our paper adds a new approach to �exible modeling to complement this existing literature
but, we argue, embeds more �exibility than previous work.
The intuition underlying our modeling framework is based on two ideas: hypothetical

data reordering and distance between (reordered) observations. The �rst can be motivated
by comparing an autoregressive model for yt with a structural break at time � and a threshold
autoregressive (TAR) model with threshold � (i.e. the AR dynamics if yt�1 < � are di¤erent
from those if yt�1 � �). Suppose we create a new variable y�t which is a simple reordering
of yt according to yt�1 (i.e. y�1 is ys where ys�1 is the smallest value of lagged y, y

�
2 has the

second smallest value for lagged y, etc.). Then the structural break and TAR models are
statistically exactly the same model, but one uses the original data yt and the other uses
the hypothetical reordered data y�t . In general, a wide range of nonlinear time series models
with regime-switches can be re-interpreted as structural break models using hypothetical
reordered data. An equivalent way of stating this is that many structural break models and
regime switching models can be viewed as di¤ering in the hierarchical priors placed on the
coe¢ cients. But if the data for regime switching models were to be reordered then the two
priors on the coe¢ cients are equivalent. Thus, the same algorithm can be used to estimate
the structural break model and the regime switching model if one reorders the data for the
latter.
Hamilton (2001) develops a �exible approach to nonlinearity using random variation in

parameters. There is a related literature that compares state space models of time variation
in parameters to nonparametric and spline methods (see Harvey and Koopman, 2000). Hy-
pothetical data reordering links these two literatures. We add a new element by introducing
more �exibility in how the variation is modelled based on the distance between observations.
Current approaches to random variation in parameters are very similar to nonparametric
regression methods (see, e.g., Yatchew, 1998): when approximating y = f (x), if two obser-

1Nonparametric approaches are also a promising avenue, although they are less popular in this literature
since macroeconomic data sets tend not to be that large (see also the reasons outlined in the introduction
to Hamilton, 2001).
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vations have similar values for x (i.e. the distance between their values for x is small) then
both random variation in parameter methods and nonparametric regression methods imply
that they have similar values for f (x). We maintain this assumption locally but allow for
substantial heterogeneity in time variation globally. For example, consider modeling changes
in dynamics over the business cycle using an autoregressive model. In this case, we might
want the autoregressive coe¢ cients to change quickly (i.e. exhibit substantial variation)
around business cycle turning points, but change more slowly during an expansion phase.
Our approach allows for this. Or consider an example from a di¤erent literature: time series
with seasonal patterns. Here the reordering of the data is no longer hypothetical as it relates
to the well-de�ned concept of a particular seasons (i.e., quarters , months or weeks). It is
assumed that seasons close to each other have similar dynamics (i.e., February is more like
January than July).
In the next section, we provide more detail on why combining these two ideas �hypothetical

data reordering and distance between (reordered) observations �results in a modeling frame-
work that is �exible and nests virtually every popular parametric structural break and
regime-switching model. We argue that an advantage of our approach is that, instead of
assuming a particular model (e.g. a TAR or an AR model with a �xed number of breaks),
it can allow the data to tell us which (if any) departure from linearity is appropriate. Thus,
our approach is �exible. However, it is also computationally straightforward. We remain
in a familiar class of models which are easy to understand and easy to handle econometri-
cally. That is, conditional on a distance function and ordering, every model we consider is a
state space model once the measurement equation is given a suitable interpretation. Since
Bayesian methods for state space models are well-developed, we can use such methods and
only add a block to an existing posterior simulator which characterizes the distance function.
In the third section of this paper, we describe such a posterior simulation algorithm for an
empirically-relevant implementation of our approach. This applies our modeling framework
to both conditional mean and volatility parameters. The fourth section contains empirical
work. After illustrating our approach with arti�cial data we apply our techniques to the
modeling of US GDP growth. We start with the univariate time series properties of GDP
growth. We �nd overwhelming evidence in favor of time variation in the conditional vari-
ance with a form similar to stochastic volatility. We then add lags of oil price in�ation as
covariates with time varying coe¢ cients. In this application, we �nd evidence in favor of a
regime-switching model where oil price changes averaged over the past year trigger a switch
between regimes (but with substantial variation within each regime).

2 A Flexible Parametric Modeling Framework

In this section, we outline the general features of our modeling framework in terms of a
simple variant of our model. In the following section we introduce a more general model
suitable for empirical research. In this intuitive section, we assume that the error variance
is homoskedastic and do not discuss volatility issues. However, our general model described
in the next section does apply our �exible parametric framework to volatility issues.
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Consider a time varying parameter (TVP) model written in state space form with mea-
surement equation given by:

yt = �txt + �""t; (1)

for t = 1; :::; T where xt is a scalar (e.g. a lag of the dependent variable) and state equation
given by:

�t = �t�1 + �vvt (2)

and "t and vt are i.i.d. N (0; 1) (and independent of one another). This model is of interest in
and of itself (e.g. Cogley and Sargent, 2001 use a VAR extension of it), nests some interesting
models (e.g. �v = 0 is the linear model) and textbook methods for statistical inference (e.g.
MCMC algorithms) are available. The relationship between state space models such as (1)
and (2) and nonparametric kernel smoothing algorithms is well-developed in the state space
literature (e.g. Harvey, 1989 and Harvey and Koopman, 2000). State space models such as
(1) and (2) are a �exible and powerful tool for time series analysis. They are included in our
approach as a special case.
At the outset, we should make clear that there are two ways of motivating our frame-

work. These are equivalent motivations but use di¤erent terminology. One way, which can
be thought of as the conventional Bayesian motivation, involves retaining the measurement
equation throughout, but conceptualizing our approach as replacing the hierarchical prior
de�ned by (2) with di¤erent hierarchical priors which de�ne di¤erent nonlinear time series
models. The second way, which adopts the language of the state space modeler and moti-
vates our approach as retaining the form of the conventional state space model (and, thus,
conventional econometric methods developed for state space models), but using hypotheti-
cally reordered observations. In this paper, we use both motivations, hoping to appeal to an
audience of both Bayesians and state space modelers. But we stress that they are equivalent
to one another. We begin with a Bayesian motivation and use notation where y = (y1; ::; yT )

0,
� = (�01; ::; �

0
T )
0 and � = (�"; �v; �0)

0 denotes the other model parameters.
To de�ne a model we need the following distributions: p (yj�; �), p (�j�) and p (�). Our

models are all identical in p (yj�; �) which is de�ned by (1) and di¤er only in p (�j�).2 To
provide some motivation for our extension of the model given by (1) and (2), it is useful to
think in terms of p (�j�) which is the hierarchical prior de�ned by the state equation, (2).
This is: 2666664

�1
�2
...

�T�1
�T

3777775 j� � N
0BBBBBB@

2666664
�0
�0
...
�0
�0

3777775 ; �2v
26666664
1 1 � � � 1 1

1 2
. . . 2 2

...
...
. . .

...
...

1 2
. . . T � 1 T � 1

1 2 � � � T � 1 T

37777775

1CCCCCCA
2We also assume p (�) is identical in every model (ie., di¤erent orderings and distance functions) for the

same time series. Allowing for p (�) to di¤er across models for the same time series is an obvious extension
of our approach.
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One way of interpreting what we do in this paper is maintain the framework given
by (1) and (2) (and, thus, still use standard MCMC algorithms) but investigate ways of
parameterizing a general covariance matrix for the prior for the states. The most general
prior covariance matrix would be:

var

2666664
�1
�2
...

�T�1
�T

3777775 j� =
26666664

�211 �12 � � � �1T�1 �1T

�12 �222
. . . �2T�1 �2T

...
...

. . .
...

...

�1T�1 �2T�1
. . . �2T�1T�1 �T�1T

�1T �2T � � � �T�1T �2TT

37777775 :

Without further restrictions on this prior covariance matrix standard MCMC algorithms are
not available and the model would be over-parameterized. Hence, we need some restrictions.
A general way of expressing a wide class of restrictions is by introducing a sequence of
realizations of random variables z = (z1; ::; zT )

0 and replacing p (�j�) by p (�j�; z). A standard
example of such as approach arises if we use stochastic volatility to model the scaling of the
innovation in the state equation (see Stock and Watson 2007). In this case if fztg is the
realized value for the log stochastic volatility sequence we would have:

var

2666664
�1
�2
...

�T�1
�T

j�; z

3777775 = �2v
26666664

exp(z1) exp(z1) � � � exp(z1) exp(z1)

exp(z1) exp(z1 + z2)
. . . exp(z1 + z2) exp(z1 + z2)

...
...

. . .
...

...

exp(z1) exp(z1 + z2)
. . . exp(

PT�1
t=1 zt) exp(

PT�1
t=1 zt)

exp(z1) exp(z1 + z2) � � � exp(
PT�1

t=1 zt) exp(
PT

t=1 zt)

37777775 ;

and conditional on z standard algorithms can be used as this prior covariance matrix can
be expressed as a state equation with the innovation scaled by exp(zt=2). Now consider a
sequence of stochastic volatility where zs = 0 except at one time t: Then the prior variance
matrix would be:

var

2666664
�1
...
�t
...
�T

j�; zt

3777775 = �2v
2666664
1 � � � 1 � � � 1
...
. . .

...
. . .

...
1 � � � exp(zt) � � � exp(zt)
...
. . .

...
. . .

...
1 � � � exp(zt) � � � exp(zt)

3777775 :

This would de�ne a single break model with the break at time t with the only non-zero
innovation to the state equation at time t: To see this note that such an unconditional prior
covariance matrix implies conditional prior variances of the form:

var (�sj�s�1) = 0;
for s 6= t, but var (�tj�t�1) 6= 0.
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A general class of structures, of similar form to the above two examples, could be produced
by constructing a function over the time index and using this to scale the innovation in the
state equation. If we let d(t; t�1) � 0 be this scaling then we have a prior covariance matrix

var

2666664
�1
�2
...

�T�1
�T

j�; fzt = tg

3777775

= �2v

26666664

d2 (1; 0) d2(1; 0) � � � d2(1; 0) d2(1; 0)

d2 (1; 0) d2(1; 0) + d2 (2; 1)
. . . d2(1; 0) + d2 (2; 1) d2(1; 0) + d2 (2; 1)

...
...

. . .
...

...

d2 (1; 0) d2(1; 0) + d2 (2; 1)
. . .

PT�1
t=1 d

2(t; t� 1)
PT�1

t=1 d
2(t; t� 1)

d2 (1; 0) d2(1; 0) + d2 (2; 1) � � �
PT�1

t=1 d
2(t; t� 1)

PT
t=1 d

2(t; t� 1)

37777775
We call d(t; t� 1) the distance function and one of the features of our �exible parametric

model is to extend basic state space models such as (1) and (2) to allow for this. The
discussion above shows that, if d(t; t� 1) is equal to 1 for all time points we are back to the
original TVP model, if d(t; t� 1) is zero except at one point we have the single break model.
If we give d(t; t � 1) a �exible function form we can mimic the behavior of the stochastic
volatility model or multiple break models. In the next section, we will o¤er further discussion
on the �exibility that such an addition provides us with.
A second extension of our model relates to the hypothetical reordering of the data. Note

that p (�j�; z) does not have to be expressed in the standard time ordering. For example,
consider a non-decreasing sequence fzsg and associated distance function d(zz; zs�1) then a
valid prior covariance matrix is

var

2666664
�1
�2
...

�S�1
�S

j�; z; fzsg

3777775

= �2v

26666664

d2 (z1; z0) d2(z1; z0) � � � d2(z1; z0) d2(z1; z0)

d2 (z1; z0) d2(z1; z) + d
2 (z2; z1)

. . . d2(z1; z) + d
2 (z2; z1) d2(z1; z) + d

2 (z2; z1)
...

...
. . .

...
...

d2z1; z0 d2(z1; z) + d
2 (z2; z1)

. . .
PT�1

s=1 d
2(zs; zs�1)

PT�1
s=1 d

2(zs; zs�1)

d2 (z1; z0) d2(z1; z) + d
2 (z2; z1) � � �

PT�1
s=1 d

2(zs; zs�1)
PT

s=1 d
2(zs; zs�1)

37777775 :

At this stage, it is worth stressing that the previous material is intended to illustrate how
many Bayesian models can be de�ned if we begin with (1) and use a multivariate Normal
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prior for p (�j�; z) but then consider di¤erent covariance matrices for this prior. So far
this motivation has been purely Bayesian. But for the state space modeler, note that the
preceding prior covariance matrix is equivalent to that produced by a state equation of the
form:

�s = �s�1 + �vd (zs; zs�1) vs; (3)

where s indexes a reordering (in ascending order) of time according to the function of an
index variable zt (e.g. zt could be an observed exogenous variable such as a lagged dependent
variable). In the remainder of this paper, t will always be used as the natural time ordering
(i.e. t = 1; 2; ::; T ) and s will always denote a reordering according to an index variable. So,
for instance, if T = 3 and z1 = 0:02; z2 = 0:01 and z3 = 0:03, then t = 1; 2; 3 and s = 2; 1; 3.
We will let the T �1 parameter  de�ne the ordering of the data. For instance, in the simple
3 period example when zt is used to order the data we have  = (2; 1; 3)

0.
We also stress that this reordering notation applies to z so that zs and zs�1 will be adjacent

observations (e.g. if the index is lagged output growth, then zs�1 will have the next lowest
value of lagged output growth to zs). Di¤erent choices for  will de�ne di¤erent models.
Furthermore, we treat d = (d (z2; z1) ; d (z3; z2) ; ::; d (zT ; zT�1))

0 as a vector of parameters
(with hierarchical priors) and, thus, our methods allow for their data-based estimation.
Thus, from a Bayesian point of view, we can see that di¤erent priors for controlling para-

meter variation lead to a huge range of models and that these priors can be conceptualized as
arising from hypothetical reorderings of the data. From the point of view of the state space
modeler, we can see that di¤erent reorderings of the data and di¤erent distance functions
can be used to nest a wide range of common speci�cations. The following discussion will
make clear these points. In terms of computation, note that conditional on the ordering and
distance function we are back to the standard state space framework if we combine state
equation (3) with measurement equation occurring according to the time ordering s :

ys = �sxs + �""s: (4)

Thus, standard methods of posterior simulation can be used given the time ordering and
distance function. Further, using Bayesian modeling averaging one can combine the results
from models using di¤erent orderings and distance functions.
In order to further explain and motivate our models, we �rst consider the role played by

the distance function, then the role played by data reordering, before �nally combining both
aspects together.

2.1 The Role of the Distance Function

Consider �rst, the sorts of models which result if the data are in standard time series order.
In terms of our de�nitions, we have  = (1; :::; T )0, zt = t for t = 1; :::; T (i.e. the index
variable is already in ascending order and, thus, no reordering of the data is required to
de�ne an s). Thus, the model is:

yt = �tyt�1 + �""t; (5)
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where

�t = �t�1 + �vd (t; t� 1) vt: (6)

Three cases are immediately clear. First, a standard linear AR model is obtained if
d (t; t� 1) = 0 for all t. Second, a TVP model of the sort used by Cogley and Sargent
(2001) or Koop and Potter (2001) is obtained if d (t; t� 1) = 1 for all t. Thirdly, structural
break models also �t in this framework. For instance, if we let d (t; t� 1) = 1 if t = � and
d (t; t� 1) = 0 otherwise, then �1 = ::: = ���1 and �� = ::: = �T and we have a model with
a single structural break at � . By treating � as an unknown parameter, the breakpoint can
occur at an unknown point in time. A second breakpoint of unknown timing can be obtained
by de�ning two breakpoints as � 1 and � 2 (where � 2 > � 1) and letting d (t; t� 1) = 1 if t = � 1
and d (t; t� 1) = �2 if t = � 2 and d (t; t� 1) = 0 for all other values of t. Models with more
than two structural breaks can be obtained by extending this distance function de�nition in
the obvious manner.
In addition to these special cases, by choosing �exible functional forms for the distance

function, we can obtain a range of values for the innovation variance scaling which allow for
smoothing of various sorts. Such a model would be �nonparametric in spirit�and, hence,
we occasionally use this terminology below (although we stress that our model is always
a parametric one). In our approach, it is possible to select distance functions which are
analogous to kernels used in nonparametric smoothing. Related to this, it is worth noting
that, in the context of state space modeling with irregularly spaced time series data, Harvey
(1989) develops �ltering and smoothing methods and Harvey and Koopman (2000) discusses
their relationship to nonparametric regression methods (and we further elaborate on these
below). With irregularly space data, the distance between observations matters in Harvey�s
derivations and our distance function plays the an analogous role. See also Koop and Poirier
(2004) for related Bayesian discussion.
Traditionally, the structural break literature has focussed on two extremes. One extreme

assumes there a small number of breaks (and changes in coe¢ cients are large and possibly
heterogeneous), the other assumes that breaks occur in every time period (but changes in
coe¢ cients are small and homogeneous). Recently, through work such as Giordani and Kohn
(2008) and Koop and Potter (2007), there is a growing interest in structural break models
lying between these extremes. Our distance function allows for this. As shown above, it is
even possible in our approach to assume the innovation in the state equation has stochastic
volatility (see Stock and Watson, 2007). The point we are making here is that, even without
reordering the data, by suitably re-de�ning the distance function we can cover all of these
possibilities in a single modeling framework. Furthermore, instead of making a single choice
of models within this huge set, we can choose a parametric form for d (t; t� 1) and let the
data tell us its form.
In our �Further Discussion� section below (subsequent to our discussion of the role of

hypothetical data reordering), we provide some theoretical derivations which provide ad-
ditional insight to the role of the distance function and its relationship to nonparametric
regression.

7
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2.2 The Role of Hypothetical Data Reordering

By allowing for a hypothetical reordering of the data, we can accommodate various nonlinear
time series models within a standard state space algorithm. It has long been recognized that
many common nonlinear time series models are equivalent in a statistical estimation sense
to models with structural breaks if the data is suitably reordered (e.g. Tsay, 1989). At
a high level of generality, the idea that, by imagining reordering the data, we can de�ne
di¤erent models can be explained as follows.3 Let yt = (y1; ::; yt)

0 denote the data through
time t, zt = (z1; ::; zT )

0 be an exogenous index variable4, xt = (x1; ::; xT )
0 be the exogenous

variables in the measurement equation5 and �t = (�1; ::; �t)
0. Then, extending our previous

notation and allowing for the role of our index variables, our models all require speci�cation
of p

�
yT j�T ; zT ; xT ; �

�
, p
�
�T jzT ; xT ; �

�
and p (�) where � includes all other parameters in the

model, including any which enter the distance function. Conventional state space models
assume that p

�
yT j�T ; zT ; xT ; �

�
can be decomposed as

p(yT j�T ; zT ; xT ) =
TY
t=1

p (ytj�t; zt; xt; �) :

If we also assume p
�
�T jzT ; xT ; �

�
= p

�
�T jzT ; �

�
is de�ned by state equation (2), then stan-

dard algorithms for posterior simulation (e.g. involving the Kalman �lter) exist for such
models. But the right hand side of this equation is a product and, thus, terms can be re-
ordered in any manner without a¤ecting the result. Hence, if s indexes a reordering of the
data as de�ned below equation (3), then the preceding equation will be exactly the same
as:6

p(yT j�T ; zT ; xT ) =
TY
s=1

p (ysjxs; �s; zs; �) :

Assume p
�
�T jzT ; �

�
is de�ned by state equation �s = �s�1+ vs. It follows immediately that

if we reorder the data and then use standard methods of posterior simulation for state space
models using this reordered data, we will be carrying out valid posterior inference for the
model de�ned by (1) with prior given by �s = �s�1 + vs. This is uncontroversial. The only
questions are whether the priors (and, thus, models) motivated through such hypothetical
data reorderings are empirically-interesting ones and how they relate to other nonlinear time
series models. In the following paragraphs we discuss these questions.

3Obviously in some cases it is nonsensical to imagine data re-orderings. For example, consider a time
series with varies in a nonlinear manner around a deterministic time trend. Any imagined data reorderings
for di¤erent nonlinear models would require the data to be detrended �rst.

4As discussed in the next section, they can also be realizations of latent variables produced by a posterior
simulator.

5The can be lagged dependent variables.
6To avoid confusion, note that it is often the case that xt contains lagged dependent variables. For

instance, in the AR(1) case yt depends on yt�1. When we are using reordered data then ys depends on xs.
This still implies ys depends on its lag (in natural time ordering). It does not imply that ys depends on its
next lowest neighbor in the ordering.
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To make things concrete, return to the general speci�cation given in (3) and (4) and
suppose yt is real GDP growth and xt = zt = yt�1. Then  orders the data based on last
period�s GDP growth. If we de�ne the distance function as d (zs; zs�1) = 1 if zs�1 < � and
zs � � , and d (zs; zs�1) = 0 otherwise, then we obtain a two-regime TAR model (e.g. Potter,
1995):

yt = �1yt�1 + �""t if yt�1 < �
yt = �2yt�1 + �""t if yt�1 � � :

Multiple regime TAR models involve the obvious extension of this distance function de�ni-
tion.
An important issue with threshold models is the choice of the index variable, z. In the

standard implementation of the TAR model, the index variable is a lag of the dependent
variable. By de�ning zt to be other functions of lagged dependent variables (or other exoge-
nous variables), we can get a wide range of TAR models as, e.g., in Koop and Potter (1999).
This is an avenue we pursue in our empirical work.
These examples give only a �avor of the wide variety of behaviors allowed by this �exible

parametric model. Indeed, if  were to be totally unrestricted and we consider a �exible form
for the distance functions then this class of models would be so �exible as to be virtually
equivalent to a nonparametric model. However, if  is left completely unrestricted, then the
number of con�gurations it could take is T ! (i.e. there are T ! ways of reordering the data). For
most macroeconomic data sets, T ! is simply too large to allow for exhaustive consideration
of all possible hypothetical reorderings of the data.7 Accordingly, in the empirical work done
in this paper we restrict the set of allowable con�gurations for :

2.3 Cases Involving Latent Variables

In the previous sections we assumed that zt is an observed variable such as a lagged dependent
variable or an exogenous variable (and our empirical work will always make this assumption).
However, it is worth digressing brie�y to emphasize that our approach can be used when
zt is a latent variable and some very interesting models result. Furthermore, we show how
adding new latent variables can extend our model to be similar to other popular models.
Consider �rst some structural break models. The structural break framework described

above involves a �xed (known) number of structural breaks. That is, we de�ne a distance
function for each possible number of breaks (e.g. one distance function de�nes a one break
model, another de�nes a two break model, etc.). If the number of breaks is unknown, we
could simply do Bayesian model averaging over models with di¤ering numbers of breaks.

7The issues raised by having T ! con�gurations of  are essentially the same as those raised in a Bayesian
model averaging or selection exercise involving regressions where the number of potential explanatory vari-
ables, K; is large and the number of models is 2K . In such cases, simulation algorithms over model space
(see, e.g., Hoeting, Madigan, Raftery and Volinsky, 1999 or Chipman, George and McCulloch, 2001) can be
used which do not require exhaustive evaluation of every model. In some cases, these might be useful for the
present class of models. However, for values of T greater than approximately 20 the computational demands
of such simulation algorithms are currently high.

9



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

However, for reasons discussed in Koop and Potter (2007), it can be desirable to work with a
model which does not impose a �xed number of breakpoints. This can be done by adopting
a hierarchical prior for d (t; t� 1) of a speci�c sort. This brings us into the family of models
developed in McCulloch and Tsay (1993), Gerlach, Carter and Kohn (2000) and Giordani
and Kohn (2008). As a simple example, we can introduce a sequence of latent variables,fstg,
where st 2 f0; 1g, and let d(t; t�1; st) � std (t; t� 1) for t = 1; :::; T be unknown parameters
and use a hierarchical Bernoulli prior distribution for st:

p (st = 1) = p;

p (st = 0) = 1� p

where p is an unknown parameter. This is the model of McCulloch and Tsay (1993) if
d (t; t� 1) = 1. Note that this allows for a break to occur in every period with probability p
and, thus, the number of breaks can be estimated in the data. This model can be extended to
allow for p to change if a break occurs, p to depend on exogenous variables, etc. Furthermore,
in more general models st can be a vector (e.g. it can have two components, one controlling
breaks in coe¢ cients and the other in error variances).8 As long as the hierarchical prior
for st has a Markov structure (with independence being a special case of this), the e¢ cient
algorithms of Gerlach, Carter and Kohn (2000) and Giordani and Kohn (2008) can be used
to obtain posterior draws of the sequence fstg.
Structural break models can also be expressed directly in terms of latent variables zt

which can take on a range of integer values denoting the di¤erent regimes in the data. So,
for instance, when T = 5 then zT = (1; 1; 1; 2; 2)0 denotes a structural break after t = 3. The
structural break model of Chib (1998) involves latent variables of this form with restrictions
on the matrix of Markov transition probabilities:

p (zt = jjzt�1 = j � 1) = pj�1;

p (zt < j � 1jzt�1 = j � 1) = 0;

p (zt > jjzt�1 = j � 1) = 0:

Note that the latent variables, zT , de�ned in this way are always in non-descending order
and d (zt; zt�1) is automatically either zero (when no break occurs) or one (when a break
occurs). Heterogeneous break sizes can be obtained in a similar fashion as described above
for the simple structural break model (see the discussion after equation 6).
The previous discussion suggests that we can also obtain a Markov switching model by

using an unrestricted matrix of Markov transition probabilities. That is, if zt can take on
the integer values f1; ::;Mg denoting M regimes in the data and the matrix of transition
probabilities has the usual form based on:

p (zt = jjzt�1 = i) = pi;j
8An extension we do not consider is to a structural break model where only some of the conditional mean

parameters change as in Levin and Piger (2008). This could be captured in our approach by modifying the
measurement equation to allow for some explanatory variables to have constant coe¢ cients.
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then we obtain the Markov switching model. In terms of an MCMC algorithm, treatment of
this case proceeds as follows. Conditional on a draw of zT , we imagine reordering all the data
according to this variable, and then take a draw of the states and other model parameters as
described previously. Note that, once the data is imagined �reordered�we have d (zs; zs�1)
being either zero (when no regime switch occurs) or one (when a regime switch occurs).
Furthermore, the argument made above proves that this is a valid way of drawing all model
parameters (conditional on zT ). The MCMC algorithm is completed by drawing from zT

conditional on the model parameters. But (if the data and zT is placed back in natural time
ordering) then standard methods for drawing from Markov switching models can be used
(see, e.g., Chib, 1996).

2.4 Further Discussion

In this section, we investigate further the types of nonlinear time series models we can obtain
by combining hypothetical reorderings with distance functions as well as providing some
theoretical properties of our approach. Note that ours is a hierarchical modeling approach
that does not allow us to directly give a simple analytical representation of the properties of
our nonlinear model (i.e. we cannot integrate out � analytically).9 However, if we focus on
the lowest level of the hierarchy (i.e. provide results conditional on �), then we can provide
a number of useful illustrations of the �exibility of our approach in terms of what it implies
for the conditional expectation and variance functions. But we do stress that our approach
involves averaging over a range of possible conditional expectation and variance functions
(i.e. integrating out �).
The lowest level of our hierarchy involves p

�
�T jzT ; �

�
which provides a prior for any

period (say �s) conditional on a choice of distance function, ordering and all unknown para-
meters. De�ne the information set I�s to include all information other than the values of �s
and ys. Then we have:

E[ysjI�s] = E[�sjI�s]xs:
What is our model for conditional expectation function E[�sjI�s]xs? In our approach, we
assume that it is related to the value of a single index zs. Thus unlike some very general
nonparametric methods or the random �eld approach of Hamilton (2001), we limit ourselves
to indices of one dimension. But such single index restrictions are often used to reduce the
curse of dimensionality in many nonparametric approaches (and it is not be too di¢ cult to
extend our approach to more than one dimension). And it is important to stress that a
strength of our approach is that we examine a wide range of choices for the single index.
Now let us consider adjacent values of the single index around zs. Call these z < zs and

z > zs and, corresponding to these, � and �: According to our model, we have the following
two relationships:

�s = � + �vd(zs; z)vt;

� = �s + �vd(z; zs)v;

9We de�ne nonlinear as any departure from a linear model with time-invariant parameters.
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where vs and v are independent standard Normal random variables. Thus, our model says
that �s has a Normal distribution with mean

�
d(zs;z)2

+ �
d(z;zs)2

1
d(zs;z)2

+ 1
d(z;zs)2

and variance
�2v

1
d(zs;z)2

+ 1
d(z;zs)2

:

From these equations, it can be seen how �s is a weighted average of adjacent observations.
These weights can be examined for special cases to see how our approach can nest popular
regime-switching and structural break models.
If d is only non-zero at only one point (say z�) we have (depending on the de�nition of z)

either a standard single structural break model (if zs is simply time) or a two-regime threshold
model/Markov switching model (if z is an appropriately de�ned time series variable, such as
a lagged dependent variable). To be precise, it can be seen that:

1. if zs; z; z < z� or zs; z; z > z� � = �s = �:

2. if z < zs < z� � z; �s = �:

3. if z � z� < zs < z; �s = �:

A second case of interest is when d is positive and constant across [z; z]. In this case, the
mean of �s is the simple average of �; �: This is very similar to the model of Hamilton (2001)
restricted to one dimension. However, unlike Hamilton, our methods, by the use of a single
index, directly produce an estimate of a model with a certain class (e.g. TAR, TVP, etc.)
and combine the results over di¤erent classes of model (i.e. we will average over di¤erent
choices of the single index z): Hamilton (2001) uses a frequentist testing approach to assess
the presence of nonlinearity. This leads to all the usual sequential testing problems if there
is more than one nonlinear speci�cation one is interested in testing. Note that Hamilton�s
approach requires choosing the variables that might produce the nonlinearity. As is common
in Bayesian work, we can avoid testing and instead do model averaging. The empirical
application we give below (involving the oil price) shows the advantages of our approach
in this regard. In it, there are many possible index variables that could be associated with
nonlinearity. Doing many sequential tests, involving each of these variables, could run into
pre-testing problems.
With a constant distance function, we have the following cases:

1. If zs is simply time then we have the standard TVP model.

2. If zs is another time series variable then we have a nonlinear time series model. The
model could be Markov switching or threshold type, but with the assumption of a
constant conditional expectation function in each regime is relaxed.

12
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If d is positive and varies over [z; z] then the mean of �s depends, via the distance
function, on the weights on �; � . But we stress that, unlike some nonparametric approaches,
these weights are estimated. That is, so far we have focussed on the lowest level of the
hierarchical model (i.e. the formula above are conditional on the distance function and
other parameters in �). Higher up the hierarchy, parameters in the distance function are
estimated (or integrated out). Thus we can capture cases where the data suggests the
distance function is close to one of the restricted forms described common in the nonlinear
time series literature. We have the following cases:

1. If z is time we have new type of time-varying parameter model with heterogeneous
innovations. For example, d could include information on position of likely breaks.
This model complements some new approaches to using heterogenous innovations in
the transition equation of TVP models (see Cogley and Sargent, 2007, Stock and
Watson, 2007 and Koop and Potter, 2007).

2. If d is not constant and z is a lag of the time series then we have a new type of nonlinear
time series model. The details of the shape of the distance function will determine the
type of nonlinearity.

Our model is �exible at this lowest level of hierarchy in the sense of the frequentist work
of Hamilton (2001) on random �elds because it can adapt to the observed data at the time
point s by combining this prior view of �s with the observed data. The extent of updating in
Bayes rule depends on precision of the prior for �s versus 1=�� : And the full model (including
all levels of the hierarchy) is more �exible still.
We stress that we allow the conditional variance function to have a �exible form and allow

it to be separately identi�ed from the conditional mean. Such generality is not available in
the approach of Hamilton (2001) or other related nonparametric work. We can achieve this
generality by our use of a single index restriction to limit dimensionality (although, of course,
we can use a di¤erent single index for the conditional mean and conditional variance).
Finally, it is worth making clear the relationship between our methods and methods of

nonparametric signal extraction. Harvey and Koopman (2000), Section 4, develop the links
between state space methods, nonparametric methods and splines. The focus there is on the
local linear trend model:

yt = �t + �""1t
�t+1 = �t + �t + ��""2t
�t+1 = �t + �""3t

;

where "jt for j = 1; 2; 3 are independent white noise with mean zero and variance one. When
no hypothetical reordering of the data is used, our model is in some ways more �exible and in
one way more restrictive than the local linear trend model. With regards to the latter point,
given our focus on TVP regression models which typically involve random walk evolution of
coe¢ cients, we do not add the third state equation and so implicitly have  = 0 (although it
would be trivial for us to add this to our models). For the case where we have no explanatory
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variables in our measurement equation, but only an intercept, the discussion of Harvey and
Koopman (2000) is of direct applicability (with  = 0). As one example of the type of result
they give is that, in the case where  = 0, �2 plays a similar role to a kernel bandwidth. Such
results will hold in our model when the no hypothetical reordering of the data is entertained
and can be used to show the role played by our distance function. As another example, they
discuss the equivalence10 of the local linear trend model and the cubic spline. There is no
exact equivalence with our methods here since we have  = 0, but we could easily extend
our model allow for such cubic spline behavior. These relationships (and many more) are
further developed in, among many others, Durbin and Koopman (2001), Silverman (1985)
and Wecker and Ansley (1983).
The preceding paragraph establishes that, for a simpli�ed version of our model (i.e. with

only an intercept in the measurement equation) and the data in natural time ordering, we
can draw on a large literature linking state space models and nonparametric signal extraction
methods to derive further properties of our approach. This material is also useful in under-
standing the properties of our approach when the data is not in natural time ordering but
instead is ordered according to zt. That is, the conventional nonparametric signal extraction
approach can be interpreted as assuming a model of the form yt = f (t) + "t where f (t) is
the unknown trend that the researcher is seeking to estimate. Papers such as Harvey and
Koopman (2000) discuss how state space methods estimate f (t) and the resulting properties
of the estimator. When the data is ordered according to zt (and zt are equally spaced), the
estimator and its properties will take exactly the same form except as relating to the model
yt = f (zt) + "t. For instance, results relating to how the local level model produces an
estimated trend which smooths observations which are neighbors in time translate directly
to results on how it smooths observations which are neighbors in terms of zt. To allow for
the fact that zt are typically not spaced equally, our approach allows the distance between
neighboring observations of zt to enter the state equation error variance. By simply using
this speci�cation for the state equation error variance (or the implied signal to noise ratio)
in the relevant formulae drawn from the literature (e.g. for how neighboring observations
are weighted in a signal extraction exercise), the reader can easily derive the properties of
our models as seen from the viewpoint of the signal-extraction literature.
Table 1 provides an incomplete summary of the relationship between our modeling frame-

work and the existing literature. Given our time series focus, we write this table assuming
that the explanatory variables are lags of the dependent variable (i.e. xt contains lags of
the dependent variable). However, we stress that xt could be any exogenous explanatory
variables and, hence, our general framework holds for other regression-type models with
regime-switches or structural breaks.

10Formally, this result requires the model to allow for "2t and "3t to be correlated.
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Table 1: Links Between Our Framework and Popular Nonlinear Time Series Models
Model Distance Function Index Variable
AR(p) 0 zt = t
TVP 1 zt = t
Structural Break
1 Break

= 1 at time �
= 0 otherwise

zt = t

Structural Break
K Breaks

= 1 at � 1; ::; �K
= 0 otherwise

zt = t

Structural Break
Unknown # Breaks

= 1 with prob p
= 0 otherwise

zt = t

Chib (1998) Structural
K Breaks Model

= 1 with restricted Markov transition probs.
= 0 otherwise

zt = t

Various nonparametric
TVP models

Smooth function (e.g. kernel) zt = t

Standard TAR
= 1 if zs�1 < � and zs � �
= 0 otherwise

zt = yt�d

Other TARs
= 1 if zs�1 < � and zs � �
= 0 otherwise

zt exogenous var.
or functions of lags

Multiple Regime
TARs

= 1 if zs�1 < � 1 and zs � � 1
= 1 if zs�1 < � 2 and zs � � 2
etc.

zt exogenous var.
or functions of lags

STAR11 Smooth function zt = yt�d
Multiple Regime STAR Smooth function with multiple modes zt = yt�d

Markov switching model
= 1 with restricted Markov transition probs.
= 0 otherwise

zt = t

Various nonparametric
time series models

Smooth function (e.g. kernel)
zt exogenous var.
or functions of lags

2.5 Specifying the Distance Function

The modeling framework so far holds for any distance function, although we have given a
few speci�c examples that may be of empirical importance. In this section, we propose a
particular implementation which should be �exible enough to let the data speak, but also be
capable of accommodating the types of behaviors commonly observed with macroeconomic
data. A convenient way of choosing the distance function is to think of it as being derived
from a cumulative distribution function (CDF) on zs. Then we have

d(zs; zs�1) / F (zs)� F (zs�1); (7)

for some CDF F (�). If F (�) is based on a Uniform distribution (over the interval [z1; zT ])
then the distance function reduces to d (zs; zs�1) = zs � zs�1. In this paper, we focus on
the Normal distribution (with mean and variance estimated from the data using Bayesian

11This relationship is approximate and is illustrated in the arti�cial data section.
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methods). Note that the Normal is quite �exible when used in this context. The Normal can
(by choosing a very large variance) approximate closely the d (zs; zs�1) = zs � zs�1 distance
function. But it also can (by setting the mean to � and choosing a very small variance)
approximate closely the TAR distance function. Choosing the mean of the Normal in this case
is, thus, analogous to estimating the threshold parameter in a TAR model.12 Intermediate
values of the variance of the Normal would allow for a smooth change in dynamics around
a threshold determined by the mean of the Normal (e.g. this would share some similarities
with a smooth transition autoregressive or STAR model). The advantage of our approach
is that the precise shape of the distance function would be estimated from the data and not
imposed at the outset by choosing to estimate, e.g., a TAR or STAR model.

3 Bayesian Inference

The previous discussion focussed on a simple state space model with homoskedastic errors.
In our empirical work we begin with a TVP model of the form:

yt = X
0
t�t + "t; (8)

where yt is a scalar and Xt is a vector with k elements (e.g. in our univariate application to
real GDP growth, Xt includes a constant plus p lags of yt). The model�s coe¢ cients evolve
according to:

�t = �t�1 + vt (9)

where vt � N (0; Q). The error in the measurement equation is assumed to exhibit stochastic
volatility. That is,

"t = �t exp

�
1

2
�t

�
(10)

where �t � N (0; 1),

�t = �t�1 + �t (11)

and �t � N
�
0; �2�

�
. The errors, �t; vt and �t, are independent at all leads and lags and are

independent of one another. Bayesian inference in this state space model can be done in a
straightforward fashion using standard results. In our empirical work, we use the methods
of Durbin and Koopman (2002) to draw from the posterior of � = (�00; ::; �

0
T )
0 (conditional

on � = (�0; ::; �T )
0and Q).13 The method of Kim, Shephard and Chib (1998) is used to

12Multiple regime models can be handled through mixtures of Normals. For example, an M regime TAR
would require a mixture of M+1 Normals with the mixture weights also being estimated parameters. In this
paper, we do not investigate this extension although it is conceptually and computationally straightforward.
13Note that we use the algorithm on Durbin and Koopman (2002) to supply draws of �1; ::; �T . The initial

condition, �0, can be treated as a regression e¤ect and drawn (conditional on �1; ::; �T ) using standard results
for the Normal linear regression model.
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draw from the posterior of � (conditional on � and �2�). To be precise, we use what they
call their mixture sampler (see Section 3.3 of their paper). Kim, Shephard and Chib (1998)
provide convincing evidence that this algorithm, since it draws directly from the posterior
conditional for �, is much more e¢ cient than single move samplers.
Note that, conditional on � and �, the state equations reduce to simpli�ed variants of

linear regression models. Thus, conditional on draws of �, the posterior for Q�1 takes the
usual Wishart form (see, e.g., Koop, 2003, pages 140-141) and conditional on � the posterior
of ��2� takes the usual Gamma form (see, e.g., Koop, 2003, pages 61-62).
In summary, standard methods can be used to set up an MCMC algorithm which se-

quentially draws from p
�
�jData; �;Q; �2�

�
, p
�
�jData; �;Q; �2�

�
, p
�
Q�1jData; �; �; �2�

�
and

p
�
��2� jData; �; �;Q

�
.14 The results of Fernandez, Ley and Steel (1997) imply that proper

priors for either of the error variances or the initial conditions in state equations are required
in order to obtain proper posteriors.15 In our empirical work, we use weakly informative
priors.
The previous discussion described an MCMC algorithm for a TVP model with stochastic

volatility. However, we want to extend this model to allow for di¤erent hypothetical orderings
and distance functions. Thus, analogously to (3) and (4), we de�ne a variant of (8) and (9)
which allows for reorderings of the data according to an index variable, zt; and allows for
the error variance in the transition equation to depend on the distance between observations
(ordered according to the index variable). That is, our model is

ys = X
0
s�s + "s; (12)

where

�s = �s�1 + vs (13)

and vs � N
h
0;
p
d (zs; zs�1)Q

i
. The error in the measurement equation has the form,

"s = �s exp

�
1

2
�s

�
(14)

where

�s = �s�1 + �s (15)

and �s � N
h
0;
p
d (zs; zs�1)�

2
�

i
. Additional assumptions about the errors are as described

above (see equations 8 through 11 and surrounding discussion). Other de�nitions are as after
(4). Most importantly, remember that s indexes a hypothetical reordering of time according
to the index variable, zt, when z1; ::zT are placed in ascending order. We use s subscripts

14Here (and throughout this paper) we have written these out as the full posterior conditionals. However,
some of them do not depend on all the conditioning arguments. For instance, p

�
Q�1jData; �; �; �2�

�
does

not depend on �2� and we could have written this conditional posterior as p
�
Q�1jData; �; �

�
.

15The non-Bayesian equivalent of this need for prior information is the necessity of initializing the Kalman
�lter.
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to denote the reordering so that zs and zs�1 are adjacent observations. We introduce a
parameter vector  to denote how the index variable orders the data, the � th element of  is
the rank of z� in the ascending list of ordered data . d (zs; zs�1) is a (non-negative) distance
function measuring the distance between zs and zs�1.
In some applications, it may be desirable to use a di¤erent hypothetical ordering and

distance function for the conditional mean coe¢ cients than the conditional variances. This
is conceptually straightforward and is implemented in our second empirical example below.
Note that, if we consider a large number of di¤erent hypothetical pairs of orderings for both
the conditional mean and conditional variance, the computational demands would increase
greatly. As we shall explain in the empirical section, in many cases involving macroeconomic
data one could focus on the case where the modeling of conditional variance does not require
any hypothetical reorderings.
We use a distance function based on Normal CDFs (see equation 7). If we let � (zs;�; �2d)

be the CDF of the N (�; �2d) evaluated at the point zs, then we write the distance function
as:

d(zs; zs�1) / �(zs;�; �2d)� �(zs�1;�; �2d): (16)

Our MCMC algorithm involves sequentially drawing from p
�
�jData; �;Q; �2�; �; �2d; 

�
,

p
�
�jData; �;Q; �2�; �; �2d; 

�
, p
�
Q�1jData; �; �; �2�; �; �2d; 

�
, p
�
��2� jData; �; �; �2�; �; �2d; 

�
,

p
�
�jData; �; �;Q; �2�; �2d; 

�
, p
�
�2djData; �; �;Q; �2�; �; 

�
and p

�
jData; �; �;Q; �2�; �; �2d

�
.

The �rst four of these posterior conditional distributions are standard (see the discussion
surrounding the model de�ned by equations 8 through 11). Although note that some minor
modi�cations of the algorithm of Kim, Shephard and Chib (1998) are required to draw from
� due to the distance function entering the distribution of �s. But these modi�cations are
trivial since, by dividing (15) by

p
d (zs; zs�1) we obtain a state equation for volatilities that

is in the same format as Kim, Shephard and Chib (1998). The �nal three of these posterior
conditionals we discuss here.
For p (�jData; �; �;Q; �2d; )and p (�2djData; �; �;Q; �; ) we use Random Walk Chain

Metropolis-Hastings algorithms (see, e.g., Chib and Greenberg, 1995). To be precise, if
p (�) is the prior, Bayes theorem implies

p
�
�jData; �; �;Q; �2d; �2�; 

�
/ p

�
Data; �; �j�; �2�; Q; �2d; 

�
p (�) (17)

/ p
�
Dataj�; �; �; �2�; Q; �2d; 

�
p
�
�; �j�; �; �2�; Q; �2d; 

�
p (�)

/ p
�
�; �j�; �2�; Q; �2d; 

�
p (�) ;

where the last line arises since, conditional on � and �, the data provides no additional
information about �. Thus, to evaluate (17) at a point we need only evaluate p (�; �j�; ),
which by (13) and (15) is Normal, and the prior, p (�). In our empirical work, we use a
Normal prior and thus � � N

�
�; V �

�
.

The Random Walk Chain Metropolis-Hastings algorithm generates candidate draws, ��,
according to:

�� = �(r�1) + �; (18)
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where (r � 1) superscripts (such as �(r�1)) denote the (r � 1)th draw from the algorithm and
� is the increment random variable. We let � � N (0; c) and choose c to yield an average
acceptance probability of roughly 0:50. Candidate draws are accepted with probability:

A
�
�(r�1); ��

�
= min

24 p
�
��j�(r�1); �(r�1); Q(r�1); �2(r�1)d ; �

2(r�1)
� ; (r�1)

�
p
�
�(r�1)j�(r�1); �(r�1); Q(r�1); �2(r�1)d ; �

2(r�1)
� ; (r�1)

� ; 1
35 ; (19)

which can be evaluated using (17).
The next block in the MCMC algorithm involves a Random Walk Chain Metropolis-

Hastings algorithm for �2d. Since �
2
d is a positive random variable, we parameterize in terms of

log (�2d). Thus, the RandomWalk ChainMetropolis-Hastings algorithm proceeds analogously
to (18) and (19), the only di¤erence is that we replace (18) by:

log
�
�2�d
�
= log

�
�
2(r�1)
d

�
+ �.

The acceptance probability is of a similar form as the algorithm for � except that (17), (18)
and (19) are replaced with formula involving log (�2d) instead of �. To be precise, using
similar steps as in (17) we have:

p
�
�2djData; �; �;Q; �; �2�; 

�
/ p

�
�; �j�; �2�; Q; �2d; 

�
p
�
�2d
�
; (20)

where we take the prior, p
�
��2d

�
, to be G

�
�
d
; �d

�
where this denotes the Gamma distrib-

ution with mean �
d
and degrees of freedom �d. The change-of-variable term can be used

to p
�
ln (�2d) jData; �; �;Q; �; �2�; 

�
which involves the multiplication of (20) by the usual

Jacobian term.
Finally,  can be treated in several ways.  can be interpreted as a model indicator

and, thus, any of the standard approaches for calculating posterior model probabilities (or
averaging across models) can be employed. If the number of con�gurations  can take is fairly
small, then the marginal likelihood can be calculated for each model using standard methods
based on MCMC algorithms (e.g. Chib and Jeliazkov, 2001 or Gelfand and Dey, 1994). In
terms of the notation of this paper, such an approach can be used to directly evaluate
p (jData) (as opposed to drawing from p

�
jData; �; �;Q; �2�; �; �2d

�
). Alternatively, if the

computational cost of these methods of marginal likelihood calculation is high, then the
researcher can use various approximations for the marginal likelihood (e.g. the Bayesian
information criterion or the Laplace approximation of Tierney and Kadane, 1986). Yet
another alternative is to use an algorithm which draws from model and parameter space
jointly (i.e. in our context, this means drawing directly from p

�
jData; �; �;Q; �2�; �; �2d

�
).

Examples of such algorithms include Carlin and Chib (1995) and Green (1995). Carlin and
Louis (2000) chapter 6 o¤ers a useful overview of such algorithms. In this paper, we use
simply using posterior expectation of the Bayesian information criterion to approximate the
log of the marginal likelihood in each model. Note that, conditional on , �; � and �2d
(parameters which can be integrated out in the MCMC algorithm) our models are state
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space models and, thus, the prediction error decomposition form for the likelihood function
(see, e.g., Harvey, 1993, page 91) allows for its easy evaluation using output from the Kalman
�lter.
In our empirical work with a TVP extension of an AR(p) model (one of our empirical

exercises also includes a covariate pt and its lags), we restrict the possible con�gurations of
:

�  = (1; 2; 3; ::; T )0, (i.e. zt = t)

� data hypothetically ordered according to the jth lag of the dependent variable or (where
relevant) other covariates (i.e. zt = yt�j and zt = pt�j) for j = 1; ::; p.

� data hypothetically ordered to average of the lagged dependent variable or (where
relevant) covariates over the last p periods (i.e. zt =

Pp
j=1 yt�j
p

and zt =
Pp
j=1 pt�j
p

).

Thus, the number of possible choices for the index variable is 2p for our �rst empirical
exercise and 4p� 1 in our second empirical exercise (involving the additional covariate). Of
course, in another empirical exercise other sets of con�gurations would be possible (and if
the number of observations is small, the researcher may even wish to leave  unrestricted).

4 Empirical Work

4.1 The Prior

In our work with arti�cial and real data a prior is required. Most of the parameters in
our set of models are familiar ones in the time varying parameter and stochastic volatility
literature (e.g. initial AR coe¢ cients and error variance) and we will just use standard
weakly informative priors for these. Of course, in more substantive empirical exercises,
the researcher may wish to use noninformative priors, carry out a prior sensitivity analysis
and/or adopt an objective prior approach (e.g. the training sample approach of O�Hagan,
1995). However, our distance function is new and so it is worthwhile to talk about its prior.
This also allows us to understand the properties of the distance function.
Our distance function is given in (16) which depends on the parameters � and ��2d . Any

prior is possible for these parameters and, particularly as we are using a Metropolis-Hastings
algorithm, the researcher is unrestricted in prior choice. Here we assume the prior for � to
be N

�
�; V �

�
and the prior for ��2d to be G

�
�
d
; �d

�
. Intuitively, by shifting � around we can

accommodate larger coe¢ cient shifts in the region near �. Small values of �2d are consistent
with rapid changes in coe¢ cients in the region near �, whereas larger values of �2d are
consistent with gradual evolution of coe¢ cients (i.e. approaching a standard TVP model).
In most cases, it will be desirable to have a prior which allows for all these possibilities. In
all our empirical work below, we set � = 0; V � = 0:5; �d = 5 and �d = 5. In the remainder
of this subsection, we will discuss the implications of these choices. Remember that �

d
is
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the mean of the precision, ��2d , not the variance and, hence, this prior is allocating a great
deal of weight to values of �2d less than one.
The distance function depends not only on � and ��2d , but also on zs and zs�1. In this

subsection, we take zt = t for t = 1; :::; T . To aid in interpretation, we always standardize our
variables so that they have mean zero and standard deviation one. This means, in particular,
that our index variable will typically have almost all of its observations in the interval [�2; 2].
Furthermore, our distance function is standardized so as to have mean 1.16 Hence, we have:

d(zs; zs�1) =
�(zs;�; �

2
d)� �(zs�1;�; �2d):

1
T

PT
i=1 [�(zi;�; �

2
d)� �(zi�1;�; �2d)] :

(21)

The upper left-hand panel of Figure 1 presents the prior mean of the distance function
for every value of zs. This can be seen to have an inverted-U shape but be relatively �at
(i.e. distance between observations in the middle of the sample is less than four times as
big as distance function at the very beginning or end of sample). However, this prior mean
averages over many values for the parameters. The prior standard deviations accompanying
these prior mean are roughly one, suggesting that wide deviations from the prior mean are
possible.
The remaining three panels of Figure 1 plot three particular distance functions arising

from speci�c values of � and �2d. In particular, we have constructed the distance function
for: i) � = �0:5 and �2d = 0:01, ii) � = 1:6 and �2d = 0:5 and iii) � = 0 and �2d = 2.
Note that all of these parameter con�gurations are in areas of appreciable prior probability
using our prior. The upper right-hand panel of Figure 1 shows how our parametric form
for the distance function can accommodate an abrupt break in the �rst half of the sample.
Note that, away from the mode, the distance function falls away to virtually zero (indicating
constancy of coe¢ cients) very quickly. The lower right-hand panel of Figure 1 indicates that
quite �at distance functions can be accommodated (consistent with a TVP model). The
lower left-hand panel serves to illustrate that yet other types of behavior are consistent with
our prior. In this case, we have a mode at the end of the sample, indicating increasing
volatility in coe¢ cients over time.
In sum, our functional form for the distance function and the prior we have chosen are

extremely �exible, able to accompany a wide range of properties, including abrupt or gradual
breaks in coe¢ cients (at any point in the sample) or more gradual evolution of coe¢ cients
consistent with a TVP model.
16We �nd that some form of standardization produces more e¢ ciency in our MCMC algorithm. Equation

21 presents one simple standardization with the advantage it pins down the average value of the distance
function. In some cases researchers might want to use a standardization that is not dependent on the
particular sample. This can be done simply by choosing a normalization term based a minimum value of
the index variable of �3;a maximum value of +3 and, for example, a divisor of 2T:
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4.2 Arti�cial Data

Before proceeding to empirical work with real data, we begin by illustrating some of the
aspects of our approach using arti�cial data. All the arti�cial data sets are generated from:

yt = [1� F (zt)] �1yt�1 + F (zt) �2yt�1 + �""t; (22)

for t = 1; ::; 200 where "t is i.i.d. N (0; 1). The coe¢ cients evolve according to:

F (zt) =
1

1 + exp (�azt)
: (23)

For zt = yt�1 we have the familiar STAR model. In general, depending on a, we have a data
generating process (DGP) where the AR(1) coe¢ cient shifts either gradually or abruptly
from one value to another. We set a = 10, �1 = 0, �2 = 0:5 and �" = :01. However (as with
all our variables in our empirical work), we then standardize the data to have mean zero and
variance one.
We begin by focussing on the bene�ts brought by the addition of the distance function

and, thus, do not consider hypothetical reorderings the data at this stage. Thus our �rst
data set involves the choices above plus zt = t for t = 1; :::; 200. Furthermore, we focus on
evolution of the AR coe¢ cient and, thus, assume homoskedasticity (i.e. we do not allow
for stochastic volatility as given in equations 14 and 15). Thus, our model depends on the
parameters �; �2d; �

2
"; Q and � where � is the vector of AR coe¢ cients. As described above,

we separate out �0 and treat this as a regression e¤ect. We use a weakly informative prior,
�0 � N (0; 0:72) which re�ects a (weak) prior belief in the stationarity. We assume ��2" is
G
�
1
s2
; 2
�
where s2 is the OLS estimate of �2 in an AR(1) model. Thus we have a proper, but

relatively di¤use prior centered around the comparable OLS quantity. Following standard
practice we elicit our prior in terms of error precision matrices and assume Q�1 � W

�
2; 10

2

�
where W (�;H) denotes the Wishart distribution with mean elements �H and degrees of
freedom �. This is a quite dispersed prior. In terms of Q (the variance in the state equation)
it is centered approximately over 0:1 and, thus, we are allowing for everything from very
small to moderately large shifts in the AR coe¢ cients in each period (remember that the
distance function has mean one as described in equation 21). The priors for � and �2d were
described in the previous sub-section.
Using the methods of posterior simulation described above, with Xt = yt�1 and index

de�nition variable simply being the ordering (i.e. 1; 2; ::; T ), we can obtain posterior prop-
erties of any of the model parameters (or functions thereof). Figures 2 and 3 graph some
aspects of particular interest. Figure 2 plots the true value of the AR coe¢ cient used to
generate the data. It also plots the OLS estimate of the AR(1) model (without intercept)
using this data. Finally, it plots the posterior mean of � estimated using our model. It can
be seen that, even with a relatively small number of observations and small break in the AR
coe¢ cient, our model tracks the true value fairly well (except at the very beginning of the
sample). The fairly abrupt break in the AR coe¢ cient in the DGP is matched reasonably
well by our model. Presumably the distance function gets much larger near where the break
is in order to accommodate it. Figure 3 con�rms the contention of the preceding sentence.
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It plots the posterior mean of the distance function. It can be seen that the value of the
distance function becomes larger near where the break is (to allow larger changes in the AR
coe¢ cient in this region).
To illustrate the bene�ts of considering hypothetical reorderings, Data Set 2 is generated

from (22) and (23) from a STAR speci�cation where the data switches between a �reces-
sionary�regime with transitory dynamics to an �expansionary�regime with more persistent
dynamics. In particular, we set zt = yt�1, a = 1000, �1 = 0,�2 = 0:75 and �" = 0:01.
We then standardize the data to have mean zero and variance one. We consider the set of
orderings of the data described at the end of Section 3. Thus, since p = 1, we order the
data in normal time ordering and according to yt�1. All other aspects of the data generating
process and prior are the same as used for Data Set 1.
The model we propose is particularly useful in nonparametric contexts: where the re-

searcher is unsure of the form of the nonlinear time series model used to generate the data.
Our model, with Data Set 2, is designed to re�ect the (common) case where the researcher
thinks there might be structural breaks or TAR-type regime-switching (or both), but is not
sure which. With this data set, our model does well in picking out the correct form of
regime-switching. In particular, we �nd that there is a 94:3% probability that the (correct)
model with data ordered by yt�1 is the correct one and only a 5:7% probability that the
normal time ordering is appropriate. These weights are used when we average over the two
orderings when calculating the following results.
Figure 4 plots the true value of the AR coe¢ cient used to generate the data along with

its posterior mean calculated using our model (averaged over both de�nitions for the index
variable). And, although it does have some trouble picking up all the many regime-switches
in the DGP and sometimes wanders into the nonstationary region (something which could
be avoided through use of a more informative prior), it does do moderately well at matching
many of the regime-switches. As a benchmark for comparison, we also estimate a standard
TVP model. This is a special case of our model with the distance function de�ned to always
be one. We use the same prior for the TVP parameters as for the parameters of our model.
Figure 5 is comparable to Figure 4. Clearly it can be seen that the TVP model is not picking
up the regime-switches nearly as well as our model. We note also that the BIC�s for our
model (with data ordered according to yt�1), our model (with data in natural time ordering)
and the TVP model are: �48:627, �51:435 and �51:404. Of course, a correct parametric
model would beat our model. But in the common case where it is not clear which parametric
model to use, and the researcher wishes to use a �exible approach (e.g. the TVP model),
our approach does seem to be promising. As yet another metric of the performance of our
approach, we calculated the correlation between the actual data and: i) the �tted OLS line,
ii) the �tted values provided by the TVP model (evaluated at posterior means) and iii)
the �tted values provided by our model (evaluated at posterior means), we obtain values of
0:666, 0:718 and 0:739, suggestive of moderate improvements in �t of using our approach.
Finally, we present the posterior mean of the distance function. Note that when we are

considering the reordering by yt�1, we estimate the distance function using this ordering.
Since our approach involves multiple choices for zt, Figure 6 transforms back to the natural
time ordering. This accounts for the irregular shape of Figure 6. Note that large values of

23



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

the distance function tend to be associated with times where regime-switches occur, whereas
smaller values tend to be associated with times where the AR coe¢ cient is unchanging.

4.3 Empirical Illustrations Using Real GDP Growth

4.3.1 Univariate properties of GDP growth

There are many applications which investigate nonlinearities or structural breaks in real
GDP growth. For instance, Beaudry and Koop (1993) and Potter (1995) are early papers
which investigate nonlinearities in the conditional mean, E (ytjIt�1) where It�1 denotes data
information through time t� 1, using models where AR dynamics change over the business
cycle. More recently, there has been interest in the volatility of US real activity and the
question of whether it has decreased over time. This �nding is sometimes referred to as
the Great Moderation of the business cycle. For instance, Kim, Nelson and Piger (2004)
investigate breaks in the volatility of various measures of aggregate activity. For most of
the measures they consider, they �nd strong evidence of an abrupt break in the early 1980s.
Stock and Watson (2002) �nd similar evidence for a change in volatility, but �nd the decline
to have been more gradual, a thesis also put forward by Blanchard and Simon (2001). Thus,
using measures of real output, a wide variety of regime-switching and structural break models
for the conditional mean and conditional variance have been used. Some allow for gradual
change between regimes, others are more abrupt. Our model will nest all these possibilities.
We consider extensions of the AR(p) model and let Xt contain an intercept plus p lags

of yt for p = 1; 2; ::; 5. For Q; �; �2d we use the same weakly informative prior as in the
arti�cial data section. To incorporate a noninformative prior for the intercept, we extend

the weakly informative prior used previously to �0 � N

0BB@0p+1;
2664
1010 0 0 0
0 0:72 0 0
0 0 ::: :::
0 0 ::: 0:72

3775
1CCA

which still re�ects a (weak) prior belief that the AR coe¢ cients at each point in time lie in
the non-explosive region of the parameter space. For the stochastic volatility component we
assume ��2� to be G (10; 50).
Consider �rst the issue of lag length. For any choice of p, we can sum over all index

variables to calculate Pr (p = jjData) for j = 1; ::; 5. These probabilities are 0:003, 0:024,
0:640, 0:331 and 0:002, respectively. Thus, there is uncertainty over lag length, but p = 3
receives the most support. The results in the remainder of this section do Bayesian model
averaging over these �ve choices for lag length.
Regardless of whether we average over lag length or simply choose a particular value for p,

with our model we �nd strong evidence in favor of a decrease in the volatility of GDP growth.
Indeed this evidence is so strong, that it swamps any evidence for the regime-switching
behavior in the AR coe¢ cients found, e.g., by Beaudry and Koop (1993) and Potter (1995).
Note �rst that the results discussed below are averaged over all of our di¤erent choices for
zt but, in practice, the probability that zt = 1 is over 99% and, accordingly, results are very
similar to those found if we had selected a single model and worked with observations in the
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natural time ordering. Figure 7 plots the posterior mean of the error variance and it can be
seen that there is a big drop in volatility around 1983. Our �ndings relating to volatility
of GDP growth are not surprising given previous results starting with McConnell and Perez
(2000) (see also the similar �gure in Koop and Potter, 2007). There is some evidence that
volatility started to decline in the 1950s but this decline was reversed starting around 1970.
A single break model (by construction) could not show this kind of pattern.
Remember that, in our model, the breaks in the error variances and AR coe¢ cients are

assumed to occur at the same time. This accounts for the fact that we are not �nding
strong evidence of breaks or regime-switching behavior in the AR coe¢ cients. The break in
volatility is so strong that it receives overwhelming support relative to other models. It is
straightforward to extend our model to allow for di¤erent orderings and distance functions
to hold for the AR coe¢ cients and the error variances and we do so in the context of our
next empirical illustration.
Our model clearly outperforms a benchmark AR(p) and, hence, we will not present results

for an AR(p). A preferable benchmark, which a researcher might use when agnostically
approaching a data set which is suspected to have structural change, would be the TVP
model with stochastic volatility given in (8) through (11) or, equivalently, our model with
 = (1; :::; T )0 and d(zs; zs�1) = 1 for all observations. Given the fact that our model yields
strong evidence in favour of  = (1; :::; T )0, it is not surprising that we �nd results to be
similar between our approach and the TVP model. Figure 8 plots the posterior mean of the
distance function using our model. It can be seen to be inverted-U shape, thus smoothing
observations at the beginning and end of the sample more than observations at the middle.
This accounts for the di¤erences between our model and the TVP model that can be seen
if one compares Figures 7 and 9 (note the di¤erence in scaling of the y-axis). In this data
set (and for macroeconomic policy), the patterns in the error variance seem to be the most
crucial. Note that, relative to a researcher using a TVP model, we are �nding the same
general pattern of volatility, but lower and less erratic volatility in the 1950s and a smoother
pattern after the 1983 break in volatility. Furthermore, our model does �t a bit better. As
a rough metric we calculated the correlation between the expected value of the dependent
variable and the observed dependent variable. This is 0:787 for our model, but 0:681 for the
TVP model (and only 0:342 for an AR(2)) .

4.4 The Oil Price and GDP growth

There is a large literature on the e¤ects of oil price changes on GDP growth. Hamilton
(2003) is an important contribution to this literature and his list of references cites much
previous work. Hamilton provides a compelling argument that functional form issues are
important when seeking to understand the relationship between oil prices and GDP. If yt
is GDP growth and pt the percentage change in the oil price, then Hamilton begins with a
linear speci�cation with four lags of both variables:

yt = �0 + �1yt�1 + ::+ �4yt�4 + �5pt�1 + ::+ �8pt�4 + �""t;
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before presenting convincing evidence of departures from linearity using a �exible approach to
nonlinear inference developed in Hamilton (2001). Note that this approach focusses on non-
linearities in the conditional mean, E (ytjIt�1) (with the conditional variance, var (ytjIt�1),
being of less interest). Below we will refer to the parameters which characterize this condi-
tional mean as regression coe¢ cients (these are labelled �t in equation 13).
In this section, inspired by Hamilton (2003), we illustrate our methods using an updated

data set where the real GDP and oil price series used to construct growth rates run from
1947Q1 through 2006Q4.17 Our set of explanatory variables (i.e. Xt in equation 8), is an
intercept, four lags of GDP growth and four lags of oil price growth (i.e. log di¤erences of
the original GDP and oil price series).
In our previous empirical example, we showed how the Great Moderation of the business

cycle (i.e. the reduction in the volatility of GDP growth) dominates any possible e¤ects
in the regression coe¢ cients. The same thing happens here. That is, if we use the same
setup as in the univariate GDP growth example (extended to allow for four lags of oil price
growth), we �nd overwhelming evidence in favor of  = (1; :::; T )0. In light of this (and in
order to illustrate an empirically useful extension), in this section we present results where
di¤erent hypothetical orderings and distance functions exist for the regression coe¢ cients
and the conditional variance, �t (i.e. the state equations 13 and 15 can be based on di¤erent
orderings). That is, we now have a 1 (which controls ordering relating to �t) and 2 (for �t).
For 1, we use the same choices as before (de�ned at the end of Section 3) and add lagged
oil price changes and long averages of them. For 2 we could use the same set of choices, but
since the Great Moderation implies 2 = (1; :::; T )

0 is so predominant, the results below just
use this choice. For our modi�ed state space model de�ned in (12) through (15), we now have

two distance functions so that vs � N
h
0;
p
d1 (zs; zs�1)Q

i
and �s � N

h
0;
p
d2 (zs; zs�1)�

2
�

i
(and the index variables in the two distance functions are potentially di¤erent from one
another).
For the parameters in common with the model used in the previous section, we use the

same prior as speci�ed there. With regards to the new parameters, the coe¢ cients on the
lagged oil price in�ation variables have the same prior as those on the lagged GDP growth
variables. For each of the two distance functions we use the same prior as we used for the
single distance function in the previous example.
Table 2 presents some empirical results for each of our index variables controlling the

ordering relating to the regression coe¢ cients (i.e. di¤erent choices for 1). In contrast to
our univariate results, there is now a certain degree of uncertainty over orderings. Note that
the models de�ned by di¤erent choices for 1 and 2 have the same number of parameters and,
hence, BICs will simply be proportional to log-likelihoods. Accordingly, we simply present
log-likelihoods (calculated as discussed in Section 3) in Table 2. As discussed previously, BICs
can be used to approximate log marginal likelihoods and, thus, can be used to calculate
posterior model probabilities associated with each choice of 1 and 2. Less than 2% of
the probability is associated with the choice which implies the regression coe¢ cients evolve
according to a conventional TVP model. However, most of the probability is attached

17Following Hamilton (2003), we use the nominal crude oil producer price index.
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to models where the hypothetical reordering observations is with respect to past oil price

in�ation. The most probable ordering is based on the index variable zt =
P4
j=1 pt�j
4

. Thus, we
are �nding most support for a model which is similar to a STAR model where the di¤erent
regimes are triggered by the average increase in oil prices over the past year. If we were to
treat each choice for 2 as de�ning a model, then any conventional Bayesian or non-Bayesian
hypothesis testing/model selection procedure would choose the model based on the index

variable zt =
P4
j=1 pt�j
4

.
To provide a broader comparison with conventional models, note that the log-likelihoods

(evaluated at the MLE) for the AR(2) and TVP (with stochastic volatility) models are
�97:25 and �50:80, respectively. Clearly, our model is performing massively better than
the AR(2). Furthermore, since the highest log-likelihood in Table 2 is �43:73, we are also
obtaining substantial improvements relative to a standard TVP (with stochastic volatility)
model .
We remind the reader that, with regards to the measurement equation error variance, we

are assuming a stochastic volatility speci�cation and simply setting 2 = (1; :::; T )
0 (although

the addition of our distance function means we are not exactly in a conventional stochastic
volatility framework). As in our univariate GDP growth example, we �nd strong evidence
in favor of this choice. However, since results in this regard are very similar to those in
the univariate example (e.g. a plot of the posterior mean of stochastic volatility looks very
similar to Figure 7), we will not discuss them further.
Table 2 also reports the posterior means and standard deviations of the parameters

characterizing the distance functions. The most important pattern in these is the fact that
the posterior means for the variances in the two distance functions (i.e. the �2ds) both are
quite large. Remember that small values of this parameter will imply abrupt regime switches
(e.g. characteristic of TAR or standard structural break models) whereas large values of this
parameter imply gradual evolution between regimes (characteristic of STAR or TVPmodels).
We are �nding support for the latter case.
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Table 2: Probability of Each Ordering and Posterior Properties of Key Parameters
(numbers in parentheses are posterior standard deviations)
Index for
Cond. Mean

Dist. Function
Cond. Mean

Dist. Function
Cond. Variance

Prob. Log-likelihood E (�) E (�2d) E (�) E (�2d)

t 0:015 �47:69 �0:417
(0:503)

5:874
(7:222)

�0:299
(0:624)

4:637
(4:795)

yt�1 0:000 �54:67 �0:278
(0:510)

10:721
(24:048)

�0:471
(0:601)

3:858
(4:447)

yt�2 0:000 �54:25 �0:160
(0:598)

3:162
(2:478)

�0:366
(0:427)

3:984
(3:411)

yt�3 0:000 �53:27 0:102
(0:433)

1:804
(0:880)

�0:313
(0:542)

5:987
(5:319)

yt�4 0:000 �51:14 0:161
(0:555)

1:902
(0:901)

�0:448
(0:484)

4:287
(4:710)P2

j=1 yt�j
2

0:000 �54:46 0:031
(0:573)

3:557
(2:408)

�0:319
(0:446)

3:415
(3:985)P3

j=1 yt�j
3

0:003 �49:46 0:180
(0:424)

1:227
(0:487)

0:277
(0:586)

5:458
(4:266)P4

j=1 yt�j
4

0:010 �48:13 0:074
(0:493)

5:193
(5:304)

�0:424
(0:828)

3:487
(1:798)

pt�1 0:000 �54:20 0:624
(0:383)

0:866
(0:177)

�0:111
(0:765)

2:610
(2:677)

pt�2 0:000 �53:40 0:644
(0:345)

1:392
(0:692)

�0:759
(0:658)

6:058
(8:863)

pt�3 0:003 �49:43 0:656
(0:663)

13:479
(13:971)

�0:217
(0:410)

2:761
(2:328)

pt�4 0:000 �55:59 0:676
(0:359)

1:323
(0:490)

�0:247
(0:477)

3:678
(5:680)P2

j=1 pt�j
2

0:000 �54:40 0:493
(0:427)

2:520
(0:879)

�0:304
(0:518)

7:410
(9:347)P3

j=1 pt�j
3

0:173 �45:26 0:857
(0:409)

2:406
(1:312)

�0:081
(0:571)

4:470
(4:720)P4

j=1 pt�j
4

0:797 �43:73 0:914
(0:561)

2:177
(0:857)

�0:282
(0:638)

4:268
(4:667)

Thus far we have said little of the economic implications of our �ndings. Figure 10
illustrates how this can be done. In the original linear model, a rough measure of the e¤ect
of changes in the oil price on GDP growth is the sum of the coe¢ cients on the lags of the oil
in�ation variables (i.e. �5 + :: + �8). In our preferred speci�cation (i.e. the one where the
index variable is the average change in oil prices over the last year), this measure will depend
on the index variable. Figure 10 plots the posterior mean of this measure against the index
variable. Remember that the index variable has been normalized so that a value of 0 implies
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the mean value of oil price changes over the past year, 1 implies oil price changes over the
past year one standard deviation above the mean, etc.18 A general pattern in this �gure is
that drops in the oil price have a smaller marginal e¤ect on output than rises (as has been
found by Hamilton). But the pattern is quite erratic (and a large exception to it occurs
around 1:0). Although it is true that very large positive oil price shocks (e.g. where the
index is about 2) have the largest negative e¤ects on GDP growth, the relationship between
the index variable and this measure of the e¤ect of an oil shock is highly non-monotonic.
Hamilton (2003), using a shorter data set, has shown that certain nonlinear transfor-

mations of oil prices have predictive power for US GDP growth. Models estimated on the
earlier data predict larger e¤ects from the recent price increases than what has recently been
observed. In terms of the index variable used to produce Figure 10, 6 of the extra 21 obser-
vations we have added relative to Hamilton are between 0:8 and 1:2 (i.e. in the region where
the marginal e¤ect of oil prices on GDP growth is near zero). Since these changes had little
e¤ect on GDP growth, this probably explains why models estimated on the shorter data sets
imply somewhat larger e¤ects of moderate oil price rises on GDP growth.
To illustrate this point more clearly, Figure 11 is the same as Figure 10, but is produced

using data through the end of 1997. We choose this date since it roughly corresponds with
the trough in oil prices. Since then (with some exceptions) the oil price has been rising.
Note that Figure 11 is more consistent with Hamilton�s story that positive oil shocks have
larger marginal e¤ects on output than do negative oil shocks.
The empirical illustration shows the advantages and �exibility of our approach. Clearly,

there are strong nonlinearities in the oil price-GDP growth relationship and, hence, our
approach is �nding things that a linear model could not. However, conventional nonlinear
and nonparametric approaches typically involve making trying a single (or, at most, a few)
choices analogous to our choice of an index variable. But there are so many possible choices
of index, that conventional approaches risk misspeci�cation problems (i.e. if a wide range of
possibilities are not tried) or sequential testing problems (i.e. if a wide range of possibilities
are tried and numerous tests are done to try and select a single index out of the myriad of
possibilities).

5 Conclusion

For researchers working with macroeconomic and �nancial data, there is great interest in
investigating whether structural breaks and/or regime-switching behavior occurs (in the
conditional mean, E (ytjIt�1), and/or the conditional variance, var (ytjIt�1)). In this paper,
we have developed an extremely �exible parametric model which can accommodate each of
these choices. We feel our model is an attractive one due to its simplicity. That is, it adds two
simple concepts to a standard state space framework. These ideas are hypothetical reordering
and distance. By imagining a range of orderings of the evolution of the parameter vectors, we

18Note that there are very few observations of the index at values greater than 2 in absolute value and the
distance between them is sometimes large. This accounts for the �at regions near the boundaries of Figure
10.
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can accommodate a wide variety of nonlinear time series models, including regime-switching
and structural breaks. By allowing the state equation variances to depend on the distance
between observations, we can accommodate a much wider variety of ways that our parameters
can evolve, including everything from abrupt change models (e.g. threshold autoregressive
models or structural break models such as that of Bai and Perron, 1998) to those which
allow gradual evolution of parameters (e.g. smooth transition autoregressive models or TVP
models such as that of Primiceri, 2005). In short, our model will nest virtually every popular
model in the regime-switching and structural break literatures.
Moreover, because we retain the state space framework, Bayesian econometric methods

and, especially, posterior simulation, are relatively straightforward, drawing on the existing
literature. Our work with arti�cial and real data show the advantages of our approach.
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Figure 1: Prior Properties of Distance Function
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Figure 2: The AR Coe¢ cient for Data Set 1
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Figure 3: The Distance Function for Data Set 1
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Figure 4: The AR Coe¢ cient for Data Set 2 (Our Model)
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Figure 5: The AR Coe¢ cient for Data Set 2 (TVP Model)
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Figure 6: The Distance Function for Data Set 2

38



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 7: Stochastic Volatility (univariate example)
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Figure 8: Distance Function (univariate example)
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Figure 9: Stochastic Volatility for TVP Model (univariate example)
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Figure 10: A Measure of the E¤ect of an Oil Shock for the Preferred
Ordering
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Figure 11: A Measure of the E¤ect of an Oil Shock for the Preferred
Ordering Using Data Through 1997
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