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Knowledge spillovers in U.S. patents:
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Abstract

During the past two decades, innovations protected by patents have played a key role in business
strategies. This fact enhanced studies of the determinants of patents and the impact of patents on innovation
and competitive advantage. Sustaining competitive advantages is as important as creating them. Patents help
sustaining competivite advantages by increasing the production cost of competitors, by signaling a better
quality of products and by serving as barriers to entry. If patents are rewards for innovation, more R&D should
be reflected in more patents applications but this is not the end of the story. There is empirical evidence
showing that patents through time are becoming easier to get and more valuable to the firm due to increasing
damage awards from infringers. These facts question the constant and static nature of the relationship between
R&D and patents. Furthermore, innovation creates important knowledge spillovers due to its imperfect
appropriability. Our paper investigates these dynamic effects using U.S. patent data from 1979 to 2000 with
alternative model specifications for patent counts. We introduce a general dynamic count panel data model
with dynamic observable and unobservable spillovers, which encompasses previous models, is able to control for
the endogeneity of R&D and therefore can be consistently estimated by maximum likelihood. Apart from
allowing for firm specific fixed and random effects, we introduce a common unobserved component, or secret
stock of knowledge, that affects differently the propensity to patent of each firm across sectors due to their
different absorptive capacity.
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1. Introduction

This paper uses firm-level data in order to study the dynamic interaction among inventive
activity, R&D expenses and observable and unobservable knowledge of several firms jointly. The
objective of the paper is to identify the observable and latent dynamics of firms’ patent applications
activity and to measure intra-industry and inter-industry spillovers of knowledge using inter-firm
patent citations information over the 1979-2000 period in the United States. When an innovation
produced by a particular firm increases the productivity of other companies then we say that the firm
generates an R&D spillover. The analysis of the spillover process is a complex issue because both the
R&D activity and the spillover process are partly unobservable. Previous studies have used either
’input side’ measures (R&D expenditure) or ’output side’ proxies (number of patents per year) of
innovative activity. Present paper takes an output side view and we use patent data to measure the
inventive activity of firms. Griliches (1990) states that the main advantages of patent data are the
followings: (1) By definition patents are closely related to inventive activity. (2) Patent documents
are objective because they are produced by an independent patent office and their standards change
slowly over time. (3) Patent data are widely available in several countries, over long periods of time,
and cover almost every field of innovation.

According to Fung (2005) patents have two economic functions: (1) legal protection of
knowledge capital and (2) disclosure of the specifications of innovations. The second function
facilitates information-sharing agreements among firms (such as licensing and patent-sharing
agreements) and imitation of past innovations. Legal protection against imitation can be limited in
those industries where competitors can develop close substitutes that are not in conflict with previous
patents. (A good example is the computer software industry.) This suggests that patents and patent
citations may be good measures of R&D spillovers.

Technological improvement gives the innovators a competitive advantage. However, the
non-rival nature of knowledge creates a business-stealing (competitive) effect by decreasing the cost of
subsequent own innovations. A spillover of knowledge occurs when a new innovation created by a
technological leader firm is adopted by another (follower) firm. In the economic literature many
researchers have analyzed knowledge spillovers.1 Scherer (1981) constructs an inter-industry
technology flows matrix to measure knowledge spillovers between industries. Jaffe (1988) classifies
firms into different technological clusters to identify the proximity of firms in the technology space.
Lanjouw and Schankerman (1999) and Hall et al (2001) validates the use of patent statistics in
economic research. They suggest that the intensity of forward citations (the number of citations
received from subsequent patents) can be used to measure the significance of innovations, while
backward citations (citations made to previous patents) can be used to capture R&D spillovers.
Harhoff et al (1999) combine German and U.S. patent value survey and backward citation data. They
find that patents reported to be relatively more valuable by the companies holding them are more

1See Nabseth and Ray (1974), Mansfield et al (1981), Scherer (1981), Rogers (1983), Pakes and Schankerman (1984),

Jaffe (1986), Jaffe (1988), Cockburn and Griliches (1988), Jovanovic and MacDonald (1994), Jaffe et al (1998), Jaffe et

al (2000), McGahan and Silverman (2003) and Fung (2005).
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heavily cited in subsequent patents. Fung and Chow (2002) look at potential knowledge pools at the
industrial level. Fung (2005) uses patent citations data to analyze the impact of knowledge spillovers
on the convergence of productivity among firms. Knowledge spillovers are decomposed into: (1)
intra-industry spillovers, (2) inter-industry spillovers and (3) within-firm knowledge flows. The main
finding of this study is that each firm is converging to its own steady-state productivity growth rate,
which is conditional on the firm’s R&D efforts and the intensity of intra-industry spillovers it receives.
Jaffe, Trajtenberg and Fogarty (2000) survey R&D managers in order to validate the use of patent
citations to approximate the unobservable process of knowledge transfer.

Jovanovic and MacDonald (1994) point out that innovation and imitation tend to be
substitutes. Though, the benefits generated by spillovers depend on the technological differences
among firms and the absorptive capacity of the imitator firm. Escribano et al (2009) argue that those
firms with higher levels of absorptive capacity can manage external knowledge flows more efficiently
and stimulate innovation outputs. Firms may enhance their R&D absorptive capacity by investing in
their R&D activity. Naturally, these factors create time lags in the adoption of technologies. For
example, Nabseth and Ray (1974) and Rogers (1983) report that it may take a decade for some firms
to adopt an innovation developed by others. Mansfield et al (1981) and Pakes and Schankerman
(1984) also suggest that knowledge ’spills over’ gradually to competitors.

Although Jaffe (1986) also reports that the R&D spillover process is inherently dynamic, most
of these papers have applied cross-sectional econometric frameworks to study knowledge flows among
firms or industries. The first R&D papers, which employed dynamic econometric models (Hausman et
al, 1984 or Pakes, 1985) focused on the within-firm relationships among input and output side
measures of R&D activity, and various measures of firm performance (market or accounting value
based measures). Recently some papers have appeared in dynamic panel data econometrics, which
introduced new models to capture dynamics in count data (see for example Blundell et al, 2002 and
Wooldridge, 2005). Jaffe (1986) mentioned that the main reason for the lack of dynamic R&D
spillover models in the literature is that ’data are not rich enough to support a dynamic specification
with spillover effects’ (Jaffe, 1986). We think that besides the availability of good quality data, part
of the problem is the econometric specification used in previous papers. Therefore, this paper
proposes a new dynamic panel data model of knowledge flows. In addition, we also contribute to the
R&D literature by estimating the model to a new extended patent data set, which covers significantly
longer time period (1979-2000: 22 years) than other recent papers in this research field (Peters, 2007;
Cockburn and Wagner, 2007; Song and Jones, 2007).

The major econometric problem related to the modeling of R&D spillovers is that several
factors, which influence the innovative activity of firms are unobservable for the researcher.
Therefore, in this paper we assume that the inventive activity of a firm is the product of the next two
components: (1) Observable R&D intensity component and (2) Latent R&D intensity component.

The observable R&D intensity component accounts for econometrically observable factors like
own and other firms’ R&D expenses or the number of citations made by patent documents to own or
other firms’ patents. This component is modeled as a multivariate dynamic time series model.
Inclusion of the latent R&D component can be justified by Griliches (1990), who notes that some
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innovations are unobservable either because they do not meet the standards set by the patent office
or because they are held in secrecy.

Similarly to several past studies, which used patent data to measure the inventive activity of
firms, present paper employs a Poisson-type patent count model. By patent counts we mean the
number of successful patent applications assigned to firms during a given year.2 Common
characteristic of these models is that patent counts are treated as discrete-valued random variables
and are analyzed by a count data model. In these models it is assumed that: (1) the arrival rate (or
conditional intensity) of patents has some parametric functional form, and (2) the arrival rate is
constant over a period of time. The consequence of the second assumption is that the statistical
inference of the model can be done based on the number of patent applications during each period
and the exact time of the innovation is irrelevant. Although in recent patent databases the
application date of patents is available with daily precision, this information is a noisy measure of the
time of innovations. Therefore, following Hausman et al (1984) most authors aggregate patent data
over the year. Thus, the patent counts are assumed to follow a Poisson distribution. Fortunately,
Wooldridge (2002) notes that the Poisson distribution has a very nice robustness property: whether
or not the Poisson distribution holds, we still get consistent, asymptotically normal estimators of the
parameters provided that the conditional mean function is correctly specified.

The main contribution of this paper is that we include more general dynamic components,
observable spillovers and unobservable spillovers by including a dynamic latent factor into the
classical model of Hausman et al (1984). The latent variables commonly drive the patent application
intensity of all firms and the specification makes possible to separate observable and latent R&D
spillovers. This paper also contributes to the most recent literature in that we concentrate on a well
specified general dynamic model which may be a contribution to solving the endogeneity problem of
R&D. This is important since most of the previous results from alternative GMM procedures and
maximum likelihood (Cincer, 1997, Montalvo, 1997 and Blundell et al, 2002) obtained different
numerical values for the coefficient of R&D but the sign was always positive. The specification of our
model is estimated by maximum simulated likelihood (MSL) method.

A question that has generated long debates is how monopoly rights (patents, etc.) and
competition affect innovation and productivity growth.

In the recent theoretical and empirical literature on the competition effects on innovation and
productivity growth3, there are two clear opposite views: Innovation under competition reduces
innovations rents, relative to the monopoly rents, but innovation is also a mechanism to escape
competition (competitive advantage) and in that sense increases innovation rents.

These two opposite views are also express as follows: First, a “rent dissipation effect of
competition” which says that tough competition discourage innovation and productivity growth by
reducing the expected rents from innovation. By reducing the monopoly rents, competition
discourage firms from doing R&D activities which lower the innovation rate and the long run growth.
The initial endogenous growth models of technical change of Romer (1990), Aghion and Howitt

2See Hausman et al (1984), Pakes (1985), Lanjouw et al (1998) or Trajtenberg (2002).
3Aghion and Griffith (2005) provide an interesting overview.
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(1992), Grossman and Helpman (1991), predict that competition (or the imitation rate) has a
negative effect on entry and innovation and therefore on productivity growth. That is, patent
protection protects monopoly rents from innovation, enhancing further innovation and growth
(Schumpeterian view). Second the “escape competition effect”, followed by most competition
authorities, says that competition is a necessary input for innovation both because it encourages new
entry and because it forces incumbent firms to innovate and reduce costs to survive and therefore is
productivity and growth enhancing.

Which of the two competition effects of dominates is an empirical question. For example,
Aghion, Boom, Blundell, Griffith and Howit (2003) estimate an inverted-U relationship between
innovation (citation-weighted patent count) and product market competition which is steeper for
more neck-to-neck industries. In our empirical application, we also obtained an inverted-U
relationship between R&D (after controlling for patent citations) and innovation (measured by patent
application counts).

Finally, Crépon et al (1998) study the relationship between productivity, innovation and
research at the firm level using a structural model. In particular they found that firm innovation
output raises with research effort and other indicators through theirs effects on research and that firm
productivity correlates positively with innovation output (patents).

Remaining part of the paper is structured as follows. First, we introduce the econometric model
in Section 2. Then, Section 3 discusses the estimation method. Section 4 describes the patent and
firm specific data. Section 5 summarizes our results. Finally, Section 6 concludes.

2. The model

2.1. Notation and definitions

We model the R&D activity of i = 1, . . . , N firms jointly over t = 1, . . . , T periods. Denote nit

the number of patent applications of the i-th firm in the t-th period. Let zi denote firm size measured
by the logarithm of the inflation adjusted book value. Let rit denote log-R&D expenditure
corresponding to the i-th firm in the t-th period. Furthermore, let cit = (c1it, c2it, c3it)′ denote a 3 × 1
vector capturing observable R&D spillovers. The elements of cit represent three components of the
observable spillover of knowledge from three knowledge pools (see Fung, 2005): (1) Own knowledge
pool : knowledge produced by the firm in the past, c1it, (2) Intra-industry knowledge pool : knowledge
produced by other firms in the same industry, c2it, (3) Inter-industry knowledge pool : knowledge
produced in other industries, c3it.

In order to simplify the notation, we shall also use the nt = {nit}, z = {zi}, rt = {rit}, ct = {cit}
for i = 1, . . . , N matrix notation corresponding to the above random variables. Thus, the observable
variables form an N × T dimensional panel. Finally, let l∗

t denote the value of a latent variable in the
t-th period, interpreted as an econometrically unobservable common factor (unobservable
innovations) affecting the patenting behavior of all firms.

In this paper, similarly to Hausman, Hall and Griliches (HHG, 1984), we characterize the
stochastic process {z, nt, rt, ct, l

∗
t } by the conditional intensity. Nevertheless, there are at least two
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important differences between our framework and HHG. First, we model the interaction among the
patent application intensities by a multivariate specification of lagged R&D expenses and other
variables, which measure patent citations. Second, we include a set of serially correlated latent
variables into the model, which commonly drive the patent intensity of all firms. These latent
variables are interpreted as the impact of unobserved common stock of knowledge (secret specific
production processes, secret innovations, etc.) on the patent intensity of firms. The information set in
the t-th period is generated as follows:

Ft = σ[z, (n1, r1, c1, l
∗
1), . . . , (nt−1, rt−1, ct−1, l

∗
t−1), (rt, ct, l

∗
t )]. (2.1)

Notice that the information set Ft includes the contemporaneous values of z, rt, ct and l∗
t .

Similarly to HHG, the patent application intensity of firms is modeled by specifying the conditional
hazard function of the point process formed by the patent arrival times. Define the F -conditional
hazard function corresponding to the i-th firm in the t-th period as follows (see Cox and Isham, 1980):

λit(τ) = lim
δ→0

Pr{nit(τ + δ) − nit(τ) > 0|Ft}
δ

, (2.2)

where δ > 0 and nit(τ) is the number of patents of the i-th firm until time τ in the t-th period. In the
remaining part of this paper the conditional hazard is assumed to be constant during each period,
therefore, it can be indexed by t as follows: λit = λit(τ). The λit can be interpreted as the
instantaneous probability that the i-th firm has a new patent at any point of time of the t-th period
given all information available in the beginning of the t-th period. Thus, the conditional hazard, λit

represents the patent application intensity of the i-th firm in the t-th period. Since the conditional
hazard is assumed to be constant during each period, the statistical inference of the model can be
done based on the number of patents occurred in each time interval.

2.2. Existing models

First, we shall give a brief overview of the patent applications ’basic Poisson models’ of HHG
that we extend in this paper. The basic specification of the conditional hazard function in HHG is

λit = exp(µ0 + X
′
itβ), (2.3)

where µ0 is a constant and

X
′
itβ = γ1t + γ2trit + γ3Di + γ4zi + β5(L)rit, (2.4)

where Di is a scientific sector dummy taking the value one for firms in the drug, computer, scientific
instrument, chemical and electronic components industries (’high-tech’ industries) and zero otherwise.
Furthermore, β5(L) =

∑5
k=0 βkL

k is the lag polinomial of five lags, which capture the
contemporaneous and lagged impact of R&D expenses on patent counts. HHG estimates various
specifications of this model by maximum likelihood as well as OLS methods and in both cases find ”a
somewhat disturbing U-shaped distributed lag, β5(L), which may well indicate a substantial
truncation effect” after five lags and can create serial correlation given the persistence in R&D.

6
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In order to solve the misspecification problem of the basic Poisson model, HHG proposes two
alternative specifications for unobserved heterogeneity, which allow for latent firm specific random
effects or fixed effects. Their proposed specification of the conditional hazard is the following:

λit = exp(µ0 + X
′
itβ + µi) = exp(µ0 + X

′
itβ)αi, (2.5)

where µi represents latent firm specific effects and αi is defined by the second equality.
In case of random effects specification, HHG assumes that {αi} are i.i.d. gamma distributed

random variables with E[αi] = 1 and V ar[αi] = 1/δ. Analyzing the estimation results, HHG
concludes that the inclusion of firm specific random effects somewhat ”attenuates the U-shaped lag
structure of R&D, but there is still a significant positive coefficient on the first lag”.

When the fixed effects specification is estimated, the model takes the same functional form as in
case of random effects besides that the {αi} are treated as parameters of the model and not as latent
i.i.d. variables, therefore, the µ0 constant is not identified. The authors find that the coefficients of
past R&D expenditure are all small and insignificant and the U-shape of the distributed lag no longer
appears. In this specification, the firm specific effect, αi represents both the accumulated stock of
knowledge from past R&D in the firm and unobserved permanent differences across the firms, which
affect their propensity to patent.

2.3. Extensions

We extend the HHG model in several directions. Most of these extensions are related to the fact
that the HHG models intend to capture the lagged impact of R&D on own patent intensity and do
not attempt to measure knowledge spillovers (observable and unobservable), which is the main goal of
our paper. Essentially, we extend the HHG model in three ways: First, we introduce dynamic
structures into the model of R&D activity. We concentrate on well specified dynamic models, which
may be a contribution to solving the endogeneity problem of R&D. This is important since many
previous results from alternative GMM procedures and maximum likelihood obtained different
numerical values for the coefficient of R&D although the sign was always positive. Second, we use
additional explanatory variables capturing observable knowledge spillovers such as patent citations,
cit. Moreover, we also include several industry dummy variables and the square of R&D expenditure
into the HHG model. Third, we include a set of serially correlated latent variables into the model in
order to account for the R&D spillover process not captured by observable variables.

The first extension that we consider is the ’dynamic Poisson model’, which introduces serial
correlation into the Poisson model of HHG. We use the dynamic panel count data model of Blundell
et al (2002) and Wooldridge (2005):

λit = exp(µ0 + X
′
itβ + µi), (2.6)

X
′
itβ = γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 + Ψit (2.7)

and the dynamic term is given by:

Ψit = βq(L)rit + κnit−1, (2.8)

7
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where βq(L) =
∑q

k=0 βkL
k measures the impact of lagged R&D expenses and κ measures the impact

of lagged number of patent applications.
Next, we extend the dynamic Poisson model of Wooldridge (2005) by including square-R&D

expenditure and 15 industry dummies into the model. Cockburn and Griliches (1988) state that
patents are one of the mechanisms by which firms may appropriate returns from their R&D
investments, and the effectiveness of patent protection varies significantly across industries.
Therefore, we also include several industry dummies into the specification. The extended Poisson
model is formulated as follows:

λit = exp(µ0 + X
′
itβ + µi), (2.9)

X
′
itβ = γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 + Ψit + β̄r2

it +
15∑

j=1

ρjIij (2.10)

where ρj measures the impact of the 15 industry dummy variables, Iij , β̄ captures the non-linearities
in R&D expenditure and the dynamic term is given by equation (2.8).

Furthermore, in our next extension of the models, we apply the ’dynamic Poisson model with
observable R&D spillovers’, which permits us to study the impact of past R&D and patent citations
by the following formulation:

λit = exp(µ0 + X
′
itβ + µi), (2.11)

X
′
itβ is given by equation (2.10) and the dynamic term is given by:

Ψit = βq(L)rit + κnit−1 + rit[ωq(L)c2it] + rit[φq(L)c3it]. (2.12)

where βq(L) =
∑q

k=0 βkL
k measures the impact of lagged R&D expenses and κ measures the impact

of lagged number of patent applications. Finally, ωq(L) =
∑q

k=0 ωkL
k and φq(L) =

∑q
k=0 φkL

k

measure the product of lagged patent citations, c2it and c3it and contemporaneous R&D expenses, rit.
Remember that the c2it denotes total patent citations received from the same industry, while c3it is
total patent citations received from other industries. Negative values of the corresponding
parameters, ω and φ mean negative interaction between cited past knowledge and present research
expenses. This way we can measure significant lagged observable R&D spillovers.

Finally, as previous literature reported that significant portion of knowledge spillovers cannot be
observed directly, we include additional, time dependent latent variables into the model, which are
possibly cross correlated along the lines of Pesaran (2006) and Holly et al (2006). Thus, the proposed
structure captures the latent correlation structure of various firms’ R&D activity. Our ’latent-factor
dynamic Poisson model’ takes the following form:

λit = exp(µ0 + X
′
itβ + µit) = exp(µ0 + X

′
itβ)αit, (2.13)

where αit is defined in equation (2.13) and X
′
itβ is given by equation (2.10). Moreover, from equation

(2.12) it follows that the dynamic term is:

Ψit =
q∑

k=0

βkrit−k + κnit−1 +
q∑

k=0

ωkc2it−krit +
q∑

k=0

φkc3it−krit (2.14)

8
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The dynamic latent patent intensity component, µit measures the impact of unobserved
knowledge flows on patent intensity. The latent patent intensity component is an extension of the
stochastic conditional intensity (SCI) model of Bauwens and Hautsch (2006):

αit = exp(σil
∗
t ) (2.15)

and

l∗
t = µl∗

t−1 + ηt, (2.16)

where σi ∈ R measures the firm specific impact of the latent R&D common factor, ηt ∼ N (0, 1) are
i.i.d. innovation terms, which measure the general stock of unobserved knowledge and |µ| < 1
captures the dynamics of the latent variables.4 Since the sign of σi is not restricted, this unobserved
common stock of knowledge is absorbed differently by each firm. The latent factor may have positive
impact on the patent intensity of some firms and in the same time negative impact on the patent
application intensity of other firms (we allow for cross section dependence in the panel data count
model). This specification allows us to separate observable and latent knowledge spillovers and also
to study the dynamics of the observable and unobservable R&D spillover process among firms due to
the AR(1) specification of the latent process. More specifically, the latent component allows for
correlation of the patent application intensity of various firms because:

cov(σil
∗
t , σjl

∗
t ) =

σiσj

1 − µ2
(2.17)

Thus, following Pesaran (2006), the latent common factor is responsible for the unobservable
knowledge cross section interaction between firms.

3. Inference

3.1. Log-likelihood functions

All models presented in the previous section are estimated by maximum likelihood or maximum
simulated likelihood (MSL) method (see Appendix A).

Basic Poisson model. The log-likelihood of the basic Poisson model is given by (Gouriéroux, 1984,
Chapter XI, pp.302):

ln L =
T∑

t=1

N∑

i=1

nit ln λit − ln(nit!) − λit. (3.1)

4We assume that the innovation terms in the latent AR(1) process of l∗
t are i.i.d. because we follow the specification

of the latent intensity component and the statistical inference procedure proposed by Bauwens and Hautsch (2006). The

statistical inference of the latent-factor Poisson model would be more complicated if {ηt} formed a serially correlated time

series.

9



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Poisson model with random effects. The log-likelihood of the random effects model can be obtained
by integrating the likelihood of nit with respect to the assumed gamma distribution (Gouriéroux,
1984, Chapter XI, pp.304):

∫ ∞

0

exp(−λit)λnit
it

nit!
f̃(αi)dαi, (3.2)

where the density of the gamma distribution with E[αi] = 1 and V ar[αi] = 1/δ is given by

f̃(u) =
δδuδ−1 exp(−δu)

Γ(δ)
, (3.3)

where Γ(x) denotes the gamma function. Integrating by parts we obtain that the log-likelihood of the
random effects model is the following:

ln L =
∑T

t=1

∑N
i=1 ln Γ(δ + nit) − ln Γ(δ) − ln Γ(nit + 1) + nit ln

[
exp(µ0+X

′
itβ)

δ

]

−(nit + δ) ln
[
1 + exp(µ0+X

′
itβ)

δ

]
.

(3.4)

Poisson model with fixed effects. As we have seen in the previous section, the Poisson model with
fixed effects has the following form:

λit = exp(µi + X
′
itβ). (3.5)

Substituting this equation into (3.1) we obtain the log-likelihood of the fixed effects model:

ln L =
T∑

t=1

N∑

i=1

nit(µi + X
′
itβ) − ln(nit!) − exp(µi + X

′
itβ). (3.6)

Solving the first-order condition ∂ ln L/∂µi = 0 for µi we get:

exp(µi) =
∑T

t=1 nit∑T
t=1 exp(X ′

itβ)
. (3.7)

Substituting this equation into (3.6) and introducing the notation pit = exp(X
′
itβ)/

∑T
s=1 exp(X

′
isβ)

we get the log-likelihood of the Poisson model with fixed effects:

ln L =
T∑

t=1

N∑

i=1

nit ln

[
pit

T∑

s=1

nis

]
− ln(nit!) − pit

T∑

s=1

nis. (3.8)

HHG (1984) and Greene (2001) point out that this likelihood is conditional on the sum of the number
of patents in the sample,

∑T
s=1 nis. An alternative approach would be to estimate directly the µi

parameters by (3.6). This would not require conditioning on
∑T

s=1 nis, but for our data set this is
computationally not feasible because the number of parameters would be very high.
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Latent-factor Poisson model. The latent-factor patent count model is estimated by MSL method (see
Gouriéroux and Monfort, 1991). First, denote the density of the latent factor l∗

t conditional on l∗
t−1 as

follows:

f ∗
t (l∗

t |l∗
t−1) =

1√
2π

exp
(

− (l∗
t − µl∗

t−1)
2

2

)
. (3.9)

Second, denote the conditional density of nit|Ft as follows:

ft(nit|Ft) =
exp(−λit)λnit

it

nit!
(3.10)

Notice that the λit intensity is conditional on l∗
t . (See also the equations 2.1 and 2.2.) Therefore, if all

latent variables {l∗
t } were observable then the joint likelihood of a realization {nit, l

∗
t } could be

written as the product of ft(nit|Ft) and f ∗
t (l∗

t |l∗
t−1) as follows:

T∏

t=1

N∏

i=1

ft(nit|Ft)f ∗
t (l∗

t |l∗
t−1) =

T∏

t=1

N∏

i=1

exp(−λit)λnit
it

nit!
f ∗

t (l∗
t |l∗

t−1). (3.11)

However, the L∗ = {l∗
t : t = 1, . . . , T } are not observed therefore we integrate out all latent

variables from the likelihood function with respect to the assumed normal distribution. Since the
number of l∗

t is equal to the number of periods observed, the integrated likelihood function is the
following T -dimensional integral:

L =
∫

RT

T∏

t=1

N∏

i=1

exp(−λit)λnit
it

nit!
f ∗

t (l∗
t |l∗

t−1)dL∗. (3.12)

The major difficulty related to the statistical inference of the model is the precise evaluation of
the T -dimensional integral in L for given parameter values. This is performed numerically by Monte
Carlo (MC) simulation method. However, it is well-known that the natural MC estimator of L, which
is based on trajectory draws from the assumed distribution of the latent variables (i.e. from the
natural sampler) is downward biased in practice (see Richard and Zhang, 2007). In order to avoid
this problem, we use the efficient importance sampling (EIS) method of Richard and Zhang (2007).
The EIS technique is presented in details in Appendix A of this paper.

3.2. Consistency of the Poisson QMLE: Specification tests

We show the consistency of the latent-factor Poisson QMLE applied in two steps. First, we show
that the regularity conditions of consistency are satisfied for our model. Second, we perform two
alternative functional form tests of the exponential conditional mean.

First, we state the regularity conditions of Theorem 12.2 of Wooldridge (2002) in Appendix B.
Conditions (a), (b) and (d) of Appendix B follow from the definitions of the random variables and the
specifications of the count data models presented in Section 2. In addition, conditions (c), (e), (f), (g)
and (h) stated in Appendix B follow from the properties of the log-likelihood functions presented in
Section 3.
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Second, we employ Wooldridge (1997, Section 3.5) and Wooldridge (2002, Section 19.2.5) to
perform the conditional mean specification tests. For the latent-factor dynamic Poisson model, we
estimate E[nit|Ft] = λit(θ) = exp(µ0 + X

′
itβ + σil

∗
t ). In this section, we test this model against two

more complicated alternatives for each period t = 1, . . . , T and for each trajectory of the latent factor
r = 1, . . . , R. Write each alternative model as E[nit|Ft] = λ̃it(θ, δ), where δ is a Q × 1 vector of
additional parameters. We assume that for some known δ0, and all θ, λit(θ) = λ̃it(θ, δ0). Thus, a test
of null H0 : E(nit|Ft) = λit(θ) is the same as testing H0 : δ = δ0. Let θ̂ be the Poisson QMLE of the
parameters under the exponential regression null. Let λ̂it = λit(θ̂) and define ûit = nit − λ̂it.

In the following part of this section, the two alternative functional form tests are presented.
Both functional form tests are robust in the sense that they do not require the generalized linear
models (GLM) variance assumption:

V ar[nit|Ft] = σ2E[nit|Ft] (3.13)

where σ2 > 0.

Functional form alternative 1: (Box-Cox like model). We test H0 : δ = 0 by nesting λit into the
following Box-Cox like model:

λ̃it(θ, δ) =

{
(1 + δ ln λit)1/δ, δ 6= 0
λit, δ = 0

(3.14)

First, regress

√
λ̂it(ln λ̂it)2 on

√
λ̂it(1, Xit, l

∗
t ) (3.15)

with i = 1, . . . , N . Let the residuals of this regression be r̃it and let ũit = ûit/
√

λ̂it. Then, compute
N − SSR from the regression

1 on ũitr̃it (3.16)

with i = 1, . . . , N , where SSR denotes the regression sum of squares value of this regression. Use the
N − SSR statistic as an asymptotically χ2

1 random variable.

Functional form alternative 2: (Non-linear RESET model). We test H0 : δ1 = 0, δ2 = 0 by nesting λit

in the following model that is analogous to Ramsey’s (1969) RESET model for the linear regression
model:

λ̃it(θ, δ) = exp[lnλit + δ1(lnλit)2 + δ2(lnλit)3] (3.17)

First, regress each of the last two terms on the right-hand side of the previous regression on√
λ̂it(1, Xit, l

∗
t ):

√
λ̂it(ln λ̂it)2 on

√
λ̂it(1, Xit, l

∗
t ) (3.18)

12
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and
√

λ̂it(ln λ̂it)3 on
√

λ̂it(1, Xit, l
∗
t ) (3.19)

Call the residuals of these two regressions r̃it1 and r̃it2, respectively. Then, obtain N − SSR from the
regression

1 on ũitr̃it1, ũitr̃it2 (3.20)

where ũit = ûit/
√

λ̂it. The N − SSR statistic is distributed asymptotically as χ2
2.

3.3. Asymptotic variance estimators

In this section, we refer to Wooldridge (2002, Sections 19.2.3 and 19.6.1). The asymptotic
normality of the Poisson QMLE follows from Theorem 12.3 of Wooldridge (2002). The result is

√
N(θ̂ − θ0)

d→ N(0, A−1
0 B0A

−1
0 ) (3.21)

where

A0 =
T∑

t=1

E[∇θλit(θ0)′ ∇θλit(θ0)/λit(θ0)] (3.22)

and

B0 = E[si(θ0)si(θ0)′]. (3.23)

In this work, we impose the following Assumption 1 to derive the asymptotic variance
estimators for individual parameters that can be used for inference in Poisson panel data models (see
Wooldridge, 2002, Sections 19.2.3 and 19.6.1.):

Assumption 1 (Exponential mean function): The conditional mean of nit is specified as the
exponential of a linear function: E[nit|Ft] = λit(θ) = exp(µ0 + X

′
itβ + σil

∗
t ).

This assumption yields the fully robust variance matrix estimator that requires only the
regularity conditions stated in Step 1 of the conditional mean specification tests section (see
Wooldridge, 2002, Section 19). With this assumption, consistent estimators of A0 and B0 are

Â = N −1
T∑

t=1

N∑

i=1

∇θλ̂
′
it∇θλ̂it/λ̂it (3.24)

and

B̂ = N −1
N∑

i=1

si(θ̂)si(θ̂)′ (3.25)

and we use Â−1B̂Â−1/N for ˆAvar(θ̂).
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3.4. Endogeneity of R&D expenditure: A test for the latent-factor dynamic Poisson model

In the previous literature of R&D and patents, one of the most difficult issues to solve is that
R&D expenses are endogenous in the patent count data models. In this section, we investigate
whether our latent-factor dynamic Poisson model helps to solve the endogeneity problem reported
previously. We employ the two-stage approach suggested by Wooldridge (1997, Section 6.1 and 2002,
Section 19.5.1) designed for Poisson models with exponential mean function like our latent-factor
specification. We employ the cross-sectional setup of Wooldridge (1997 and 2002) for the panel data
framework of our latent-factor model.

Recall that the exponential mean function of the latent-factor dynamic Poisson model is
λit = exp(µ0 + X

′
itβ + σil

∗
t ). First, consider that the contemporaneous R&D expenses could be

endogenous while the rest of the variables in Xit are exogenous. Denote the variables of
contemporaneous R&D expenses by Yit. Notice that in equations (2.10) and (2.14) we have five terms
with contemporaneous R&D expenses, i.e. Yit = (trit, r

2
it, rit, ritc2it, ritc3it). Let Zit denote the

exogenous variables in Xit. Then, the mean function of the latent-factor Poisson model can be
written as λit = exp(µ0 + Y

′
itγ + Z

′
itδ + σil

∗
t ).

In the first stage, we obtain the cross-sectional OLS estimates from the following equations for
each t = 1, . . . , T conditional on the latent component, σil

∗
t :

trit = ω1 + ZitΠ1 + (σil
∗
t )ψ1 + v1it

r2
it = ω2 + ZitΠ2 + (σil

∗
t )ψ2 + v2it

rit = ω3 + ZitΠ3 + (σil
∗
t )ψ3 + v3it

ritc2it = ω4 + ZitΠ4 + (σil
∗
t )ψ4 + v4it

ritc3it = ω5 + ZitΠ5 + (σil
∗
t )ψ5 + v5it

(3.26)

with i = 1, . . . , N , where v1it, v2it, v3it, v4it and v5it are the error terms of each regression. Then,
compute the values of the estimated OLS residuals as

v̂1it = trit − ω̂1 − ZitΠ̂1 − (σil
∗
t )ψ̂1

v̂2it = r2
it − ω̂2 − ZitΠ̂2 − (σil

∗
t )ψ̂2

v̂3it = rit − ω̂3 − ZitΠ̂3 − (σil
∗
t )ψ̂3

v̂4it = ritc2it − ω̂4 − ZitΠ̂4 − (σil
∗
t )ψ̂4

v̂5it = ritc3it − ω̂5 − ZitΠ̂5 − (σil
∗
t )ψ̂5

(3.27)

with i = 1, . . . , N .
In the second stage, include these residuals into the original formulation of the exponential mean

function of the latent-factor model:

λit = exp(µ0 + X
′
itβ + σil

∗
t + ρ1v̂1it + ρ2v̂2it + ρ3v̂3it + ρ4v̂4it + ρ5v̂5it) (3.28)

We test for exogeneity of contemporaneous R&D as follows: test the null hypothesis that Yit is
exogenous, H0 : {ρi = 0 : i = 1, . . . , 5}. We estimate the extended conditional mean specification by
MSL-EIS technique and check if the ρ̂i estimates are significant. If they are non-significant then we
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conclude that there is no evidence against the hypothesis that the R&D expenditure variable is
exogenous in our model.

4. Data

We use data from several sources. The U.S. utility patent data set for the January 1979 - June
2005 period was purchased from MicroPatents and for the 1963-1978 period was obtained from the
NBER patent data files. The U.S. patent database includes the USPTO patent number, application
date, publication date, USPTO patent number of cited patents, 3-digit U.S. technological class and
assignee name (company name if the patent was assigned to a firm) for each patent. Company
specific information was downloaded from the Standard & Poor’s Compustat data files. For each firm
we downloaded the book value for the sample midpoint year (following HHG, 1984), and R&D
expenses for each year. Then, we created a match file and crossed the patent data set with the firm
database via the 6-digit Compustat CUSIP codes. Firm-specific data was corrected for inflation using
consumer price index data from the U.S. Department of Labor, Bureau of Labor Statistics. Our
sample includes 559,729 U.S. utility patents with application dates in the 1979-2004 period (22 years)
of 4,476 U.S. firms. (See Table 1 and 2.) In the data procedures, we closely followed the
recommendations of Hall et al (2001). In the remaining part of this chapter, we describe some details
of the database procedures and construction of additional exogenous variables.

4.1. Time of patents

The patent data set contains application date and issue (publication) date for each patent. As
proposed by Hall et al (2001) we use the application date in order to determine the time of an
innovation because inventors have incentive to apply for patent as soon as possible after completing
the innovation.

4.2. Application-publication-lag

The U.S. patent database contains patents published until June 2005. This means that the data
set excludes patents, which were submitted to the Patent Office before June 2005 but were not
published before the end of our sample. It order to investigate the impact of the sample truncation,
we analyze the distribution of the application-grant-lag (i.e., time elapsed between the publication
date and the application date of a patent) in 1997, a year which is already not affected by the sample
truncation bias. We find that 95.7 percent of patents are granted within 4.5 years after submission.
(See Figure 4.) Therefore, we use a 4.5-year safety-lag and include data on patents with application
dates until December 2000. (Hall et al, 2001 recommend an at least 3-year safety lag.) The total
number of patent applications in the U.S. between 1979 and 2000 are presented on Figure 1.
Moreover, we also present the patent propensity between 1979 and 2000 on Figure 2 in order to show
that patent propensity measured by the number of patent applications divided by R&D expenditure
has been increasing during the sample period. Finally, Figure 3 shows the positive relationship
between mean R&D expenditure and mean number of patent applications between 1979 and 2000.
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4.3. Quality of knowledge, citation-lag

We compute a measure of patent quality based on the number of citations received by each
patent granted between January 1963 and June 2005. We measure the quality of knowledge
represented by a patent by computing the number of citations the patent receives from future patents
(see also Hall et al, 2001). Nevertheless, the number of citations a patent receives from future patents
is subject to sample truncation bias because the sample excludes future patents, which may
potentially cite the observed patents. (See Figure 5.) In order to solve the truncation problem related
to citation-lag, we employ the fixed-effects approach of Hall et al (2001) that is we divide the number
of citations received figures by the average number of citations in the corresponding year and
technological category. The technological categories are defined as in Hall et al (2001) that is (1)
chemical, (2) computers and communications, (3) drugs and medical, (4) electrical and electronics,
(5) mechanical and (6) others. (See Figure 6 and 7.)

4.4. Industry classification

We use the modified standard industry classification (SIC) of Hall and Mairesse (1996) that is
(1) paper and printing, (2) chemicals, (3) rubber and plastics, (4) wood and misc., (5) primary
metals, (6) fabricated metals, (7) machinery, (8) electrical machinery, (9) autos, (10) aircrafts and
other trans., (11) textiles and leather, (12) pharmaceuticals, (13) food, (14) computers and inst., (15)
oil, (16) non-manufacturing. Moreover, we classify firms into high-tech and non-high-tech sectors
following the same authors.

4.5. Observable knowledge spillovers

Observable knowledge flow occurs between two firms if a patent of a company cites a previous
patent of another firm. Our data set contains all U.S. utility patent citations made by patents
granted during the observation period. Using the patent citations information, for each patent, we
compute the quality of knowledge received through (a) self-citations: the patent cites previous patents
of the same firm, i.e. it builds on past knowledge produced in the same firm, (b) intra-industry
spillovers: the patent cites previous patents of other firms in the same industry, i.e. knowledge spills
over from the same sector and (c) inter-industry spillovers: the patent cites previous patents in
different industries, i.e. knowledge spills over from other sectors.

Figure 9 shows that high-tech firms benefit more from intra-industry spillovers than non-hi-tech
firms. Nevertheless, non-hi-tech firms benefit more from inter-industry spillovers. Not surprisingly,
the total volume of knowledge flow is significantly higher for hi-tech firms than for non-high-tech
firms. Figure 8 shows some interesting differences between industries. For example, intra-industry
spillovers seem to be very important in the computer industry, while the aircrafts, car, rubber,
metals, textil, food and non-manufacturing industries benefit more from knowledge produced in other
industries. Self-citations seem to be more significant in the drugs, oil, paper, chemical and electrical
machinery industries.
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Clearly, the citation information is again subject to the citation-lag truncation bias because
patents in the beginning of the observation period have less chance to cite previous and observed
patents. After analyzing the citation-lag distribution (i.e. the distribution of time elapsed between
citing and cited patent publication dates) we decided to use a 10-year safety-lag (from 1969) and only
include patents in the sample from 1979.

5. Empirical results

5.1. Replication of the HHG models

In the first part of this section we replicate the maximum likelihood estimates of the Poisson
models of HHG for the extended U.S. patent data set. The original data set of HHG included 8 years
(1968-75) and 121 U.S. firms. We estimate the HHG Poisson models for a longer, 22-year time period
(1979-2000) for 4,476 U.S. companies. Table 3 shows the results for the HHG Poisson model for our
data set. We obtain similar results as HHG. We find a significant U-shape of the lagged R&D
expenditure coefficients around 5 lags for the basic Poisson and random effects models, and, similarly
to HHG, the U-shape is less significant when the fixed effects model is estimated. R&D expenditure
in the current period has highly significant and positive parameter for each specification. In addition,
firm size (log book value) and industry position (hi-tech dummy) have highly significant and positive
coefficients as we observe in HHG’s paper

5.2. Dynamic Poisson models

In Table 4, we present the estimation results of the dynamic Poisson models (basic Poisson
model, random effects and fixed effects). We find significant positive coefficients for the dynamic
term, κ > 0 and also for the initial value of patent counts, γ5 > 0. Moreover, we observe significantly
positive coefficient for current R&D expenses for each model, β0 > 0. Finally, we evidence that the
remaining trend, hi-tech dummy and firm size coefficients are very similar to the HHG results.

5.3. Extended dynamic Poisson models

Table 5 presents the estimation results of the extended dynamic Poisson models (basic Poisson
model, random effects and fixed effects). The model is an extension of the dynamic Poisson model in
the sense that it includes non-linearities in R&D expenditure, β̄, 10 lags of past R&D expenditure,
and several industry dummy variables, ρj as well. Results for the dynamic panel data coefficients are
similar to the dynamic Poisson models. Moreover, contemporaneous and lagged R&D expenses are
found to be significantly different from zero. The evolution of the contemporaneous values of R&D
expenditure for the extended Poisson models is presented on Figure 10. Finally, industry dummy
variables and the parameters measuring non-linearities in R&D expenditure are also significant.
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5.4. Dynamic Poisson models with observable spillovers

Table 6 presents the estimation results for the three dynamic Poisson models with observable
R&D spillovers (basic Poisson, random effects and fixed effects). The specifications are estimated for
10 lagged values of patent citations. Regarding the ω and φ parameters, which measure knowledge
spillovers we observe interesting findings: For each model estimated in Table 6, we find significant
inter-industry observable R&D spillovers for the first, second and third lag (ω1, ω2, ω3 < 0) and also
for the 9-10th lags (ω9, ω10 < 0). The most significant spillover process is found for the random effects
specification where we find significantly negative parameters for the 9-10th lags. Moreover, for each
model presented in Table 6 we evidence significant intra-industry observable R&D spillovers for the
first and also for the 4-10th lags. Finally, we find that the deterministic trend, and firm size
coefficients are similar to the HHG results.

5.5. Exogeneity and conditional mean specification tests

In this subsection, we perform several exogeneity and conditional mean specification tests on the
latent-factor dynamic Poisson model of Table 8. Estimation results of individual parameters will be
presented in the following Section 5.6.

We do the GLM robust conditional mean specification tests stated in Section 3.2 for the
latent-factor Poisson model. We perform the test for each period t = 1, . . . , T and trajectory
r = 1, . . . , R and we obtain SSR for the entire panel for each trajectory of the latent factor.5 Then,
we compute the average of the N − SSR test statistic over R trajectories of the latent factor for each
t and compute the corresponding p-value (see Table 11). The p-values of these tests indicate that we
cannot reject to null hypothesis of exponential mean function against alternative functional forms of
the latent-factor Poisson specification for all periods considered at the 5 percent level of significance.

We perform the exogeneity test presented in Section 3.4 to see if the R&D expenses variable was
endogenous. In Tables 3, 5 and 8, we can see that the contemporaneous impact of R&D expenditure
on patent intensity (the β0 coefficient) for the latent-factor Poisson model is larger than the β0

estimates of the HHG (1984) and the extended Poisson models. This may be a sign of biased
parameters estimates of alternative models due to the endogeneity of R&D without conditioning in
unobservable innovations. In order to test these exogeneity hypotheses, we also evaluated the
endogeneity of R&D expenses in the HHG model with fixed effects (see Table 3) and the extended
Poisson model with fixed effects (see Table 5), using the two-stage procedure described in Section 3.4
but applied to these models. We present the corresponding estimates of ρi in Tables 12A and 12B,
respectively.6 We evidence that some of the parameters estimates of ρi are significant at the 5 percent
level of significance. Therefore, the null hypothesis that the R&D expenses variable is exogenous in
these models is rejected. Finally, we performed the exogeneity test in the latent-factor Poisson model

5We exclude the first ten years of our sample (1979-1988) in the conditional mean specification test as our model is

dynamic that includes ten lags of R&D expenses and patent citations data.
6Notice that for the HHG model and the extended Poisson model we only have two and three ρi coefficients in the

endogeneity test, respectively. This is due to the fact that we have less terms that include rit in these models.
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of Table 8. In this test, we re-estimate the latent-factor Poisson model with five additional
parameters that capture the impact of the residuals estimated by the OLS regressions (3.26). We
present the estimates of these additional parameters ρi in Table 12C. We find that {ρi : i = 1, . . . , 5}
are non-significant. Therefore, by using our dynamic latent-factor Poisson model, we fail to reject
that R&D is exogenous and therefore we can interpret the estimated results with certain confidence.
In the next subsection, we concentrate on the economic interpretation based on the parameter
estimates presented in Table 7 and Table 8 since those are the only specifications that are able to
pass our specification tests.

5.6. Latent-factor dynamic Poisson models

Our most general patent specifications are presented in Table 7 and Table 8, where we add a
latent factor component into the extended dynamic Poisson model presented in Table 4. The results
for the latent-factor Poisson model without R&D spillovers are presented in Table 7. Interestingly, we
find the dynamic latent factor significant and highly persistent, with an AR(1) coefficient µ equal to
0.85, and with several of the corresponding industry parameters σj significantly different from zero.
Thus, we can estimate the correlation caused by the latent factor across various industries. For
example, we find evidence that the latent innovation is: a) negatively correlated in the (i) paper and
printing, (ii) machinery, (iii) autos, (iv) computers and (v) oil industries since the corresponding
σj < 0 and b) positively correlated in the (1) chemicals, (2) rubber and plastics, (3) wood and misc.,
(4) primary metals, (5) fabricated metals, (6) electrical machinery, (7) aircrafts, (8) textiles and
leather, (9) pharmaceuticals, (10) food and (11) non-manufacturing industries since the
corresponding parameters are σj > 0. Our more parsimonious dynamic representation maintains the
basic properties of previous patent models while allowing for new features derived from the
unobservable innovation components which also make R&D exogenous.

Finally, we estimated this latent-factor dynamic Poisson model controlling for observable R&D
spillovers with interaction terms. The estimation results for this general model are included in Table
8. We also present the impact of lagged R&D expenditure on patent application intensity for
alternative models in Figures 11-13. Moreover, the observable dynamic intra-industry and
inter-industry R&D spillovers are presented in Figure 14. Notice that the inter-industry spillovers are
always larger, in absolute value, than the intra-industry ones, having the largest effects at 6 and 10
year lags.

The main results for the latent-factor Poisson model with R&D spillovers are presented in Table
8. The dynamic latent innovation factor is significant and highly persistent, with an AR(1) coefficient
µ equal to 0.88, and with significant effects on several industries. The elasticity of the expected
number of patents with respect to R&D has some direct effects and some indirect effects from
interaction terms. The direct contemporaneous effect of R&D on innovation output (measured by the
expected number of patent applications) has an inverted U-shape. Those R&D elasticities are not
independent of the quality of the innovation. For example, those indirect effects increase with the
number of the current citations received and the number of citations received at the truncation lag
(10 years ago). This is true for citations received from firms of the same industry (intra-industry) as
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well as for citations from different industries (inter-industries). The elasticity with respect to lagged
values of R&D is small in all cases, having the largest value equal to 0.06 at the truncation lag of 10
years. The percentage of expected patent applications increases through time but at a decreasing rate
which depends on the level of R&D. The size of the firm has a significant but small positive elasticity
equal to 0.01. Both the initial number of patent applications ni1 as well as the number of patent
applications of the previous year nit−1 have small but significant positive effects. Finally, the firms
that belong to the hi-tech sector, Di = 1 have an elasticity that is 12% higher than the rest of the
sectors.

In order to evaluate the main marginal contribution of the explanatory variables on the
expected number of patent applications, we evaluate them at the corresponding sample averages. For
that, we obtained the partial effects from the derivatives of λit with respect to each of the
explanatory variables.7 The estimated partial effects, evaluated at the sample mean of each
explanatory variable, are presented in Table 9. From the first column of Table 9, we can see that the
most important variable is R&D expenditure, rit with partial effect of 4.33 followed by firm size, zi

with partial effect of 0.76. In addition, we also computed the partial effect of the latent factor, l∗
t on

the patent application intensity. This effect depends on the specific j-industry considered, σj .
Therefore, we present the partial effects of l∗

t for each industry j = 1, . . . , 16 in Table 9. Finally, in
the second and third columns of Table 9, we also present the partial effects from the two alternative
specifications that do not include unobservable heterogeneity; the basic Poisson model (Table 3) and
the extended Poisson model (Table 5). Notice that the total partial impacts of R&D expenditure are
3.93 and 3.00, respectively, which are lower (downward bias) than the corresponding partial effects of
our the latent-factor dynamic Poisson specification of Table 8.

We present the overall average of the patent intensity estimates, λ = 4.9 and the overall average
of the number of patent applications, n = 5, in Tables 10A and 10B, respectively. We also computed
four other averages of λ̂it and nit for: (1) 1979-2000 for all firms, (2) 1979-2000 for each industry, (3)
each year for all firms and (4) each year for each industry. In Tables 10A and 10B, we see that the
patterns of the evolution of the estimated patent intensity and the average number of patents are
very similar for the U.S. economy as a whole and for each industry during 1979-2000. However, we
are able to identify three innovation intensity groups in terms of the expected number of patent
applications. Level 1, with the expected number patent applications per year ranging from 1 to 4
which includes the following seven industries: (3) rubber and plastics, (4) wood and miscellaneous,
(5) primary metals, (6) fabricated metals, (7) machinery, (11) textiles and leather and (16)
non-manufacturing. Level 2, ranging the expected number patent applications per year from 5 to 10
with four industries: (1) paper and printing, (9) autos, (12) pharmaceuticals and (14) computers.
These expected number of patent applications had their maximum values for those industries from
the period 1995 to 2000. And finally level 3, which include the industries with the four highest

7Notice that estimating partial effects is not possible in alternative count data formulations that include unobservable

heterogeneity. This is because the value of λ̂it is not known when unobserved heterogeneity is included in the model,

which is needed to estimate partial effects. However, in the latent-factor Poisson model it is possible to evaluate partial

effects.
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expected number patent applications per year: (2) chemicals, (8) electrical machinery, (10) aircrafts
and other trans. and (15) oil. In those cases, the maximum values of the expected number of patent
applications for those industries occurred from the period 1989 to 1992.

6. Conclusions

We have introduced new methods to control for firm-level R&D observed and unobserved
spillovers in the U.S. economy over a long period of 22 years (1979-2000) merging patent data form
MicroPatents and from the NBER data files. Previous R&D literature realized that knowledge
spillovers are partly observable and partly latent but they were only able to control for observable
spillovers. Hall et al (2001) suggests using patent citation data, which is fully available for a very long
time period for all U.S. firms, to measure observable knowledge spillovers with the citations published
in patent documents. By extending the latent-factor intensity approach of Bauwens and Hautsch
(2006) to dynamic patent count data models, we are able to identify unobserved knowledge flows
among several companies. Another important contribution of our approach is that we explicitly allow
for cross dependence (co-movements) in the panel data model through the common unobserved stock
of knowledge. Therefore, our dynamic count data model with unobservable innovation components is
an extension of the canonical panel data count model of patent applications of HHG (1984) and of
more recent contributions by Blundell et al (2002) and Wooldridge (2005).

Our modeling approach of patent counts is able to overcome the important endogeneity problem
of R&D. This is important since previous results from alternative GMM procedures, and alternative
maximum likelihood estimation procedures, obtained very different numerical values (unstable) for
the coefficients of R&D and found also a very large instability in the other parameters depending on
model specification issues, see for example Cincer (1997) and Montalvo (1997). Furthermore, Blundell
et al (2002) found among alternative GMM procedures, different values and signs in the parameter of
the lagged value of the number of patents. They mentioned that this instability was mainly due to
the weak instruments problem, as both patents and R&D series are highly persistent.

In this paper, we overcome previous misspecification problems discussed in HHG (1984) and
Blundell et al (2002) along the following lines: a) we consider a dynamic conditional parameterization
of the patent application intensity of U.S. firms following Wooldridge (2005); b) we use a parametric
model of observable knowledge spillovers by using intra-industry and inter-industry patent citation
data; c) we introduce a dynamic unobserved stock of knowledge component, with persistent influences
(AR(1) coefficient equal to 0.88) on the patent applications, allowing for a different impacts on each
industry. In the preferred pre-sample mean model of Blundell et al (2002), the lagged value of the
number of patents is equal to 0.84. In our model, this lagged value of the number of patents is
reduced to 0.002 after controlling for unobserved innovations; d) we study the truncation R&D lag
effect (‘5 lags only’ in previous papers) on the expected patent applications by allowing for a longer
lag structure (10 lags). e) We found linear and a nonlinear terms in log(R&D) entering in the
propensity to patent equation with an inverted U-shape relationship and with complementarities in
spillovers based on patent citations. f) Both observable and latent knowledge spillovers are significant
with significant positive observable R&D spillovers, both at the intra-industry and at the
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inter-industry level and with differential effects by industry with the unobserved spillovers. This result
is consistent with the complementarities obtained by Cassiman and Veugelers (2002) between legal
protections of innovations (patents) and the strategic protections (secret or latent innovations). In a
separate paper, we study the relationship between firm economic performance (market value of firms,
etc.) and innovation output (patents) for leaders and followers that compete in the same market,
after controlling for observable and latent R&D spillovers, but this is out of the scope of this paper;
see Blazsek and Escribano (2009). Finally, g) regarding the patent intensity correlation measured by
the latent process, we found evidence as in Pesaran (2006) and Holly et al (2006), of co-movements
among unobserved knowledge components (unobserved innovation spillovers) in several industries.
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Appendix A

The efficient importance sampling (EIS) method has been successfully applied for the evaluation
of likelihood functions involving high-dimensional integrals for example in stochastic volatility models
(Liesenfeld and Richard, 2003) and stochastic conditional intensity models (Bauwens and Hautsch,
2006) similar to our model.

Before explaining the details of the EIS technique, we note that this procedure is nested into a
typical likelihood function maximization procedure. In order to maintain the stability of the
maximization procedure, for every set of parameters we use the same set of i.i.d. N (0, 1) so-called
common random numbers (see Richard and Zhang, 2007) to estimate the value of the log-likelihood
function.

Let us introduce some notation first. Denote the set of patent counts by
Nij = {nit : t = 1, . . . , j} with 1 ≤ j ≤ T , denote Nt = {Nit : i = 1, . . . , N }, denote the set of latent
variables by L∗

j = {l∗
t : t = 1, . . . , j} with 1 ≤ j ≤ T and let Ω denote the 5N × T data matrix of

exogenous variables. More precisely, the structure of Ω is the following:

Ω =
(

Ω1 · · · ΩT

)
=




z z · · · z

r1 r2 · · · rT

c1 c2 · · · cT


 (A1)

Then, let Qj = {Ωt : t = 1, . . . , j} with with 1 ≤ j ≤ T and let

g(NT , L∗
T |Ω, θ) =

T∏

t=1

gt(nt, l
∗
t |Nt−1, L

∗
t−1, Qt, θt), (A2)

where

ln gt(nt, l
∗
t |Nt−1, L

∗
t−1, Qt, θt) =

N∑

i=1

nit ln λit − ln(nit!) − λit + ln f ∗
t (l∗

t |l∗
t−1). (A3)

The EIS methodology consists of the following elements. First, we introduce an auxiliary
sampler, m, which is included into the likelihood function and then factorized into the product of T

sequential auxiliary densities, {mt : t = 1, . . . , T } as follows:

L(NT , θ) =
∫

RT

T∏

t=1

gt(nt, l
∗
t |Nt−1, L

∗
t−1, Qt, θt)

mt(l∗
t |L∗

t−1, θ
∗
t )

× mt(l∗
t |L∗

t−1, θ
∗
t )dL∗

T , (A4)

where L(Ω, θ) = L and θ∗ is the vector of parameters of the auxiliary sampler defined as the union of
all θ∗

t s, which denote the parameters of the i-th auxiliary sampler. Then, the importance MC estimate
of L(NT , θ) for given θ∗ is:

L̂R(NT , θ, θ∗) =
1
R

R∑

r=1

T∏

t=1

gt(nt, l
∗
tr |Nt−1, L

∗
t−1r, Qt, θt)

mt(l∗
tr |L∗

t−1r, θ
∗
t )

, (A5)
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where {l∗
tr : t = 1, . . . , T } denotes the r-th trajectory of i.i.d. draws from {mt : t = 1, . . . , T } and

r = 1, . . . , R. There are two questions arising related the above formulation: (A) How to choose mt?
and (B) How to choose the θ∗

t parameters?

(A) Richard and Zhang (2007) suggests to define the auxiliary sampler, mt with its associated density
kernel, kt:

kt(L∗
t , θ

∗
t ) = mt(l∗

t |L∗
t−1, θ

∗
t )χt(L∗

t−1, θ
∗
t ) (A6)

where

χt(L∗
t−1, θ

∗
t ) =

∫

R
kt(L∗

t , θ
∗
t )dl∗

t (A7)

denotes the t-th integrating constant associated to kt. Richard and Zhang (2007) suggests to choose
kt as a normal density kernel. Following Bauwens and Hautsch (2006), we include the conditional
density of the latent variable l∗

t into mt. Thus, the t-th normal density kernel has the following form:

kt(L∗
t , θ

∗
t ) = exp[θ∗

t1l
∗
t + θ∗

t2(l
∗
t )

2] × exp
[

− (l∗
t − µl∗

t−1)
2

2

]
, (A8)

where θ∗
t = (θ∗

t1, θ
∗
t2) determine the conditional mean and variance of the t-th auxiliary sampler mt.

We can find relatively easily that the conditional mean, µt and conditional variance, π2
t of the normal

auxiliary sampler, mt are given by the following expressions (Bauwens and Hautsch, 2006 have the
same expressions for the conditional moments of the latent factor):

µt = π2
t (θ

∗
t1 + µl∗

t−1) (A9)

π2
t =

1
1 − 2θ∗

t2

(A10)

Therefore, for given parameters of the auxiliary sampler a trajectory of {l∗
t } can be generated from

the following autoregressive process:

l∗
t = π2

t θ
∗
t1 + π2

t µl∗
t−1 + πtηt, (A11)

where ηt ∼ N (0, 1) i.i.d.. Moreover, from (A8) we may deduce that the t-th integrating constant is
given by:

χt(L∗
t−1, θ

∗
t ) =

√
2ππ2

t × exp
[

− µ2(l∗
t−1)

2

2
+

µ2
t

2π2
t

]
. (A12)

(B) The EIS methodology relies on the optimal choice of parameters of the auxiliary samplers in the
sense that for given m the variance of L̂R(NT , θ, θ∗) is minimized, i.e.:

θ∗(NT , θ) = arg min
θ∗

V ar[L̂R(NT , θ, θ∗)]. (A13)
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Loosely speaking, from equation (A5) one can see that this variance is ’small’ if the auxiliary
sampler mt provides a ’good fit’ to the gt function. Expressing the auxiliary sampler by its associated
density kernel and integrating constant from (A8), we may say that mt provides ’good fit’ to gt if

ln gt(nt, l
∗
t |Nt−1, L

∗
t−1, Qt, θt) + lnχt(L∗

t−1, θ
∗
t ) ' ln kt(L∗

t , θ
∗
t ). (A14)

Richard and Zhang (2007) shows that if the auxiliary samplers are normal distributions then the
MC variance minimization problem stated in equation (A13) can be reduced to a recursive sequence
of T ordinary least squares (OLS) problems, each of the following form (see also Bauwens and
Hautsch, 2006):

ln gt(nt, l
∗
t |Nt−1, L

∗
t−1, Qt, θt) + lnχt+1(L∗

tr, θ̂
∗
t+1) = θ∗

t0 + θ∗
t1l

∗
tr + θ∗

t2(l
∗
tr)

2 + utr, (A15)

for t = T, . . . , 1, r = 1, . . . , R, χT+1(L∗
T , θ̂∗

T+1) = 1 and θ̂∗
t+1 is the OLS estimate of θ∗

t+1. Thus, for
each observation t, one has to compute the OLS estimate of the parameters of the auxiliary sampler,
mt. The regressions have a recursive structure because we use the θ̂∗

t+1 estimates in order to compute
the integrating constant for the next, t-th OLS regression. (This is based on the permutation of the
integrating constants in equation (A5), see Richard and Zhang (2007) for more details.) Thus, the
regressions are run backwards, i.e. from T to 1. The sample size of each regression is equal to the
number of trajectories drawn, R. One of the advantages of the EIS algorithm is that these auxiliary
regressions are typically run with relatively low sample sizes. In our case the number of trajectories of
the latent variables is R = 50. In summary, the EIS technique consists of the following steps:
Step 1: Draw R trajectories {l∗

tr }T
t=1 from the natural sampler, N (µl∗

t−1r, 1).
Step 2: for each t (from T to 1), estimate the regression in (A15).
Step 3: Given the OLS estimates of θ∗ obtained in Step 2, draw R trajectories {l∗

tr }T
t=1 from the

auxiliary samplers, {mt}T
t=1.

Step 4: Compute the importance MC estimate of L̂R according to (A5).
Richard and Zhang (2007) suggest to iterate Steps 2 and 3 several times to get a precise estimate of
the value of the high-dimensional integral in (A4).
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Appendix B

In order to show that the Poisson QMLE is weakly consistent given that the conditional mean
function is correctly specified, we use Theorem 12.2 of Wooldridge (2002). This theorem states under
which conditions the M-Estimators are consistent. This is useful to us as the Poisson QMLE is a
special case of the M-Estimation methods (see Wooldridge, 2002, pp.341).

Theorem 12.2 requires the following conditions:
(a) Let w be a random vector of variables taking values in W ∈ RM , where M is the number of

variables.
(b) Let the Θ parameter space be a subset of Rp, where p is the number of parameters.
(c) Let the log QML function ln L(w, θ) : W × Θ → R be a real valued function.8

(d) The Θ ∈ Rp parameter space is compact.
(e) For each θ ∈ Θ, ln L(., θ) is Borel measurable on W.
(f) For each w ∈ W, ln L(., θ) is continuous on Θ.
(g) | ln L(w, θ)| ≤ b(w) for all θ ∈ Θ, where b is a non-negative function on W such that

E[b(w)] < ∞.
(h) Identification assumption: the solution of the QMLE problem, θ0 is unique:

E[ln L(w, θ0)] > E[ln L(w, θ)] for all θ ∈ Θ, θ 6= θ0.

8The ln L(w, θ) function corresponds to the q(w, θ) function in equation 12.8 of Wooldridge (2002) in the definition of

the M-Estimator.
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Data sources

MicroPatents Co., U.S. utility patent database covering the 1979 - 2004 period and U.S. patent citations for years 2003

and 2004.

National Bureau of Economic Research patent citations data-file. CD-ROM included in Patents, citations, and

innovations: a window on the knowledge economy edited by Jaffe, A. B., M. Trajtenberg, MIT Press, 2002.

Compustat (North America) Database. Standard & Poor’s, 2005.

Consumer Price Index for All Urban Consumers. U.S. Department of Labor: Bureau of Labor Statistics, data

downloaded from the Federal Reserve Bank of St. Louis website (http://research.stlouisfed.org).
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Tables

Table 1

U.S. patent data set sample size according to industries (1979-2004)

Industry Number of firms Number of patents Patents / firm

1 Paper and printing 89 16,877 190

2 Chemicals 82 40,449 493

3 Rubber and plastics 82 5,045 62

4 Wood and misc. 154 10,310 67

5 Primary metals 63 2,874 46

6 Fabricated metals 98 4,869 50

7 Machinery 261 23,720 91

8 Electrical machinery 109 34,006 312

9 Autos 93 20,015 215

10 Aircrafts and other trans. 38 20,410 537

11 Textiles and leather 79 1,487 19

12 Pharmaceuticals 530 54,681 103

13 Food 77 3,314 43

14 Computers and inst. 1,232 251,446 204

15 Oil 32 27,287 853

16 Non-manufacturing 1,457 42,939 29

Total hi-tech 1,991 400,992 201

Total non-hi-tech 2,485 158,737 64

Total 4,476 559,729 125

Notes: We present the number of patent applications for each industry. We use the modified SIC classification and

hi-tech / non-hi-tech classification proposed by Hall and Mairesse (1996). Hi-tech industry names are written by bold

letters. Patent data is obtained from the MicroPatents firm.
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Table 2

The 30 largest companies by total number of patent applications between 1979 and 2004

Ranking Company Number of patents

(1) IBM 37,094

(2) General Electric 21,117

(3) Eastman Kodak 15,575

(4) Motorola 15,539

(5) Hewlett-Packard 12,855

(6) Micron Technology 11,535

(7) Texas Instruments 11,014

(8) Xerox 10,908

(9) Du Pont de Nemours 10,433

(10) Intel 9,777

(11) 3M 9,354

(12) Advanced Micro Devices 7,945

(13) AT&T 7,944

(14) General Motors 7,801

(15) Lucent Technologies 7,656

(16) Dow Chemical Company 6,190

(17) Exxon 6,019

(18) Procter & Gamble 5,983

(19) Honeywell 5,557

(20) Merck & Co. 5,208

(21) Mobil Oil 5,006

(22) Shell Oil 4,741

(23) Sun Microsystems 4,456

(24) Chrysler 4,162

(25) TRW 4,114

(26) United Technologies 4,066

(27) Ford Motor 4,043

(28) Microsoft 3,708

(29) Phillips Petroleum 3,630

(30) Eaton Corporation 3,393

Notes: Firm names in hi-tech industries are written by bold letters. Patent data is obtained from the MicroPatents firm.
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Table 3

Estimation results of the HHG (1984) Poisson model for the new patent data set

Parameter Basic Poisson Random effects Fixed effects

β0 0.79∗(0.001) 0.81∗(0.009) 0.40∗(0.002)

β1 0.04∗(0.001) 0.05∗(0.006) 0.01∗(0.002)

β2 0.04∗(0.001) 0.06∗(0.01) 0.02∗(0.002)

β3 0.04∗(0.001) 0.11∗(0.009) 0.01∗(0.002)

β4 −0.02∗(0.001) 0.03∗(0.01) −0.03∗(0.002)

β5 0.04∗(0.001) 0.10∗(0.02) −0.02∗(0.003)

µ0 −0.96∗(0.002) −1.49∗(0.007)

γ1 0.04∗(0.0003) 0.07∗(0.001) 0.08∗(0.001)

γ2 −0.008∗(0.0001) −0.02∗(0.001) −0.005∗(0.0001)

γ3 0.32∗(0.002) 0.002∗(0.004)

γ4 0.03∗(0.001) 0.13∗(0.003)

δ 0.18∗(0.002)

log-likelihood −20, 619.2 −5, 298.8 −7, 706.9

Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. The

following specification is estimated for t = 1979, . . . , 2000 and i = 1, . . . , 4476:

λit = exp(X
′
itβ + µ0)αi

X
′
itβ = β5(L)rit + γ1t + γ2trit + γ3Di + γ4zi

β5(L) =

5X
i=0

βiL
i
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Table 4

Estimation results of the HHG (1984) Poisson model with Wooldridge (2005) extension for the new patent data set

Parameter Basic Poisson Random effects Fixed effects

β0 0.85∗(0.002) 0.66∗(0.016) 0.53∗(0.003)

β1 0.01∗(0.002) 0.02(0.012) −0.01∗(0.002)

β2 0.04∗(0.001) 0.03∗(0.009) 0.02∗(0.002)

β3 0.03∗(0.002) 0.06∗(0.013) 0.01∗(0.002)

β4 −0.02∗(0.001) −0.003(0.018) −0.03∗(0.002)

β5 0.03∗(0.001) −0.05∗(0.014) 0.01∗(0.002)

κ 0.001∗(0.000) 0.03∗(0.001) 0.001∗(0.000)

µ0 −0.91∗(0.002) −1.88∗(0.019)

γ1 0.05∗(0.0002) 0.08∗(0.001) 0.10∗(0.001)

γ2 −0.01∗(0.0001) −0.02∗(0.001) −0.01∗(0.0001)

γ3 0.18∗(0.002) 0.21∗(0.015)

γ4 −0.0004(0.001) 0.08∗(0.003)

γ5 0.001∗(0.0000) 0.02∗(0.001)

δ 0.23∗(0.002)

log-likelihood -18,425.4 -5,116.3 -7,123.4

Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. The

following specification is estimated for t = 1979, . . . , 2000 and i = 1, . . . , 4476:

λit = exp(X
′
itβ + µ0)αi

X
′
itβ = β5(L)rit + κnit−1 + γ1t + γ2trit + γ3Di + γ4zi + γ5ni1

β5(L) =

5X
i=0

βiL
i

35



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 5

Estimation results of the extended dynamic Poisson model

Parameter Basic Poisson Random effects Fixed effects

β0 1.06∗(0.002) 0.69∗(0.004) 0.46∗(0.004)

β1 0.01∗(0.002) 0.01∗(0.006) −0.01∗(0.002)

β2 0.04∗(0.002) 0.04∗(0.005) 0.01∗(0.002)

β3 0.04∗(0.002) 0.05∗(0.005) 0.01∗(0.002)

β4 −0.02∗(0.002) −0.01(0.008) −0.03∗(0.002)

β5 −0.02∗(0.002) −0.01(0.011) −0.02∗(0.002)

β6 0.01∗(0.002) −0.03∗(0.007) 0.02∗(0.002)

β7 0.002(0.002) 0.01(0.011) −0.06∗(0.002)

β8 0.01∗(0.002) −0.01(0.014) 0.01∗(0.002)

β9 0.02∗(0.001) −0.01(0.009) 0.01∗(0.002)

β10 0.05∗(0.001) −0.01(0.008) 0.03∗(0.002)

β̄ −0.03∗(0.0002) −0.01∗(0.002) 0.03∗(0.001)

κ 0.001∗(0.000) 0.03∗(0.000) 0.001∗(0.000)

ρ1 0.82∗(0.003) 0.83∗(0.027)

ρ2 0.88∗(0.002) 1.04∗(0.014)

ρ3 0.22∗(0.005) 0.76∗(0.019)

ρ4 0.26∗(0.008) 0.71∗(0.004)

ρ5 −0.11∗(0.004) 0.89∗(0.004)

ρ6 0.44∗(0.005) 0.95∗(0.008)

ρ7 0.35∗(0.002) 0.99∗(0.004)

ρ8 0.91∗(0.002) 1.20∗(0.008)

ρ9 0.13∗(0.002) 1.26∗(0.011)

ρ10 0.36∗(0.002) 0.75∗(0.025)

ρ11 −0.06∗(0.006) 0.48∗(0.019)

ρ12 0.23∗(0.002) 0.73∗(0.004)

ρ13 −0.15∗(0.002) 0.72∗(0.003)

ρ14 0.68∗(0.002) 0.90∗(0.004)

ρ15 1.12∗(0.002) 0.91∗(0.022)

µ0 −1.39∗(0.004) −2.37∗(0.005)

γ1 0.05∗(0.0003) 0.08∗(0.001) 0.11∗(0.001)

γ2 −0.02∗(0.0001) −0.02∗(0.001) −0.02∗(0.0002)

γ3 −0.09∗(0.003) −0.21∗(0.003)

γ4 0.004∗(0.001) 0.07∗(0.003)

γ5 0.0002∗(0.0000) 0.02∗(0.001)

δ 0.24∗(0.002)

log-likelihood -17,066.9 -5,073.7 -7,039.2

Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. We

estimated the following model for t = 1979, . . . , 2000 and i = 1, . . . , 4476:

λit = exp(X
′
itβ + µ0)αi

X
′
itβ = β10(L)rit + κnit−1 + β̄r2

it + γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 +

15X
j=1

ρjIij

β10(L) =

10X
i=0

βiL
i
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Table 6

Estimation results of the extended dynamic Poisson model with observable R&D spillovers

Parameter Basic Poisson Random effects Fixed effects

β0 1.10∗(0.002) 0.63∗(0.012) 0.41∗(0.003)

β1 −0.03∗(0.002) 0.002(0.007) −0.03∗(0.003)

β2 0.03∗(0.002) 0.03∗(0.008) 0.01∗(0.002)

β3 0.03∗(0.002) 0.05∗(0.009) 0.002(0.002)

β4 −0.03∗(0.002) −0.01(0.013) −0.04∗(0.002)

β5 0.03∗(0.002) −0.01(0.015) −0.003(0.002)

β6 0.003∗(0.002) −0.03∗(0.013) −0.002(0.002)

β7 0.01∗(0.002) −0.003(0.009) −0.01∗(0.002)

β8 0.02∗(0.002) −0.01(0.007) 0.003(0.002)

β9 0.02∗(0.002) −0.01(0.005) 0.01∗(0.002)

β10 0.05∗(0.002) 0.02∗(0.007) −0.001(0.002)

β̄ −0.04∗(0.0003) −0.01∗(0.002) 0.02∗(0.001)

κ 0.002∗(0.000) 0.04∗(0.000) 0.001∗(0.000)

ρ1 0.75∗(0.002) 0.84∗(0.014)

ρ2 0.37∗(0.002) 1.12∗(0.013)

ρ3 0.21∗(0.002) 0.76∗(0.004)

ρ4 0.25∗(0.002) 0.70∗(0.004)

ρ5 −0.13∗(0.002) 0.86∗(0.009)

ρ6 0.42∗(0.002) 0.93∗(0.018)

ρ7 0.32∗(0.002) 0.98∗(0.003)

ρ8 0.25∗(0.004) 1.26∗(0.015)

ρ9 0.36∗(0.002) 1.25∗(0.007)

ρ10 −0.09∗(0.004) 0.83∗(0.006)

ρ11 −0.08∗(0.005) 0.47∗(0.014)

ρ12 −0.24∗(0.002) 0.81∗(0.011)

ρ13 −0.17∗(0.002) 0.68∗(0.004)

ρ14 0.06∗(0.003) 1.00∗(0.009)

ρ15 1.21∗(0.002) 0.91∗(0.007)

continued

Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. We

estimated the following model for t = 1979, . . . , 2000 and i = 1, . . . , 4476:

λit = exp(X
′
itβ + µ0)αi

X
′
itβ = γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 + Ψit + β̄r2

it +

15X
j=1

ρjIij

Ψit = β10(L)rit + κnit−1 + rit[ω10(L)c2it] + rit[φ10(L)c3it]

β10(L) =

10X
i=0

βiL
i, ω10(L) =

10X
i=0

ωiL
i, φ10(L) =

10X
i=0

φiL
i
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Table 6 (continued)

Estimation results of the extended dynamic Poisson model with observable R&D spillovers

Parameter Basic Poisson Random effects Fixed effects

ω0 0.004∗(0.0003) 0.001(0.006) 0.004∗(0.0002)

ω1 −0.01∗(0.0004) −0.07∗(0.004) −0.01∗(0.0003)

ω2 0.002∗(0.001) −0.13∗(0.007) −0.003∗(0.0004)

ω3 −0.001∗(0.001) −0.05∗(0.006) −0.01∗(0.0004)

ω4 −0.02∗(0.001) 0.09∗(0.008) 0.00(0.001)

ω5 0.001(0.001) −0.02∗(0.005) 0.01∗(0.001)

ω6 0.02∗(0.001) −0.20∗(0.008) 0.00(0.002)

ω7 −0.02∗(0.002) 0.13∗(0.029) −0.03∗(0.002)

ω8 0.003(0.002) 0.74∗(0.006) 0.03∗(0.003)

ω9 −0.01∗(0.002) −1.09∗(0.031) 0.01∗(0.003)

ω10 0.04∗(0.002) −1.13∗(0.072) −0.01∗(0.003)

φ0 0.01∗(0.001) 0.06∗(0.006) 0.01∗(0.0004)

φ1 −0.02∗(0.001) −0.08∗(0.006) −0.01∗(0.001)

φ2 0.01∗(0.001) −0.03∗(0.005) 0.002∗(0.001)

φ3 0.03∗(0.001) 0.07∗(0.006) 0.01∗(0.001)

φ4 −0.002(0.001) −0.05∗(0.012) −0.01∗(0.001)

φ5 0.01∗(0.002) −0.03∗(0.010) 0.0001(0.001)

φ6 −0.14∗(0.002) −0.02(0.010) −0.03∗(0.003)

φ7 −0.03∗(0.002) 0.04∗(0.012) −0.01∗(0.003)

φ8 −0.03∗(0.002) −0.89∗(0.027) −0.02∗(0.003)

φ9 0.001(0.002) 0.26∗(0.081) −0.005(0.004)

φ10 0.10∗(0.002) −0.14(0.095) −0.01∗(0.004)

µ0 −1.32∗(0.002) −2.39∗(0.005)

γ1 0.05∗(0.0003) 0.08∗(0.001) 0.10∗(0.001)

γ2 −0.01∗(0.0001) −0.01∗(0.001) −0.01∗(0.0002)

γ3 0.45∗(0.003) −0.30∗(0.008)

γ4 0.02∗(0.001) 0.07∗(0.003)

γ5 −0.0004∗(0.000) 0.02∗(0.001)

δ 0.25∗(0.003)

log-likelihood -16,009.0 -5,054.2 -6,767.4

Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. We

estimated the following model for t = 1979, . . . , 2000 and i = 1, . . . , 4476:

λit = exp(X
′
itβ + µ0)αi

X
′
itβ = γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 + Ψit + β̄r2

it +

15X
j=1

ρjIij

Ψit = β10(L)rit + κnit−1 + rit[ω10(L)c2it] + rit[φ10(L)c3it]

β10(L) =

10X
i=0

βiL
i, ω10(L) =

10X
i=0

ωiL
i, φ10(L) =

10X
i=0

φiL
i
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Table 7

Estimation results of the extended dynamic Poisson model with latent R&D spillovers

Parameter Estimation Parameter Estimation

β0 1.11∗(0.002) µ 0.85∗(0.002)

β1 0.01∗(0.002) σ1 −0.05∗(0.002)

β2 0.04∗(0.002) σ2 0.01∗(0.002)

β3 0.04∗(0.001) σ3 0.01∗(0.002)

β4 −0.01∗(0.001) σ4 0.01∗(0.002)

β5 −0.02∗(0.002) σ5 0.04∗(0.002)

β6 0.01∗(0.002) σ6 0.01∗(0.002)

β7 0.002(0.002) σ7 −0.003∗(0.002)

β8 0.01∗(0.002) σ8 0.01∗(0.002)

β9 0.02∗(0.001) σ9 −0.01∗(0.002)

β10 0.06∗(0.001) σ10 0.02∗(0.002)

κ 0.001∗(0.000) σ11 0.04∗(0.002)

β̄ −0.04∗(0.0003) σ12 0.02∗(0.002)

µ0 −1.10∗(0.002) σ13 0.02∗(0.002)

γ1 0.05∗(0.0003) σ14 −0.01∗(0.002)

γ2 −0.01∗(0.0001) σ15 −0.01∗(0.002)

γ3 0.17∗(0.002) σ16 0.01∗(0.002)

γ4 −0.003∗(0.001)

γ5 0.001∗(0.000)

loglikelihood -17,806.1

Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. We

estimated the following specification for t = 1979, . . . , 2000, i = 1, . . . , 4476 and j = 1, . . . , 16:

λit = exp(X
′
itβ + µ0)αit

X
′
itβ = β10(L)rit + κnit−1 + β̄r2

it + γ1t + γ2trit + γ3Di + γ4zi + γ5ni1

β10(L) =

10X
i=0

βiL
i

αit = exp(σj l
∗
t )

l∗
t = µl∗

t−1 + ηt
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Table 8

Estimation results of the extended dynamic Poisson model with observable and latent R&D spillovers

Parameter Variable Estimation Parameter Variable Estimation

β0 rit 1.17∗(0.002) µ l∗
t−1 0.88∗(0.002)

β1 rit−1 −0.02∗(0.002) σ1 l∗
t −0.02∗(0.002)

β2 rit−2 0.03∗(0.002) σ2 l∗
t −0.01∗(0.002)

β3 rit−3 0.03∗(0.002) σ3 l∗
t 0.01∗(0.002)

β4 rit−4 −0.03∗(0.002) σ4 l∗
t 0.02∗(0.002)

β5 rit−5 0.03∗(0.002) σ5 l∗
t 0.06∗(0.002)

β6 rit−6 0.005∗(0.002) σ6 l∗
t 0.03∗(0.002)

β7 rit−7 0.01∗(0.002) σ7 l∗
t 0.01∗(0.002)

β8 rit−8 0.02∗(0.002) σ8 l∗
t −0.001(0.002)

β9 rit−9 0.03∗(0.001) σ9 l∗
t −0.02∗(0.002)

β10 rit−10 0.06∗(0.001) σ10 l∗
t 0.02∗(0.002)

κ nit−1 0.002∗(0.000) σ11 l∗
t 0.05∗(0.002)

β̄ r2
it −0.05∗(0.0003) σ12 l∗

t 0.01∗(0.002)

µ0 - −1.04∗(0.002) σ13 l∗
t 0.03∗(0.002)

γ1 t 0.04∗(0.0003) σ14 l∗
t −0.003∗(0.001)

γ2 trit −0.01∗(0.0001) σ15 l∗
t −0.01∗(0.002)

γ3 Di 0.12∗(0.002) σ16 l∗
t 0.01∗(0.002)

γ4 zi 0.01∗(0.001)

γ5 ni1 0.0002∗(0.000)

ω0 ritc2it 0.002∗(0.0003) φ0 ritc3it 0.01∗(0.001)

ω1 ritc2it−1 −0.01∗(0.0004) φ1 ritc3it−1 −0.02∗(0.001)

ω2 ritc2it−2 0.003∗(0.001) φ2 ritc3it−2 0.01∗(0.001)

ω3 ritc2it−3 −0.003∗(0.001) φ3 ritc3it−3 0.03∗(0.001)

ω4 ritc2it−4 −0.02∗(0.001) φ4 ritc3it−4 −0.001∗(0.001)

ω5 ritc2it−5 −0.001∗(0.001) φ5 ritc3it−5 0.01∗(0.002)

ω6 ritc2it−6 0.03∗(0.001) φ6 ritc3it−6 −0.15∗(0.002)

ω7 ritc2it−7 −0.02∗(0.002) φ7 ritc3it−7 −0.03∗(0.002)

ω8 ritc2it−8 −0.02∗(0.002) φ8 ritc3it−8 −0.04∗(0.002)

ω9 ritc2it−9 −0.003∗(0.004) φ9 ritc3it−9 0.01∗(0.002)

ω10 ritc2it−10 0.07∗(0.003) φ10 ritc3it−10 0.10∗(0.002)

log-likelihood -16,668.0

Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. We

estimated the following specification for t = 1979, . . . , 2000, i = 1, . . . , 4476 and j = 1, . . . , 16:

λit = exp(X
′
itβ + µ0)αit

X
′
itβ = γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 + β̄r2

it + Ψit

Ψit = β10(L)rit + κnit−1 + rit[ω10(L)c2it] + rit[φ10(L)c3it]

β10(L) =

10X
i=0

βiL
i, ω10(L) =

10X
i=0

ωiL
i, φ10(L) =

10X
i=0

φiL
i

αit = exp(σj l
∗
t )

l∗
t = µl∗

t−1 + ηt
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Table 9

Response of the average firm: Partial effects for alternative Poisson models with observable and latent R&D spillovers

Variable LF-Poisson Variable Extended Poisson Basic Poisson

(Table 8) (Table 5) (Table 3)

t 0.262 t 0.294 0.275

Di 1.080 Di 0.820 1.740

zi 0.761 zi 0.611 1.120

ni1 0.001 ni1 0.001 -

nit−1 0.011 nit−1 0.004 -

ritt -0.669 ritt -0.821 -0.365

r2
it -0.191 r2

it -0.100 -

rit 5.190 rit 4.854 3.371

ω10(L)ritc2it 0.002 ω10(L)ritc2it - -

φ10(L)ritc3it 0.005 φ10(L)ritc3it - -P
rit 4.325

P
rit 3.933 3.006

σ̂1l
∗
t -0.078 Ii1 2.332 -

σ̂2l
∗
t -0.001 Ii2 1.602 -

σ̂3l
∗
t 0.028 Ii3 0.992 -

σ̂4l
∗
t 0.082 Ii4 0.978 -

σ̂5l
∗
t 0.280 Ii5 -0.388 -

σ̂6l
∗
t 0.156 Ii6 1.445 -

σ̂7l
∗
t -0.018 Ii7 1.297 -

σ̂8l
∗
t -0.006 Ii8 1.908 -

σ̂9l
∗
t -0.098 Ii9 0.525 -

σ̂10l
∗
t 0.100 Ii10 0.164 -

σ̂11l
∗
t 0.233 Ii11 0.154 -

σ̂12l
∗
t 0.057 Ii12 -0.072 -

σ̂13l
∗
t 0.207 Ii13 -0.608 -

σ̂14l
∗
t -0.021 Ii14 1.348 -

σ̂15l
∗
t -0.025 Ii15 2.874 -

σ̂16l
∗
t 0.055 - - -

Notes: We computed partial effects for the specifications presented in Tables 3 (first column), 5 (first column) and 8 by

computing the partial derivatives of λit with respect to the explanatory variables. Since the partial effects depend on

the explanatory variables, we evaluated the derivatives by computing the averages of λit and the corresponding

variables. The following formulas show the computation of partial effects for the most general latent-factor Poisson

specification λit = exp(µ0 + X
′
itβ + σj l

∗
t ) for t = 1979, . . . , 2000, i = 1, . . . , 4476 and j = 1, . . . , 16:

∂λ̂it

∂xjt
= λ̂it

∂(µ̂0 + X
′
itβ̂)

∂xjt
= β̂j λ̂it

∂λ̂it

∂l∗
t

= σ̂j λ̂it
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Table 10A

The estimates of average patent intensity, λ over 1979-2000 by industry

year/indu. 1-16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1979-2000 4.9 6.5 17.5 2.2 2.1 1.8 1.2 3.3 12.5 10.0 21.3 0.6 4.8 2.1 7.8 22.1 1.4

1979 1.4 1.4 6.0 1.0 0.9 1.4 0.6 1.0 2.9 4.7 12.7 0.4 1.6 1.4 1.4 9.1 0.5

1980 1.9 2.2 8.5 1.0 0.9 1.5 0.7 1.1 8.6 4.6 14.8 0.4 1.8 1.3 2.0 16.2 0.5

1981 2.2 2.2 10.7 1.2 1.0 1.7 0.7 1.3 10.3 5.2 17.2 0.4 2.1 1.4 2.3 20.0 0.6

1982 2.5 2.6 12.4 1.3 1.0 1.6 0.8 1.4 10.9 6.1 19.0 0.4 2.4 1.5 2.8 22.0 0.7

1983 2.3 2.8 11.5 1.3 1.0 1.3 0.8 1.3 9.0 5.2 16.0 0.4 2.2 1.4 2.6 21.9 0.7

1984 2.7 3.2 13.1 1.5 1.1 1.4 0.9 1.5 10.4 6.5 17.8 0.4 2.6 1.4 3.1 23.2 0.9

1985 2.9 4.0 13.8 1.5 1.2 1.4 1.0 1.7 11.6 6.6 17.5 0.4 2.8 1.8 3.2 26.0 1.0

1986 3.0 4.5 15.9 1.6 1.2 1.4 1.0 1.8 11.3 7.2 18.7 0.5 3.0 1.8 3.5 24.2 1.0

1987 3.3 5.1 17.4 1.7 1.4 1.6 1.0 2.0 11.2 7.6 19.6 0.5 3.4 2.0 3.9 22.3 1.1

1988 3.7 6.0 19.1 1.9 1.9 1.8 1.1 2.3 11.6 9.2 23.4 0.5 3.9 2.1 4.6 25.8 1.1

1989 4.7 7.0 23.7 2.3 2.1 2.1 1.4 2.8 17.4 10.9 29.6 0.6 4.7 2.4 5.9 31.1 1.3

1990 5.2 7.2 27.9 2.4 2.2 2.1 1.3 3.1 20.6 11.8 27.8 0.6 5.0 2.3 6.9 29.6 1.4

1991 5.6 7.7 26.0 2.5 2.3 2.2 1.4 3.3 17.2 12.6 27.9 0.7 5.5 2.6 8.2 33.1 1.4

1992 6.1 8.2 24.5 2.6 2.4 2.2 1.5 3.5 15.6 13.2 26.6 0.7 6.0 2.6 9.7 28.3 1.6

1993 6.1 7.8 22.5 2.7 2.7 2.1 1.5 3.8 11.9 13.9 23.7 0.7 6.5 2.7 10.2 25.5 1.7

1994 5.9 8.5 20.9 2.8 2.7 1.8 1.5 4.3 11.1 16.2 22.0 0.7 6.7 2.6 8.7 23.4 2.0

1995 7.2 13.2 21.3 3.1 3.2 2.4 1.8 4.9 13.0 14.5 22.8 0.9 7.9 3.1 12.2 22.7 2.0

1996 7.7 10.3 20.3 3.4 3.2 2.0 1.8 5.6 11.2 16.9 22.6 0.8 8.5 2.7 14.2 22.2 2.0

1997 9.0 13.0 18.9 3.5 3.5 2.3 2.0 6.3 12.3 15.5 24.4 0.9 8.5 2.7 18.0 23.2 2.3

1998 8.5 10.9 16.2 3.1 3.2 1.6 1.5 6.0 12.8 10.7 23.5 0.9 7.0 2.0 17.9 16.2 2.5

1999 7.8 7.6 17.2 3.5 3.2 1.6 1.5 5.9 13.6 10.1 20.7 0.6 6.5 1.9 16.1 9.4 2.2

2000 7.8 8.3 16.7 3.4 3.7 1.7 1.5 7.2 20.6 11.0 20.2 0.7 6.7 1.9 14.6 11.0 2.5

Notes: We computed λ for the latent-factor Poisson specification presented in Table 8 by computing the following means

of λ̂it:

λ = 1
TN

PT
t=1

PN
i=1 λ̂it

λt = 1
N

PN
i=1 λ̂it

λj = 1
TNj

PT
t=1

PNj

i=1 λ̂it for i ∈ j industry

λjt = 1
Nj

PNj

i=1 λ̂it for i ∈ j industry

where Nj denotes the number of firms in industry j = 1, . . . , 16. Firms are classified into the following 16 industries: (1)

paper and printing, (2) chemicals, (3) rubber and plastics, (4) wood and misc., (5) primary metals, (6) fabricated

metals, (7) machinery, (8) electrical machinery, (9) autos, (10) aircrafts and other trans., (11) textiles and leather, (12)

pharmaceuticals, (13) food, (14) computers and inst., (15) oil, (16) non-manufacturing. (Hall and Mairesse, 1996)
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Table 10B

The estimates of average number of patent applications, n over 1979-2000 by industry

year/indu. 1-16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1979-2000 5.0 7.5 21.1 2.4 2.5 1.9 2.0 3.4 12.7 8.6 21.9 0.8 4.2 1.7 7.8 37.0 1.2

1979 2.5 3.3 18.7 1.3 2.0 2.4 2.5 1.6 11.3 4.4 15.5 0.6 2.2 0.8 2.4 41.6 0.3

1980 2.6 2.9 19.4 1.4 2.1 2.3 1.7 1.8 11.5 3.9 16.3 0.8 2.2 0.8 2.5 44.4 0.3

1981 2.6 3.2 18.6 1.5 2.0 2.4 2.2 1.6 11.2 4.2 17.1 0.8 2.0 1.2 2.5 44.9 0.4

1982 2.8 3.7 19.8 1.9 1.7 2.6 1.6 1.6 12.2 3.9 17.5 0.7 2.1 0.8 2.6 53.7 0.6

1983 2.6 3.5 19.7 1.6 1.5 1.9 1.7 1.5 10.6 4.2 16.2 0.6 1.9 1.0 2.4 46.2 0.6

1984 2.7 4.2 19.1 1.6 1.6 2.3 1.7 1.6 10.8 4.1 16.6 0.6 2.2 0.9 2.6 50.3 0.6

1985 2.9 5.1 21.8 1.8 1.6 2.0 1.8 1.6 11.2 4.4 16.4 0.8 2.4 1.2 2.9 43.9 0.6

1986 3.0 5.4 20.7 1.7 1.4 1.7 1.5 1.9 10.8 4.4 18.3 1.0 2.6 1.2 3.3 37.4 0.6

1987 3.2 5.5 19.6 1.9 1.3 1.5 1.5 2.0 11.4 5.6 25.1 1.0 2.8 1.7 3.5 38.7 0.6

1988 3.6 6.4 22.6 2.0 1.7 1.5 1.5 2.1 12.3 5.9 30.3 0.7 2.9 1.6 4.2 41.4 0.7

1989 3.9 6.1 26.2 1.9 1.8 1.4 1.7 2.5 13.1 5.5 30.8 0.8 3.1 1.9 4.8 41.7 1.0

1990 4.3 7.1 27.1 2.4 1.9 1.4 2.3 2.7 13.3 6.7 24.8 0.6 3.3 1.7 5.6 46.6 1.0

1991 4.5 7.3 24.7 2.1 2.3 1.6 2.1 2.8 13.1 7.5 26.1 0.6 3.5 2.0 6.5 42.3 1.0

1992 4.9 8.1 24.0 2.3 2.5 1.4 2.0 3.2 14.4 8.8 22.3 0.6 3.8 2.0 7.2 40.0 1.2

1993 5.1 9.4 23.1 2.4 2.3 1.3 1.6 3.1 13.6 9.9 23.5 0.8 4.6 2.1 7.4 34.9 1.4

1994 5.9 11.6 21.1 2.6 2.6 2.0 1.9 3.5 13.6 11.2 20.2 0.8 6.1 2.2 9.6 29.7 1.5

1995 7.5 13.9 22.6 3.2 3.1 1.9 1.9 4.5 13.6 12.8 19.9 1.0 10.3 2.2 12.9 28.9 1.6

1996 7.6 12.0 19.1 3.0 3.2 2.2 2.5 5.3 12.2 12.9 22.5 0.7 6.3 1.9 14.9 20.2 1.9

1997 9.3 13.2 21.2 3.7 4.3 2.2 2.6 6.4 12.7 15.2 24.3 0.8 7.6 2.4 18.5 25.1 2.7

1998 9.2 10.1 19.0 3.6 3.8 1.7 3.1 6.7 13.3 17.3 24.4 0.8 6.6 2.2 19.1 23.7 2.6

1999 9.5 11.2 18.6 3.8 5.2 1.7 2.7 7.9 16.2 19.4 27.1 0.8 7.1 3.1 19.0 19.9 2.7

2000 9.1 12.6 16.9 4.8 5.2 1.7 3.1 8.4 17.3 16.0 26.4 0.7 7.1 3.1 17.9 18.4 2.4

Notes: We computed the following means of nit:

n = 1
TN

PT
t=1

PN
i=1 nit

nt = 1
N

PN
i=1 nit

nj = 1
TNj

PT
t=1

PNj

i=1 nit for i ∈ j industry

njt = 1
Nj

PNj

i=1 nit for i ∈ j industry

where Nj denotes the number of firms in industry j = 1, . . . , 16. Firms are classified into the following 16 industries: (1)

paper and printing, (2) chemicals, (3) rubber and plastics, (4) wood and misc., (5) primary metals, (6) fabricated

metals, (7) machinery, (8) electrical machinery, (9) autos, (10) aircrafts and other trans., (11) textiles and leather, (12)

pharmaceuticals, (13) food, (14) computers and inst., (15) oil, (16) non-manufacturing. (Hall and Mairesse, 1996)
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Table 11

Mean N-SSR statistic for two alternative conditional mean functions
Box-Cox model RESET

year N − SSR p-value N − SSR p-value

1989 1.45 0.23 1.49 0.47

1990 1.56 0.21 2.98 0.23

1991 1.30 0.25 1.42 0.49

1992 1.13 0.29 2.74 0.25

1993 1.92 0.17 6.44 0.04

1994 0.04 0.84 7.30 0.03

1995 1.09 0.30 2.98 0.23

1996 0.80 0.37 4.00 0.14

1997 1.07 0.30 3.19 0.20

1998 1.37 0.24 1.37 0.50

1999 1.66 0.20 2.32 0.31

2000 5.15 0.02 5.16 0.08

Notes: We present the p-values corresponding to the mean N − SSR test statistic for each year, where the mean is

computed over R trajectories of the latent factor. The test statistics corresponding to the Box-Cox type model and the

non-linear RESET model are asymptotically χ2
1 and χ2

2 random variables, respectively. We exclude the first ten years of

our sample (1979-1988) in the conditional mean specification test as our model is dynamic that includes ten lags of

R&D expenses and patent citations data.

44



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 12

Estimates of ρi for various count data models to test the endogeneity of R&D expenditure

A. HHG (1984) Poisson model with fixed effects (see Table 3):

Parameter Estimation

ρ1 0.00 (0.001)

ρ3 −0.15∗ (0.009)

B. Extended dynamic Poisson model with fixed effects (see Table 5):

Parameter Estimation

ρ1 0.00 (0.000)

ρ2 0.01 (0.012)

ρ3 −0.14∗ (0.004)

C. Latent-factor dynamic Poisson model (see Table 8):

Parameter Estimation

ρ1 0.00 (0.001)

ρ2 -0.02 (0.020)

ρ3 -0.03 (0.025)

ρ4 -0.01 (0.010)

ρ5 -0.03 (0.028)

Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. We

estimated the following specifications for t = 1979, . . . , 2000, i = 1, . . . , 4476 and j = 1, . . . , 16:

HHG (1984) Poisson model with fixed effects (see Table 3):

λit = exp(X
′
itβ + ρ1v̂1it + ρ3v̂3it)αi

X
′
itβ = γ1t + γ2trit + β5(L)rit

Extended dynamic Poisson model with fixed effects (see Table 5):

λit = exp(X
′
itβ + ρ1v̂1it + ρ2v̂2it + ρ3v̂3it)αi

X
′
itβ = γ1t + γ2trit + β̄r2

it + Ψit

Ψit = β10(L)rit + κnit−1

Latent-factor dynamic Poisson model (see Table 8):

λit = exp(µ0 + X
′
itβ + σj l

∗
t + ρ1v̂1it + ρ2v̂2it + ρ3v̂3it + ρ4v̂4it + ρ5v̂5it)

X
′
itβ = γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 + β̄r2

it + Ψit

Ψit = β10(L)rit + κnit−1 + rit[ω10(L)c2it] + rit[φ10(L)c3it]

l∗
t = µl∗

t−1 + ηt
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Legends for the figures

Fig. 1. Total number of patent applications between 1979 and 2000. Notes: The figure presents the total number of

patent applications for the 1979-2000 period. We employ this time period for the estimation of our econometric

models. We also present the fitted quadratic regression line of β̂0 + β̂1t + β̂2t
2 to show the positive trend of the

patent applications.

Fig. 2. Patent propensity between 1979 and 2000. Notes: The figure presents patent propensity, i.e. mean number of

patent applications, nit divided by mean R&D expenses, rit for each year for the 1979-2000 period. We employ

this time period for the estimation of our econometric models. We also present the fitted quadratic regression line

of β̂0 + β̂1t + β̂2t
2 to show the positive trend of the patent propensity.

Fig. 3. Mean R&D expenditure versus mean number of patent applications between 1979 and 2000. Notes: We also

present the fitted quadratic regression line of β̂0 + β̂1r̄it + β̂2r̄
2
it to show the positive relationship between the

variables.

Fig. 4. Application-grant lag empirical distribution. Notes: The figure presents the cumulative distribution of the time

duration between the patent application date and the publication date measured in years. The distribution is

computed using the application-grant lag of patents, which were submitted to the U.S. Patent Office in 1997.

(This year is practically not affected by sample truncation bias).

Fig. 5. Citation lag empirical distribution. Notes: The figure presents the cumulative distribution of the time duration

between the publication dates of citing and cited patents measured in years.

Fig. 6. Average number of citations received by technological category. Notes: The figure presents the average number

of citations that patents receive from future patents by technological category during the 1979-2005 period.

Fig. 7. Average number of citations received by technological category corrected for sample truncation bias. Notes:

The figure presents the average number of citations received corrected for sample truncation bias using the fixed

effects approach of Hall et al (2001). That is for each patent we divide the number of citations received from

future patents by the average number of patent citations received in the corresponding technological category and

year.

Fig. 8. Observable R&D spillovers by industries. Notes: The figure shows the average quality of knowledge that firms

receive from past patents by citing them in the patent documents. Patent citations are classified as (1)

self-citations, (2) intra-industry citations and (3) inter-industry citations. The quality of knowledge is measured

by the number of citations received from future patents (corrected for sample truncation bias). Firms are

classified into the following 16 industries: (1) paper and printing, (2) chemicals, (3) rubber and plastics, (4) wood

and misc., (5) primary metals, (6) fabricated metals, (7) machinery, (8) electrical machinery, (9) autos, (10)

aircrafts and other trans., (11) textiles and leather, (12) pharmaceuticals, (13) food, (14) computers and inst.,

(15) oil, (16) non-manufacturing. (Hall and Mairesse, 1996)

Fig. 9. Observable R&D spillovers for hi-tech and non-hi-tech firms. Notes: The figure shows the average quality of

knowledge that firms receive from past patents by citing them in the patent documents. Patent citations are

classified as (1) self-citations, (2) intra-industry citations and (3) inter-industry citations. The quality of

knowledge is measured by the number of citations received from future patents (corrected for sample truncation

bias). Firms are classified into two sectors: (1) non-hi-tech (others) and (2) hi-tech. (Hall and Mairesse, 1996)

Fig. 10. Evolution of R&D expenses for the extended dynamic Poisson model. Notes: The figure shows the evolution

of R&D expenses modeled by the extended Poisson model presented in Table 5. The figure presents the evolution

of γ2trit + β0rit + β̄r2
it for the 1979-2000 period.

46



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Fig. 11. Impact of R&D expenditure on patent application intensity. Notes: The figure shows the impact of R&D

expenditure on patent application intensity for the HHG (1984) basic Poisson model, the extended basic Poisson

model, the latent-factor Poisson model with observable spillovers presented in Tables 3, 5 and 8, respectively.

Fig. 12. Impact of R&D expenditure on patent application intensity. Notes: The figure shows the impact of R&D

expenditure on patent application intensity for the HHG (1984) Poisson model with random effects, the extended

Poisson model with random effects, the latent-factor Poisson model with observable spillovers presented in Tables

3, 5 and 8, respectively.

Fig. 13. Impact of R&D expenditure on patent application intensity. Notes: The figure shows the impact of R&D

expenditure on patent application intensity for the HHG (1984) Poisson model with fixed effects, the extended

Poisson model with fixed effects, the latent-factor Poisson model with observable spillovers presented in Tables 3,

5 and 8, respectively.

Fig. 14. Observable intra-industry and inter-industry R&D spillovers. Notes: The figure shows the values of observable

intra-industry and inter-industry R&D spillover estimates, ω and φ, respectively for the latent-factor Poisson

model with observable R&D spillovers presented in Table 8.
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Figures

Fig. 1. Total number of patent applications between 1979 and 2000. Notes: The figure presents the total number of

patent applications for the 1979-2000 period. We employ this time period for the estimation of our econometric models.

We also present the fitted quadratic regression line of β̂0 + β̂1t + β̂2t
2 to show the positive trend of the patent

applications.
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Fig. 2. Patent propensity between 1979 and 2000. Notes: The figure presents patent propensity, i.e. mean number of

patent applications, nit divided by mean R&D expenses, rit for each year for the 1979-2000 period. We employ this time

period for the estimation of our econometric models. We also present the fitted quadratic regression line of

β̂0 + β̂1t + β̂2t
2 to show the positive trend of the patent propensity.
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Fig. 3. Mean R&D expenditure versus mean number of patent applications between 1979 and 2000. Notes: We also

present the fitted quadratic regression line of β̂0 + β̂1r̄it + β̂2r̄
2
it to show the positive relationship between the variables.
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Fig. 4. Application-grant lag empirical distribution. Notes: The figure presents the cumulative distribution of the time

duration between the patent application date and the publication date measured in years. The distribution is computed

using the application-grant lag of patents, which were submitted to the U.S. Patent Office in 1997. (This year is

practically not affected by sample truncation bias).
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Fig. 5. Citation lag empirical distribution. Notes: The figure presents the cumulative distribution of the time duration

between the publication dates of citing and cited patents measured in years.
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Fig. 6. Average number of citations received by technological category. Notes: The figure presents the average number

of citations that patents receive from future patents by technological category during the 1979-2005 period.
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Fig. 7. Average number of citations received by technological category corrected for sample truncation bias. Notes: The

figure presents the average number of citations received corrected for sample truncation bias using the fixed effects

approach of Hall et al (2001). That is for each patent we divide the number of citations received from future patents by

the average number of patent citations received in the corresponding technological category and year.
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Fig. 8. Observable R&D spillovers by industries. Notes: The figure shows the average quality of knowledge that firms

receive from past patents by citing them in the patent documents. Patent citations are classified as (1) self-citations, (2)

intra-industry citations and (3) inter-industry citations. The quality of knowledge is measured by the number of citations

received from future patents (corrected for sample truncation bias). Firms are classified into the following 16 industries:

(1) paper and printing, (2) chemicals, (3) rubber and plastics, (4) wood and misc., (5) primary metals, (6) fabricated

metals, (7) machinery, (8) electrical machinery, (9) autos, (10) aircrafts and other trans., (11) textiles and leather, (12)

pharmaceuticals, (13) food, (14) computers and inst., (15) oil, (16) non-manufacturing. (Hall and Mairesse, 1996)
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Fig. 9. Observable R&D spillovers for hi-tech and non-hi-tech firms. Notes: The figure shows the average quality of

knowledge that firms receive from past patents by citing them in the patent documents. Patent citations are classified as

(1) self-citations, (2) intra-industry citations and (3) inter-industry citations. The quality of knowledge is measured by

the number of citations received from future patents (corrected for sample truncation bias). Firms are classified into two

sectors: (1) non-hi-tech (others) and (2) hi-tech. (Hall and Mairesse, 1996)
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Fig. 10. Evolution of R&D expenses for the extended dynamic Poisson model. Notes: The figure shows the evolution of

R&D expenses modeled by the extended Poisson model presented in Table 5. The figure presents the evolution of

γ2trit + β0rit + β̄r2
it for the 1979-2000 period.
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Fig. 11. Impact of R&D expenditure on patent application intensity. Notes: The figure shows the impact of R&D

expenditure on patent application intensity for the HHG (1984) basic Poisson model, the extended basic Poisson model,

the latent-factor Poisson model with observable spillovers presented in Tables 3, 5 and 8, respectively.
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Fig. 12. Impact of R&D expenditure on patent application intensity. Notes: The figure shows the impact of R&D

expenditure on patent application intensity for the HHG (1984) Poisson model with random effects, the extended

Poisson model with random effects, the latent-factor Poisson model with observable spillovers presented in Tables 3, 5

and 8, respectively.
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Fig. 13. Impact of R&D expenditure on patent application intensity. Notes: The figure shows the impact of R&D

expenditure on patent application intensity for the HHG (1984) Poisson model with fixed effects, the extended Poisson

model with fixed effects, the latent-factor Poisson model with observable spillovers presented in Tables 3, 5 and 8,

respectively.
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Fig. 14. Observable intra-industry and inter-industry R&D spillovers. Notes: The figure shows the values of observable

intra-industry and inter-industry R&D spillover estimates, ω and φ, respectively for the latent-factor Poisson model with

observable R&D spillovers presented in Table 8.
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