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Abstract

This article proposes omnibus speci�cation tests of parametric dynamic quantile models.

Contrary to the existing procedures, we allow for a �exible speci�cation, where a possibly

continuum of quantiles are simultaneously speci�ed under fairly weak conditions on the serial

dependence in the underlying data generating process. Since the null limit distribution of tests

is not pivotal, we propose a subsampling approximation of the asymptotic critical values. A

Monte Carlo study shows that the asymptotic results provide good approximations for small

sample sizes. Finally, an application suggests that our methodology is a powerful alternative to

standard backtesting procedures in evaluating market risk.
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1. INTRODUCTION

Quantile regression is a powerful alternative to least squares regression in a wide range of econo-

metric applications that vary from labor economics or demand analysis to �nance; see the special

issue of Empirical Economics (2001, vol .26) and the references therein. Rather than relying on

a single measure of conditional location, the quantile regression approach allows the researcher to

explore a continuous range of conditional quantile functions, thereby providing a more complete

and �exible analysis of the conditional dependence structure of the variables under consideration.

A researcher interested in the whole conditional distribution will consider the speci�cation of the

conditional quantile at all quantile levels and some diagnostic on its global suitability. As a matter of

fact, conditional Goodness-of-�t tests are of paramount importance in econometrics and �nance, see

e.g. Andrews (1997) and Corradi and Swanson (2006). On the other hand, a risk manager will not

be interested in the whole Pro�t&Loss account�s distribution but mainly in its left tail, and hence

she will consider a set of small values of quantile levels, usually 1% or 5% as recommended by the

Basel Accord (1996a). Obviously, one can envision many situations in economics where the interest

is in the lower or upper parts of the distribution; see, for instance, studies of unemployment duration

(e.g. Koenker and Xiao (2002) and references therein), and wage inequalities (e.g. Machado and

Mata, 2005). For these various situations parametric quantile regressions have been shown to be a

useful and �exible modelling strategy.

It is well-known, however, that inference procedures within parametric quantile models depend

crucially on the validity of the speci�ed parametric functional forms for the range of quantiles under

consideration. For instance, the counterfactual decomposition described in Machado and Mata

(2005), that has been recently used in many studies to analyze the gender gap in log wages across

the distribution (see e.g. Albrecht, van Vuuren and Vroman, 2007), and the martingale transform

methods in Koenker and Xiao (2002) depend crucially on the linear quantile speci�cation. Therefore,

it is important to develop powerful tests for the correct speci�cation of parametric conditional

quantiles over a possibly continuous range of quantiles of interest and under fairly general conditions

on the underlying DGP. This is the main purpose of the present paper.

More precisely, suppose we observe a real-valued dependent variable Yt; and the explanatory

vector It�1 = (W 0
t�1; Z

0
t)
0 2 Rd; d = s + m; where Zt 2 Rm; m 2 N; is an observable random

vector (r.v.) and Wt�1 = (Yt�1; : : : ; Yt�s)
0 2 Rs; where A0 denotes the matrix transpose of A. We

assume throughout the article that the time series process f(Yt; Z 0t)0 : t = 0;�1;�2; : : :g; de�ned on

the probability space (
;A; P ); is strictly stationary and ergodic. Assuming that the conditional

distribution of Yt given It�1 is continuous, we de�ne the �-th conditional quantile of Yt given It�1
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as the measurable function q� satisfying the conditional restriction

P (Yt � q�(It�1) j It�1) = �; almost surely (a.s.), � 2 [0; 1]. (1)

In parametric quantile regression modeling one assumes the existence of a family of functionsM =

fm(�; �(�)) : �(�) : T ! � � Rpg; where T is a compact set which comprises the range of quantiles

of interest, T � [0; 1]; and one proceeds to make inference on � or to test if q� 2 M; i.e., if there

exists some �0 : T ! � such that m(�; �0(�)) = q�(�) a.s. for all � 2 T :1

Leading examples of speci�cationsM are the Linear Quantile Regression (LQR) model

m(It�1; �0(�)) � m(Zt; �0(�)) = Z 0t�0(�); � 2 T ;

with the location-scale regression model as the prominent example, in which �0(�) = (�0; 0F
�1
0 (�)) 2

� � Rp; m = p; and where F�10 (�) denotes a univariate quantile function, see, e.g., Koenker and

Xiao (2002), or the Linear Quantile Autoregression model of order s (LQAR(s)), where

m(It�1; �0(�)) � m(Wt�1; �0(�)) = �01(�) +W
0
t�1�02(�); �0(�) = (�01(�); �

0
02(�))

0;

which results, for instance, from the random coe¢ cient model

Yt = �01(Ut) +W
0
t�1�02(Ut); (2)

where �01(�) and �02(�) are such that the right hand side of (2) is monotone increasing in Ut; and

fUtg are independent and identically distributed (iid) U [0; 1] random variables; see Koenker and

Xiao (2006) for inferences on the LQAR(s) model.

Much e¤ort has been devoted to inferences on �0(�) for the aforementioned models based on the

associated quantile processes Qn(�) :=
p
n (�n(�)� �0(�)), for �n(�) a

p
n-consistent estimator

of �0(�): It is well-known, however, that inferences based on Qn(�) will heavily depend on the

correct speci�cation of the parametric quantile regression model. Although there exist some works

on quantile regression model checks, to the best of our knowledge no consistent test for q� 2M has

been proposed. The existing literature has been mostly limited to iid observations, linear models, and

more importantly to a �xed quantile level � � �0 2 (0; 1): In particular, Zheng (1998) has proposed

a quantile regression speci�cation test based on kernel smoothing estimators of the conditional

moment E[1(Yt � m(It�1; �0(�0))) � �0 j It�1]; see also Horowitz and Spokoiny (2002) for the

median function (i.e., �0 = 0:5). Recently, Whang (2005), using empirical likelihood methods, has

proposed a speci�cation test for quantile regression and censored quantile regression for iid data.

1We can actually take T = [0; 1] in our theory provided the centered estimator
p
n(�n � �0) is asymptotically

tight on the whole interval [0; 1]: To the best of our knowledge, such result is, however, not available in the literature

for most popular estimators. Thus, we do not pursue such generality in this paper and we restrict our analysis to

T � [0; 1]; in accordance with the econometrics literature.
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Tests based on smoothers usually have known asymptotic null distributions after an appropriate

choice of the bandwidth sequence, but they are not consistent against Pitman�s local alternatives.

Using an integrated approach, Bierens and Ginther (2001) proposed a diagnostic test for a linear

quantile regression. These authors consider iid observations and do not take into account the

uncertainty due to parameter estimation. Their test is consistent against n�1=2 local alternatives,

with n the sample size, but it relies on an upper bound on the asymptotic critical value, which might

be too conservative. To solve this de�ciency, Whang (2006) considered a subsampling approach to

approximate the asymptotic critical values. Koul and Stute (1999) introduced asymptotic pivotal

tests for parametric conditional quantiles of �rst-order nonlinear autoregressive processes. To obtain

the pivotal property of the test they use a martingale transform (cf. Khmaladze, 1981). Alternatively,

He and Zhu (2003) developed a bootstrap-based test for linear and nonlinear quantile regressions.

Our paper also contributes to this literature of speci�cation tests for a unique quantile, since our

methods trivially apply to the unique quantile case in a more general framework than the previously

cited works. By extending the scope of conditional quantile speci�cations to a, possibly, continuum

of quantiles we provide a new and �exible speci�cation procedure.2

In the present article we propose omnibus tests for q� 2 M that are valid for general linear

and nonlinear quantile models under time series. Our tests are based on the fact that q� 2 M is

characterized by the in�nite set of conditional moment restrictions

E[1(Yt � m(It�1; �0(�)))� � j It�1] = 0 a.s. for some �0(�) : T ! � � Rp; 8� 2 T : (3)

The proposed tests are functionals of a quantile-marked empirical process that characterizes con-

dition (3). The asymptotic theory is largely complicated by the fact that (3) involves an in�nite

number of conditional moment restrictions, indexed by � 2 T :We solve this technical di¢ culty using

delicate weak convergence results for empirical processes under martingale conditions. It turns out

that the asymptotic null distributions of test statistics depend on the speci�cation under the null

and the DGP. Therefore, we propose to implement the test with the assistance of the subsampling.

The rest of the article is organized as follows. In Section 2 we introduce the quantile-marked

process, which is the basis upon which the new test statistics for testing (3) are developed. We

study the asymptotic distribution of the proposed tests under the null, �xed and local alternatives.

In Section 3 a subsampling procedure for approximating the asymptotic null distribution of tests is

considered. In Section 4 we present a simulation exercise assessing the �nite-sample performance of
2During the revision of this paper, one referee pointed out an unpublished PhD dissertation by Nejmeldeen (2003)

proposing speci�cation tests for a continuum of quantiles in a linear quantile model. Nejmeldeen�s (2003) results

require high-level conditions. In particular, his Assumption (E) directly assumes that a certain empirical process is

stochastic equicontinuous, which is certainly the most di¢ cult part and the bulk in the development of our speci�cation

tests. On the contrary, we prove the stochastic equicontinuity condition under a set of primitive regularity assumptions

and for a more general setting than that considered in Nejmeldeen (2003).
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tests. Section 5 summarizes the results of an application to some European stock indexes, showing

that our methodology can serve as a powerful and �exible alternative to standard backtesting pro-

cedures in evaluating market risk. Finally, Section 6 concludes. Proofs are deferred to an appendix.

Throughout the article Ac and jAj denote the complex conjugate and Euclidean norm of A; respec-

tively. In the sequel C is a generic constant that may change from one expression to another. All

limits are taken as n!1.

2. TEST STATISTICS AND ASYMPTOTIC THEORY

We aim to test the null hypothesis

H0 : E[	�(Yt �m(It�1; �0(�))) j It�1] = 0 a.s. for some �0 2 B and for all � 2 T ;

against the nonparametric alternatives

HA : P (E[	�(Yt �m(It�1; �(�))) j It�1] 6= 0) > 0; for some � 2 T and for all �(�) 2 � � Rp;

where 	�(") = 1(" � 0)��; and B is a family of uniformly bounded functions from T to � � Rp: To

simplify notation denote 	�;t(�) � 	�(Yt �m(It�1; �)) and mt�1(�) � m(It�1; �): Note that under

H0 (and a mild continuity condition), mt�1(�0) is identi�ed as the �-th quantile of the conditional

distribution of Yt given It�1; for all � 2 T : Testing for H0 is a challenging testing problem since it

involves an in�nite number of non-smooth conditional moments parameterized by � 2 T :

Our �rst aim is to characterize H0 by the in�nite number of unconditional moment restrictions

E[	�;t(�0) exp(ix
0It�1)] = 0; 8x 2 Rd; for some �0 2 B and for all � 2 T ; (4)

where i =
p
�1 is the imaginary unit; see Bierens (1982). Instead of the exponential function we may

also use, for instance, any of the parametric families considered in Escanciano (2006). Unreported

simulations suggested that the exponential function performs favorably to other choices such as

indicator functions. These simulations can be obtained from the authors upon request.

Given a sample f(Yt; I 0t�1)0 : 1 � t � ng and a parameter value � 2 B; we consider the quantile-

marked empirical process indexed by x 2 Rd, � 2 T and � 2 B;

Sn(x; �; �) := n�1=2
nX
t=1

	�;t(�) exp(ix
0It�1):

Associated to Sn are the quantile-marked error and residual processes, respectively, de�ned by

Rn(x; �) � Sn(x; �; �0) and R1n(x; �) � Sn(x; �; �n);

for a
p
n�consistent estimator �n(�) of �0(�); say. The null hypothesis is likely to hold when the

process R1n(x; �) is close to zero for almost all (x
0; �)0 2 Rd � T :

5
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The most popular estimator of �0 is the Quantile Regression Estimator (QRE), initially proposed

by Koenker and Basset (1978) for linear models, and subsequently generalized to other frameworks

by numerous authors, see references below. The QRE is de�ned as any solution �KB;n(�) minimizing

� 7�!
nX
t=1

��(Yt �m(It�1; �))

with respect to � 2 � � Rp; where ��(") = �	� (") ": Koenker and Park (1996) discussed the

existence of �KB;n(�) and an interior point algorithm for its computation.

Basset and Koenker (1978) proved the consistency and asymptotic normality of �KB;n(�) in

the linear regression model, including the least absolute deviation estimator, see also Pollard (1991).

Moreover, the asymptotic theory for
p
n(�KB;n(�)��0(�)) as a process indexed by the parameter � 2

T ; has been considered, among others, in Gutenbrunner and Jureµckova (1992) and Gutenbrunner,

Jureµckova, Koenker and Portnoy (1993) for linear models, in Koul and Saleh (1994) and Jureµckova

and Hallin (1999) for linear autoregressions, and in Mukherjee (1999) for nonlinear autoregressions.

For early contributions see Portnoy (1984). In the present article we do not restrict ourselves to

�KB;n and we consider any estimator �n satisfying some mild conditions, see A4 below. For instance,

our results apply to the Quasi-Maximum Likelihood Estimator in Komunjer (2005), under suitable

regularity conditions.

The process R1n is a mapping from (
;A; P ) with values in `1(�); where `1(�) is the space of

all complex-valued functions that are uniformly bounded on �; with � := � � T ; and � a generic

compact subset of Rd containing the origin: The space `1(�) is furnished with the supremum met-

ric, say d1; and let Bd1 be the corresponding Borel �-algebra. Let =) denote weak convergence

on (`1(�);Bd1) in the sense of J. Ho¤mann-Jørgensen, see, e.g., Dudley (1999, p. 94), or De�ni-

tion 1.3.3 in van der Vaart and Wellner (1996). Since � is generic, =) is indeed weak convergence

on compacta.

After (4), test statistics are based on a distance from the standardized sample analogue of

E[	�;t(�0) exp(ix
0It�1)] to zero, i.e., on a norm of R1n, say �(R

1
n). A popular norm is the Cramér-von

Mises (CvM) functional

CvMn :=

Z
�

��R1n(x; �)��2 d�(x)dW (�); (5)

where � and W are some integrating measures on � and T ; respectively. Other continuous (with

respect to d1) functionals � from `1(�) to R are of course possible. Our simulations suggested that

CvMn outperforms other alternative functionals such as the Kolmogorov�Smirnov-type functional

KSn := sup
�2T

Z
�

��R1n(x; �)��2 d�(x): (6)

Therefore, we focus in the rest of paper on CvMn: We reject the null hypothesis H0 for �large�

6
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values of CvMn. Practical issues about the computation of the test statistic CvMn are deferred to

Section 4.

2.1 Asymptotic null distribution.

In this subsection we establish the limit distribution of the quantile-marked empirical process R1n

under the null hypothesis H0: The null limit distributions of the tests are the limit distributions of

some continuous functionals of R1n. To derive asymptotic results we consider the following notation

and assumptions. Throughout the paper the family B; in which the parameter �0 takes values, is

endowed with the sup norm, i.e., k�kB = sup�2T j�(�)j. Let, for each t 2 Z; Ft = �(I 0t; I
0
t�1; : : :);

be the �-�eld generated by the information set obtained up to time t: De�ne for each t 2 Z; the

quantile �innovation�"t;� := Yt � q�(It�1) and the parametric quantile �error�et(�) � et(�(�)) :=

Yt�m(It�1; �(�)): De�ne also the family of conditional distributions Fx(y) := P (Yt � y j It�1 = x):

Let fx be the density function of the cumulative distribution function (cdf) Fx. In particular,

fIt�1(y) denotes the density of Yt given It�1; evaluated at y: Let N[�](�;G; k�k) be the �-bracketing

number of a class of functions G with respect to a norm k�k ; i.e., the smallest number r such that

there exist f1; : : : ; fr and �1; : : : ;�r such that max1�i�r k�ik < � and for all f 2 G; there exists

an 1 � i � r such that kf � fik < �i; see De�nition 2.1.6 in van der Vaart and Wellner (1996).

Assumption A1:

A1(a): f(Yt; Z 0t)0 : t = 0;�1;�2; : : :g is a strictly stationary and ergodic process: Under H0;

f	�;t(�0);Ftg is a martingale di¤erence sequence for all � 2 T :

A1(b): The parametric family m(�; �0(�)) is nondecreasing in � a.s..

A1(c): E[jI0j2] < C:

A1(d): The family of distributions functions fFx; x 2 Rdg has Lebesgue densities ffx; x 2 Rdg that

are uniformly bounded away from zero for the quantiles of interest, i.e., infx2Rd;�2T jfx(m(x; �(�)))j �

C > 0, satisfy

sup
x2Rd;y2R

jfx(y)j � C;

and are equicontinuous: for every � > 0 there exists a � > 0 such that

sup
x2Rd;jy�zj��

jfx(y)� fx(z)j � �:

Assumption A2: For each �1 2 B;

A2(a): There exists a vector of functions gt�1 : �! Rq such that gt�1 (�1(�)) is Ft�1-measurable

for each t 2 Z, and satis�es, for all k <1;

sup
1�t�n;k�1��2kB�kn�1=2

n1=2 kmt�1(�2)�mt�1(�1)� (�2 � �1)0gt�1(�1)kB = oP (1)

7
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A2(b): For all su¢ ciently small � > 0;

E

"
sup

k�1��2kB��
j1(Yt � mt�1(�1(�)))� 1(Yt � mt�1(�2(�)))j

#
� C�; 8� 2 T ; and

E

"
sup

j�1��2j��
jmt�1(�1(�1))�mt�1(�1(�2))j

#
� C�:

A2(c): Uniformly in � 2 T ; E jgt�1 (�1(�))j2 <1; and uniformly in (x0; �)0 2 �;����� 1n
nX
t=1

gt�1(�0(�)) exp(ix
0It�1)fIt�1(mt�1(�0))� E

�
gt�1(�0(�)) exp(ix

0It�1)fIt�1(mt�1(�0))
������ = oP (1):

Assumption A3: The parametric space � is compact in Rp: The true parameter �0(�) belongs to

the interior of � for each � 2 T , and �0 2 B. The class B satis�es
1Z
0

�
log(N[�](�

2;B; k�kB))
�1=2

d� <1:

Assumption A4: The estimator �n satis�es that P (�n 2 B) ! 1 as n ! 1; and the following

asymptotic expansion under H0; uniformly in � 2 T ;

Qn(�) =
p
n(�n(�)� �0(�)) =

1p
n

nX
t=1

l�(Yt; It�1; �0(�)) + oP (1);

where l�(�) is such that E[l�(Y1; I0; �0(�))] = 0, L�(�0(�)) = E[l�(Y1; I0; �0(�))l
0
�(Y1; I0; �0(�))]

exists and is positive de�nite, and E[l�(Yt; It�1; �0(�))	�(Ys �m(Is�1; �0(�)))] = 0 if t 6= s: Fur-

thermore, as a process in `1(T ); Qn(�) converges weakly to a Gaussian process Q(�) with zero mean

and covariance function

KQ(�1; �2) = lim
n!1

1

n

nX
t=1

nX
s=1

E[l�1(Yt; It�1; �0(�1))l�2(Ys; Is�1; �0(�2))]:

Assumption A1(a) is standard in the time series model checks literature, see, e.g., Koul and Stute

(1999). A1(b) is natural in the present context. A1(c) is needed to prove the equicontinuity of the

limit process of Rn and can be avoided if we replace exp(ix0It�1) by exp(ix0�(It�1)); with �(�) a one-

to-one bounded mapping (see e.g. Bierens and Ginther, 2001): A1(d) is necessary for the tightness

of the process R1n and is required in Koul and Stute (1999). Assumptions A2(a)-A2(c) are classical

in inference about nonlinear models, see Koul�s (2002) monograph. A2 is satis�ed for all models

considered in the literature under mild moment assumptions, e.g. LQR and LQAR models. Su¢ cient

conditions for A3 can be found in van der Vaart and Wellner (1996), see e.g. their Theorem 2.7.5

for monotone classes of functions, which applies to LQAR models. A4 has been established in the

literature under a variety of conditions and di¤erent models and DGP�s, see, for instance, Theorem 1

in Gutenbrunner and Jureµckova (1992) or Theorem 3.2 in Mukherjee (1999). For nonlinear models
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with iid innovations ("t)t2Z distributed as F"; Mukherjee (1999) proved A4 for �KB;n(�). Under

some mild additional assumptions, including that ��0(�) := E
�
g (I1; �0(�)) g (I1; �0(�))

0� exists and
is positive de�nite, Mukherjee (1999) showed that A4 holds for the QRE under H0 with

l�(Yt; It�1; �0(�)) = �
��1�0(�)g(It�1; �0(�))	�("t)

q(�)
;

where q(�) = f"(F
�1
" (�)) is the reciprocal of the sparsity function and f" is the density of F":

The quantile limit process Q(�) in that case is ��1�0(�)W (�)=q(�); where W (�) denotes a vector of p

independent Brownian bridges on T .

We now establish the limit distribution of Rn: Under A1(a) and H0, because Rn(v) is a zero-mean

square-integrable martingale for each v = (x0; �)0 2 �; using a suitable Central Limit Theorem

(CLT) for stationary ergodic martingale di¤erence sequences, cf. Billingsley (1961), we have that

the �nite-dimensional distributions of Rn converge to those of a multivariate normal distribution

with a zero mean vector and variance-covariance matrix given by the covariance function

K1(v1; v2) = (�1 ^ �2 � �1�2)E[exp(i(x1 � x2)0I0)]; (7)

where, henceforth, v1 = (x01; �1)
0 and v2 = (x02; �2)

0 represent generic elements of �; and ^ denotes

the minimum, i.e., a ^ b = minfa; bg: The next result is an extension of the convergence of the

�nite-dimensional distributions of Rn to weak convergence in the space `1(�): We stress that no

mixing conditions are required for the weak convergence to hold.

Theorem 1: Under the null hypothesis H0 and Assumptions A1(a-c)

Rn =) R1;

where R1 is a Gaussian process with zero mean and covariance function (7).

In practice, �0 is unknown and has to be estimated from a sample f(Yt; I 0t�1)0 : 1 � t � ng by

an estimator �n. When we replace �0 in Rn by �n; resulting in R1n; we need to investigate how the

estimation error will a¤ect the asymptotic properties of R1n: The next result shows this e¤ect on the

asymptotic null distribution of R1n. De�ne the function

G(x; �0(�)) := E[gt�1(�0(�))fIt�1(mt�1(�0)) exp(ix
0It�1)]; x 2 �; � 2 T :

Theorem 2: Under the null hypothesis H0 and Assumptions A1-A4

sup
x2�;�2T

�����R1n(x; �)�Rn(x; �) +G0(x; �0(�))n�1=2
nX
t=1

l�(Yt; It�1; �0(�))

����� = oP (1):

9
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As a consequence, we obtain the following corollary.

Corollary 1: Under the assumptions of Theorem 2

R1n =) R11;

where R11(�) = R1(�)�G0(�; �0(�))Q(�) (in distribution).

Now, using the last corollary and the Continuous Mapping Theorem (CMT) we obtain the asymptotic

null distribution of continuous functionals such as CvMn and KSn:

Corollary 2: Under the assumptions of Theorem 2, for any continuous functional �(�) from

`1(�) to R,

�(R1n)
d�! �(R11):

2.2 Consistency and Pitman�s local alternatives.

In this section we study the consistency properties of tests based on functionals �(R1n): First, we

show that these tests are consistent against all �xed alternatives provided a mild regularity condition

is satis�ed.

Assumption A5: Under HA; (i) there exists a �1 2 B such that k�n � �1kB = oP (1); (ii)

E[	�(et(�1(�))) exp(i � It�1)] is di¤erent from zero in a subset with positive Lebesgue measure on

�:

See Kim and White (2003) for conditions on �KB;n to satisfy Assumption A5(i), see also Section 3

in Angrist, Chernozhukov and Fernández-Val (2006). A su¢ cient condition for A5(ii) is that It�1

is bounded. Notice that this condition always holds if we replace It�1 by �(It�1); with � a one-

to-one bounded mapping, as in Bierens and Ginther (2001). Henceforth, almost sure convergence

of nonmesurable maps is understood, as usual, as outer almost sure convergence, see van der Vaart

and Wellner (1996) for de�nitions.

Theorem 3: Under the alternative hypothesis HA and Assumptions A1, A2, A3 and A5,

n�1=2R1n(�)
a:s�! E[	�(et(�1(�))) exp(i � It�1)]:

A consequence of Theorem 3 and the CMT is that (under the same set of assumptions),Z
�

���n�1=2R1n(x; �)���2 d�(x)dW (�) P�!
Z
�

jE[	�(et(�1(�))) exp(ix0It�1)]j2 d�(x)dW (�) > 0;

10
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provided that � and W are absolute continuous with respect to the Lebesgue measure on �: In such

a situation, the test statistic CvMn will diverge to +1 under any �xed alternative, and the test

will be consistent against all directions in the alternative hypothesis.

Now we analyze the asymptotic distribution of R1n under a sequence of local alternatives converging

to null at a parametric rate n�1=2: We consider the DGP generating the local alternatives

HA;n : E[	�(Yt �mt�1(�0)) j Ft�1] =
a�(It�1)

n1=2
a.s. for some �0 2 B and for all � 2 T ; (8)

where the function a�(�) : Rd �! R satis�es the following assumption.

Assumption A6: a�(�) is such that E sup�2T ja�(It�1)j <1: There exists a Ft�1-measurable r.v.

Ct�1 with E[C2t�1] <1; such that for all t 2 Z and for all �1; �2 2 T ,

ja�1(It�1)� a�2(It�1)j � Ct�1 j�1 � �2j ; a.s.:

To derive the next result we need the following assumption on the behaviour of the estimator under

the local alternatives.

Assumption A4�: The estimator �n(�) satis�es the following asymptotic expansion under HA;n;

uniformly in �;

p
n(�n(�)� �0(�)) = �a(�) +

1p
n

nX
t=1

l�(Yt; It�1; �0(�)) + oP (1);

where the function l�(�) is as in A4 and �a(�) 2 Rp for each � 2 T :

Assumption A4�holds for most estimators considered in the literature. For instance, in the nonlinear

time series context of Mukherjee (1999), the corresponding term �a(�) to �KB;n(�) is

�a(�) = �q�1(�)��1�0(�)E[fIt�1(mt�1(�0))gt�1(�0)a�(It�1)]:

The shift in charge of local power against alternatives in HA;n is given by

Da(x; �0(�); �) := E[a�(I0) exp(ix
0I0)]� �0a(�)G(x; �0(�)):

Theorem 4: Under the local alternatives (8), Assumptions A1-A3, A6 and A4�

R1n =) R11 +Da;

where R11 is the process de�ned in Theorem 2.

11



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

It is not di¢ cult to show that

Da � 0 a.e.() a�(It�1) = �0a(�)g(It�1; �0(�)) for all � 2 T a.s.:

Therefore, for directions a�(�) not collinear to the score g(It�1; �0(�)); the shift function Da is non-

trivial and test statistics based on �(R1n) for a symmetric functional � are asymptotically strictly

unbiased against the local alternatives (8); see Escanciano (2009) for a related formal proof of this

statement.

3. SUBSAMPLING APPROXIMATION

We have seen in the previous section that the asymptotic null distribution of continuous functionals

of R1n depends in a complex way on the DGP and the speci�cation under the null. Therefore,

critical values for the test statistics can not be tabulated for general cases. In this section we

overcome this problem with the assistance of the subsampling methodology. Resampling methods

have been extensively used in the literature of quantile regression models, see, e.g., Hahn (1995),

Horowitz (1998), Bilias, Chen and Ying (2000), Sakov and Bickel (2000) or He and Hu (2002). These

articles consider iid sequences. When time series are involved the bootstrap approximation becomes

more challenging. Subsampling is a powerful resampling scheme that allows an asymptotically valid

inference under very general conditions on the DGP, see the monograph by Politis, Romano and Wolf

(1999). Chernozhukov (2002) and Whang (2006) considered subsampling approximation for LQR

model checks. In this section we apply the subsampling methodology to approximate the critical

values of continuous functionals of R1n. With an abuse of notation we write the test statistic as a

function of the data fXt = (Yt; Z
0
t+1)

0 : t = 0;�1;�2; : : :g; �(R1n) = �(R1n(X1; : : : ; Xn)): Let G�n(w)

be the test statistic�s cdf,

G�n(w) = P (�(R1n) � w):

We describe the subsampling approximation for the time series case; see the aforementioned refer-

ences for iid sequences. Let �(R1b;i) = �(R1b(Xi; : : : ; Xi+b�1)) be the test statistic computed with

the subsample (Xi; : : : ; Xi+b�1) of size b. We note that each subsample of size b (taken without

replacement from the original data) is indeed a sample of size b from the true DGP. Hence, it is clear

that one can approximate the sampling distribution G�n(w) using the distribution of the values of

�(R1b;i) computed over the n� b+ 1 di¤erent subsamples of size b (or the
�
n
b

�
di¤erent subsamples

of size b in the cross-section case). That is, we approximate G�n(w) by

G�n;b(w) =
1

n� b+ 1

n�b+1X
i=1

1(�(R1b;i) � w); w 2 [0;1): (9)

12
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Let c�n;1��;b be the (1� �)-th sample quantile of G�n;b(w); i.e.,

c�n;1��;b = inffw : G�n;b(w) � 1� �g:

Thus, our subsampling tests reject the null hypothesis if �(R1n) > c�n;1��;b: Let c
�
1�� be the (1��)-th

quantile of G�1(w) = P (�(R11) � w): To justify theoretically this resampling approximation we need

an additional assumption on the serial dependence of the DGP. De�ne the �-mixing coe¢ cients as

�(m) = sup
n2Z

sup
B2Fn;A2Pn+m

jP (A \B)� P (A)P (B)j ; m � 1

where the �-�elds Fn and Pn are Fn := �(Xt; t � n) and Pn := �(Xt; t � n); respectively, with

Xt = (Yt; Z
0
t+1)

0:

Assumption A6: fXt = (Yt; Z
0
t+1)

0 : t = 0;�1;�2; : : :g is a strictly stationary strong mixing

process with �-mixing coe¢ cients satisfying

nX
m=1

�(m) = o(n):

The mixing assumption in A6 is su¢ cient but not necessary for the validity of the subsampling,

see Politis, Romano and Wolf (1999). This subsampling procedure allows us to approximate the

asymptotic critical values of the tests based on �(R1n). The next result justi�es theoretically the

subsampling approximation. Its proof follows closely that of Theorem 2 in Whang (2006).

Theorem 5: Assume Assumptions A1-A6 and that b=n! 0 and b!1 as n!1. Then,

(i) Under the null hypothesis H0;

c�n;1��;b
P�! c�1�� :

and

P (�(R1n) > c�n;1��;b) �! � :

(ii) Under any �xed alternative hypothesis

P (�(R1n) > c�n;1��;b) �! 1:

(iii) Under the local alternatives (8),

P (�(R1n) > c�n;1��;b) �! P (�(R11 +Da) > c�1�� ):

Theorem 5 implies that the proposed subsampling tests have a correct asymptotic level, are consis-

tent and are able to detect alternatives tending to the null at the parametric rate n�1=2: An appealing

property of our subsampling tests is that they do not need estimation of the nonparametric (condi-

tional) sparsity function 1=fIt�1(mt�1(�0)), which results in a substantial simpli�cation of the tests.

13
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In practice, the empirical size and power of the tests depend on the choice of the parameter b: For

this choice the reader is referred to Politis, Romano and Wolf (1999) or Sakov and Bickel (2000). In

the present article, we follow the suggestion of Sakov and Bickel (2000) and we chose b =
�
kn2=5

�
;

where b�c denotes the integer part, which yields the optimal minimax accuracy under certain condi-

tions. Section 5 below shows that this resampling procedure provides good approximations in �nite

samples for a variety of values for k. 3

To implement the subsampling test we follow the suggestion of Chernozhukov and Fernández-Val

(2005) and compute the subsampling critical value with recentered subsampling statistic �(R1b;i)�

�(b1=2n�1=2R1n): This centering leads to better power properties of the resulting subsampling test.

An alternative possible centering is �(R1b;i � b1=2n�1=2R1n): The latter performs similarly to the

former in our simulations, and hence it is omitted.

4. FINITE SAMPLE PERFORMANCE

We investigate in this section by means of Monte Carlo experiments the �nite sample performance

of the proposed test based on CvMn and we compare it with some related tests. The aim is to provide

evidence of the good �nite-sample performance of the new test statistic.

We describe our simulation setup. Following Escanciano and Velasco (2006) and references therein,

we choose �(�) equal to the d�variate standard normal random vector4 . In the �rst experiment, we

consider asW a uniform discrete distribution over a grid of T in m = 20 equidistributed points from

� = 0:1 to 1�� = 0:9. Denote by Tm = f�jgmj=1 the points in the grid, with � = �1 < � � � < �m = 1��.

LetWexp be the n�n matrix with elements wexp;t;s = exp(� 1
2 jIt�1 � Is�1j

2
) and let 	 be the n�m

matrix with elements  ij = 	�j (Yi �m(Ii�1; �n)): Hence, the CvM test statistic is computed as

CvMn =
1

nm

mX
j=1

 0�jWexp �j ; (10)

where  �j denotes the j column of 	: Therefore, the computation of CvMn is straightforward. Our

theory allows for m ! 1 as n ! 1 and the f�jgmj=1 generated independently from a distribution

on T ; but for simplicity in the computations we have considered m �xed and f�jgmj=1 deterministic

throughout this section.

We compare our omnibus test with other related tests. The �rst test is the following continuous

3Our experience suggests that values of k in the range k = 4; 5 and 6 provide good approximation for �nite sample

distributions.
4Strictly speaking our present theory does not allow to integrate in the whole Rd in the CvM test, but our theory

can be easily adapted, see e.g. Escanciano�s (2006) Hilbert space approach, to allow for the present de�nition of the

CvM test. In any case, there is no practical di¤erence.
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functional of R1n(�);

Kn :=

Z
�

��R1n(x; �)��2 d�0(x)dW (�)
=

Z
T

��R1n(0; �)��2 dW (�);
where �0 is the delta-Dirac measure at zero. For the present situation

Kn =
1

m

mX
j=1

K2
n;�j ; (11)

where

Kn;� :=
1p
n

nX
t=1

	�(Yt �m(It�1; �n)): (12)

The test statistic Kn can be considered as an extension (to simultaneous �0s) of the traditional

unconditional backtest proposed by Kupiec (1995), which is extensively used in the risk management

literature; see Berkowitz, Christo¤ersen and Pelletier (2006) and Escanciano and Olmo (2010) for a

review of this literature. Note that the asymptotic theory for Kn follows directly from our results

by an application of the CMT.

Likewise, an extended version of Christo¤ersen�s (1998) conditional or independence test can be

computed as

Cn =
1

m

mX
j=1

C2n;�j ; (13)

where

Cn;� =
1p
n

nX
t=2

	�(Yt �m(It�1; �n))	�(Yt�1 �m(It�2; �n)): (14)

For further motivation of the test statistics Kn amd Cn; see our application in Section 5.

We implement tests based on Kn and Cn using the subsampling approximation described in

Section 3. The subsampling approximation is convenient as it accounts for estimation e¤ects that

a¤ect the asymptotic distribution of Kn and Cn (cf. Escanciano and Olmo, 2009).

Motivated by our subsequent application, in the �rst experiment we entertain a Gaussian GARCH(1,1)

model with AR(1) conditional mean for Yt, leading to the quantile model

m(It�1; �0(�)) = �0 + �1Yt�1 + �t�
�1
" (�);

with �2t = �00 + �10(Yt � �0 � �1Yt�1)2 + �20�2t�1; (15)

where ��1" (�) is the �-quantile of the standard Gaussian error distribution and the parameters

�0 = (�0; �1; �00; �10; �20)
0 are estimated by Quasi-Maximum Likelihood (QML). Here �0(�) = �0;

that is, we assume that the innovation�s quantile is known and given by ��1" (�). The results with

estimated innovation�s quantiles are quantitatively the same as with known quantiles, and hence

they are omitted. We consider the following data generating processes:
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NULL: AR(1)-GARCH(1,1) model: Yt = 0:053� 0:092Yt�1 + "t;

ALT1: ARMA(1,1)-GARCH(1,1) model: Yt = 0:053� 0:092Yt�1 + 0:7"t�1 + "t:

ALT2: TAR model: Yt = 0:6Yt�1 + "t if Yt�1 � 1 and Yt = �0:5Yt�1 + "t if Yt�1 > 1:

ALT3: SV model: Yt = 0:053� 0:092Yt�1 + exp(ht)ut; h2t = 0:936h2t�1 + 0:32ut:

ALT4: Bilinear model (BIL): Yt = 0:6Yt�1 + 0:7ut�1Yt�2 + ut:

ALT5: Non-Linear Moving Average model (NLMA): Yt = 0:8u2t�1 + ut:

ALT6: AR(1)-GARCH(1,1) model: Yt = 0:053� 0:092Yt�1 + vt:

In models NULL and ALT1-ALT2, "t = �tut; with �t as in (15) with (�00; �10; �20) = (0:013; 0:104; 0:880)

and futg iid N(0; 1) variates. These parameter values are motivated from our application. Also, in

ALT6 vt = �twt with �t as before and fwtg a standardized sequence of Student-t innovations with

5 degrees of freedom. Model NULL is frequently used in risk management, whereas ALT1-ALT6 are

common linear and nonlinear models used in the time series literature.

We �rst consider two sample sizes n = 100 and n = 300 and a quantile interval [0:1; 0:9]. As the

number of subsamples, we follow the suggestion of Sakov and Bickel (2000) and we chose b =
�
kn2=5

�
;

with several choices of k: We consider k = 3; 4 and 5: These values correspond to b = 18; 25 and

31 for n = 100 and b = 29; 39 and 48 for n = 300; respectively. We set the number of Monte

Carlo repetitions to 1,000 throughout the paper. Therefore, the maximal simulation standard error

is max0�p�1
p
p(1� p)=1000 � 0:016: In all experiments, the nominal probability of rejecting a

correct null hypothesis is 0.05. The conclusions with other nominal values are similar.

In Table I we report the rejection frequencies of the tests based on CvMn; Kn and Cn for models

NULL and ALT1-ALT6. The empirical size performance is satisfactory for CvMn and Kn; but for

Cn there are some size distortions, with increasing overrejections as k increases. As for the empirical

power, we observe that none of the test dominates the others uniformly in all alternatives. The

test based on CvMn has, however, an omnibus power performance, having the highest rejection

frequencies for ALT2, ALT4 and ALT5, and performing satisfactorily for the rest of alternatives. In

any of the alternatives CvMn presents the lowest rejections. The tests based Kn and Cn have good

power for some alternatives but also poor power for others, since they are directional in nature. The

unconditional backtest has good power against ALT3 and ALT6, but low power against the rest of

alternatives, whereas the conditional test Cn is good in detecting the linear alternative ALT1. For

ALT6, since the resulting errors are iid; the test based on Cn is expected to have low power, which

is consistent with our Monte Carlo results for this alternative. The rejection frequencies increase
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as n increases, specially with the omnibus test based on CvMn, showing consistency against these

�xed alternatives.

Please insert Table I about here.

In unreported simulations, we observed that the CvM test statistic CvMn had higher power than

the Kolmogorov�Smirnov-type test KSn in (6), at least for the alternatives considered. We also

observed that uncentered tests led to less powerful procedures than centered test, in accordance

with the theoretical results in Chernozhukov and Fernández-Val (2005). Finally, simulations using

the indicator weight function 1(It�1 � x); instead of exp(ix0It�1); con�rmed that exponential-based

tests have higher power than indicator-based tests for the alternatives considered. Unreported

simulations showing all these issues can be obtained from the authors upon request.

In the second experiment we focus on the left tail of the conditional distribution. We consider as

W a uniform discrete distribution over a grid of T in m = 20 equidistributed points from 0:05 to

0:2. The sample sizes are n = 100 and n = 500. Again, we consider b =
�
kn2=5

�
; now with k = 6; 7

and 8, and 1,000 Monte Carlo repetitions.

In Table II we report the rejection frequencies of the tests based on CvMn; Kn and Cn for

models NULL, ALT2, ALT4, ALT6 and ALT8. The new ALT8 is an alternative where the model

generated is NULL but the �tted model is an unconditional quantile, i.e. we specifym(It�1; �0(�)) =

�0(�) = F�1Y (�), with �0(�) = F�1Y (�) estimated by the unconditional empirical ��quantile. The

unconditional quantile model is very popular in the risk management literature and is known there

as the Historical Simulation model.

The empirical size performance is similar to that of the previous simulations. The test statistics

CvMn and Kn have a satisfactory empirical size but Cn leads to overrejections when n = 100.

However, these overrejections are corrected when n = 500: As for the empirical power, we observe

that CvMn outperforms the rest of tests for all alternatives but for ALT4, for which Kn performs

the best. The conditional test Cn has low power against these alternatives, and in particular,

no power against alternatives ALT4 and ALT6. For ALT8, since the resulting �tted hits satisfy

the unconditional hypothesis E[1(Yt � F�1Y (�))] = �; Kn is expected to have no power, which is

consistent with our results for Kn against this alternative.

Please insert Table II about here.

This limited simulation study suggests that even with relative small sample sizes the subsampling

tests exhibit fairly good size accuracy and power performance. The omnibus nature of the test sta-

tistic CvMn is con�rmed in our simulations. Extensions of well known tests in the risk management

literature have been provided, and we have seen that they may perform well for certain alternatives
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and not so well for others, so these more directional tests may well complement CvMn in practical

situations.

5. APPLICATION TO MARKET RISK MANAGEMENT

The quanti�cation of market risk for derivative pricing, portfolio optimization and pricing risk

purposes has generated a large amount of theoretical and practical work. One of the implications of

the creation of the Basel Committee on Banking Supervision was the implementation of Value-at-

Risk (VaR) as the standard tool for measuring market risk. In �nancial terms, VaR is the maximum

loss on a trading portfolio for a period of time given a con�dence level. In statistical terms, VaR

is the conditional quantile of the conditional distribution of returns on the portfolio given agent�s

information set. Nowadays, VaR has become a standard risk measure due its universality, conceptual

simplicity and easy computation and evaluation.

The evaluation of VaR measures has become of paramount importance in risk management. In

fact, for banks with su¢ ciently highly developed risk management systems the implementation of

VaR techniques was a priori the only restriction set by the Basel Accord (1996a) for computing

capital reserves. Thus, in order to monitor and assess the accuracy and quality of the di¤erent

VaR forecasts techniques the Basel Accord (1996a) and the Amendment of Basel Accord (1996b)

developed a diagnostic testing procedure that was denominated backtesting. To explain formally

what backtesting is, let us consider the following implication of (1),

E[	�;t(�0) j eIt�1;�(�0)] = 0; a.s. for some �0(�) 2 � and some � 2 (0; 1); (16)

where eIt�1;�(�0) := (	�;t�1(�0);	�;t�2(�0); : : :)0: The popularity of condition (16) is mostly due to
the discrete character and ease of interpretation of the variables fHt;�(�0)g; with Ht;�(�0) = 1(Yt �

m(It�1; �0(�))); which are the so-called hits or exceedances. In the VaR literature, the satisfaction

of condition (16) has been taken as the criteria for the out-of-sample evaluation of VaR forecasts,

leading to the so-called unconditional backtesting (i.e. tests for E[Ht;�(�0)] = �) and conditional

tests of independence (i.e. tests for fHt;�(�0)g being iid).

The unconditional backtest is carried out with the so-called Kupiec-test statistic (cf. Kupiec,

1995), given in (12) for marginal quantiles. We have proposed in this paper an extension of this test

to multiple quantiles as in (11). Similarly, we have generalized Christo¤ersen�s (1998) conditional

test statistic in (14) to multiple quantiles in (13).

Then, the alternative methodology proposed in this paper to the mentioned classical backtest-

ing methods overcomes some of their important de�ciencies. First, it is important to stress that

tests based on R1n; such as CvMn; are expected to be more powerful than standard backtesting

techniques. This is so because we incorporate more (possibly nonlinear) information in the test
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statistic. In particular, the unconditional marginal backtest coincides with R1n(0; �); whereas we

exploit a continuum number of x0s; thereby leading to a more powerful test. This is con�rmed in

the applications below. Second, by using only one quantile level, VaR only tells us the most we can

lose if a tail event does not occur; if a tail event does occur, we can expect to lose more than the

VaR, but the VaR itself gives us no indication of how much that might be. Therefore, two positions

can have the same VaR and yet have very di¤erent risk exposures. This is the so-called tail risk

problem in VaR. Our methodology solves this de�ciency by taking a larger, possibly in�nite, number

of quantiles in the tail, thereby giving a more complete picture of the underlying risk exposure and

leading to a better understanding of the �tting properties of the associated risk model.

Indeed, our methodology can be seen as a general framework to analyze market risk. For instance,

there is now an important growing literature in �nance, proposing the Conditional Expected Shortfall

(CES) as an alternative to the VaR for measuring market risk in �nancial data. This measure of

risk is de�ned as

�Wt�1;�(Yt) = ��1
�Z
0

q�(It�1)d�; � 2 (0; 1): (17)

Therefore, in modeling CES the interest is only in the range of quantiles [0; �] and not on the

whole conditional distribution; see Escanciano and Mayoral (2008) for discussion of parametric CES

models. Hence, the methods proposed in this section can be also seen as model speci�cation tools

of CES models.

In this section, we compare the new methodology with the standard backtesting techniques dis-

cussed previously. For simplicity in the arguments, we only consider in-sample comparisons. The

extension to out-of-sample exercises poses no extra di¢ culties, and hence it is omitted. The data

sets we consider are daily closed European stock indexes returns from the Frankfurt DAX Index

(DAX) and the London FTSE-100 Index (FTSE) from 1 January 2003 to 9 June 2008, with a total

of n = 1417 observations. We consider the returns of the indexes obtained as the log di¤erences of

the data.

We entertain a Gaussian AR(1)-GARCH(1,1) model as in (15), with parameters estimated by

QML. We also considered other speci�cations, like pure Gaussian GARCH(1,1) and Student-t

GARCH(1,1) models with degrees of freedom estimated by MLE, and we obtained similar con-

clusions. For the sake of exposition we omit these alternative speci�cations.

The Basel Accord (1996a) and the Amendment of Basel Accord (1996b) recommend to carry out

backtesting procedures with quantile levels � = 0:01 or � = 0:05: Here, we take as T a grid of

m = 10 equidistributed points f�jgmj=1 from �
1
= 0:01 to �

m
= 0:10; in intervals of length 0.01,

covering the region recommended by Basel Accord (1996a). We apply our CvM test in (5) with

It�1 = (Yt�1; Yt�d) for d = 1 and 2; and denote the corresponding test statistic by CvMn;d: We
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compute CvMn;d following (10), and Kn and Cn following (11) and (13), respectively. In Table III

we report the subsampling p�values for several choices of k in b =
�
kn2=5

�
.

Please insert Table III about here.

We can draw several conclusions from the results of Table III. First, our results indicate that

the AR(1)-GARCH(1,1) model with Gaussian innovations is not able to adequately �t the tails of

these stock returns. The omnibus test based on CvMn;d strongly rejects this model for all stocks at

reasonable signi�cance levels. Second, the cumulative conditional backtest statistic Cn has rather

low power and indeed, it is not able to detect any of these alternatives. This result is consistent

with other �nite sample studies using marginal (i.e. for �xed �) versions of this test, see Escanciano

and Olmo (2010). Third, the unconditional test Kn also detects these alternatives, although the

corresponding p-values are larger than those for CvMn;d.

We complement the previous analysis with the marginal tests for each �j ; j = 1; : : : ;m; in Figures 1

and 2 for the subsampling size b =
�
kn2=5

�
with k = 5; i.e., b = 91:We take d = 1 in the information

set for all stocks. We observe that the conditional marginal tests Cn;� are more sensitive to �

than the other tests. We reject the correct speci�cation hypothesis for the DAX index for most

values of � with the omnibus test, but not with conditional and unconditional backtests. For a

risk manager applying classical backtesting techniques at the recommended level � = 0:05; the risk

model provided by the AR(1)-GARCH(1,1) would seem appropriate. Using our more powerful test,

he or she would conclude that this is not the case. In particular, this model fails to �t quantiles in

the range � 2 f0:01; 0:02; 0:05g:

Please insert Figure 1 and Figure 2 about here.

Figure 2 reveals that the rejection for the FTSE index of our CvM test is due to the misspeci�cation

of the conditional quantiles at low levels [0:01; 0:05]: For this data set, the traditional unconditional

backtests is very sensitive to �; giving very di¤erent answers if � = 0:05 or � = 0:07: Overall, we

observe that marginal tests are in general sensitive to the choice of �; which provides motivation for

our cumulative measures of �t when the whole tail is of interest.

For a better understanding of the cause of rejection, we report in Table IV the number of violations

V iol� =
Pn

t=1Ht;�(�n) for each �j ; j = 1; : : : ;m; as well as the number of expected violations

EV iol� = n � �: We observe that in all cases with the DAX and FTSE indexes the number of

violations is higher than its expected value, indicating fatter tails than the Gaussian AR-GARCH

model, especially within the quantile region [0:01; 0:05]. Unreported simulations with a Student-t

distribution showed that an AR(1)-GARCH(1,1) model with Student-t innovations is still not able

to �t the tails of these data sets, although the number of violations is reduced considerably in all

cases. We omit these additional simulations for the sake of space.
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Please insert Table IV about here.

CONCLUSIONS

Econometric modeling often requires the speci�cation of conditional quantile models for a range

of quantiles of the conditional distribution. For the evaluation of models for quantile regression we

propose and justify a general and �exible method which compares favorably with single quantile

techniques and ad-hoc tests. We have shown in this paper that our test has higher power than

the standard (marginal) unconditional and conditional backtesting commonly used by banks and

regulators to assess dynamic parametric VaR estimates. In particular, we �nd that the standard

conditional backtesting procedure has rather low power in detecting misspeci�cations of an AR(1)-

GARCH(1,1) VaR model for two major European stock indexes. Our methods provide �exible and

powerful tools that can be used by practitioners to asses the plausibility of standard market risk

models.

APPENDIX. PROOFS

First, we shall state a weak convergence theorem which is an extension of Theorem A1 in Delgado

and Escanciano (2007) and that is of independent interest. Let for each n � 1; I 0n;0; : : : ; I 0n;n�1; be

an array of random vectors in Rp, p 2 N; and Yn;1; : : : ; Yn;n; be an array of real random variables

(r.v.�s). Denote by (
n;An; Pn); n � 1; the probability space in which all the r.v.�s fYn;t; I 0n;t�1gnt=1
are de�ned. Let Fn;t; 0 � t � n; be a double array of sub �-�elds of An such that Fn;t�1 � Fn;t;

t = 1; : : : ; n and such that for each n � 1 and each  2 H,

E[w(Yn;t; In;t�1; ) j Fn;t�1] = 0 a.s.; 1 � t � n; 8n � 1: (18)

Moreover, we shall assume that fw(Yn;t; In;t�1; );Fn;t; 0 � t � ng is a square-integrable martingale

di¤erence sequence for each  2 H; that is, (18) holds, Ew2(Yn;t; In;t�1; ) <1 and w(Yn;t; In;t�1; )

is Fn;t-measurable for each  2 H and 8t; 1 � t � n;8n 2 N: The following result gives su¢ cient

conditions for the weak convergence of the empirical process

�n;w() = n�1=2
nX
t=1

w(Yn;t; In;t�1; );  2 H:

Under mild conditions the empirical process �n;w can be viewed as a mapping from 
n to `1(H);

the space of all complex-valued functions that are uniformly bounded on H; with H a generic metric

space. The weak convergence theorem that we present here is funded on results by Levental (1989),

Bae and Levental (1995) and Nishiyama (2000). In Theorem A1 in Delgado and Escanciano (2007)
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H was �nite-dimensional, but here we allow for an in�nite-dimensional H: The proof of theorem

does not change by this possibility, however.

An important role in the weak convergence theorem is played by the conditional quadratic variation

(CV) of the empirical process �n;w on a �nite partition B = fHk; 1 � k � Ng of H; which is de�ned

as

CVn;w(B) = max
1�k�N

n�1
nX
t=1

E

"
sup

1;22Hk

jw(Yn;t; In;t�1; 1)� w(Yn;t; In;t�1; 2)j
2 j Fn;t�1

#
: (19)

Then, for the weak convergence theorem we need the following assumptions.

W1: For each n � 1; f(Yn;t; In;t�1)0 : 1 � t � ng is a strictly stationary and ergodic process.

The sequence fw(Yn;t; In;t�1; );Fn;t; 1 � t � ng is a square-integrable martingale di¤erence

sequence for each  2 H: Also, there exists a function Cw(1; 2) on H � H to R such that

uniformly in (1; 2) 2 H �H

n�1
nX
t=1

w(Yn;t; In;t�1; 1)w
c(Yn;t; In;t�1; 2) = Cw(1; 2) + oPn(1):

W2: The family w(Yn;t; In;t�1; ) is such that �n;w is a mapping from 
n to `1(H) and for every

� > 0 there exists a �nite partition B� = fHk; 1 � k � N�g of H; with N� being the number

of elements of such partition, such that

1Z
0

p
log(N�)d� <1 (20)

and

sup
�2(0;1)\Q

CVn;w(B�)
�2

= OPn(1): (21)

Let �1;w(�) be a Gaussian process with zero mean and covariance function given by Cw(1; 2):We

are now in position to state the following

Theorem A1: If Assumptions W1 and W2 hold, then it follows that

�n;w =) �1;w in `1(H):

Proof of Theorem A1: Theorem A1 in Delgado and Escanciano (2007).

Corollary A1: Assuming that W1 holds for w(Yn;t; In;t�1; v) = 	�(Yn;t�m(In;t�1; �0(�))) exp(ix0In;t�1),

v = (x0; �)0 2 �; A1(b) and that

n�1
nX
t=1

jIn;t�1j2 = OPn(1);
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then the weak convergence of Theorem A1 holds.

Proof of Corollary A1: We shall apply Theorem A1. Let us de�ne the metric

d(v1; v2) :=

q
j�1 � �2j2 + jx1 � x2j2; v1; v2 2 �:

Then, we de�ne an �-bracket as an interval [v1; v2] such that v1 � v2 and d(v1; v2) � �: The

bracketing number N(�;�; d) is the minimum number of �-brackets needed to cover �: Then, it is

easy to show that
1Z
0

p
log(N(�;�; d))d� <1

holds. It remains to show that (21) holds. Consider a partition B� = fHk; 1 � k � N(�;�; d) � N�g

of � in �-bracketsHk = [vk; vk]; with vk = (x
0
k; �k)

0 and vk = (x0k; �k)
0; xk � xk and �k � �k: De�ne

"n;t(�) = Yn;t �m(In;t�1; �0(�)): Then, by simple algebra and the monotonicity of 1("n;t(�) � 0)

due to A1(b), CVn;w(B�) in (19) is bounded by

2 max
1�k�N�

n�1
nX
t=1

E

�
sup

v1;v22Hk

j1("n;t(�1) � 0)� �1 � 1("n;t(�2) � 0) + �2j2 j Fn;t�1
�

+2 max
1�k�N�

n�1
nX
t=1

�
sup

v1;v22Hk

jexp(ix01In;t�1)� exp(ix02In;t�1)j
2
�

� C max
1�k�N�

(
j�k � �kj+ jxk � xkj

2
n�1

nX
t=1

jIn;t�1j2
)
:

Hence, (21) holds for the partition B�. Therefore, W2 of Theorem A1 holds and the corollary is

proved. �

Proof of Theorem 1. Follows from Corollary A1. �

Theorem A2. Assume Assumptions A1(c-d), A2, A3, and that there exists a �1 2 B such that

k�n � �1kB = oP (1): Then, uniformly in (x0; �)0 2 �,

R1n(x; �) =
1p
n

nX
t=1

f	�;t(�1)� E[	�;t(�1) j Ft�1]g exp(ix0It�1) (22)

+
1p
n

nX
t=1

fE[	�;t(�) j Ft�1]�=�n � E[	�;t(�1) j Ft�1]g exp(ix0It�1)

+
1p
n

nX
t=1

E[	�;t(�1) j Ft�1] exp(ix0It�1)� E [E[	�;t(�1) j Ft�1] exp(ix0It�1)]

+
p
nE [E[	�;t(�1) j Ft�1] exp(ix0It�1)] + oP (1):

Proof of Theorem A2: Write wt�1(v; �) := f	�;t(�)� E[	�;t(�) j Ft�1]g exp(ix0It�1): First we

shall show that the process

Sn(v; �) =
1p
n

nX
t=1

wt�1(v; �)
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is asymptotically tight with respect to (v; �) 2 W = �� B:

Let us de�ne the class K = fw�(v; �) : (v; �) 2 Wg: Denote Xt�1;1 = (It�1; It�2; : : :)
0: Let

B� = fBk; 1 � k � N� � N[](�;K; k�k2g; with Bk = [wk(Yt; Xt�1;1); wk(Yt; Xt�1;1)]; be a partition

of K in �-brackets with respect to k�k2 ; where k�k2 denotes the L2 norm of random variables, i.e.,

kXk2 =
�
E[X2]

�1=2
:

Conditions A1(c-d) and A2 imply that for a su¢ ciently small � > 0; sup
(v2;�2)2W:d(v1;v2)��

k�1��2kB��

jwt�1(v1; �1)� wt�1(v2; �2)j


2

� C

 sup
(v2;�2)2W:d(v1;v2)��

k�1��2kB��

��	�1;t(�1)�	�2;t(�2)��

2

+ C�

� C

 sup
j�1��2j��

j1(Yt � mt�1(�1(�1)))� 1(Yt � mt�1(�1(�2)))j

2

+C

 
E

"
sup

k�1��2kB��
j1(Yt � mt�1(�1(�)))� 1(Yt � mt�1(�2(�)))j

#!1=2
+ C�

� C�1=2:

Theorem 3 in Chen et al. (2003) and A3 yield that (20) holds for such partition. Therefore, by

similar arguments as in Corollary A1, (21) follows, and condition W2 of Theorem A1 holds. The

asymptotically tightness of Sn(v; �) is then proved. As a result,

sup
v2�

jSn(v; �n)� Sn(v; �1)j = oP (1);

which can be rewritten as

R1n(�) =
1p
n

nX
t=1

f	�;t(�1)� E[	�;t(�1) j Ft�1]g exp(ix0It�1)

+
1p
n

nX
t=1

E[	�;t(�) j Ft�1]�=�n + oP (1);

from which (22) follows. �

Proof of Theorem 2: Under the null �1 = �0 and E[	�(et(�0)) j Ft�1] = 0 a.s.. From the

expansion in (22), it follows that, uniformly in v 2 �,

R1n(�) =
1p
n

nX
t=1

	�;t(�0) exp(ix
0It�1)

+
1p
n

nX
t=1

fE[	�;t(�) j Ft�1]�=�n � E[	�;t(�0) j Ft�1]g exp(ix0It�1) + oP (1)

= Rn(�) +
1p
n

nX
t=1

�
FIt�1(m(It�1; �n))� FIt�1(mt�1(�0))

	
exp(ix0It�1) + oP (1):
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Now, from A1(d) and Koul and Stute (1999, pp. 228-229), uniformly in v 2 �,

1p
n

nX
t=1

�
FIt�1(m(It�1; �n))� FIt�1(mt�1(�0))

	
exp(ix0It�1)

=
p
n(�n � �0)

1

n

nX
t=1

g(It�1; �0)fIt�1(mt�1(�0)) exp(ix
0It�1) + oP (1):

This together with Theorem 1, A2(c) and A4 proves the theorem. �

Proof of Theorem 3: Let W = � � B: Let w = (x0; �; �0(�))0 be a general element of W. The

space W is endowed with the metric

�(w1; w2) = jx1 � x2j+ j�1 � �2j+ sup
�2T

j�1(�)� �2(�)j ;

where w1 = (x01; �1; �
0
1(�))0 and w2 = (x02; �2; �

0
2(�))0 belong to W: Let B(w; �) be the open ball of

radius � around w; i.e., B(w; �) = fw1 2 W : �(w1; w) < �g: Note that A1-A3 yield that for each

w = (x0; �; �0(�))0 2 W it holds that

lim
�!0

E

"
sup

w12B(w;�)

��	�1;t(�1(�1)) exp(ix01It�1)�	�;t(�(�)) exp(ix0It�1)��2
#
= 0:

Therefore, E[	�;t(�1(�)) exp(ix0It�1)] is a continuous function of v = (x0; �)0: Therefore, a uniform

version of the Ergodic Theorem

sup
�2B

sup
v2�

����� 1n
nX
t=1

[	�;t(�(�)) exp(ix
0It�1)� E[	�;t(�(�)) exp(ix0It�1)]

����� = oP (1):

Hence, from the last display and A5

sup
v2�

����� 1n
nX
t=1

[	�;t(�n(�)) exp(ix
0It�1)� E[	�;t(�1(�)) exp(ix0It�1)]

����� = oP (1):

and the function E[	�(�1(�))1(It�1 � �)] is di¤erent from zero in a subset with positive Lebesgue

measure on �: �

Proof of Theorem 4: The proof follows from Theorem A2 and Assumptions A5 and A6 jointly

with A4�in a routine fashion, and then, it is omitted: �

Proof of Theorem 5. The proof follows the same steps as Theorems 2, 3 and 4 of Whang (2006),

using our Corollary 1 instead of his Lemma 3, and then, it is omitted. �
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Table I: Empirical size and power Rejection Frequencies).

n k Test NULL ALT1 ALT2 ALT3 ALT4 ALT5 ALT6

CvMn 3.6 23.9 29.9 44.1 32.0 74.6 18.1

3 Kn 3.4 2.8 5.0 62.5 7.7 24.1 22.9

Cn 9.4 27.4 21.6 25.5 9.3 46.2 12.1

CvMn 3.7 25.9 29.4 40.6 35.2 73.4 20.7

100 4 Kn 3.7 3.0 4.9 59.1 8.2 20.4 26.3

Cn 10.6 30.8 24.9 24.8 10.7 46.3 13.4

CvMn 7.1 32.0 35.0 42.3 43.4 76.8 23.2

5 Kn 5.6 4.3 6.1 59.7 9.2 22.0 28.1

Cn 13.6 37.9 29.0 26.9 11.7 51.9 15.0

CvMn 6.3 69.5 84.1 60.9 85.4 100.0 57.0

3 Kn 5.6 3.3 20.5 87.3 4.7 81.2 72.1

Cn 9.3 63.5 50.2 28.5 11.0 89.4 12.8

CvMn 7.7 70.3 82.0 55.2 85.6 100.0 60.0

300 4 Kn 7.3 4.7 20.5 81.8 5.7 79.7 74.5

Cn 10.1 66.0 52.7 27.4 11.5 89.1 14.4

CvMn 7.8 71.7 81.8 51.2 85.9 99.8 61.8

5 Kn 8.1 5.9 21.4 78.7 5.9 78.3 75.1

Cn 10.9 57.1 53.8 26.6 11.3 90.5 15.2

5% of signi�cance level. � 2 [0:1; 0:9]. b =
�
kn2=5

�
: Maximal simulation s.e.=1.6%
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Table II: Empirical size and power Rejection Frequencies).

n k Test NULL ALT2 ALT4 ALT6 ALT8

CvMn 2.3 30.1 13.8 9.8 46.1

6 Kn 2.6 7.8 7.8 12.6 0.0

Cn 10.2 19.2 7.1 6.4 25.5

CvMn 3.6 35.7 17.7 11.7 54.4

100 7 Kn 3.5 9.4 10.0 14.0 0.0

Cn 12.3 22.4 7.8 6.6 26.4

CvMn 5.9 42.9 24.3 17.8 66.8

8 Kn 5.7 12.9 12.1 19.5 0.0

Cn 15.2 27.1 10.2 10.0 32.5

CvMn 5.0 89.9 37.4 58.5 65.8

6 Kn 5.2 29.4 8.5 82.9 0.0

Cn 5.7 36.5 6.3 7.1 29.3

CvMn 5.6 91.5 40.7 60.5 66.9

500 7 Kn 6.4 29.8 9.8 83.0 0.0

Cn 6.3 38.9 6.9 7.8 27.4

CvMn 6.7 93.2 44.6 62.3 68.3

8 Kn 8.6 30.0 11.7 83.7 0.0

Cn 6.8 41.0 7.4 8.5 29.4

5% of signi�cance level. � 2 [0:05; 0:2]. b =
�
kn2=5

�
: Maximal simulation s.e.=1.6%
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Table III: Aggregated tests: Subsampling p�values.

n=1471 k CvMn;1 CvMn;2 Kn Cn

DAX 4 0.012 0.026 0.092 0.468

5 0.043 0.048 0.087 0.478

6 0.042 0.068 0.096 0.500

FTSE 4 0.000 0.003 0.009 0.976

5 0.000 0.000 0.003 0.994

6 0.001 0.000 0.012 0.990
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Table IV: Number of violations (V iol�) and expected violations (EV iol�)

DAX FTSE

�j EV iol� V iol� V iol�

0.01 14.17 25 29

0.02 28.34 43 48

0.03 42.51 52 62

0.04 56.68 59 69

0.05 70.85 84 82

0.06 85.02 97 89

0.07 99.19 109 100

0.08 113.36 126 115

0.09 127.53 142 129

0.10 141.70 158 145
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Figure 1. Subsampling p-values for CvMn;1;� test (solid line), unconditional backtest Kn;� (dashed

line), and the conditional backtest Cn;� (dotted line) as a function of �. Subsample size b = 91:
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Figure 2. Subsampling p-values for CvMn;1;� test (solid line), unconditional backtest Kn;� (dashed

line), and the conditional backtest Cn;� (dotted line) as a function of �. Subsample size b = 91:
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