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This article proposes omnibus speci…cation tests of parametric dynamic quantile models.

Contrary to the existing procedures, we allow for a ‡exible speci…cation, where a possibly continuum of quantiles are simultaneously speci…ed under fairly weak conditions on the serial dependence in the underlying data generating process. Since the null limit distribution of tests is not pivotal, we propose a subsampling approximation of the asymptotic critical values. A Monte Carlo study shows that the asymptotic results provide good approximations for small sample sizes. Finally, an application suggests that our methodology is a powerful alternative to standard backtesting procedures in evaluating market risk.

INTRODUCTION

Quantile regression is a powerful alternative to least squares regression in a wide range of econometric applications that vary from labor economics or demand analysis to …nance; see the special issue of Empirical Economics (2001, vol .26) and the references therein. Rather than relying on a single measure of conditional location, the quantile regression approach allows the researcher to explore a continuous range of conditional quantile functions, thereby providing a more complete and ‡exible analysis of the conditional dependence structure of the variables under consideration.

A researcher interested in the whole conditional distribution will consider the speci…cation of the conditional quantile at all quantile levels and some diagnostic on its global suitability. As a matter of fact, conditional Goodness-of-…t tests are of paramount importance in econometrics and …nance, see e.g. [START_REF] Andrews | A conditional Kolmogorov test[END_REF] and [START_REF] Corradi | Predictive density and conditional con…dence intervals accuracy tests[END_REF]. On the other hand, a risk manager will not be interested in the whole Pro…t&Loss account's distribution but mainly in its left tail, and hence she will consider a set of small values of quantile levels, usually 1% or 5% as recommended by the Basel Accord (1996a). Obviously, one can envision many situations in economics where the interest is in the lower or upper parts of the distribution; see, for instance, studies of unemployment duration (e.g. [START_REF] Koenker | Inference on the quantile regression process[END_REF] and references therein), and wage inequalities (e.g. [START_REF] Machado | Counterfactual decomposition of changes inwage distributions using quantile regression[END_REF]. For these various situations parametric quantile regressions have been shown to be a useful and ‡exible modelling strategy.

It is well-known, however, that inference procedures within parametric quantile models depend crucially on the validity of the speci…ed parametric functional forms for the range of quantiles under consideration. For instance, the counterfactual decomposition described in [START_REF] Machado | Counterfactual decomposition of changes inwage distributions using quantile regression[END_REF], that has been recently used in many studies to analyze the gender gap in log wages across the distribution (see e.g. [START_REF] Albrecht | Counterfactual distributions with sample selection adjustments: econometric theory and an application to the Netherlands[END_REF], and the martingale transform methods in [START_REF] Koenker | Inference on the quantile regression process[END_REF] depend crucially on the linear quantile speci…cation. Therefore, it is important to develop powerful tests for the correct speci…cation of parametric conditional quantiles over a possibly continuous range of quantiles of interest and under fairly general conditions on the underlying DGP. This is the main purpose of the present paper.

More precisely, suppose we observe a real-valued dependent variable Y t ; and the explanatory vector I t 1 = (W 0 t 1 ; Z 0 t ) 0 2 R d ; d = s + m; where Z t 2 R m ; m 2 N; is an observable random vector (r.v.) and W t 1 = (Y t 1 ; : : : ; Y t s ) 0 2 R s ; where A 0 denotes the matrix transpose of A. We assume throughout the article that the time series process f(Y t ; Z 0 t ) 0 : t = 0; 1; 2; : : :g; de…ned on the probability space ( ; A; P ); is strictly stationary and ergodic. Assuming that the conditional distribution of Y t given I t 1 is continuous, we de…ne the -th conditional quantile of Y t given I t 1
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as the measurable function q satisfying the conditional restriction P (Y t q (I t 1 ) j I t 1 ) = ; almost surely (a.s.), 2 [0; 1].

(1)

In parametric quantile regression modeling one assumes the existence of a family of functions M = fm( ; ( )) : ( ) : T ! R p g; where T is a compact set which comprises the range of quantiles of interest, T [0; 1]; and one proceeds to make inference on or to test if q 2 M; i.e., if there exists some 0 : T ! such that m( ; 0 ( )) = q ( ) a.s. for all 2 T : 1

Leading examples of speci…cations M are the Linear Quantile Regression (LQR) model m(I t 1 ; 0 ( )) m(Z t ; 0 ( )) = Z 0 t 0 ( ); 2 T ;

with the location-scale regression model as the prominent example, in which 0 ( ) = ( 0 ; 0 F 1 0 ( )) 2 R p ; m = p; and where F 1 0 ( ) denotes a univariate quantile function, see, e.g., [START_REF] Koenker | Inference on the quantile regression process[END_REF], or the Linear Quantile Autoregression model of order s (LQAR(s)), where m(I t 1 ; 0 ( )) m(W t 1 ; 0 ( )) = 01 ( ) + W 0 t 1 02 ( ); 0 ( ) = ( 01 ( ); 0 02 ( )) 0 ;

which results, for instance, from the random coe¢ cient model

Y t = 01 (U t ) + W 0 t 1 02 (U t ); (2) 
where 01 ( ) and 02 ( ) are such that the right hand side of (2) is monotone increasing in U t ; and fU t g are independent and identically distributed (iid) U [0; 1] random variables; see [START_REF] Koenker | Quantile autoregression[END_REF] for inferences on the LQAR(s) model.

Much e¤ort has been devoted to inferences on 0 ( ) for the aforementioned models based on the associated quantile processes Q n ( ) := p n ( n ( ) 0 ( )), for n ( ) a p n-consistent estimator of 0 ( ): It is well-known, however, that inferences based on Q n ( ) will heavily depend on the correct speci…cation of the parametric quantile regression model. Although there exist some works on quantile regression model checks, to the best of our knowledge no consistent test for q 2 M has been proposed. The existing literature has been mostly limited to iid observations, linear models, and more importantly to a …xed quantile level 0 2 (0; 1): In particular, [START_REF] Zheng | A consistent nonparametric test of parametric regression models under conditional quantile restrictions[END_REF] has proposed a quantile regression speci…cation test based on kernel smoothing estimators of the conditional moment E[1(Y t m(I t 1 ; 0 ( 0 ))) 0 j I t 1 ]; see also [START_REF] Horowitz | An adaptive, rate-optimal test of linearity for median regression models[END_REF] for the median function (i.e., 0 = 0:5). Recently, [START_REF] Whang | Smoothed Empirical Likelihood Methods for Quantile Regression Models[END_REF], using empirical likelihood methods, has proposed a speci…cation test for quantile regression and censored quantile regression for iid data. 1 We can actually take T = [0; 1] in our theory provided the centered estimator p n( n 0 ) is asymptotically tight on the whole interval [0; 1]: To the best of our knowledge, such result is, however, not available in the literature for most popular estimators. Thus, we do not pursue such generality in this paper and we restrict our analysis to

T

[0; 1]; in accordance with the econometrics literature.
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Tests based on smoothers usually have known asymptotic null distributions after an appropriate choice of the bandwidth sequence, but they are not consistent against Pitman's local alternatives.

Using an integrated approach, [START_REF] Bierens | Integrated conditional moment testing of quantile regression models[END_REF] proposed a diagnostic test for a linear quantile regression. These authors consider iid observations and do not take into account the uncertainty due to parameter estimation. Their test is consistent against n 1=2 local alternatives, with n the sample size, but it relies on an upper bound on the asymptotic critical value, which might be too conservative. To solve this de…ciency, [START_REF] Whang | Consistent speci…cation tests for quantile regression models[END_REF] considered a subsampling approach to approximate the asymptotic critical values. [START_REF] Koul | Nonparametric model checks for time series[END_REF] introduced asymptotic pivotal tests for parametric conditional quantiles of …rst-order nonlinear autoregressive processes. To obtain the pivotal property of the test they use a martingale transform (cf. [START_REF] Khmaladze | Martingale approach to the goodness of …t tests[END_REF]. Alternatively, [START_REF] He | A Lack-of-Fit test for quantile regression[END_REF] developed a bootstrap-based test for linear and nonlinear quantile regressions.

Our paper also contributes to this literature of speci…cation tests for a unique quantile, since our methods trivially apply to the unique quantile case in a more general framework than the previously cited works. By extending the scope of conditional quantile speci…cations to a, possibly, continuum of quantiles we provide a new and ‡exible speci…cation procedure. 2

In the present article we propose omnibus tests for q 2 M that are valid for general linear and nonlinear quantile models under time series. Our tests are based on the fact that q 2 M is characterized by the in…nite set of conditional moment restrictions

E[1(Y t m(I t 1 ; 0 ( ))) j I t 1 ] = 0 a.s. for some 0 ( ) : T ! R p ; 8 2 T : (3) 
The proposed tests are functionals of a quantile-marked empirical process that characterizes condition (3). The asymptotic theory is largely complicated by the fact that (3) involves an in…nite number of conditional moment restrictions, indexed by 2 T : We solve this technical di¢ culty using delicate weak convergence results for empirical processes under martingale conditions. It turns out that the asymptotic null distributions of test statistics depend on the speci…cation under the null and the DGP. Therefore, we propose to implement the test with the assistance of the subsampling.

The rest of the article is organized as follows. In Section 2 we introduce the quantile-marked process, which is the basis upon which the new test statistics for testing (3) are developed. We study the asymptotic distribution of the proposed tests under the null, …xed and local alternatives.

In Section 3 a subsampling procedure for approximating the asymptotic null distribution of tests is considered. In Section 4 we present a simulation exercise assessing the …nite-sample performance of 2 During the revision of this paper, one referee pointed out an unpublished PhD dissertation by Nejmeldeen (2003) proposing speci…cation tests for a continuum of quantiles in a linear quantile model. Nejmeldeen's (2003) results require high-level conditions. In particular, his Assumption (E) directly assumes that a certain empirical process is stochastic equicontinuous, which is certainly the most di¢ cult part and the bulk in the development of our speci…cation tests. On the contrary, we prove the stochastic equicontinuity condition under a set of primitive regularity assumptions and for a more general setting than that considered in Nejmeldeen (2003).
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tests. Section 5 summarizes the results of an application to some European stock indexes, showing that our methodology can serve as a powerful and ‡exible alternative to standard backtesting procedures in evaluating market risk. Finally, Section 6 concludes. Proofs are deferred to an appendix.

Throughout the article A c and jAj denote the complex conjugate and Euclidean norm of A; respectively. In the sequel C is a generic constant that may change from one expression to another. All limits are taken as n ! 1.

TEST STATISTICS AND ASYMPTOTIC THEORY

We aim to test the null hypothesis 

H 0 : E[ (Y t m(I t 1 ; 0 ( ))) j I t 1 ] = 0 a.s
where i = p 1 is the imaginary unit; see [START_REF] Bierens | Consistent model speci…cation tests[END_REF]. Instead of the exponential function we may also use, for instance, any of the parametric families considered in [START_REF] Escanciano | Goodness-of-…t tests for linear and non-linear time series models[END_REF]. Unreported simulations suggested that the exponential function performs favorably to other choices such as indicator functions. These simulations can be obtained from the authors upon request.

Given a sample f(Y t ; I 0 t 1 ) 0 : 1 t ng and a parameter value 2 B; we consider the quantilemarked empirical process indexed by x 2 R d , 2 T and 2 B;

S n (x; ; ) := n 1=2 n X t=1 ;t ( ) exp(ix 0 I t 1 ):
Associated to S n are the quantile-marked error and residual processes, respectively, de…ned by R n (x; ) S n (x; ; 0 ) and R 1 n (x; ) S n (x; ; n ); for a p n consistent estimator n ( ) of 0 ( ); say. The null hypothesis is likely to hold when the process R 1 n (x; ) is close to zero for almost all (x 0 ; ) 0 2 R d T :
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The most popular estimator of 0 is the Quantile Regression Estimator (QRE), initially proposed by Koenker and Basset (1978) for linear models, and subsequently generalized to other frameworks by numerous authors, see references below. The QRE is de…ned as any solution KB;n ( ) minimizing

7 ! n X t=1 (Y t m(I t 1 ; ))
with respect to 2 R p ; where (") = (") ": [START_REF] Koenker | An interior point algorithm for nonlinear quantile regression[END_REF] discussed the existence of KB;n ( ) and an interior point algorithm for its computation.

Basset and Koenker (1978) proved the consistency and asymptotic normality of KB;n ( ) in the linear regression model, including the least absolute deviation estimator, see also [START_REF] Pollard | Asymptotics for least absolute deviation regression estimators[END_REF].

Moreover, the asymptotic theory for p n( KB;n ( ) 0 ( )) as a process indexed by the parameter 2 T ; has been considered, among others, in [START_REF] Gutenbrunner | Regression rank scores and regression quantiles[END_REF] and Gutenbrunner, Jureµ ckova, [START_REF] Gutenbrunner | Test of linear hypotheses based on regression rank scores[END_REF] for linear models, in [START_REF] Koul | Autoregression quantile and related rank scores processes[END_REF] and Jureµ ckova and Hallin (1999) for linear autoregressions, and in [START_REF] Mukherjee | Asymptotics of quantiles and rank scores in nonlinear time series[END_REF] for nonlinear autoregressions.

For early contributions see [START_REF] Portnoy | Tightness of the sequence of empiric cdf processes de…ned from regression fractiles[END_REF]. In the present article we do not restrict ourselves to KB;n and we consider any estimator n satisfying some mild conditions, see A4 below. For instance, our results apply to the Quasi-Maximum Likelihood Estimator in [START_REF] Komunjer | Quasi-maximum likelihood estimation for conditional quantiles[END_REF], under suitable regularity conditions.

The process R 1 n is a mapping from ( ; A; P ) with values in `1( ); where `1( ) is the space of all complex-valued functions that are uniformly bounded on ; with := T ; and a generic compact subset of R d containing the origin: The space `1( ) is furnished with the supremum metric, say d 1 ; and let B d1 be the corresponding Borel -algebra. Let =) denote weak convergence on (`1( ); B d1 ) in the sense of J. Ho¤mann-Jørgensen, see, e.g., Dudley (1999, p. 94), or De…nition 1. 3.3 in van der Vaart and Wellner (1996). Since is generic, =) is indeed weak convergence on compacta.

After (4), test statistics are based on a distance from the standardized sample analogue of

E[ ;t ( 0 ) exp(ix 0 I t 1 )] to zero, i.e., on a norm of R 1 n , say (R 1 n ). A popular norm is the Cramér-von Mises (CvM) functional CvM n := Z R 1 n (x; ) 2 d (x)dW ( ); (5) 
where and W are some integrating measures on and T ; respectively. Other continuous (with respect to d 1 ) functionals from `1( ) to R are of course possible. Our simulations suggested that

CvM n outperforms other alternative functionals such as the Kolmogorov-Smirnov-type functional

KS n := sup 2T Z R 1 n (x; ) 2 d (x): (6) 
Therefore, we focus in the rest of paper on CvM n : We reject the null hypothesis H 0 for "large" values of CvM n . Practical issues about the computation of the test statistic CvM n are deferred to Section 4.

Asymptotic null distribution.

In this subsection we establish the limit distribution of the quantile-marked empirical process R 1 n under the null hypothesis H 0 : The null limit distributions of the tests are the limit distributions of some continuous functionals of R 1 n . To derive asymptotic results we consider the following notation and assumptions. Throughout the paper the family B; in which the parameter 0 takes values, is endowed with the sup norm, i.e., k k B = sup 2T j ( )j. Let, for each t 2 Z; F t = (I 0 t ; I 0 t 1 ; : : :); be the -…eld generated by the information set obtained up to time t: De…ne for each t 2 Z; the quantile "innovation" " t; := Y t q (I t 1 ) and the parametric quantile "error" e t ( ) e t ( ( )) := Y t m(I t 1 ; ( )): De…ne also the family of conditional distributions F x (y) := P (Y t y j I t 1 = x):

Let f x be the density function of the cumulative distribution function (cdf) F x . In particular,

f It 1 (y) denotes the density of Y t given I t 1 ; evaluated at y: Let N [ ] ( ; G; k k) be the -bracketing
number of a class of functions G with respect to a norm k k ; i.e., the smallest number r such that there exist f 1 ; : : : ; f r and 1 ; : : : ; r such that max 1 i r k i k < and for all f 2 G; there exists [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF].

an 1 i r such that kf f i k < i ; see De…nition 2.1.6 in

Assumption A1:

A1(a): f(Y t ; Z 0 t ) 0 : t = 0; 1; 2; : : :g is a strictly stationary and ergodic process: Under H 0 ; f ;t ( 0 ); F t g is a martingale di¤erence sequence for all 2 T :

A1(b): The parametric family m( ; 0 ( )) is nondecreasing in a.s.. A1(c): E[jI 0 j 2 ] < C: A1(d):
The family of distributions functions fF x ; x 2 R d g has Lebesgue densities ff x ; x 2 R d g that are uniformly bounded away from zero for the quantiles of interest, i.e., inf

x2R d ; 2T jf x (m(x; ( )))j C > 0, satisfy sup x2R d ;y2R jf x (y)j C;
and are equicontinuous: for every > 0 there exists a > 0 such that sup

x2R d ;jy zj jf x (y) f x (z)j : Assumption A2: For each 1 2 B;
A2(a): There exists a vector of functions

g t 1 : ! R q such that g t 1 ( 1 ( )) is F t 1 -measurable
for each t 2 Z, and satis…es, for all k < 1;

sup 1 t n;k 1 2k B kn 1=2 n 1=2 km t 1 ( 2 ) m t 1 ( 1 ) ( 2 1 ) 0 g t 1 ( 1 )k B = o P (1) A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT A2(b): For all su¢ ciently small > 0; E " sup k 1 2k B j1(Y t m t 1 ( 1 ( ))) 1(Y t m t 1 ( 2 ( )))j # C ; 8 2 T ; and E " sup j 1 2j jm t 1 ( 1 ( 1 )) m t 1 ( 1 ( 2 ))j # C : A2(c): Uniformly in 2 T ; E jg t 1 ( 1 ( ))j 2 < 1;
and uniformly in (x 0 ; ) 0 2 ;

1 n n X t=1 g t 1 ( 0 ( )) exp(ix 0 I t 1 )f It 1 (m t 1 ( 0 )) E g t 1 ( 0 ( )) exp(ix 0 I t 1 )f It 1 (m t 1 ( 0 )) = o P (1):
Assumption A3: The parametric space is compact in R p : The true parameter 0 ( ) belongs to the interior of for each 2 T , and 0 2 B. The class B satis…es

1 Z 0 log(N [ ] ( 2 ; B; k k B )) 1=2 d < 1:
Assumption A4: The estimator n satis…es that P ( n 2 B) ! 1 as n ! 1; and the following asymptotic expansion under H 0 ; uniformly in 2 T ;

Q n ( ) = p n( n ( ) 0 ( )) = 1 p n n X t=1 l (Y t ; I t 1 ; 0 ( )) + o P (1); where l ( ) is such that E[l (Y 1 ; I 0 ; 0 ( ))] = 0, L ( 0 ( )) = E[l (Y 1 ; I 0 ; 0 ( ))l 0 (Y 1 ; I 0 ; 0 ( ))]
exists and is positive de…nite, and E[l (Y t ; I t 1 ; 0 ( )) (Y s m(I s 1 ; 0 ( )))] = 0 if t 6 = s: Furthermore, as a process in `1(T ); Q n ( ) converges weakly to a Gaussian process Q( ) with zero mean and covariance function

K Q ( 1 ; 2 ) = lim n!1 1 n n X t=1 n X s=1 E[l 1 (Y t ; I t 1 ; 0 ( 1 ))l 2 (Y s ; I s 1 ; 0 ( 2 ))]:
Assumption A1(a) is standard in the time series model checks literature, see, e.g., [START_REF] Koul | Nonparametric model checks for time series[END_REF]. A1(b) is natural in the present context. A1(c) is needed to prove the equicontinuity of the limit process of R n and can be avoided if we replace exp(ix 0 I t 1 ) by exp(ix 0 (I t 1 )); with ( ) a oneto-one bounded mapping (see e.g. [START_REF] Bierens | Integrated conditional moment testing of quantile regression models[END_REF]): A1(d) is necessary for the tightness of the process R 1 n and is required in [START_REF] Koul | Nonparametric model checks for time series[END_REF]. Assumptions A2(a)-A2(c) are classical in inference about nonlinear models, see [START_REF] Koul | Weighted empirical processes in dynamic nonlinear models[END_REF] monograph. A2 is satis…ed for all models considered in the literature under mild moment assumptions, e.g. LQR and LQAR models. Su¢ cient conditions for A3 can be found in van der [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF], see e.g. their Theorem 2.7.5 for monotone classes of functions, which applies to LQAR models. A4 has been established in the literature under a variety of conditions and di¤erent models and DGP's, see, for instance, Theorem 1 in [START_REF] Gutenbrunner | Regression rank scores and regression quantiles[END_REF] or Theorem 3.2 in [START_REF] Mukherjee | Asymptotics of quantiles and rank scores in nonlinear time series[END_REF]. For nonlinear models
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with iid innovations (" t ) t2Z distributed as F " ; Mukherjee (1999) proved A4 for KB;n ( ). Under some mild additional assumptions, including that 0( ) := E g (I 1 ; 0 ( )) g (I 1 ; 0 ( )) 0 exists and is positive de…nite, [START_REF] Mukherjee | Asymptotics of quantiles and rank scores in nonlinear time series[END_REF] showed that A4 holds for the QRE under H 0 with

l (Y t ; I t 1 ; 0 ( )) = 1 0( ) g(I t 1 ; 0 ( )) (" t ) q( ) ;
where q( ) = f " (F 1 " ( )) is the reciprocal of the sparsity function and f " is the density of F " : The quantile limit process Q( ) in that case is 1 0( ) W ( )=q( ); where W ( ) denotes a vector of p independent Brownian bridges on T .

We now establish the limit distribution of R n : Under A1(a) and H 0 , because R n (v) is a zero-mean square-integrable martingale for each v = (x 0 ; ) 0 2 ; using a suitable Central Limit Theorem (CLT) for stationary ergodic martingale di¤erence sequences, cf. [START_REF] Billingsley | The Lindeberg-Levy theorem for martingales[END_REF], we have that the …nite-dimensional distributions of R n converge to those of a multivariate normal distribution with a zero mean vector and variance-covariance matrix given by the covariance function

K 1 (v 1 ; v 2 ) = ( 1 ^ 2 1 2 )E[exp(i(x 1 x 2 ) 0 I 0 )]; (7) 
where, henceforth, v 1 = (x 0 1 ; 1 ) 0 and v 2 = (x 0 2 ; 2 ) 0 represent generic elements of ; and ^denotes the minimum, i.e., a ^b = minfa; bg: The next result is an extension of the convergence of the …nite-dimensional distributions of R n to weak convergence in the space `1( ): We stress that no mixing conditions are required for the weak convergence to hold.

Theorem 1: Under the null hypothesis H 0 and Assumptions A1(a-c)

R n =) R 1 ;
where R 1 is a Gaussian process with zero mean and covariance function (7).

In practice, 0 is unknown and has to be estimated from a sample f(Y t ; I 0 t 1 ) 0 : 1 t ng by an estimator n . When we replace 0 in R n by n ; resulting in R 1 n ; we need to investigate how the estimation error will a¤ect the asymptotic properties of R 1 n : The next result shows this e¤ect on the asymptotic null distribution of R 1 n . De…ne the function

G(x; 0 ( )) := E[g t 1 ( 0 ( ))f It 1 (m t 1 ( 0 )) exp(ix 0 I t 1 )];
x 2 ; 2 T :

Theorem 2: Under the null hypothesis H 0 and Assumptions A1-A4

sup x2 ; 2T R 1 n (x; ) R n (x; ) + G 0 (x; 0 ( ))n 1=2 n X t=1 l (Y t ; I t 1 ; 0 ( )) = o P (1):
As a consequence, we obtain the following corollary.

Corollary 1: Under the assumptions of Theorem 2

R 1 n =) R 1 1 ; where R 1 1 ( ) = R 1 ( ) G 0 ( ; 0 ( ))Q( ) (in distribution).
Now, using the last corollary and the Continuous Mapping Theorem (CMT) we obtain the asymptotic null distribution of continuous functionals such as CvM n and KS n :

Corollary 2: Under the assumptions of Theorem 2, for any continuous functional ( ) from

`1( ) to R, (R 1 n ) d ! (R 1 1 ):
2.2 Consistency and Pitman's local alternatives.

In this section we study the consistency properties of tests based on functionals (R 1 n ): First, we show that these tests are consistent against all …xed alternatives provided a mild regularity condition is satis…ed.

Assumption A5: Under H A ; (i) there exists a 1 2 B such that k n 1 k B = o P (1); (ii) E[ (e t ( 1 ( ))) exp(i I t 1 )
] is di¤erent from zero in a subset with positive Lebesgue measure on : See [START_REF] Kim | Estimation, inference, and speci…cation testing for possibly misspec-i…ed quantile regressions[END_REF] for conditions on KB;n to satisfy Assumption A5(i), see also Section 3 in Angrist, Chernozhukov and Fernández-Val (2006). A su¢ cient condition for A5(ii) is that I t 1 is bounded. Notice that this condition always holds if we replace I t 1 by (I t 1 ); with a oneto-one bounded mapping, as in [START_REF] Bierens | Integrated conditional moment testing of quantile regression models[END_REF]. Henceforth, almost sure convergence of nonmesurable maps is understood, as usual, as outer almost sure convergence, see [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF] for de…nitions.

Theorem 3: Under the alternative hypothesis H A and Assumptions A1, A2, A3 and A5,

n 1=2 R 1 n ( ) a:s ! E[ (e t ( 1 ( ))) exp(i I t 1 )]:
A consequence of Theorem 3 and the CMT is that (under the same set of assumptions),

Z n 1=2 R 1 n (x; ) 2 d (x)dW ( ) P ! Z jE[ (e t ( 1 ( ))) exp(ix 0 I t 1 )]j 2 d (x)dW ( ) > 0; A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
provided that and W are absolute continuous with respect to the Lebesgue measure on : In such a situation, the test statistic CvM n will diverge to +1 under any …xed alternative, and the test will be consistent against all directions in the alternative hypothesis.

Now we analyze the asymptotic distribution of R 1 n under a sequence of local alternatives converging to null at a parametric rate n 1=2 : We consider the DGP generating the local alternatives

H A;n : E[ (Y t m t 1 ( 0 )) j F t 1 ] = a (I t 1 )
n 1=2 a.s. for some 0 2 B and for all 2 T ; (8

)
where the function a ( ) : R d ! R satis…es the following assumption.

Assumption A6: a ( ) is such that E sup 2T ja (I t 1 )j < 1: There exists a F t 1 -measurable r.v.

C t 1 with E[C 2 t 1 ] < 1;
such that for all t 2 Z and for all 1 ; 2 2 T , ja 1 (I t 1 ) a 2 (I t 1 )j C t 1 j 1 2 j ; a.s.:

To derive the next result we need the following assumption on the behaviour of the estimator under the local alternatives.

Assumption A4' : The estimator n ( ) satis…es the following asymptotic expansion under H A;n ;

uniformly in ;

p n( n ( ) 0 ( )) = a ( ) + 1 p n n X t=1 l (Y t ; I t 1 ; 0 ( )) + o P (1);
where the function l ( ) is as in A4 and a ( ) 2 R p for each 2 T :

Assumption A4'holds for most estimators considered in the literature. For instance, in the nonlinear time series context of [START_REF] Mukherjee | Asymptotics of quantiles and rank scores in nonlinear time series[END_REF], the corresponding term a ( )

to KB;n ( ) is a ( ) = q 1 ( ) 1 0( ) E[f It 1 (m t 1 ( 0 ))g t 1 ( 0 )a (I t 1 )]:
The shift in charge of local power against alternatives in H A;n is given by

D a (x; 0 ( ); ) := E[a (I 0 ) exp(ix 0 I 0 )] 0 a ( )G(x; 0 ( )):
Theorem 4: Under the local alternatives (8), Assumptions A1-A3, A6 and A4'

R 1 n =) R 1 1 + D a ;
where R 1 1 is the process de…ned in Theorem 2.
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It is not di¢ cult to show that D a 0 a.e. () a (I t 1 ) = 0 a ( )g(I t 1 ; 0 ( )) for all 2 T a.s.:

Therefore, for directions a ( ) not collinear to the score g(I t 1 ; 0 ( )); the shift function D a is nontrivial and test statistics based on (R 1 n ) for a symmetric functional are asymptotically strictly unbiased against the local alternatives (8); see [START_REF] Escanciano | On the Lack of Power of Omnibus Speci…cation Tests[END_REF] for a related formal proof of this statement.

SUBSAMPLING APPROXIMATION

We have seen in the previous section that the asymptotic null distribution of continuous functionals of R 1 n depends in a complex way on the DGP and the speci…cation under the null. Therefore, critical values for the test statistics can not be tabulated for general cases. In this section we overcome this problem with the assistance of the subsampling methodology. Resampling methods have been extensively used in the literature of quantile regression models, see, e.g., [START_REF] Hahn | Bootstrapping quantile regression estimators[END_REF], [START_REF] Horowitz | Bootstrap methods for median regression models[END_REF], [START_REF] Bilias | Simple resampling methods for the censored regression quantiles[END_REF], [START_REF] Sakov | An Edgeworth expansion for the m out of n bootstrap median[END_REF] or [START_REF] He | Markov chain marginal bootstrap[END_REF]. These articles consider iid sequences. When time series are involved the bootstrap approximation becomes more challenging. Subsampling is a powerful resampling scheme that allows an asymptotically valid inference under very general conditions on the DGP, see the monograph by [START_REF] Politis | Subsampling[END_REF]. [START_REF] Chernozhukov | Inference on the quantile regression process, an alternative[END_REF] and [START_REF] Whang | Consistent speci…cation tests for quantile regression models[END_REF] considered subsampling approximation for LQR model checks. In this section we apply the subsampling methodology to approximate the critical values of continuous functionals of R 1 n . With an abuse of notation we write the test statistic as a function of the data fX t = (Y t ; Z 0 t+1 ) 0 : t = 0; 1; 2; : : :

g; (R 1 n ) = (R 1 n (X 1 ; : : : ; X n )): Let G n (w) be the test statistic's cdf, G n (w) = P ( (R 1 n ) w):
We describe the subsampling approximation for the time series case; see the aforementioned references for iid sequences. Let (R 1 b;i ) = (R 1 b (X i ; : : : ; X i+b 1 )) be the test statistic computed with the subsample (X i ; : : : ; X i+b 1 ) of size b. We note that each subsample of size b (taken without replacement from the original data) is indeed a sample of size b from the true DGP. Hence, it is clear that one can approximate the sampling distribution G n (w) using the distribution of the values of (R 1 b;i ) computed over the n b + 1 di¤erent subsamples of size b (or the n b di¤erent subsamples of size b in the cross-section case). That is, we approximate G n (w) by where the -…elds F n and P n are F n := (X t ; t n) and P n := (X t ; t n); respectively, with

G n;b (w) = 1 n b + 1 n b+1 X i=1 1( (R 1 b;i ) w); w 2 [0; 1): (9 
X t = (Y t ; Z 0 t+1 ) 0 :
Assumption A6: fX t = (Y t ; Z 0 t+1 ) 0 : t = 0; 1; 2; : : :g is a strictly stationary strong mixing process with -mixing coe¢ cients satisfying

n X m=1 (m) = o(n):
The mixing assumption in A6 is su¢ cient but not necessary for the validity of the subsampling, see [START_REF] Politis | Subsampling[END_REF]. This subsampling procedure allows us to approximate the asymptotic critical values of the tests based on (R 1 n ). The next result justi…es theoretically the subsampling approximation. Its proof follows closely that of Theorem 2 in [START_REF] Whang | Consistent speci…cation tests for quantile regression models[END_REF]. (ii) Under any …xed alternative hypothesis

P ( (R 1 n ) > c n;1 ;b ) ! 1:
(iii) Under the local alternatives (8),

P ( (R 1 n ) > c n;1 ;b ) ! P ( (R 1 1 + D a ) > c 1 ):
Theorem 5 implies that the proposed subsampling tests have a correct asymptotic level, are consistent and are able to detect alternatives tending to the null at the parametric rate n 1=2 : An appealing property of our subsampling tests is that they do not need estimation of the nonparametric (conditional) sparsity function 1=f It 1 (m t 1 ( 0 )), which results in a substantial simpli…cation of the tests.
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In practice, the empirical size and power of the tests depend on the choice of the parameter b: For this choice the reader is referred to [START_REF] Politis | Subsampling[END_REF] or [START_REF] Sakov | An Edgeworth expansion for the m out of n bootstrap median[END_REF]. In the present article, we follow the suggestion of [START_REF] Sakov | An Edgeworth expansion for the m out of n bootstrap median[END_REF] and we chose b = kn 2=5 ;

where b c denotes the integer part, which yields the optimal minimax accuracy under certain conditions. Section 5 below shows that this resampling procedure provides good approximations in …nite samples for a variety of values for k. 3To implement the subsampling test we follow the suggestion of Chernozhukov and Fernández-Val (2005) and compute the subsampling critical value with recentered subsampling statistic (R

1 b;i ) (b 1=2 n 1=2 R 1 n ):
This centering leads to better power properties of the resulting subsampling test. An alternative possible centering is (R

1 b;i b 1=2 n 1=2 R 1 n ):
The latter performs similarly to the former in our simulations, and hence it is omitted.

FINITE SAMPLE PERFORMANCE

We investigate in this section by means of Monte Carlo experiments the …nite sample performance of the proposed test based on CvM n and we compare it with some related tests. The aim is to provide evidence of the good …nite-sample performance of the new test statistic.

We describe our simulation setup. Following [START_REF] Escanciano | Generalized spectral tests for the martingale di¤erence hypothesis[END_REF] and references therein, we choose ( ) equal to the d variate standard normal random vector 4 . In the …rst experiment, we consider as W a uniform discrete distribution over a grid of T in m = 20 equidistributed points from = 0:1 to 1 = 0:9. Denote by T m = f j g m j=1 the points in the grid, with = 1 < < m = 1 .

Let W exp be the n n matrix with elements w exp;t;s = exp( 1 2 jI t 1 I s 1 j 2 ) and let be the n m matrix with elements ij = j (Y i m(I i 1 ; n )): Hence, the CvM test statistic is computed as

CvM n = 1 nm m X j=1 0 j W exp j ; (10) 
where j denotes the j column of : Therefore, the computation of CvM n is straightforward. Our theory allows for m ! 1 as n ! 1 and the f j g m j=1 generated independently from a distribution on T ; but for simplicity in the computations we have considered m …xed and f j g m j=1 deterministic throughout this section.

We compare our omnibus test with other related tests. The …rst test is the following continuous

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT functional of R 1 n ( ); K n := Z R 1 n (x; ) 2 d 0 (x)dW ( ) = Z T R 1 n (0; ) 2 dW ( );
where 0 is the delta-Dirac measure at zero. For the present situation

K n = 1 m m X j=1 K 2 n; j ; (11) 
where

K n; := 1 p n n X t=1 (Y t m(I t 1 ; n )): (12) 
The test statistic K n can be considered as an extension (to simultaneous 0 s) of the traditional unconditional backtest proposed by [START_REF] Kupiec | Techniques for verifying the accuracy of risk measurement models[END_REF], which is extensively used in the risk management literature; see [START_REF] Berkowitz | Evaluating Value-at-Risk models with desklevel data[END_REF] and [START_REF] Escanciano | Backtesting VaR with estimation risk[END_REF] for a review of this literature. Note that the asymptotic theory for K n follows directly from our results by an application of the CMT.

Likewise, an extended version of Christo¤ersen's (1998) conditional or independence test can be computed as

C n = 1 m m X j=1 C 2 n; j ; ( 13 
)
where

C n; = 1 p n n X t=2 (Y t m(I t 1 ; n )) (Y t 1 m(I t 2 ; n )): (14) 
For further motivation of the test statistics K n amd C n ; see our application in Section 5.

We implement tests based on K n and C n using the subsampling approximation described in Section 3. The subsampling approximation is convenient as it accounts for estimation e¤ects that a¤ect the asymptotic distribution of K n and C n (cf. Escanciano and Olmo, 2009).

Motivated by our subsequent application, in the …rst experiment we entertain a Gaussian GARCH(1,1) model with AR(1) conditional mean for Y t , leading to the quantile model

m(I t 1 ; 0 ( )) = 0 + 1 Y t 1 + t 1 " ( ); with 2 t = 00 + 10 (Y t 0 1 Y t 1 ) 2 + 20 2 t 1 ; (15) 
where 1 " ( ) is the -quantile of the standard Gaussian error distribution and the parameters 0 = ( 0 ; 1 ; 00 ; 10 ; 20 ) 0 are estimated by Quasi-Maximum Likelihood (QML). Here 0 ( ) = 0 ; that is, we assume that the innovation's quantile is known and given by 1 " ( ). The results with estimated innovation's quantiles are quantitatively the same as with known quantiles, and hence they are omitted. We consider the following data generating processes:
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NULL: AR(1)-GARCH(1,1) model: Y t = 0:053 0:092Y t 1 + " t ; ALT1: ARMA(1,1)-GARCH(1,1) model: Y t = 0:053 0:092Y t 1 + 0:7" t 1 + " t :

ALT2: TAR model: Y t = 0:6Y t 1 + " t if Y t 1 1 and Y t = 0:5Y t 1 + " t if Y t 1 > 1: ALT3: SV model: Y t = 0:053 0:092Y t 1 + exp(h t )u t ; h 2 t = 0:936h 2 t 1 + 0:32u t : ALT4: Bilinear model (BIL): Y t = 0:6Y t 1 + 0:7u t 1 Y t 2 + u t : ALT5: Non-Linear Moving Average model (NLMA): Y t = 0:8u 2 t 1 + u t : ALT6: AR(1)-GARCH(1,1) model: Y t = 0:053 0:092Y t 1 + v t :
In models NULL and ALT1-ALT2, " t = t u t ; with t as in ( 15) with ( 00 ; 10 ; 20 ) = (0:013; 0:104; 0:880) and fu t g iid N (0; 1) variates. These parameter values are motivated from our application. Also, in ALT6 v t = t w t with t as before and fw t g a standardized sequence of Student-t innovations with 5 degrees of freedom. Model NULL is frequently used in risk management, whereas ALT1-ALT6 are common linear and nonlinear models used in the time series literature.

We …rst consider two sample sizes n = 100 and n = 300 and a quantile interval In Table I Please insert Table I about here.

In unreported simulations, we observed that the CvM test statistic CvM n had higher power than the Kolmogorov-Smirnov-type test KS n in (6), at least for the alternatives considered. We also observed that uncentered tests led to less powerful procedures than centered test, in accordance with the theoretical results in Chernozhukov and Fernández-Val (2005). Finally, simulations using the indicator weight function 1(I t 1 x); instead of exp(ix 0 I t 1 ); con…rmed that exponential-based tests have higher power than indicator-based tests for the alternatives considered. Unreported simulations showing all these issues can be obtained from the authors upon request.

In the second experiment we focus on the left tail of the conditional distribution. We consider as W a uniform discrete distribution over a grid of T in m = 20 equidistributed points from 0:05 to 0:2. The sample sizes are n = 100 and n = 500. Again, we consider b = kn 2=5 ; now with k = 6; 7 and 8, and 1,000 Monte Carlo repetitions.

In Table II we report the rejection frequencies of the tests based on CvM n ; K n and C n for models NULL, ALT2, ALT4, ALT6 and ALT8. The new ALT8 is an alternative where the model generated is NULL but the …tted model is an unconditional quantile, i.e. we specify m(I t 1 ; 0 ( )) = 0 ( ) = F 1 Y ( ), with 0 ( ) = F 1 Y ( ) estimated by the unconditional empirical quantile. The unconditional quantile model is very popular in the risk management literature and is known there as the Historical Simulation model.

The empirical size performance is similar to that of the previous simulations. The test statistics

CvM n and K n have a satisfactory empirical size but C n leads to overrejections when n = 100.

However, these overrejections are corrected when n = 500: As for the empirical power, we observe that CvM n outperforms the rest of tests for all alternatives but for ALT4, for which K n performs the best. The conditional test C n has low power against these alternatives, and in particular, no power against alternatives ALT4 and ALT6. For ALT8, since the resulting …tted hits satisfy the unconditional hypothesis E[1(Y t F 1 Y ( ))] = ; K n is expected to have no power, which is consistent with our results for K n against this alternative.

Please insert Table II about here.

This limited simulation study suggests that even with relative small sample sizes the subsampling tests exhibit fairly good size accuracy and power performance. The omnibus nature of the test statistic CvM n is con…rmed in our simulations. Extensions of well known tests in the risk management literature have been provided, and we have seen that they may perform well for certain alternatives
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and not so well for others, so these more directional tests may well complement CvM n in practical situations.

APPLICATION TO MARKET RISK MANAGEMENT

The quanti…cation of market risk for derivative pricing, portfolio optimization and pricing risk purposes has generated a large amount of theoretical and practical work. One of the implications of the creation of the Basel Committee on Banking Supervision was the implementation of Value-at-Risk (VaR) as the standard tool for measuring market risk. In …nancial terms, VaR is the maximum loss on a trading portfolio for a period of time given a con…dence level. In statistical terms, VaR is the conditional quantile of the conditional distribution of returns on the portfolio given agent's information set. Nowadays, VaR has become a standard risk measure due its universality, conceptual simplicity and easy computation and evaluation.

The evaluation of VaR measures has become of paramount importance in risk management. In fact, for banks with su¢ ciently highly developed risk management systems the implementation of VaR techniques was a priori the only restriction set by the Basel Accord (1996a) for computing capital reserves. Thus, in order to monitor and assess the accuracy and quality of the di¤erent VaR forecasts techniques the Basel Accord (1996a) and the Amendment of Basel Accord (1996b) developed a diagnostic testing procedure that was denominated backtesting. To explain formally what backtesting is, let us consider the following implication of (1), E[ ;t ( 0 ) j e I t 1; ( 0 )] = 0; a.s. for some 0 ( ) 2 and some 2 (0; 1);

where e I t 1; ( 0 ) := ( ;t 1 ( 0 ); ;t 2 ( 0 ); : : :) 0 : The popularity of condition ( 16) is mostly due to the discrete character and ease of interpretation of the variables fH t; ( 0 )g; with H t; ( 0 ) = 1(Y t m(I t 1 ; 0 ( ))); which are the so-called hits or exceedances. In the VaR literature, the satisfaction of condition ( 16) has been taken as the criteria for the out-of-sample evaluation of VaR forecasts, leading to the so-called unconditional backtesting (i.e. tests for E[H t; ( 0 )] = ) and conditional tests of independence (i.e. tests for fH t; ( 0 )g being iid ).

The unconditional backtest is carried out with the so-called Kupiec-test statistic (cf. [START_REF] Kupiec | Techniques for verifying the accuracy of risk measurement models[END_REF], given in (12) for marginal quantiles. We have proposed in this paper an extension of this test to multiple quantiles as in (11). Similarly, we have generalized Christo¤ersen's (1998) conditional test statistic in ( 14) to multiple quantiles in (13).

Then, the alternative methodology proposed in this paper to the mentioned classical backtesting methods overcomes some of their important de…ciencies. First, it is important to stress that tests based on R 1 n ; such as CvM n ; are expected to be more powerful than standard backtesting techniques. This is so because we incorporate more (possibly nonlinear) information in the test
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statistic. In particular, the unconditional marginal backtest coincides with R 1 n (0; ); whereas we exploit a continuum number of x 0 s; thereby leading to a more powerful test. This is con…rmed in the applications below. Second, by using only one quantile level, VaR only tells us the most we can lose if a tail event does not occur; if a tail event does occur, we can expect to lose more than the VaR, but the VaR itself gives us no indication of how much that might be. Therefore, two positions can have the same VaR and yet have very di¤erent risk exposures. This is the so-called tail risk problem in VaR. Our methodology solves this de…ciency by taking a larger, possibly in…nite, number of quantiles in the tail, thereby giving a more complete picture of the underlying risk exposure and leading to a better understanding of the …tting properties of the associated risk model. Indeed, our methodology can be seen as a general framework to analyze market risk. For instance, there is now an important growing literature in …nance, proposing the Conditional Expected Shortfall (CES) as an alternative to the VaR for measuring market risk in …nancial data. This measure of risk is de…ned as

Wt 1; (Y t ) = 1 Z 0 q (I t 1 )d ; 2 (0; 1): (17) 
Therefore, in modeling CES the interest is only in the range of quantiles [0; ] and not on the whole conditional distribution; see [START_REF] Escanciano | Semiparametric estimation of dynamic conditional expected shortfall models[END_REF] for discussion of parametric CES models. Hence, the methods proposed in this section can be also seen as model speci…cation tools of CES models.

In this section, we compare the new methodology with the standard backtesting techniques discussed previously. For simplicity in the arguments, we only consider in-sample comparisons. The extension to out-of-sample exercises poses no extra di¢ culties, and hence it is omitted. The data sets we consider are daily closed European stock indexes returns from the Frankfurt DAX Index (DAX) and the London FTSE-100 Index (FTSE) from 1 January 2003 to 9 June 2008, with a total of n = 1417 observations. We consider the returns of the indexes obtained as the log di¤erences of the data.

We entertain a Gaussian AR(1)-GARCH(1,1) model as in ( 15), with parameters estimated by QML. We also considered other speci…cations, like pure Gaussian GARCH(1,1) and Student-t GARCH(1,1) models with degrees of freedom estimated by MLE, and we obtained similar conclusions. For the sake of exposition we omit these alternative speci…cations.

The Basel Accord (1996a) and the Amendment of Basel Accord (1996b) recommend to carry out backtesting procedures with quantile levels = 0:01 or = 0:05: Here, we take as T a grid of m = 10 equidistributed points f j g m j=1 from 1 = 0:01 to m = 0:10; in intervals of length 0.01, covering the region recommended by Basel Accord (1996a). We apply our CvM test in (5) with I t 1 = (Y t 1 ; Y t d ) for d = 1 and 2; and denote the corresponding test statistic by CvM n;d : We compute CvM n;d following (10), and K n and C n following ( 11) and ( 13), respectively. In Table III we report the subsampling p values for several choices of k in b = kn 2=5 . III about here. We can draw several conclusions from the results of Table III. First, our results indicate that the AR(1)-GARCH(1,1) model with Gaussian innovations is not able to adequately …t the tails of these stock returns. The omnibus test based on CvM n;d strongly rejects this model for all stocks at reasonable signi…cance levels. Second, the cumulative conditional backtest statistic C n has rather low power and indeed, it is not able to detect any of these alternatives. This result is consistent with other …nite sample studies using marginal (i.e. for …xed ) versions of this test, see [START_REF] Escanciano | Backtesting VaR with estimation risk[END_REF]. Third, the unconditional test K n also detects these alternatives, although the corresponding p-values are larger than those for CvM n;d .

Please insert Table

We complement the previous analysis with the marginal tests for each j ; j = 1; : : : ; m; in Figures 1 and2 For a better understanding of the cause of rejection, we report in Table IV the number of violations

V iol = P n t=1 H t;
( n ) for each j ; j = 1; : : : ; m; as well as the number of expected violations EV iol = n : We observe that in all cases with the DAX and FTSE indexes the number of violations is higher than its expected value, indicating fatter tails than the Gaussian AR-GARCH model, especially within the quantile region [0:01; 0:05]. Unreported simulations with a Student-t distribution showed that an AR(1)-GARCH(1,1) model with Student-t innovations is still not able to …t the tails of these data sets, although the number of violations is reduced considerably in all cases. We omit these additional simulations for the sake of space.

Please insert Table IV about here.

CONCLUSIONS

Econometric modeling often requires the speci…cation of conditional quantile models for a range of quantiles of the conditional distribution. For the evaluation of models for quantile regression we propose and justify a general and ‡exible method which compares favorably with single quantile techniques and ad-hoc tests. We have shown in this paper that our test has higher power than the standard (marginal) unconditional and conditional backtesting commonly used by banks and regulators to assess dynamic parametric VaR estimates. In particular, we …nd that the standard conditional backtesting procedure has rather low power in detecting misspeci…cations of an AR(1)-GARCH(1,1) VaR model for two major European stock indexes. Our methods provide ‡exible and powerful tools that can be used by practitioners to asses the plausibility of standard market risk models.

APPENDIX. PROOFS

First, we shall state a weak convergence theorem which is an extension of Theorem A1 in [START_REF] Delgado | Nonparametric tests for conditional symmetry in dynamic models[END_REF] and that is of independent interest. Let for each n 1; I 0 n;0 ; : : : ; I 0 n;n 1 ; be an array of random vectors in R p , p 2 N; and Y n;1 ; : : : ; Y n;n ; be an array of real random variables (r.v.'s). Denote by ( n ; A n ; P n ); n 1; the probability space in which all the r.v.'s fY n;t ; I Under mild conditions the empirical process n;w can be viewed as a mapping from n to `1(H);

the space of all complex-valued functions that are uniformly bounded on H; with H a generic metric space. The weak convergence theorem that we present here is funded on results by [START_REF] Levental | A uniform CLT for uniformly bounded families of martingale di¤erences[END_REF], [START_REF] Bae | Uniform CLT for Markov chains and its invariance principle: a martingale approach[END_REF] and [START_REF] Nishiyama | Weak convergence of some classes of martingales with jumps[END_REF]. In Theorem A1 in [START_REF] Delgado | Nonparametric tests for conditional symmetry in dynamic models[END_REF] A C C E P T E D M A N U S C R I P T

ACCEPTED MANUSCRIPT

H was …nite-dimensional, but here we allow for an in…nite-dimensional H: The proof of theorem does not change by this possibility, however.

An important role in the weak convergence theorem is played by the conditional quadratic variation (CV) of the empirical process n;w on a …nite partition B = fH k ; 1 k N g of H; which is de…ned as Proof of Theorem A1: Theorem A1 in [START_REF] Delgado | Nonparametric tests for conditional symmetry in dynamic models[END_REF]. 

CV n;w (B) = max 1 k N n 1 n X t=1 E " sup 
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Now, from A1(d) and Koul and Stute (1999, pp. 228-229), uniformly in v 2 , This together with Theorem 1, A2(c) and A4 proves the theorem.

Proof of Theorem 3: Let W = B: Let w = (x 0 ; ; 0 ( )) 0 be a general element of W. The space W is endowed with the metric (w 1 ; w 2 ) = jx 1 x 2 j + j 1 2 j + sup 2T j 1 ( ) 2 ( )j ;

where w 1 = (x 0 1 ; 1 ; 0 1 ( )) 0 and w 2 = (x 0 2 ; 2 ; 0 2 ( )) 0 belong to W: Let B(w; ) be the open ball of radius around w; i.e., B(w; ) = fw 1 2 W : (w 1 ; w) < g: Note that A1-A3 yield that for each w = (x 0 ; ; 0 ( )) 0 2 W it holds that 

  ) A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT Let c n;1 ;b be the (1 )-th sample quantile of G n;b (w); i.e., c n;1 ;b = inffw : G n;b (w) 1 g: Thus, our subsampling tests reject the null hypothesis if (R 1 n ) > c n;1 ;b : Let c 1 be the (1 )-th quantile of G 1 (w) = P ( (R 1 1 ) w): To justify theoretically this resampling approximation we need an additional assumption on the serial dependence of the DGP. De…ne the -mixing coe¢ cients as (m) = sup n2Z sup B2Fn;A2Pn+m jP (A \ B) P (A)P (B)j ; m 1

Theorem 5 :

 5 Assume Assumptions A1-A6 and that b=n ! 0 and b ! 1 as n ! 1. Then, (i) Under the null hypothesis H 0 ; c n;1 ;b P ! c 1 : and P ( (R 1 n ) > c n;1 ;b ) ! :

  [0:1; 0:9]. As the number of subsamples, we follow the suggestion of Sakov and Bickel (2000) and we chose b = kn 2=5 ; with several choices of k: We consider k = 3; 4 and 5: These values correspond to b = 18; 25 and 31 for n = 100 and b = 29; 39 and 48 for n = 300; respectively. We set the number of Monte Carlo repetitions to 1,000 throughout the paper. Therefore, the maximal simulation standard error is max 0 p 1 p p(1 p)=1000 0:016: In all experiments, the nominal probability of rejecting a correct null hypothesis is 0.05. The conclusions with other nominal values are similar.

A

  C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPTas n increases, specially with the omnibus test based on CvM n , showing consistency against these …xed alternatives.

  for the subsampling size b = kn 2=5 with k = 5; i.e., b = 91: We take d = 1 in the information set for all stocks. We observe that the conditional marginal tests C n; are more sensitive to than the other tests. We reject the correct speci…cation hypothesis for the DAX index for most values of with the omnibus test, but not with conditional and unconditional backtests. For a risk manager applying classical backtesting techniques at the recommended level = 0:05; the risk model provided by the AR(1)-GARCH(1,1) would seem appropriate. Using our more powerful test, he or she would conclude that this is not the case. In particular, this model fails to …t quantiles in the range 2 f0:01; 0:02; 0:05g: Please insert Figure 1 and Figure 2 about here.

Figure 2

 2 Figure 2 reveals that the rejection for the FTSE index of our CvM test is due to the misspeci…cation of the conditional quantiles at low levels [0:01; 0:05]: For this data set, the traditional unconditional backtests is very sensitive to ; giving very di¤erent answers if = 0:05 or = 0:07: Overall, we observe that marginal tests are in general sensitive to the choice of ; which provides motivation for our cumulative measures of …t when the whole tail is of interest.

> 0

 0 there exists a …nite partition B = fH k ; 1 k N g of H; with N being the number of elements of such partition, such that w ( ) be a Gaussian process with zero mean and covariance function given by C w ( 1 ; 2 ): We are now in position to state the following Theorem A1: If Assumptions W1 and W2 hold, then it follows that n;w =) 1;w in `1(H):

Corollary A1 :

 A1 Assuming that W1 holds for w(Y n;t ; I n;t 1 ; v) = (Y n;t m(I n;t 1 ; 0 ( ))) exp(ix 0 I n;t 1 ), v = (x 0 ; ) 0 2 ; A1(b) and thatn 1 n X t=1 jI n;t 1 j 2 = O Pn (1); A C C E P T E D M A N U S C R I P T

F

  It 1 (m(I t 1 ; n )) F It 1 (m t 1 ( 0 )) exp(ix 0 I t 1 ) t 1 ; 0 )f It 1 (m t 1 ( 0 )) exp(ix 0 I t 1 ) + o P (1):

[[

  ( 1 ( 1 )) exp(ix 0 1 I t 1 );t ( ( )) exp(ix 0 I t 1 )Therefore, E[ ;t ( 1 ( )) exp(ix 0 I t 1 )] is a continuous function of v = (x 0 ; ) 0 : Therefore, ;t ( ( )) exp(ix 0 I t 1 ) E[ ;t ( ( )) exp(ix 0 I t 1 )] = o P (1): ;t ( n ( )) exp(ix 0 I t 1 ) E[ ;t ( 1 ( )) exp(ix 0 I t 1 )] = o P (1):and the function E[ ( 1 ( ))1(I t 1 )] is di¤erent from zero in a subset with positive Lebesgue measure on :Proof of Theorem 4: The proof follows from Theorem A2 and Assumptions A5 and A6 jointly with A4'in a routine fashion, and then, it is omitted:Proof of Theorem 5. The proof follows the same steps as Theorems 2, 3 and 4 of[START_REF] Whang | Consistent speci…cation tests for quantile regression models[END_REF], using our Corollary 1 instead of his Lemma 3, and then, it is omitted.A C C E P T E D M A N U S C R I P TACCEPTED MANUSCRIPT

Figure 1 .Figure 2 .

 12 Figure 1. Subsampling p-values for CvM n;1; test (solid line), unconditional backtest K n; (dashed line), and the conditional backtest C n; (dotted line) as a function of . Subsample size b = 91:

  . for some 0 2 B and for all 2 T ;

	against the nonparametric alternatives
	H A : P (E[ (Y t m(I t 1 ; ( ))) j I t 1 ] 6 = 0) > 0; for some 2 T and for all ( ) 2	R p ;
	where	(") = 1(" 0)	; and B is a family of uniformly bounded functions from T to	R p : To
	simplify notation denote	;t ( )	(Y t m(I t 1 ; )) and m t 1 ( ) m(I t 1 ; ): Note that under
	H 0 (and a mild continuity condition), m t 1 ( 0 ) is identi…ed as the -th quantile of the conditional
	distribution of Y t given I t 1 ; for all 2 T : Testing for H 0 is a challenging testing problem since it
	involves an in…nite number of non-smooth conditional moments parameterized by 2 T :
	Our …rst aim is to characterize H 0 by the in…nite number of unconditional moment restrictions
		E[ ;t ( 0 ) exp(ix 0 I t 1 )] = 0; 8x 2 R d ; for some 0 2 B and for all 2 T ;

  we report the rejection frequencies of the tests based on CvM n ; K n and C n for models NULL and ALT1-ALT6. The empirical size performance is satisfactory for CvM n and K n ; but for C n there are some size distortions, with increasing overrejections as k increases. As for the empirical power, we observe that none of the test dominates the others uniformly in all alternatives. The test based on CvM n has, however, an omnibus power performance, having the highest rejection frequencies for ALT2, ALT4 and ALT5, and performing satisfactorily for the rest of alternatives. In any of the alternatives CvM n presents the lowest rejections. The tests based K n and C n have good power for some alternatives but also poor power for others, since they are directional in nature. The unconditional backtest has good power against ALT3 and ALT6, but low power against the rest of alternatives, whereas the conditional test C n is good in detecting the linear alternative ALT1. For

ALT6, since the resulting errors are iid; the test based on C n is expected to have low power, which is consistent with our Monte Carlo results for this alternative. The rejection frequencies increase

  The sequence fw(Y n;t ; I n;t 1 ; ); F n;t ; 1 t ng is a square-integrable martingale di¤erence sequence for each 2 H: Also, there exists a function C w ( 1 ; 2 ) on H H to R such that uniformly in ( 1 ; 2 ) 2 H H

					#
			1 ; 2 2H k	jw(Y n;t ; I n;t 1 ; 1 ) w(Y n;t ; I n;t 1 ; 2 )j 2 j F n;t 1	: (19)
	Then, for the weak convergence theorem we need the following assumptions.
	W1: For each n	1; f(Y n;t ; I n;t 1 ) 0 : 1	t	ng is a strictly stationary and ergodic process.
		n 1	n X	

t=1 w(Y n;t ; I n;t 1 ; 1 )w c (Y n;t ; I n;t 1 ; 2 ) = C w ( 1 ; 2 ) + o Pn (1): W2:

The family w(Y n;t ; I n;t 1 ; ) is such that n;w is a mapping from n to `1(H) and for every

Table II :

 II Empirical size and power Rejection Frequencies).

	n	k Test	NULL ALT2 ALT4 ALT6 ALT8
		CvM n 2.3	30.1	13.8	9.8	46.1
		6 K n	2.6	7.8	7.8	12.6	0.0
		C n	10.2	19.2	7.1	6.4	25.5
		CvM n 3.6	35.7	17.7	11.7	54.4
	100 7 K n	3.5	9.4	10.0	14.0	0.0
		C n	12.3	22.4	7.8	6.6	26.4
		CvM n 5.9	42.9	24.3	17.8	66.8
		8 K n	5.7	12.9	12.1	19.5	0.0
		C n	15.2	27.1	10.2	10.0	32.5
		CvM n 5.0	89.9	37.4	58.5	65.8
		6 K n	5.2	29.4	8.5	82.9	0.0
		C n	5.7	36.5	6.3	7.1	29.3
		CvM n 5.6	91.5	40.7	60.5	66.9
	500 7 K n	6.4	29.8	9.8	83.0	0.0
		C n	6.3	38.9	6.9	7.8	27.4
		CvM n 6.7	93.2	44.6	62.3	68.3
		8 K n	8.6	30.0	11.7	83.7	0.0
		C n	6.8	41.0	7.4	8.5	29.4

5% of signi…cance level. 2 [0:05; 0:2]. b = kn 2=5 : Maximal simulation s.e.=1.6%

Table IV :

 IV Number of violations (V iol ) and expected violations (EV iol )

		1				DAX FTSE DAX INDEX		
		0.9		j	EV iol	V iol	V iol			
		0.8		0.01 14.17	25	29				CvMn Kn Cn
		0.7		0.02 28.34	43	48			
	P-value	0.6 0.5		0.03 42.51 0.04 56.68	52 59	62 69			
		0.4								
				0.05 70.85	84	82			
		0.3								
				0.06 85.02	97	89			
		0.2								
				0.07 99.19	109	100			
		0.1								
				0.08 113.36	126	115			
		0.01 0	0.02	0.09 127.53 0.03 0.04	142 0.05	129 alpha	0.06	0.07	0.08	0.09	0.1
				0.10 141.70	158	145			

Our experience suggests that values of k in the range k =

4; 5 and 6 provide good approximation for …nite sample distributions.4 Strictly speaking our present theory does not allow to integrate in the whole R d in the CvM test, but our theory can be easily adapted, see e.g.[START_REF] Escanciano | Goodness-of-…t tests for linear and non-linear time series models[END_REF] Hilbert space approach, to allow for the present de…nition of the CvM test. In any case, there is no practical di¤erence.
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then the weak convergence of Theorem A1 holds.

Proof of Corollary A1: We shall apply Theorem A1. Let us de…ne the metric d(v 1 ; v 2 ) := q j 1 2 j 2 + jx 1 x 2 j 2 ; v 1 ; v 2 2 :

Then, we de…ne an -bracket as an interval [v 1 ; v 2 ] such that v 1 v 2 and d(v 1 ; v 2 ) : The bracketing number N ( ; ; d) is the minimum number of -brackets needed to cover : Then, it is easy to show that

Then, by simple algebra and the monotonicity of 1(" n;t ( ) 0) due to A1(b), CV n;w (B ) in ( 19) is bounded by

Hence, (21) holds for the partition B . Therefore, W2 of Theorem A1 holds and the corollary is proved.

Proof of Theorem 1. Follows from Corollary A1.

Theorem A2. Assume Assumptions A1(c-d), A2, A3, and that there exists a 1 2 B such that

Proof of Theorem A2: Write w t 1 (v; ) := f ;t ( ) E[ ;t ( ) j F t 1 ]g exp(ix 0 I t 1 ): First we shall show that the process

is asymptotically tight with respect to (v; ) 2 W = B:

Let us de…ne the class K = fw (v; ) : (v; ) 2 Wg: Denote X t 1;1 = (I t 1 ; I t 2 ; : : :) 0 : Let

; w k (Y t ; X t 1;1 )]; be a partition of K in -brackets with respect to k k 2 ; where k k 2 denotes the L 2 norm of random variables, i.e.,

Conditions A1(c-d) and A2 imply that for a su¢ ciently small > 0; sup which can be rewritten as

from which ( 22) follows.

Proof of Theorem 2: Under the null 1 = 0 and E[ (e t ( 0 )) j F t 1 ] = 0 a.s.. From the expansion in ( 22), it follows that, uniformly in v 2 , 
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