Szabolcs Blazsek 
email: sblazsek@unav.es
  
Alvaro Escribano 
email: alvaroe@eco.uc3m.es
  
  
Knowledge spillovers in U.S. patents: A dynamic patent intensity model with secret common innovation factors

Keywords: JEL classification: C15, C31, C32, C33, C41 Point process, Conditional intensity, Latent factor, R&D spillovers, Patents, Secret innovations

During the past two decades, innovations protected by patents have played a key role in business strategies. This fact enhanced studies of the determinants of patents and the impact of patents on innovation and competitive advantage. Sustaining competitive advantages is as important as creating them. Patents help sustaining competivite advantages by increasing the production cost of competitors, by signaling a better quality of products and by serving as barriers to entry. If patents are rewards for innovation, more R&D should be reflected in more patents applications but this is not the end of the story. There is empirical evidence showing that patents through time are becoming easier to get and more valuable to the firm due to increasing damage awards from infringers. These facts question the constant and static nature of the relationship between R&D and patents. Furthermore, innovation creates important knowledge spillovers due to its imperfect appropriability. Our paper investigates these dynamic effects using U.S. patent data from 1979 to 2000 with alternative model specifications for patent counts. We introduce a general dynamic count panel data model with dynamic observable and unobservable spillovers, which encompasses previous models, is able to control for the endogeneity of R&D and therefore can be consistently estimated by maximum likelihood. Apart from allowing for firm specific fixed and random effects, we introduce a common unobserved component, or secret stock of knowledge, that affects differently the propensity to patent of each firm across sectors due to their different absorptive capacity.

Introduction

This paper uses firm-level data in order to study the dynamic interaction among inventive activity, R&D expenses and observable and unobservable knowledge of several firms jointly. The objective of the paper is to identify the observable and latent dynamics of firms' patent applications activity and to measure intra-industry and inter-industry spillovers of knowledge using inter-firm patent citations information over the 1979-2000 period in the United States. When an innovation produced by a particular firm increases the productivity of other companies then we say that the firm generates an R&D spillover. The analysis of the spillover process is a complex issue because both the R&D activity and the spillover process are partly unobservable. Previous studies have used either 'input side' measures (R&D expenditure) or 'output side' proxies (number of patents per year) of innovative activity. Present paper takes an output side view and we use patent data to measure the inventive activity of firms. [START_REF] Griliches | Patent Statistics as Economic Indicators: A Survey[END_REF] states that the main advantages of patent data are the followings: (1) By definition patents are closely related to inventive activity. (2) Patent documents are objective because they are produced by an independent patent office and their standards change slowly over time. (3) Patent data are widely available in several countries, over long periods of time, and cover almost every field of innovation.

According to [START_REF] Fung | Are Knowledge Spillovers Driving the Convergence of Productivity among Firms?[END_REF] patents have two economic functions: (1) legal protection of knowledge capital and (2) disclosure of the specifications of innovations. The second function facilitates information-sharing agreements among firms (such as licensing and patent-sharing agreements) and imitation of past innovations. Legal protection against imitation can be limited in those industries where competitors can develop close substitutes that are not in conflict with previous patents. (A good example is the computer software industry.) This suggests that patents and patent citations may be good measures of R&D spillovers.

Technological improvement gives the innovators a competitive advantage. However, the non-rival nature of knowledge creates a business-stealing (competitive) effect by decreasing the cost of subsequent own innovations. A spillover of knowledge occurs when a new innovation created by a technological leader firm is adopted by another (follower) firm. In the economic literature many researchers have analyzed knowledge spillovers. 1 Scherer (1981) constructs an inter-industry technology flows matrix to measure knowledge spillovers between industries. [START_REF] Jaffe | Demand and Supply Influences in R&D Intensity and Productivity Growth[END_REF] classifies firms into different technological clusters to identify the proximity of firms in the technology space. [START_REF] Lanjouw | The Quality of Ideas: Measuring Innovation with Multiple Indicators[END_REF] and [START_REF] Hall | The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools[END_REF] validates the use of patent statistics in economic research. They suggest that the intensity of forward citations (the number of citations received from subsequent patents) can be used to measure the significance of innovations, while backward citations (citations made to previous patents) can be used to capture R&D spillovers. [START_REF] Harhoff | Citation Frequency and the Value of Patented Inventions[END_REF] combine German and U.S. patent value survey and backward citation data. They find that patents reported to be relatively more valuable by the companies holding them are more
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heavily cited in subsequent patents. [START_REF] Fung | Measuring the Intensity of Knowledge Flow with Patent Statistics[END_REF] look at potential knowledge pools at the industrial level. [START_REF] Fung | Are Knowledge Spillovers Driving the Convergence of Productivity among Firms?[END_REF] uses patent citations data to analyze the impact of knowledge spillovers on the convergence of productivity among firms. Knowledge spillovers are decomposed into: (1) intra-industry spillovers, (2) inter-industry spillovers and (3) within-firm knowledge flows. The main finding of this study is that each firm is converging to its own steady-state productivity growth rate, which is conditional on the firm's R&D efforts and the intensity of intra-industry spillovers it receives. [START_REF] Jaffe | Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors[END_REF] survey R&D managers in order to validate the use of patent citations to approximate the unobservable process of knowledge transfer. [START_REF] Jovanovic | Competitive Diffusion[END_REF] point out that innovation and imitation tend to be substitutes. Though, the benefits generated by spillovers depend on the technological differences among firms and the absorptive capacity of the imitator firm. [START_REF] Escribano | Managing External Knowledge Flows: The Moderating Role of Absortive Capacity[END_REF] argue that those firms with higher levels of absorptive capacity can manage external knowledge flows more efficiently and stimulate innovation outputs. Firms may enhance their R&D absorptive capacity by investing in their R&D activity. Naturally, these factors create time lags in the adoption of technologies. For example, [START_REF] Nabseth | The Diffusion of new Industrial Processes: An International Study[END_REF] and [START_REF] Rogers | Diffusion of Innovations[END_REF] report that it may take a decade for some firms to adopt an innovation developed by others. [START_REF] Mansfield | Imitation Costs and Patents: An empirical study[END_REF] and [START_REF] Pakes | The Rate of Obsolescence of Patents, Research Gestation Lags, and the Private Rate of return to Research Resources[END_REF] also suggest that knowledge 'spills over' gradually to competitors.

Although [START_REF] Jaffe | Technological Opportunity and Spillovers of R&D: Evidence from Firms Patents, Profits, and Market Value[END_REF] also reports that the R&D spillover process is inherently dynamic, most of these papers have applied cross-sectional econometric frameworks to study knowledge flows among firms or industries. The first R&D papers, which employed dynamic econometric models [START_REF] Hausman | Econometric Models for Count Data with an Application to the Patents-R&D Relationship[END_REF][START_REF] Pakes | On Patents, R&D, and the Stock Market Rate of return[END_REF] focused on the within-firm relationships among input and output side measures of R&D activity, and various measures of firm performance (market or accounting value based measures). Recently some papers have appeared in dynamic panel data econometrics, which introduced new models to capture dynamics in count data (see for example [START_REF] Blundell | Individual Effects and Dynamics in Count Data Models[END_REF][START_REF] Wooldridge | Simple Solutions to the Initial Conditions Problem in Dynamic, Nonlinear Panel Data Models with Unobserved Heterogeneity[END_REF]. [START_REF] Jaffe | Technological Opportunity and Spillovers of R&D: Evidence from Firms Patents, Profits, and Market Value[END_REF] mentioned that the main reason for the lack of dynamic R&D spillover models in the literature is that 'data are not rich enough to support a dynamic specification with spillover effects' [START_REF] Jaffe | Technological Opportunity and Spillovers of R&D: Evidence from Firms Patents, Profits, and Market Value[END_REF]. We think that besides the availability of good quality data, part of the problem is the econometric specification used in previous papers. Therefore, this paper proposes a new dynamic panel data model of knowledge flows. In addition, we also contribute to the R&D literature by estimating the model to a new extended patent data set, which covers significantly longer time period (1979-2000: 22 years) than other recent papers in this research field [START_REF] Peters | Nothing's Gonna Stop Innovators Now? An Empirical Investigation of the 'Success Breeds Success' Hypothesis[END_REF][START_REF] Cockburn | Patents and the Survival of Internet-Related IPOS[END_REF][START_REF] Song | The Effects of Technological Change on Life-Cycle Human Capital Investment[END_REF].

The major econometric problem related to the modeling of R&D spillovers is that several factors, which influence the innovative activity of firms are unobservable for the researcher. Therefore, in this paper we assume that the inventive activity of a firm is the product of the next two components: (1) Observable R&D intensity component and (2) Latent R&D intensity component.

The observable R&D intensity component accounts for econometrically observable factors like own and other firms' R&D expenses or the number of citations made by patent documents to own or other firms' patents. This component is modeled as a multivariate dynamic time series model. Inclusion of the latent R&D component can be justified by [START_REF] Griliches | Patent Statistics as Economic Indicators: A Survey[END_REF], who notes that some
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innovations are unobservable either because they do not meet the standards set by the patent office or because they are held in secrecy.

Similarly to several past studies, which used patent data to measure the inventive activity of firms, present paper employs a Poisson-type patent count model. By patent counts we mean the number of successful patent applications assigned to firms during a given year.2 Common characteristic of these models is that patent counts are treated as discrete-valued random variables and are analyzed by a count data model. In these models it is assumed that: (1) the arrival rate (or conditional intensity) of patents has some parametric functional form, and (2) the arrival rate is constant over a period of time. The consequence of the second assumption is that the statistical inference of the model can be done based on the number of patent applications during each period and the exact time of the innovation is irrelevant. Although in recent patent databases the application date of patents is available with daily precision, this information is a noisy measure of the time of innovations. Therefore, following [START_REF] Hausman | Econometric Models for Count Data with an Application to the Patents-R&D Relationship[END_REF] most authors aggregate patent data over the year. Thus, the patent counts are assumed to follow a Poisson distribution. Fortunately, [START_REF] Wooldridge | Econometric Analysis of Cross Section and Panel Data[END_REF] notes that the Poisson distribution has a very nice robustness property: whether or not the Poisson distribution holds, we still get consistent, asymptotically normal estimators of the parameters provided that the conditional mean function is correctly specified.

The main contribution of this paper is that we include more general dynamic components, observable spillovers and unobservable spillovers by including a dynamic latent factor into the classical model of [START_REF] Hausman | Econometric Models for Count Data with an Application to the Patents-R&D Relationship[END_REF]. The latent variables commonly drive the patent application intensity of all firms and the specification makes possible to separate observable and latent R&D spillovers. This paper also contributes to the most recent literature in that we concentrate on a well specified general dynamic model which may be a contribution to solving the endogeneity problem of R&D. This is important since most of the previous results from alternative GMM procedures and maximum likelihood [START_REF] Cincer | Patents, R&D, and Technological Spillovers at the Firm Level: Some Evidence from Econometric Count Models for Panel Data[END_REF][START_REF] Montalvo | GMM Estimation of Count-Panel-Data Models With Fixed Efects and Predetermined Instruments[END_REF][START_REF] Blundell | Individual Effects and Dynamics in Count Data Models[END_REF] obtained different numerical values for the coefficient of R&D but the sign was always positive. The specification of our model is estimated by maximum simulated likelihood (MSL) method.

A question that has generated long debates is how monopoly rights (patents, etc.) and competition affect innovation and productivity growth.

In the recent theoretical and empirical literature on the competition effects on innovation and productivity growth3 , there are two clear opposite views: Innovation under competition reduces innovations rents, relative to the monopoly rents, but innovation is also a mechanism to escape competition (competitive advantage) and in that sense increases innovation rents.

These two opposite views are also express as follows: First, a "rent dissipation effect of competition" which says that tough competition discourage innovation and productivity growth by reducing the expected rents from innovation. By reducing the monopoly rents, competition discourage firms from doing R&D activities which lower the innovation rate and the long run growth. The initial endogenous growth models of technical change of [START_REF] Romer | Endogenous Technical Change[END_REF], [START_REF] Ph | A Model of Growth Through Creative Destruction[END_REF], [START_REF] Grossman | Innovation and Growth in a Global Economy[END_REF], predict that competition (or the imitation rate) has a negative effect on entry and innovation and therefore on productivity growth. That is, patent protection protects monopoly rents from innovation, enhancing further innovation and growth (Schumpeterian view). Second the "escape competition effect", followed by most competition authorities, says that competition is a necessary input for innovation both because it encourages new entry and because it forces incumbent firms to innovate and reduce costs to survive and therefore is productivity and growth enhancing.

Which of the two competition effects of dominates is an empirical question. For example, Aghion, Boom, [START_REF] Ph | Competition and Innovation: An Inverted U Relationship[END_REF] estimate an inverted-U relationship between innovation (citation-weighted patent count) and product market competition which is steeper for more neck-to-neck industries. In our empirical application, we also obtained an inverted-U relationship between R&D (after controlling for patent citations) and innovation (measured by patent application counts).

Finally, [START_REF] Crépon | Research, Innovation and Productivity: An Econometric Analysis at the Firm Level[END_REF] study the relationship between productivity, innovation and research at the firm level using a structural model. In particular they found that firm innovation output raises with research effort and other indicators through theirs effects on research and that firm productivity correlates positively with innovation output (patents).

Remaining part of the paper is structured as follows. First, we introduce the econometric model in Section 2. Then, Section 3 discusses the estimation method. Section 4 describes the patent and firm specific data. Section 5 summarizes our results. Finally, Section 6 concludes.

The model

Notation and definitions

We model the R&D activity of i = 1, . . . , N firms jointly over t = 1, . . . , T periods. Denote n it the number of patent applications of the i-th firm in the t-th period. Let z i denote firm size measured by the logarithm of the inflation adjusted book value. Let r it denote log-R&D expenditure corresponding to the i-th firm in the t-th period. Furthermore, let c it = (c 1it , c 2it , c 3it ) denote a 3 × 1 vector capturing observable R&D spillovers. The elements of c it represent three components of the observable spillover of knowledge from three knowledge pools (see [START_REF] Fung | Are Knowledge Spillovers Driving the Convergence of Productivity among Firms?[END_REF]: (1) Own knowledge pool : knowledge produced by the firm in the past, c 1it , (2) Intra-industry knowledge pool: knowledge produced by other firms in the same industry, c 2it , (3) Inter-industry knowledge pool: knowledge produced in other industries, c 3it .

In order to simplify the notation, we shall also use the n t = {n it }, z = {z i }, r t = {r it }, c t = {c it } for i = 1, . . . , N matrix notation corresponding to the above random variables. Thus, the observable variables form an N × T dimensional panel. Finally, let l * t denote the value of a latent variable in the t-th period, interpreted as an econometrically unobservable common factor (unobservable innovations) affecting the patenting behavior of all firms.

In this paper, similarly to Hausman, Hall and Griliches (HHG, 1984), we characterize the stochastic process {z, n t , r t , c t , l * t } by the conditional intensity. Nevertheless, there are at least two
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important differences between our framework and HHG. First, we model the interaction among the patent application intensities by a multivariate specification of lagged R&D expenses and other variables, which measure patent citations. Second, we include a set of serially correlated latent variables into the model, which commonly drive the patent intensity of all firms. These latent variables are interpreted as the impact of unobserved common stock of knowledge (secret specific production processes, secret innovations, etc.) on the patent intensity of firms. The information set in the t-th period is generated as follows:

F t = σ[z, (n 1 , r 1 , c 1 , l * 1 ), . . . , (n t-1 , r t-1 , c t-1 , l * t-1 ), (r t , c t , l * t )]. (2.1)
Notice that the information set F t includes the contemporaneous values of z, r t , c t and l * t . Similarly to HHG, the patent application intensity of firms is modeled by specifying the conditional hazard function of the point process formed by the patent arrival times. Define the F-conditional hazard function corresponding to the i-th firm in the t-th period as follows (see [START_REF] Cox | Point Processes[END_REF]:

λ it (τ ) = lim δ→0 Pr{n it (τ + δ) -n it (τ ) > 0|F t } δ , (2.2)
where δ > 0 and n it (τ ) is the number of patents of the i-th firm until time τ in the t-th period. In the remaining part of this paper the conditional hazard is assumed to be constant during each period, therefore, it can be indexed by t as follows: λ it = λ it (τ ). The λ it can be interpreted as the instantaneous probability that the i-th firm has a new patent at any point of time of the t-th period given all information available in the beginning of the t-th period. Thus, the conditional hazard, λ it represents the patent application intensity of the i-th firm in the t-th period. Since the conditional hazard is assumed to be constant during each period, the statistical inference of the model can be done based on the number of patents occurred in each time interval.

Existing models

First, we shall give a brief overview of the patent applications 'basic Poisson models' of HHG that we extend in this paper. The basic specification of the conditional hazard function in HHG is

λ it = exp(µ 0 + X it β), (2.3) 
where µ 0 is a constant and

X it β = γ 1 t + γ 2 tr it + γ 3 D i + γ 4 z i + β 5 (L)r it , (2.4)
where D i is a scientific sector dummy taking the value one for firms in the drug, computer, scientific instrument, chemical and electronic components industries ('high-tech' industries) and zero otherwise. Furthermore, β 5 (L) = 5 k=0 β k L k is the lag polinomial of five lags, which capture the contemporaneous and lagged impact of R&D expenses on patent counts. HHG estimates various specifications of this model by maximum likelihood as well as OLS methods and in both cases find "a somewhat disturbing U-shaped distributed lag, β 5 (L), which may well indicate a substantial truncation effect" after five lags and can create serial correlation given the persistence in R&D.

In order to solve the misspecification problem of the basic Poisson model, HHG proposes two alternative specifications for unobserved heterogeneity, which allow for latent firm specific random effects or fixed effects. Their proposed specification of the conditional hazard is the following:

λ it = exp(µ 0 + X it β + µ i ) = exp(µ 0 + X it β)α i , (2.5)
where µ i represents latent firm specific effects and α i is defined by the second equality.

In case of random effects specification, HHG assumes that {α i } are i.i.d. gamma distributed random variables with E[α i ] = 1 and V ar[α i ] = 1/δ. Analyzing the estimation results, HHG concludes that the inclusion of firm specific random effects somewhat "attenuates the U-shaped lag structure of R&D, but there is still a significant positive coefficient on the first lag".

When the fixed effects specification is estimated, the model takes the same functional form as in case of random effects besides that the {α i } are treated as parameters of the model and not as latent i.i.d. variables, therefore, the µ 0 constant is not identified. The authors find that the coefficients of past R&D expenditure are all small and insignificant and the U-shape of the distributed lag no longer appears. In this specification, the firm specific effect, α i represents both the accumulated stock of knowledge from past R&D in the firm and unobserved permanent differences across the firms, which affect their propensity to patent.

Extensions

We extend the HHG model in several directions. Most of these extensions are related to the fact that the HHG models intend to capture the lagged impact of R&D on own patent intensity and do not attempt to measure knowledge spillovers (observable and unobservable), which is the main goal of our paper. Essentially, we extend the HHG model in three ways: First, we introduce dynamic structures into the model of R&D activity. We concentrate on well specified dynamic models, which may be a contribution to solving the endogeneity problem of R&D. This is important since many previous results from alternative GMM procedures and maximum likelihood obtained different numerical values for the coefficient of R&D although the sign was always positive. Second, we use additional explanatory variables capturing observable knowledge spillovers such as patent citations, c it . Moreover, we also include several industry dummy variables and the square of R&D expenditure into the HHG model. Third, we include a set of serially correlated latent variables into the model in order to account for the R&D spillover process not captured by observable variables.

The first extension that we consider is the 'dynamic Poisson model', which introduces serial correlation into the Poisson model of HHG. We use the dynamic panel count data model of [START_REF] Blundell | Individual Effects and Dynamics in Count Data Models[END_REF] and [START_REF] Wooldridge | Simple Solutions to the Initial Conditions Problem in Dynamic, Nonlinear Panel Data Models with Unobserved Heterogeneity[END_REF]:

λ it = exp(µ 0 + X it β + µ i ),
(2.6)

X it β = γ 1 t + γ 2 tr it + γ 3 D i + γ 4 z i + γ 5 n i1 + Ψ it (2.7)
and the dynamic term is given by:
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where β q (L) = q k=0 β k L k measures the impact of lagged R&D expenses and κ measures the impact of lagged number of patent applications.

Next, we extend the dynamic Poisson model of [START_REF] Wooldridge | Simple Solutions to the Initial Conditions Problem in Dynamic, Nonlinear Panel Data Models with Unobserved Heterogeneity[END_REF] by including square-R&D expenditure and 15 industry dummies into the model. [START_REF] Cockburn | The Estimation and Measurement of Spillover Effects of R&D Investment: Industry Effects and Appropriability Measures in the Stock Markets Valuation of R&D and Patents[END_REF] state that patents are one of the mechanisms by which firms may appropriate returns from their R&D investments, and the effectiveness of patent protection varies significantly across industries. Therefore, we also include several industry dummies into the specification. The extended Poisson model is formulated as follows:

λ it = exp(µ 0 + X it β + µ i ),
(2.9)

X it β = γ 1 t + γ 2 tr it + γ 3 D i + γ 4 z i + γ 5 n i1 + Ψ it + βr 2 it + 15 j=1 ρ j I ij (2.10)
where ρ j measures the impact of the 15 industry dummy variables, I ij , β captures the non-linearities in R&D expenditure and the dynamic term is given by equation (2.8). Furthermore, in our next extension of the models, we apply the 'dynamic Poisson model with observable R&D spillovers', which permits us to study the impact of past R&D and patent citations by the following formulation:

λ it = exp(µ 0 + X it β + µ i ), (2.11) 
X it β is given by equation (2.10) and the dynamic term is given by:

Ψ it = β q (L)r it + κn it-1 + r it [ω q (L)c 2it ] + r it [φ q (L)c 3it ].
(2.12)

where β q (L) = q k=0 β k L k measures the impact of lagged R&D expenses and κ measures the impact of lagged number of patent applications. Finally, ω q (L) = q k=0 ω k L k and φ q (L) = q k=0 φ k L k measure the product of lagged patent citations, c 2it and c 3it and contemporaneous R&D expenses, r it . Remember that the c 2it denotes total patent citations received from the same industry, while c 3it is total patent citations received from other industries. Negative values of the corresponding parameters, ω and φ mean negative interaction between cited past knowledge and present research expenses. This way we can measure significant lagged observable R&D spillovers.

Finally, as previous literature reported that significant portion of knowledge spillovers cannot be observed directly, we include additional, time dependent latent variables into the model, which are possibly cross correlated along the lines of [START_REF] Pesaran | Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure[END_REF] and [START_REF] Holly | A Spatio-Temporal Model of House Prices in the US[END_REF]. Thus, the proposed structure captures the latent correlation structure of various firms' R&D activity. Our 'latent-factor dynamic Poisson model' takes the following form:

λ it = exp(µ 0 + X it β + µ it ) = exp(µ 0 + X it β)α it , (2.13)
where α it is defined in equation (2.13) and X it β is given by equation (2.10). Moreover, from equation (2.12) it follows that the dynamic term is:

Ψ it = q k=0 β k r it-k + κn it-1 + q k=0 ω k c 2it-k r it + q k=0 φ k c 3it-k r it (2.14)
The dynamic latent patent intensity component, µ it measures the impact of unobserved knowledge flows on patent intensity. The latent patent intensity component is an extension of the stochastic conditional intensity (SCI) model of [START_REF] Bauwens | Stochastic Conditional Intensity Processes[END_REF]:

α it = exp(σ i l * t ) (2.15)
and (2.16) where σ i ∈ R measures the firm specific impact of the latent R&D common factor, η t ∼ N (0, 1) are i.i.d. innovation terms, which measure the general stock of unobserved knowledge and |µ| < 1 captures the dynamics of the latent variables.4 Since the sign of σ i is not restricted, this unobserved common stock of knowledge is absorbed differently by each firm. The latent factor may have positive impact on the patent intensity of some firms and in the same time negative impact on the patent application intensity of other firms (we allow for cross section dependence in the panel data count model). This specification allows us to separate observable and latent knowledge spillovers and also to study the dynamics of the observable and unobservable R&D spillover process among firms due to the AR(1) specification of the latent process. More specifically, the latent component allows for correlation of the patent application intensity of various firms because:

l * t = µl * t-1 + η t ,
cov(σ i l * t , σ j l * t ) = σ i σ j 1 -µ 2
(2.17) Thus, following [START_REF] Pesaran | Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure[END_REF], the latent common factor is responsible for the unobservable knowledge cross section interaction between firms.

Inference

Log-likelihood functions

All models presented in the previous section are estimated by maximum likelihood or maximum simulated likelihood (MSL) method (see Appendix A).

Basic Poisson model. The log-likelihood of the basic Poisson model is given by (Gouriéroux, 1984, Chapter XI, pp.302):

ln L = T t=1 N i=1 n it ln λ it -ln(n it !) -λ it .
(3.1)
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Poisson model with random effects. The log-likelihood of the random effects model can be obtained by integrating the likelihood of n it with respect to the assumed gamma distribution (Gouriéroux, 1984, Chapter XI, pp.304):

∞ 0 exp(-λ it )λ n it it n it ! f (α i )dα i , (3.2)
where the density of the gamma distribution with

E[α i ] = 1 and V ar[α i ] = 1/δ is given by f (u) = δ δ u δ-1 exp(-δu) Γ(δ) , (3.3) 
where Γ(x) denotes the gamma function. Integrating by parts we obtain that the log-likelihood of the random effects model is the following:

ln L = T t=1 N i=1 ln Γ(δ + n it ) -ln Γ(δ) -ln Γ(n it + 1) + n it ln exp(µ 0 +X it β) δ -(n it + δ) ln 1 + exp(µ 0 +X it β) δ . (3.4)
Poisson model with fixed effects. As we have seen in the previous section, the Poisson model with fixed effects has the following form:

λ it = exp(µ i + X it β). (3.5) 
Substituting this equation into (3.1) we obtain the log-likelihood of the fixed effects model:

ln L = T t=1 N i=1 n it (µ i + X it β) -ln(n it !) -exp(µ i + X it β). (3.6)
Solving the first-order condition ∂ ln L/∂µ i = 0 for µ i we get:

exp(µ i ) = T t=1 n it T t=1 exp(X it β) . (3.7)
Substituting this equation into (3.6) and introducing the notation p it = exp(X it β)/ T s=1 exp(X is β) we get the log-likelihood of the Poisson model with fixed effects: 1984) and [START_REF] Greene | Estimating Econometric Models with Fixed Effects[END_REF] point out that this likelihood is conditional on the sum of the number of patents in the sample, T s=1 n is . An alternative approach would be to estimate directly the µ i parameters by (3.6). This would not require conditioning on T s=1 n is , but for our data set this is computationally not feasible because the number of parameters would be very high.

ln L = T t=1 N i=1 n it ln p it T s=1 n is -ln(n it !) -p it T s=1 n is . (3.8) HHG ( 
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Latent-factor Poisson model. The latent-factor patent count model is estimated by MSL method (see [START_REF] Gouriéroux | Simulation Based Inference in Models with Heterogeneity[END_REF]. First, denote the density of the latent factor l * t conditional on l * t-1 as follows:

f * t (l * t |l * t-1 ) = 1 √ 2π exp - (l * t -µl * t-1 ) 2 2 . (3.9)
Second, denote the conditional density of n it |F t as follows:

f t (n it |F t ) = exp(-λ it )λ n it it n it ! (3.10)
Notice that the λ it intensity is conditional on l * t . (See also the equations 2.1 and 2.2.) Therefore, if all latent variables {l * t } were observable then the joint likelihood of a realization {n it , l * t } could be written as the product of f t (n it |F t ) and f * t (l * t |l * t-1 ) as follows:

T t=1 N i=1 f t (n it |F t )f * t (l * t |l * t-1 ) = T t=1 N i=1 exp(-λ it )λ n it it n it ! f * t (l * t |l * t-1 ). (3.11)
However, the L * = {l * t : t = 1, . . . , T } are not observed therefore we integrate out all latent variables from the likelihood function with respect to the assumed normal distribution. Since the number of l * t is equal to the number of periods observed, the integrated likelihood function is the following T -dimensional integral:

L = R T T t=1 N i=1 exp(-λ it )λ n it it n it ! f * t (l * t |l * t-1 )dL * .
(3.12)

The major difficulty related to the statistical inference of the model is the precise evaluation of the T -dimensional integral in L for given parameter values. This is performed numerically by Monte Carlo (MC) simulation method. However, it is well-known that the natural MC estimator of L, which is based on trajectory draws from the assumed distribution of the latent variables (i.e. from the natural sampler) is downward biased in practice (see [START_REF] Richard | Efficient High-Dimensional Importance Sampling[END_REF]. In order to avoid this problem, we use the efficient importance sampling (EIS) method of [START_REF] Richard | Efficient High-Dimensional Importance Sampling[END_REF]. The EIS technique is presented in details in Appendix A of this paper.

Consistency of the Poisson QMLE: Specification tests

We show the consistency of the latent-factor Poisson QMLE applied in two steps. First, we show that the regularity conditions of consistency are satisfied for our model. Second, we perform two alternative functional form tests of the exponential conditional mean.

First, we state the regularity conditions of Theorem 12.2 of [START_REF] Wooldridge | Econometric Analysis of Cross Section and Panel Data[END_REF] in Appendix B. Conditions (a), (b) and (d) of Appendix B follow from the definitions of the random variables and the specifications of the count data models presented in Section 2. In addition, conditions (c), (e), (f), (g) and (h) stated in Appendix B follow from the properties of the log-likelihood functions presented in Section 3.
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Second, we employ Wooldridge (1997, Section 3.5) and Wooldridge (2002, Section 19.2.5) to perform the conditional mean specification tests. For the latent-factor dynamic Poisson model, we estimate

E[n it |F t ] = λ it (θ) = exp(µ 0 + X it β + σ i l * t ).
In this section, we test this model against two more complicated alternatives for each period t = 1, . . . , T and for each trajectory of the latent factor r = 1, . . . , R. Write each alternative model as E[n it |F t ] = λit (θ, δ), where δ is a Q × 1 vector of additional parameters. We assume that for some known δ 0 , and all θ, λ it (θ) = λit (θ, δ 0 ). Thus, a test of null H 0 : E(n it |F t ) = λ it (θ) is the same as testing H 0 : δ = δ 0 . Let θ be the Poisson QMLE of the parameters under the exponential regression null. Let λit = λ it ( θ) and define ûit = n it -λit .

In the following part of this section, the two alternative functional form tests are presented. Both functional form tests are robust in the sense that they do not require the generalized linear models (GLM) variance assumption:

V ar[n it |F t ] = σ 2 E[n it |F t ] (3.13)
where σ 2 > 0.

Functional form alternative 1: (Box-Cox like model). We test H 0 : δ = 0 by nesting λ it into the following Box-Cox like model: Functional form alternative 2: (Non-linear RESET model). We test H 0 : δ 1 = 0, δ 2 = 0 by nesting λ it in the following model that is analogous to [START_REF] Ramsey | Tests for Specification Errors in Classical Linear Least Squares Regression Analysis[END_REF] RESET model for the linear regression model:

λit (θ, δ) = (1 + δ ln λ it ) 1/δ , δ = 0 λ it , δ = 0 (3.14) First, regress λit (ln λit ) 2 on λit (1, X it , l * t ) (3.
λit (θ, δ) = exp[ln λ it + δ 1 (ln λ it ) 2 + δ 2 (ln λ it ) 3 ] (3.17)
First, regress each of the last two terms on the right-hand side of the previous regression on λit (1, X it , l * t ):

λit (ln λit ) 2 on λit (1, X it , l * t ) (3.18) A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT and λit (ln λit ) 3 on λit (1, X it , l * t ) (3.19)
Call the residuals of these two regressions rit1 and rit2 , respectively. Then, obtain N -SSR from the regression 1 on ũit rit1 , ũit rit2 (3.20)

where ũit = ûit / λit . The N -SSR statistic is distributed asymptotically as χ 2 2 .

Asymptotic variance estimators

In this section, we refer to Wooldridge (2002, Sections 19.2.3 and 19.6.1). The asymptotic normality of the Poisson QMLE follows from Theorem 12.3 of [START_REF] Wooldridge | Econometric Analysis of Cross Section and Panel Data[END_REF]. The result is

√ N ( θ -θ 0 ) d → N (0, A -1 0 B 0 A -1 0 ) (3.21)
where

A 0 = T t=1 E[∇ θ λ it (θ 0 ) ∇ θ λ it (θ 0 )/λ it (θ 0 )] (3.22)
and

B 0 = E[s i (θ 0 )s i (θ 0 ) ]. (3.23)
In this work, we impose the following Assumption 1 to derive the asymptotic variance estimators for individual parameters that can be used for inference in Poisson panel data models (see Wooldridge, 2002, Sections 19.2.3 and 19.6.1.):

Assumption 1 (Exponential mean function): The conditional mean of n it is specified as the exponential of a linear function:

E[n it |F t ] = λ it (θ) = exp(µ 0 + X it β + σ i l * t ).
This assumption yields the fully robust variance matrix estimator that requires only the regularity conditions stated in Step 1 of the conditional mean specification tests section (see Wooldridge, 2002, Section 19). With this assumption, consistent estimators of A 0 and B 0 are

 = N -1 T t=1 N i=1 ∇ θ λ it ∇ θ λit / λit (3.24) and B = N -1 N i=1 s i ( θ)s i ( θ) (3.25)
and we use Â-1 B Â-1 /N for Âvar( θ).
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Endogeneity of R&D expenditure: A test for the latent-factor dynamic Poisson model

In the previous literature of R&D and patents, one of the most difficult issues to solve is that R&D expenses are endogenous in the patent count data models. In this section, we investigate whether our latent-factor dynamic Poisson model helps to solve the endogeneity problem reported previously. We employ the two-stage approach suggested by Wooldridge (1997, Section 6.1 and2002, Section 19.5.1) designed for Poisson models with exponential mean function like our latent-factor specification. We employ the cross-sectional setup of [START_REF] Wooldridge | Quasi-Likelihood Methods for Count Data[END_REF]2002) for the panel data framework of our latent-factor model.

Recall that the exponential mean function of the latent-factor dynamic Poisson model is

λ it = exp(µ 0 + X it β + σ i l * t )
. First, consider that the contemporaneous R&D expenses could be endogenous while the rest of the variables in X it are exogenous. Denote the variables of contemporaneous R&D expenses by Y it . Notice that in equations (2.10) and (2.14) we have five terms with contemporaneous R&D expenses, i.e. Y it = (tr it , r 2 it , r it , r it c 2it , r it c 3it ). Let Z it denote the exogenous variables in X it . Then, the mean function of the latent-factor Poisson model can be written as

λ it = exp(µ 0 + Y it γ + Z it δ + σ i l * t ).
In the first stage, we obtain the cross-sectional OLS estimates from the following equations for each t = 1, . . . , T conditional on the latent component, σ i l * t :

tr it = ω 1 + Z it Π 1 + (σ i l * t )ψ 1 + v 1it r 2 it = ω 2 + Z it Π 2 + (σ i l * t )ψ 2 + v 2it r it = ω 3 + Z it Π 3 + (σ i l * t )ψ 3 + v 3it r it c 2it = ω 4 + Z it Π 4 + (σ i l * t )ψ 4 + v 4it r it c 3it = ω 5 + Z it Π 5 + (σ i l * t )ψ 5 + v 5it
(3.26) with i = 1, . . . , N , where v 1it , v 2it , v 3it , v 4it and v 5it are the error terms of each regression. Then, compute the values of the estimated OLS residuals as

v1it = tr it -ω1 -Z it Π1 -(σ i l * t ) ψ1 v2it = r 2 it -ω2 -Z it Π2 -(σ i l * t ) ψ2 v3it = r it -ω3 -Z it Π3 -(σ i l * t ) ψ3 v4it = r it c 2it -ω4 -Z it Π4 -(σ i l * t ) ψ4 v5it = r it c 3it -ω5 -Z it Π5 -(σ i l * t ) ψ5 (3.27) with i = 1, . . . , N .
In the second stage, include these residuals into the original formulation of the exponential mean function of the latent-factor model:

λ it = exp(µ 0 + X it β + σ i l * t + ρ 1 v1it + ρ 2 v2it + ρ 3 v3it + ρ 4 v4it + ρ 5 v5it ) (3.28)
We test for exogeneity of contemporaneous R&D as follows: test the null hypothesis that Y it is exogenous, H 0 : {ρ i = 0 : i = 1, . . . , 5}. We estimate the extended conditional mean specification by MSL-EIS technique and check if the ρi estimates are significant. If they are non-significant then we conclude that there is no evidence against the hypothesis that the R&D expenditure variable is exogenous in our model.

Data

We use data from several sources. The U.S. utility patent data set for the January 1979 -June 2005 period was purchased from MicroPatents and for the 1963-1978 period was obtained from the NBER patent data files. The U.S. patent database includes the USPTO patent number, application date, publication date, USPTO patent number of cited patents, 3-digit U.S. technological class and assignee name (company name if the patent was assigned to a firm) for each patent. Company specific information was downloaded from the Standard & Poor's Compustat data files. For each firm we downloaded the book value for the sample midpoint year (following HHG, 1984), and R&D expenses for each year. Then, we created a match file and crossed the patent data set with the firm database via the 6-digit Compustat CUSIP codes. Firm-specific data was corrected for inflation using consumer price index data from the U.S. Department of Labor, Bureau of Labor Statistics. Our sample includes 559,729 U.S. utility patents with application dates in the 1979-2004 period (22 years) of 4,476 U.S. firms. (See Table 1 and2.) In the data procedures, we closely followed the recommendations of [START_REF] Hall | The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools[END_REF]. In the remaining part of this chapter, we describe some details of the database procedures and construction of additional exogenous variables.

Time of patents

The patent data set contains application date and issue (publication) date for each patent. As proposed by [START_REF] Hall | The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools[END_REF] we use the application date in order to determine the time of an innovation because inventors have incentive to apply for patent as soon as possible after completing the innovation.

Application-publication-lag

The U.S. patent database contains patents published until June 2005. This means that the data set excludes patents, which were submitted to the Patent Office before June 2005 but were not published before the end of our sample. It order to investigate the impact of the sample truncation, we analyze the distribution of the application-grant-lag (i.e., time elapsed between the publication date and the application date of a patent) in 1997, a year which is already not affected by the sample truncation bias. We find that 95.7 percent of patents are granted within 4.5 years after submission. (See Figure 4.) Therefore, we use a 4.5-year safety-lag and include data on patents with application dates until December 2000. [START_REF] Hall | The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools[END_REF] recommend an at least 3-year safety lag.) The total number of patent applications in the U.S. between 1979 and 2000 are presented on Figure 1. Moreover, we also present the patent propensity between 1979 and 2000 on Figure 2 in order to show that patent propensity measured by the number of patent applications divided by R&D expenditure has been increasing during the sample period. Finally, Figure 3 shows the positive relationship between mean R&D expenditure and mean number of patent applications between 1979 and 2000.

Quality of knowledge, citation-lag

We compute a measure of patent quality based on the number of citations received by each patent granted between January 1963 and June 2005. We measure the quality of knowledge represented by a patent by computing the number of citations the patent receives from future patents (see also [START_REF] Hall | The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools[END_REF]. Nevertheless, the number of citations a patent receives from future patents is subject to sample truncation bias because the sample excludes future patents, which may potentially cite the observed patents. (See Figure 5.) In order to solve the truncation problem related to citation-lag, we employ the fixed-effects approach of [START_REF] Hall | The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools[END_REF] that is we divide the number of citations received figures by the average number of citations in the corresponding year and technological category. The technological categories are defined as in [START_REF] Hall | The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools[END_REF] that is (1) chemical, (2) computers and communications, (3) drugs and medical, (4) electrical and electronics, (5) mechanical and (6) others. (See Figure 6 and7.)

Industry classification

We use the modified standard industry classification (SIC) of [START_REF] Hall | Estimating the Productivity of Research and Development in French and United States Manufacturing Firms[END_REF] that is (1) paper and printing, (2) chemicals, (3) rubber and plastics, (4) wood and misc., (5) primary metals, (6) fabricated metals, (7) machinery, (8) electrical machinery, (9) autos, (10) aircrafts and other trans., (11) textiles and leather, (12) pharmaceuticals, (13) food, ( 14) computers and inst., (15) oil, ( 16) non-manufacturing. Moreover, we classify firms into high-tech and non-high-tech sectors following the same authors.

Observable knowledge spillovers

Observable knowledge flow occurs between two firms if a patent of a company cites a previous patent of another firm. Our data set contains all U.S. utility patent citations made by patents granted during the observation period. Using the patent citations information, for each patent, we compute the quality of knowledge received through (a) self-citations: the patent cites previous patents of the same firm, i.e. it builds on past knowledge produced in the same firm, (b) intra-industry spillovers: the patent cites previous patents of other firms in the same industry, i.e. knowledge spills over from the same sector and (c) inter-industry spillovers: the patent cites previous patents in different industries, i.e. knowledge spills over from other sectors.

Figure 9 shows that high-tech firms benefit more from intra-industry spillovers than non-hi-tech firms. Nevertheless, non-hi-tech firms benefit more from inter-industry spillovers. Not surprisingly, the total volume of knowledge flow is significantly higher for hi-tech firms than for non-high-tech firms. Figure 8 shows some interesting differences between industries. For example, intra-industry spillovers seem to be very important in the computer industry, while the aircrafts, car, rubber, metals, textil, food and non-manufacturing industries benefit more from knowledge produced in other industries. Self-citations seem to be more significant in the drugs, oil, paper, chemical and electrical machinery industries.
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Clearly, the citation information is again subject to the citation-lag truncation bias because patents in the beginning of the observation period have less chance to cite previous and observed patents. After analyzing the citation-lag distribution (i.e. the distribution of time elapsed between citing and cited patent publication dates) we decided to use a 10-year safety-lag (from 1969) and only include patents in the sample from 1979.

Empirical results

Replication of the HHG models

In the first part of this section we replicate the maximum likelihood estimates of the Poisson models of HHG for the extended U.S. patent data set. The original data set of HHG included 8 years (1968-75) and 121 U.S. firms. We estimate the HHG Poisson models for a longer, 22-year time period for 4,476 U.S. companies. Table 3 shows the results for the HHG Poisson model for our data set. We obtain similar results as HHG. We find a significant U-shape of the lagged R&D expenditure coefficients around 5 lags for the basic Poisson and random effects models, and, similarly to HHG, the U-shape is less significant when the fixed effects model is estimated. R&D expenditure in the current period has highly significant and positive parameter for each specification. In addition, firm size (log book value) and industry position (hi-tech dummy) have highly significant and positive coefficients as we observe in HHG's paper

Dynamic Poisson models

In Table 4, we present the estimation results of the dynamic Poisson models (basic Poisson model, random effects and fixed effects). We find significant positive coefficients for the dynamic term, κ > 0 and also for the initial value of patent counts, γ 5 > 0. Moreover, we observe significantly positive coefficient for current R&D expenses for each model, β 0 > 0. Finally, we evidence that the remaining trend, hi-tech dummy and firm size coefficients are very similar to the HHG results.

Extended dynamic Poisson models

Table 5 presents the estimation results of the extended dynamic Poisson models (basic Poisson model, random effects and fixed effects). The model is an extension of the dynamic Poisson model in the sense that it includes non-linearities in R&D expenditure, β, 10 lags of past R&D expenditure, and several industry dummy variables, ρ j as well. Results for the dynamic panel data coefficients are similar to the dynamic Poisson models. Moreover, contemporaneous and lagged R&D expenses are found to be significantly different from zero. The evolution of the contemporaneous values of R&D expenditure for the extended Poisson models is presented on Figure 10. Finally, industry dummy variables and the parameters measuring non-linearities in R&D expenditure are also significant.
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Dynamic Poisson models with observable spillovers

Table 6 presents the estimation results for the three dynamic Poisson models with observable R&D spillovers (basic Poisson, random effects and fixed effects). The specifications are estimated for 10 lagged values of patent citations. Regarding the ω and φ parameters, which measure knowledge spillovers we observe interesting findings: For each model estimated in Table 6, we find significant inter-industry observable R&D spillovers for the first, second and third lag (ω 1 , ω 2 , ω 3 < 0) and also for the 9-10th lags (ω 9 , ω 10 < 0). The most significant spillover process is found for the random effects specification where we find significantly negative parameters for the 9-10th lags. Moreover, for each model presented in Table 6 we evidence significant intra-industry observable R&D spillovers for the first and also for the 4-10th lags. Finally, we find that the deterministic trend, and firm size coefficients are similar to the HHG results.

Exogeneity and conditional mean specification tests

In this subsection, we perform several exogeneity and conditional mean specification tests on the latent-factor dynamic Poisson model of Table 8. Estimation results of individual parameters will be presented in the following Section 5.6.

We do the GLM robust conditional mean specification tests stated in Section 3.2 for the latent-factor Poisson model. We perform the test for each period t = 1, . . . , T and trajectory r = 1, . . . , R and we obtain SSR for the entire panel for each trajectory of the latent factor. 5 Then, we compute the average of the N -SSR test statistic over R trajectories of the latent factor for each t and compute the corresponding p-value (see Table 11). The p-values of these tests indicate that we cannot reject to null hypothesis of exponential mean function against alternative functional forms of the latent-factor Poisson specification for all periods considered at the 5 percent level of significance.

We perform the exogeneity test presented in Section 3.4 to see if the R&D expenses variable was endogenous. In Tables 3, 5 and8, we can see that the contemporaneous impact of R&D expenditure on patent intensity (the β 0 coefficient) for the latent-factor Poisson model is larger than the β 0 estimates of the HHG (1984) and the extended Poisson models. This may be a sign of biased parameters estimates of alternative models due to the endogeneity of R&D without conditioning in unobservable innovations. In order to test these exogeneity hypotheses, we also evaluated the endogeneity of R&D expenses in the HHG model with fixed effects (see Table 3) and the extended Poisson model with fixed effects (see Table 5), using the two-stage procedure described in Section 3.4 but applied to these models. We present the corresponding estimates of ρ i in Tables 12A and12B, respectively. 6 We evidence that some of the parameters estimates of ρ i are significant at the 5 percent level of significance. Therefore, the null hypothesis that the R&D expenses variable is exogenous in these models is rejected. Finally, we performed the exogeneity test in the latent-factor Poisson model 5 We exclude the first ten years of our sample (1979)(1980)(1981)(1982)(1983)(1984)(1985)(1986)(1987)(1988) in the conditional mean specification test as our model is dynamic that includes ten lags of R&D expenses and patent citations data.

6 Notice that for the HHG model and the extended Poisson model we only have two and three ρi coefficients in the endogeneity test, respectively. This is due to the fact that we have less terms that include rit in these models.
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of Table 8. In this test, we re-estimate the latent-factor Poisson model with five additional parameters that capture the impact of the residuals estimated by the OLS regressions (3.26). We present the estimates of these additional parameters ρ i in Table 12C. We find that {ρ i : i = 1, . . . , 5} are non-significant. Therefore, by using our dynamic latent-factor Poisson model, we fail to reject that R&D is exogenous and therefore we can interpret the estimated results with certain confidence.

In the next subsection, we concentrate on the economic interpretation based on the parameter estimates presented in Table 7 and Table 8 since those are the only specifications that are able to pass our specification tests.

Latent-factor dynamic Poisson models

Our most general patent specifications are presented in Table 7 and Table 8, where we add a latent factor component into the extended dynamic Poisson model presented in Table 4. The results for the latent-factor Poisson model without R&D spillovers are presented in Table 7. Interestingly, we find the dynamic latent factor significant and highly persistent, with an AR(1) coefficient µ equal to 0.85, and with several of the corresponding industry parameters σ j significantly different from zero. Thus, we can estimate the correlation caused by the latent factor across various industries. For example, we find evidence that the latent innovation is: a) negatively correlated in the (i) paper and printing, (ii) machinery, (iii) autos, (iv) computers and (v) oil industries since the corresponding σ j < 0 and b) positively correlated in the (1) chemicals, (2) rubber and plastics, (3) wood and misc., (4) primary metals, (5) fabricated metals, (6) electrical machinery, (7) aircrafts, (8) textiles and leather, (9) pharmaceuticals, (10) food and (11) non-manufacturing industries since the corresponding parameters are σ j > 0. Our more parsimonious dynamic representation maintains the basic properties of previous patent models while allowing for new features derived from the unobservable innovation components which also make R&D exogenous.

Finally, we estimated this latent-factor dynamic Poisson model controlling for observable R&D spillovers with interaction terms. The estimation results for this general model are included in Table 8. We also present the impact of lagged R&D expenditure on patent application intensity for alternative models in Figures 111213. Moreover, the observable dynamic intra-industry and inter-industry R&D spillovers are presented in Figure 14. Notice that the inter-industry spillovers are always larger, in absolute value, than the intra-industry ones, having the largest effects at 6 and 10 year lags.

The main results for the latent-factor Poisson model with R&D spillovers are presented in Table 8. The dynamic latent innovation factor is significant and highly persistent, with an AR(1) coefficient µ equal to 0.88, and with significant effects on several industries. The elasticity of the expected number of patents with respect to R&D has some direct effects and some indirect effects from interaction terms. The direct contemporaneous effect of R&D on innovation output (measured by the expected number of patent applications) has an inverted U-shape. Those R&D elasticities are not independent of the quality of the innovation. For example, those indirect effects increase with the number of the current citations received and the number of citations received at the truncation lag (10 years ago). This is true for citations received from firms of the same industry (intra-industry) as well as for citations from different industries (inter-industries). The elasticity with respect to lagged values of R&D is small in all cases, having the largest value equal to 0.06 at the truncation lag of 10 years. The percentage of expected patent applications increases through time but at a decreasing rate which depends on the level of R&D. The size of the firm has a significant but small positive elasticity equal to 0.01. Both the initial number of patent applications n i1 as well as the number of patent applications of the previous year n it-1 have small but significant positive effects. Finally, the firms that belong to the hi-tech sector, D i = 1 have an elasticity that is 12% higher than the rest of the sectors.

In order to evaluate the main marginal contribution of the explanatory variables on the expected number of patent applications, we evaluate them at the corresponding sample averages. For that, we obtained the partial effects from the derivatives of λ it with respect to each of the explanatory variables. 7 The estimated partial effects, evaluated at the sample mean of each explanatory variable, are presented in Table 9. From the first column of Table 9, we can see that the most important variable is R&D expenditure, r it with partial effect of 4.33 followed by firm size, z i with partial effect of 0.76. In addition, we also computed the partial effect of the latent factor, l * t on the patent application intensity. This effect depends on the specific j-industry considered, σ j . Therefore, we present the partial effects of l * t for each industry j = 1, . . . , 16 in Table 9. Finally, in the second and third columns of Table 9, we also present the partial effects from the two alternative specifications that do not include unobservable heterogeneity; the basic Poisson model (Table 3) and the extended Poisson model (Table 5). Notice that the total partial impacts of R&D expenditure are 3.93 and 3.00, respectively, which are lower (downward bias) than the corresponding partial effects of our the latent-factor dynamic Poisson specification of Table 8.

We present the overall average of the patent intensity estimates, λ = 4.9 and the overall average of the number of patent applications, n = 5, in Tables 10A and10B, respectively. We also computed four other averages of λit and n it for: (1) 1979-2000 for all firms, (2) 1979-2000 for each industry, (3) each year for all firms and (4) each year for each industry. In Tables 10A and10B, we see that the patterns of the evolution of the estimated patent intensity and the average number of patents are very similar for the U.S. economy as a whole and for each industry during 1979-2000. However, we are able to identify three innovation intensity groups in terms of the expected number of patent applications. Level 1, with the expected number patent applications per year ranging from 1 to 4 which includes the following seven industries: (3) rubber and plastics, (4) wood and miscellaneous, (5) primary metals, (6) fabricated metals, (7) machinery, (11) textiles and leather and ( 16) non-manufacturing. Level 2, ranging the expected number patent applications per year from 5 to 10 with four industries: (1) paper and printing, (9) autos, (12) pharmaceuticals and ( 14) computers. These expected number of patent applications had their maximum values for those industries from the period 1995 to 2000. And finally level 3, which include the industries with the four highest 7 Notice that estimating partial effects is not possible in alternative count data formulations that include unobservable heterogeneity. This is because the value of λit is not known when unobserved heterogeneity is included in the model, which is needed to estimate partial effects. However, in the latent-factor Poisson model it is possible to evaluate partial effects.

expected number patent applications per year: (2) chemicals, (8) electrical machinery, (10) aircrafts and other trans. and (15) oil. In those cases, the maximum values of the expected number of patent applications for those industries occurred from the period 1989 to 1992.

Conclusions

We have introduced new methods to control for firm-level R&D observed and unobserved spillovers in the U.S. economy over a long period of 22 years merging patent data form MicroPatents and from the NBER data files. Previous R&D literature realized that knowledge spillovers are partly observable and partly latent but they were only able to control for observable spillovers. [START_REF] Hall | The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools[END_REF] suggests using patent citation data, which is fully available for a very long time period for all U.S. firms, to measure observable knowledge spillovers with the citations published in patent documents. By extending the latent-factor intensity approach of [START_REF] Bauwens | Stochastic Conditional Intensity Processes[END_REF] to dynamic patent count data models, we are able to identify unobserved knowledge flows among several companies. Another important contribution of our approach is that we explicitly allow for cross dependence (co-movements) in the panel data model through the common unobserved stock of knowledge. Therefore, our dynamic count data model with unobservable innovation components is an extension of the canonical panel data count model of patent applications of HHG (1984) and of more recent contributions by [START_REF] Blundell | Individual Effects and Dynamics in Count Data Models[END_REF] and [START_REF] Wooldridge | Simple Solutions to the Initial Conditions Problem in Dynamic, Nonlinear Panel Data Models with Unobserved Heterogeneity[END_REF].

Our modeling approach of patent counts is able to overcome the important endogeneity problem of R&D. This is important since previous results from alternative GMM procedures, and alternative maximum likelihood estimation procedures, obtained very different numerical values (unstable) for the coefficients of R&D and found also a very large instability in the other parameters depending on model specification issues, see for example [START_REF] Cincer | Patents, R&D, and Technological Spillovers at the Firm Level: Some Evidence from Econometric Count Models for Panel Data[END_REF] and [START_REF] Montalvo | GMM Estimation of Count-Panel-Data Models With Fixed Efects and Predetermined Instruments[END_REF]. Furthermore, [START_REF] Blundell | Individual Effects and Dynamics in Count Data Models[END_REF] found among alternative GMM procedures, different values and signs in the parameter of the lagged value of the number of patents. They mentioned that this instability was mainly due to the weak instruments problem, as both patents and R&D series are highly persistent.

In this paper, we overcome previous misspecification problems discussed in HHG (1984) and [START_REF] Blundell | Individual Effects and Dynamics in Count Data Models[END_REF] along the following lines: a) we consider a dynamic conditional parameterization of the patent application intensity of U.S. firms following [START_REF] Wooldridge | Simple Solutions to the Initial Conditions Problem in Dynamic, Nonlinear Panel Data Models with Unobserved Heterogeneity[END_REF]; b) we use a parametric model of observable knowledge spillovers by using intra-industry and inter-industry patent citation data; c) we introduce a dynamic unobserved stock of knowledge component, with persistent influences (AR(1) coefficient equal to 0.88) on the patent applications, allowing for a different impacts on each industry. In the preferred pre-sample mean model of [START_REF] Blundell | Individual Effects and Dynamics in Count Data Models[END_REF], the lagged value of the number of patents is equal to 0.84. In our model, this lagged value of the number of patents is reduced to 0.002 after controlling for unobserved innovations; d) we study the truncation R&D lag effect ('5 lags only' in previous papers) on the expected patent applications by allowing for a longer lag structure (10 lags). e) We found linear and a nonlinear terms in log(R&D) entering in the propensity to patent equation with an inverted U-shape relationship and with complementarities in spillovers based on patent citations. f) Both observable and latent knowledge spillovers are significant with significant positive observable R&D spillovers, both at the intra-industry and at the inter-industry level and with differential effects by industry with the unobserved spillovers. This result is consistent with the complementarities obtained by [START_REF] Cassiman | R&D Cooperation and Spillovers: Some Empirical Evidence from Belgium[END_REF] between legal protections of innovations (patents) and the strategic protections (secret or latent innovations). In a separate paper, we study the relationship between firm economic performance (market value of firms, etc.) and innovation output (patents) for leaders and followers that compete in the same market, after controlling for observable and latent R&D spillovers, but this is out of the scope of this paper; see [START_REF] Blazsek | Innovation, Interactions and Market Value of Firms: Differential Effects of Leaders and Followers[END_REF]. Finally, g) regarding the patent intensity correlation measured by the latent process, we found evidence as in [START_REF] Pesaran | Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure[END_REF] and [START_REF] Holly | A Spatio-Temporal Model of House Prices in the US[END_REF], of co-movements among unobserved knowledge components (unobserved innovation spillovers) in several industries.
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Appendix A

The efficient importance sampling (EIS) method has been successfully applied for the evaluation of likelihood functions involving high-dimensional integrals for example in stochastic volatility models [START_REF] Liesenfeld | Univariate and Multivariate Stochastic Volatility Models: Estimation and Diagnostics[END_REF] and stochastic conditional intensity models [START_REF] Bauwens | Stochastic Conditional Intensity Processes[END_REF]) similar to our model.

Before explaining the details of the EIS technique, we note that this procedure is nested into a typical likelihood function maximization procedure. In order to maintain the stability of the maximization procedure, for every set of parameters we use the same set of i.i.d. N (0, 1) so-called common random numbers (see [START_REF] Richard | Efficient High-Dimensional Importance Sampling[END_REF] to estimate the value of the log-likelihood function.

Let us introduce some notation first. Denote the set of patent counts by

N ij = {n it : t = 1, . . . , j} with 1 ≤ j ≤ T , denote N t = {N it : i = 1, .
. . , N }, denote the set of latent variables by L * j = {l * t : t = 1, . . . , j} with 1 ≤ j ≤ T and let Ω denote the 5N × T data matrix of exogenous variables. More precisely, the structure of Ω is the following:

Ω = Ω 1 • • • Ω T =    z z • • • z r 1 r 2 • • • r T c 1 c 2 • • • c T    (A1)
Then, let Q j = {Ω t : t = 1, . . . , j} with with 1 ≤ j ≤ T and let

g(N T , L * T |Ω, θ) = T t=1 g t (n t , l * t |N t-1 , L * t-1 , Q t , θ t ), ( A2 
)
where

ln g t (n t , l * t |N t-1 , L * t-1 , Q t , θ t ) = N i=1 n it ln λ it -ln(n it !) -λ it + ln f * t (l * t |l * t-1 ). (A3)
The EIS methodology consists of the following elements. First, we introduce an auxiliary sampler, m, which is included into the likelihood function and then factorized into the product of T sequential auxiliary densities, {m t : t = 1, . . . , T } as follows:

L(N T , θ) = R T T t=1 g t (n t , l * t |N t-1 , L * t-1 , Q t , θ t ) m t (l * t |L * t-1 , θ * t ) × m t (l * t |L * t-1 , θ * t )dL * T , (A4) 
where L(Ω, θ) = L and θ * is the vector of parameters of the auxiliary sampler defined as the union of all θ * t s, which denote the parameters of the i-th auxiliary sampler. Then, the importance MC estimate of L(N T , θ) for given θ * is:

LR (N T , θ, θ * ) = 1 R R r=1 T t=1 g t (n t , l * tr |N t-1 , L * t-1r , Q t , θ t ) m t (l * tr |L * t-1r , θ * t ) , (A5) 
Loosely speaking, from equation (A5) one can see that this variance is 'small' if the auxiliary sampler m t provides a 'good fit' to the g t function. Expressing the auxiliary sampler by its associated density kernel and integrating constant from (A8), we may say that m t provides 'good fit' to g t if [START_REF] Richard | Efficient High-Dimensional Importance Sampling[END_REF] shows that if the auxiliary samplers are normal distributions then the MC variance minimization problem stated in equation (A13) can be reduced to a recursive sequence of T ordinary least squares (OLS) problems, each of the following form (see also [START_REF] Bauwens | Stochastic Conditional Intensity Processes[END_REF]:

ln g t (n t , l * t |N t-1 , L * t-1 , Q t , θ t ) + ln χ t (L * t-1 , θ * t ) ln k t (L * t , θ * t ). (A14)
ln g t (n t , l * t |N t-1 , L * t-1 , Q t , θ t ) + ln χ t+1 (L * tr , θ * t+1 ) = θ * t0 + θ * t1 l * tr + θ * t2 (l * tr ) 2 + u tr , (A15) 
for t = T, . . . , 1, r = 1, . . . , R, χ T +1 (L * T , θ * T +1 ) = 1 and θ * t+1 is the OLS estimate of θ * t+1 . Thus, for each observation t, one has to compute the OLS estimate of the parameters of the auxiliary sampler, m t . The regressions have a recursive structure because we use the θ * t+1 estimates in order to compute the integrating constant for the next, t-th OLS regression. (This is based on the permutation of the integrating constants in equation (A5), see [START_REF] Richard | Efficient High-Dimensional Importance Sampling[END_REF] for more details.) Thus, the regressions are run backwards, i.e. from T to 1. The sample size of each regression is equal to the number of trajectories drawn, R. One of the advantages of the EIS algorithm is that these auxiliary regressions are typically run with relatively low sample sizes. In our case the number of trajectories of the latent variables is R = 50. In summary, the EIS technique consists of the following steps:

Step 1: Draw R trajectories {l * tr } T t=1 from the natural sampler, N (µl * t-1r , 1).

Step 2: for each t (from T to 1), estimate the regression in (A15).

Step 3: Given the OLS estimates of θ * obtained in Step 2, draw R trajectories {l * tr } T t=1 from the auxiliary samplers, {m t } T t=1 .

Step 4: Compute the importance MC estimate of LR according to (A5). [START_REF] Richard | Efficient High-Dimensional Importance Sampling[END_REF] suggest to iterate Steps 2 and 3 several times to get a precise estimate of the value of the high-dimensional integral in (A4).
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Tables Table 1 U Notes: We present the number of patent applications for each industry. We use the modified SIC classification and hi-tech / non-hi-tech classification proposed by [START_REF] Hall | Estimating the Productivity of Research and Development in French and United States Manufacturing Firms[END_REF]. Hi-tech industry names are written by bold letters. Patent data is obtained from the MicroPatents firm. Notes: Firm names in hi-tech industries are written by bold letters. Patent data is obtained from the MicroPatents firm. Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. The following specification is estimated for t = 1979, . . . , 2000 and i = 1, . . . , 4476: -18,425.4 -5,116.3 -7,123.4 Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. The following specification is estimated for t = 1979, . . . , 2000 and i = 1, . . . , 4476: Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. We estimated the following model for t = 1979, . . . , 2000 and i = 1, . . . , 4476: Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. We estimated the following specification for t = 1979, . . . , 2000, i = 1, . . . , 4476 and j = 1, . . . , 16: 
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λit = exp(X it β + µ0)αi X it β = β5(L)rit + γ1t + γ2trit + γ3Di + γ4zi β5(L) = 5 i=0 βiL i
λit = exp(X it β + µ0)αi X it β = β5(L)rit + κnit-1 + γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 β5(L) = 5 i=0 βiL i
λit = exp(X it β + µ0)αi X it β = β10(L)rit + κnit-1 + βr 2 it + γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 + 15 j=1 ρjIij β10(L) = 10 i=0 βiL i
λit = exp(X it β + µ0)αi X it β = γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 + Ψit + βr 2 it + 15 j=1 ρjIij Ψit = β10(L)rit + κnit-1 + rit[ω10(L)c2it] + rit[φ10(L)c3it] β10(L) = 10 i=0 βiL i , ω10(L) = 10 i=0 ωiL i , φ10(L) = 10 i=0 φiL i
λit = exp(X it β + µ0)αi X it β = γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 + Ψit + βr 2 it + 15 j=1 ρjIij Ψit = β10(L)rit + κnit-1 + rit[ω10(L)c2it] + rit[φ10(L)c3it] β10(L) = 10 i=0 βiL i , ω10(L) = 10 i=0 ωiL i , φ10(L) = 10 i=0 φiL i
λit = exp(X it β + µ0)αit X it β = β10(L)rit + κnit-1 + βr 2 it + γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 β10(L) = 10 i=0 βiL i αit = exp(σjl * t ) l * t = µl * t-1 + ηt A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
λit = exp(X it β + µ0)αit X it β = γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 + βr 2 it + Ψit Ψit = β10(L)rit + κnit-1 + rit[ω10(L)c2it] + rit[φ10(L)c3it] β10(L) = 10 i=0 βiL i , ω10(L) = 10 i=0 ωiL i , φ10(L) = 10 i=0 φiL i αit = exp(σjl * t ) l * t = µl * t-1 + ηt A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

Notes:

We computed partial effects for the specifications presented in Tables 3 (first column), 5 (first column) and 8 by computing the partial derivatives of λit with respect to the explanatory variables. Since the partial effects depend on the explanatory variables, we evaluated the derivatives by computing the averages of λit and the corresponding variables. The following formulas show the computation of partial effects for the most general latent-factor Poisson specification λit = exp(µ0 + X it β + σjl * t ) for t = 1979, . . . , 2000, i = 1, . . . , 4476 and j = 1, . . . , 16: 

∂ λit ∂xjt = λit ∂(μ0 + X it β) ∂xjt = βj λit ∂ λit ∂l * t = σj λit
λ = 1 T N T t=1 N i=1 λit λt = 1 N N i=1 λit λj = 1 T N j T t=1 N j i=1 λit for i ∈ j industry λjt = 1 N j N j i=1 λit for i ∈ j industry
where Nj denotes the number of firms in industry j = 1, . . . , 16. Firms are classified into the following 16 industries: (1) paper and printing, (2) chemicals, (3) rubber and plastics, (4) wood and misc., (5) primary metals, (6) fabricated metals, (7) machinery, (8) electrical machinery, (9) autos, (10) aircrafts and other trans., (11) textiles and leather, (12) pharmaceuticals, (13) food, ( 14) computers and inst., (15) oil, ( 16) non-manufacturing. [START_REF] Hall | Estimating the Productivity of Research and Development in French and United States Manufacturing Firms[END_REF] Notes: We computed the following means of nit:

n = 1 T N T t=1 N i=1 nit nt = 1 N N i=1 nit nj = 1 T N j T t=1 N j i=1 nit for i ∈ j industry njt = 1 N j N j i=1 nit for i ∈ j industry
where Nj denotes the number of firms in industry j = 1, . . . , 16. Firms are classified into the following 16 industries: (1) paper and printing, (2) chemicals, (3) rubber and plastics, (4) wood and misc., (5) primary metals, (6) fabricated metals, (7) machinery, (8) electrical machinery, (9) autos, (10) aircrafts and other trans., (11) textiles and leather, (12) pharmaceuticals, (13) food, ( 14) computers and inst., (15) oil, ( 16) non-manufacturing. [START_REF] Hall | Estimating the Productivity of Research and Development in French and United States Manufacturing Firms[END_REF] A C C E P T E D M A N U S C R I P T non-linear RESET model are asymptotically χ 2 1 and χ 2 2 random variables, respectively. We exclude the first ten years of our sample (1979)(1980)(1981)(1982)(1983)(1984)(1985)(1986)(1987)(1988) in the conditional mean specification test as our model is dynamic that includes ten lags of R&D expenses and patent citations data. The figure presents the total number of patent applications for the 1979-2000 period. We employ this time period for the estimation of our econometric models. We also present the fitted quadratic regression line of β0 + β1t + β2t 2 to show the positive trend of the patent applications. The figure presents patent propensity, i.e. mean number of patent applications, nit divided by mean R&D expenses, rit for each year for the 1979-2000 period. We employ this time period for the estimation of our econometric models. We also present the fitted quadratic regression line of β0 + β1t + β2t 2 to show the positive trend of the patent propensity. The figure presents the average number of citations received corrected for sample truncation bias using the fixed effects approach of [START_REF] Hall | The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools[END_REF]. That is for each patent we divide the number of citations received from future patents by the average number of patent citations received in the corresponding technological category and year.
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Fig. 8. Observable R&D spillovers by industries. Notes: The figure shows the average quality of knowledge that firms receive from past patents by citing them in the patent documents. Patent citations are classified as (1) self-citations, (2) intra-industry citations and (3) inter-industry citations. The quality of knowledge is measured by the number of citations received from future patents (corrected for sample truncation bias). Firms are classified into the following 16 industries: (1) paper and printing, (2) chemicals, (3) rubber and plastics, (4) wood and misc., (5) primary metals, (6) fabricated metals, (7) machinery, (8) electrical machinery, (9) autos, (10) aircrafts and other trans., (11) textiles and leather, (12) pharmaceuticals, (13) food, ( 14) computers and inst., (15) oil, ( 16) non-manufacturing. [START_REF] Hall | Estimating the Productivity of Research and Development in French and United States Manufacturing Firms[END_REF] The figure presents the total number of patent applications for the 1979-2000 period. We employ this time period for the estimation of our econometric models. We also present the fitted quadratic regression line of β0 + β1t + β2t 2 to show the positive trend of the patent applications. 8.

  15) with i = 1, . . . , N . Let the residuals of this regression be rit and let ũit = ûit / λit . Then, compute N -SSR from the regression 1 on ũit rit (3.16) with i = 1, . . . , N , where SSR denotes the regression sum of squares value of this regression. Use the N -SSR statistic as an asymptotically χ 2 1 random variable.

Fig. 1 .

 1 Fig. 1. Total number of patent applications between 1979 and 2000. Notes: The figure presents the total number of patent applications for the 1979-2000 period.We employ this time period for the estimation of our econometric models. We also present the fitted quadratic regression line of β0 + β1t + β2t 2 to show the positive trend of the

Fig. 2 .

 2 Fig. 2. Patent propensity between 1979 and 2000. Notes: The figure presents patent propensity, i.e. mean number of patent applications, nit divided by mean R&D expenses, rit for each year for the 1979-2000 period. We employ this time period for the estimation of our econometric models. We also present the fitted quadratic regression line of β0 + β1t + β2t 2 to show the positive trend of the patent propensity.

Fig. 3 .

 3 Fig. 3. Mean R&D expenditure versus mean number of patent applications between 1979 and 2000. Notes: We also present the fitted quadratic regression line of β0 + β1 rit + β2 r2 it to show the positive relationship between the variables.

Fig. 4 .

 4 Fig. 4. Application-grant lag empirical distribution. Notes: The figure presents the cumulative distribution of the time duration between the patent application date and the publication date measured in years. The distribution is computed using the application-grant lag of patents, which were submitted to the U.S. Patent Office in 1997. (This year is practically not affected by sample truncation bias).

Fig. 5 .

 5 Fig. 5. Citation lag empirical distribution. Notes: The figure presents the cumulative distribution of the time duration between the publication dates of citing and cited patents measured in years.

Fig. 6 .

 6 Fig. 6. Average number of citations received by technological category. Notes: The figure presents the average number of citations that patents receive from future patents by technological category during the 1979-2005 period.

Fig. 7 .

 7 Fig. 7. Average number of citations received by technological category corrected for sample truncation bias. Notes:The figure presents the average number of citations received corrected for sample truncation bias using the fixed effects approach of[START_REF] Hall | The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools[END_REF]. That is for each patent we divide the number of citations received from future patents by the average number of patent citations received in the corresponding technological category and year.

Fig. 9 .

 9 Fig. 9. Observable R&D spillovers for hi-tech and non-hi-tech firms. Notes: The figure shows the average quality of knowledge that firms receive from past patents by citing them in the patent documents. Patent citations are classified as (1) self-citations, (2) intra-industry citations and (3) inter-industry citations. The quality of knowledge is measured by the number of citations received from future patents (corrected for sample truncation bias). Firms are classified into two sectors: (1) non-hi-tech (others) and (2) hi-tech. (Hall and Mairesse, 1996) Fig. 10. Evolution of R&D expenses for the extended dynamic Poisson model. Notes: The figure shows the evolution of R&D expenses modeled by the extended Poisson model presented inTable 5. The figure presents the evolution of γ2trit + β0rit + βr 2 it for the 1979-2000 period.

Fig. 11 .

 11 Fig. 11. Impact of R&D expenditure on patent application intensity. Notes: The figure shows the impact of R&D expenditure on patent application intensity for the HHG (1984) basic Poisson model, the extended basic Poisson model, the latent-factor Poisson model with observable spillovers presented in Tables 3, 5 and 8, respectively. Fig. 12. Impact of R&D expenditure on patent application intensity. Notes: The figure shows the impact of R&D expenditure on patent application intensity for the HHG (1984) Poisson model with random effects, the extended Poisson model with random effects, the latent-factor Poisson model with observable spillovers presented in Tables 3, 5 and 8, respectively. Fig. 13. Impact of R&D expenditure on patent application intensity. Notes: The figure shows the impact of R&D expenditure on patent application intensity for the HHG (1984) Poisson model with fixed effects, the extended Poisson model with fixed effects, the latent-factor Poisson model with observable spillovers presented in Tables 3, 5 and 8, respectively.

Fig. 14 .

 14 Fig. 14. Observable intra-industry and inter-industry R&D spillovers. Notes: The figure shows the values of observable intra-industry and inter-industry R&D spillover estimates, ω and φ, respectively for the latent-factor Poisson model with observable R&D spillovers presented in Table8.
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 1 Figures

Fig. 5 .

 5 Fig. 5. Citation lag empirical distribution. Notes: The figure presents the cumulative distribution of the time duration between the publication dates of citing and cited patents measured in years.

Fig. 14 .

 14 Fig. 14. Observable intra-industry and inter-industry R&D spillovers. Notes: The figure shows the values of observable intra-industry and inter-industry R&D spillover estimates, ω and φ, respectively for the latent-factor Poisson model with observable R&D spillovers presented in Table8.

Table 3

 3 Estimation results of the HHG (1984) Poisson model for the new patent data set

	Parameter	Basic Poisson	Random effects Fixed effects
	β0	0.79 * (0.001)	0.81 * (0.009)	0.40 * (0.002)
	β1	0.04 * (0.001)	0.05 * (0.006)	0.01 * (0.002)
	β2	0.04 * (0.001)	0.06 * (0.01)	0.02 * (0.002)
	β3	0.04 * (0.001)	0.11 * (0.009)	0.01 * (0.002)
	β4 β5 µ0 γ1	-0.02 * (0.001) 0.04 * (0.001) -0.96 * (0.002) 0.04 * (0.0003)	0.03 * (0.01) 0.10 * (0.02) -1.49 * (0.007) 0.07 * (0.001)	-0.03 * (0.002) -0.02 * (0.003) 0.08 * (0.001)
	γ2 γ3	-0.008 * (0.0001) -0.02 * (0.001) 0.32 * (0.002) 0.002 * (0.004)	-0.005 * (0.0001)
	γ4	0.03 * (0.001)	0.13 * (0.003)	
	δ		0.18 * (0.002)	
	log-likelihood -20, 619.2	-5, 298.8	-7, 706.9

Table 4

 4 Estimation results of the HHG (1984) Poisson model with Wooldridge (2005) extension for the new patent data set

	Parameter	Basic Poisson	Random effects Fixed effects
	β0	0.85 * (0.002)	0.66 * (0.016)	0.53 * (0.003)
	β1 β2	0.01 * (0.002) 0.04 * (0.001)	0.02(0.012) 0.03 * (0.009)	-0.01 * (0.002) 0.02 * (0.002)
	β3	0.03 * (0.002)	0.06 * (0.013)	0.01 * (0.002)
	β4 β5 κ	-0.02 * (0.001) 0.03 * (0.001) 0.001 * (0.000)	-0.003(0.018) -0.05 * (0.014) 0.03 * (0.001)	-0.03 * (0.002) 0.01 * (0.002) 0.001 * (0.000)
	µ0 γ1	-0.91 * (0.002) 0.05 * (0.0002)	-1.88 * (0.019) 0.08 * (0.001)	0.10 * (0.001)
	γ2 γ3	-0.01 * (0.0001) -0.02 * (0.001) 0.18 * (0.002) 0.21 * (0.015)	-0.01 * (0.0001)
	γ4 γ5	-0.0004(0.001) 0.08 * (0.003) 0.001 * (0.0000) 0.02 * (0.001)	
	δ		0.23 * (0.002)	
	log-likelihood			

  Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. We estimated the following model for t = 1979, . . . , 2000 and i = 1, . . . , 4476:

	Table 5			
	Estimation results of the extended dynamic Poisson model
	Parameter	Basic Poisson	Random effects Fixed effects
	β0	1.06 * (0.002)	0.69 * (0.004)	0.46 * (0.004)
	β1 β2	0.01 * (0.002) 0.04 * (0.002)	0.01 * (0.006) 0.04 * (0.005)	-0.01 * (0.002) 0.01 * (0.002)
	β3	0.04 * (0.002)	0.05 * (0.005)	0.01 * (0.002)
	β4 β5 β6 β7 β8 β9 β10 β κ	-0.02 * (0.002) -0.02 * (0.002) 0.01 * (0.002) 0.002(0.002) 0.01 * (0.002) 0.02 * (0.001) 0.05 * (0.001) -0.03 * (0.0002) 0.001 * (0.000)	-0.01(0.008) -0.01(0.011) -0.03 * (0.007) 0.01(0.011) -0.01(0.014) -0.01(0.009) -0.01(0.008) -0.01 * (0.002) 0.03 * (0.000)	-0.03 * (0.002) -0.02 * (0.002) 0.02 * (0.002) -0.06 * (0.002) 0.01 * (0.002) 0.01 * (0.002) 0.03 * (0.002) 0.03 * (0.001) 0.001 * (0.000)
	ρ1	0.82 * (0.003)	0.83 * (0.027)	
	ρ2	0.88 * (0.002)	1.04 * (0.014)	
	ρ3	0.22 * (0.005)	0.76 * (0.019)	
	ρ4	0.26 * (0.008)	0.71 * (0.004)	
	ρ5 ρ6	-0.11 * (0.004) 0.44 * (0.005)	0.89 * (0.004) 0.95 * (0.008)	
	ρ7	0.35 * (0.002)	0.99 * (0.004)	
	ρ8	0.91 * (0.002)	1.20 * (0.008)	
	ρ9	0.13 * (0.002)	1.26 * (0.011)	
	ρ10	0.36 * (0.002)	0.75 * (0.025)	
	ρ11 ρ12	-0.06 * (0.006) 0.23 * (0.002)	0.48 * (0.019) 0.73 * (0.004)	
	ρ13 ρ14	-0.15 * (0.002) 0.68 * (0.002)	0.72 * (0.003) 0.90 * (0.004)	
	ρ15	1.12 * (0.002)	0.91 * (0.022)	
	µ0 γ1	-1.39 * (0.004) 0.05 * (0.0003)	-2.37 * (0.005) 0.08 * (0.001)	0.11 * (0.001)
	γ2 γ3 γ4	-0.02 * (0.0001) -0.09 * (0.003) 0.004 * (0.001)	-0.02 * (0.001) -0.21 * (0.003) 0.07 * (0.003)	-0.02 * (0.0002)
	γ5	0.0002 * (0.0000) 0.02 * (0.001)	
	δ		0.24 * (0.002)	
	log-likelihood -17,066.9	-5,073.7	-7,039.2

Table 6

 6 Estimation results of the extended dynamic Poisson model with observable R&D spillovers Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. We estimated the following model for t = 1979, . . . , 2000 and i = 1, . . . , 4476:

	Parameter Basic Poisson	Random effects Fixed effects
	β0	1.10 * (0.002)	0.63 * (0.012)	0.41 * (0.003)
	β1 β2	-0.03 * (0.002) 0.03 * (0.002)	0.002(0.007) 0.03 * (0.008)	-0.03 * (0.003) 0.01 * (0.002)
	β3	0.03 * (0.002)	0.05 * (0.009)	0.002(0.002)
	β4 β5 β6 β7 β8 β9 β10 β κ	-0.03 * (0.002) 0.03 * (0.002) 0.003 * (0.002) 0.01 * (0.002) 0.02 * (0.002) 0.02 * (0.002) 0.05 * (0.002) -0.04 * (0.0003) -0.01 * (0.002) -0.01(0.013) -0.01(0.015) -0.03 * (0.013) -0.003(0.009) -0.01(0.007) -0.01(0.005) 0.02 * (0.007) 0.002 * (0.000) 0.04 * (0.000)	-0.04 * (0.002) -0.003(0.002) -0.002(0.002) -0.01 * (0.002) 0.003(0.002) 0.01 * (0.002) -0.001(0.002) 0.02 * (0.001) 0.001 * (0.000)
	ρ1	0.75 * (0.002)	0.84 * (0.014)	
	ρ2	0.37 * (0.002)	1.12 * (0.013)	
	ρ3	0.21 * (0.002)	0.76 * (0.004)	
	ρ4	0.25 * (0.002)	0.70 * (0.004)	
	ρ5 ρ6	-0.13 * (0.002) 0.42 * (0.002)	0.86 * (0.009) 0.93 * (0.018)	
	ρ7	0.32 * (0.002)	0.98 * (0.003)	
	ρ8	0.25 * (0.004)	1.26 * (0.015)	
	ρ9	0.36 * (0.002)	1.25 * (0.007)	
	ρ10 ρ11 ρ12 ρ13 ρ14	-0.09 * (0.004) -0.08 * (0.005) -0.24 * (0.002) -0.17 * (0.002) 0.06 * (0.003)	0.83 * (0.006) 0.47 * (0.014) 0.81 * (0.011) 0.68 * (0.004) 1.00 * (0.009)	
	ρ15	1.21 * (0.002)	0.91 * (0.007)	
	continued			
	Notes:			

Table 6
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	(continued)		
	Estimation results of the extended dynamic Poisson model with observable R&D spillovers
	Parameter	Basic Poisson	Random effects Fixed effects
	ω0	0.004 * (0.0003)	0.001(0.006)	0.004 * (0.0002)
	ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8	-0.01 * (0.0004) 0.002 * (0.001) -0.001 * (0.001) -0.02 * (0.001) 0.001(0.001) 0.02 * (0.001) -0.02 * (0.002) 0.003(0.002)	-0.07 * (0.004) -0.13 * (0.007) -0.05 * (0.006) 0.09 * (0.008) -0.02 * (0.005) -0.20 * (0.008) 0.13 * (0.029) 0.74 * (0.006)	-0.01 * (0.0003) -0.003 * (0.0004) -0.01 * (0.0004) 0.00(0.001) 0.01 * (0.001) 0.00(0.002) -0.03 * (0.002) 0.03 * (0.003)
	ω9 ω10 φ0	-0.01 * (0.002) 0.04 * (0.002) 0.01 * (0.001)	-1.09 * (0.031) -1.13 * (0.072) 0.06 * (0.006)	0.01 * (0.003) -0.01 * (0.003) 0.01 * (0.0004)
	φ1 φ2 φ3	-0.02 * (0.001) 0.01 * (0.001) 0.03 * (0.001)	-0.08 * (0.006) -0.03 * (0.005) 0.07 * (0.006)	-0.01 * (0.001) 0.002 * (0.001) 0.01 * (0.001)
	φ4 φ5 φ6 φ7 φ8 φ9 φ10 µ0 γ1	-0.002(0.001) 0.01 * (0.002) -0.14 * (0.002) -0.03 * (0.002) -0.03 * (0.002) 0.001(0.002) 0.10 * (0.002) -1.32 * (0.002) 0.05 * (0.0003)	-0.05 * (0.012) -0.03 * (0.010) -0.02(0.010) 0.04 * (0.012) -0.89 * (0.027) 0.26 * (0.081) -0.14(0.095) -2.39 * (0.005) 0.08 * (0.001)	-0.01 * (0.001) 0.0001(0.001) -0.03 * (0.003) -0.01 * (0.003) -0.02 * (0.003) -0.005(0.004) -0.01 * (0.004) 0.10 * (0.001)
	γ2 γ3 γ4	-0.01 * (0.0001) 0.45 * (0.003) 0.02 * (0.001)	-0.01 * (0.001) -0.30 * (0.008) 0.07 * (0.003)	-0.01 * (0.0002)
	γ5 δ	-0.0004 * (0.000) 0.02 * (0.001) 0.25 * (0.003)	
	log-likelihood -16,009.0	-5,054.2	-6,767.4

Table 7
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	Parameter	Estimation	Parameter Estimation
	β0	1.11 * (0.002)	µ	0.85 * (0.002)
	β1 β2	0.01 * (0.002) 0.04 * (0.002)	σ1 σ2	-0.05 * (0.002) 0.01 * (0.002)
	β3	0.04 * (0.001)	σ3	0.01 * (0.002)
	β4 β5 β6	-0.01 * (0.001) -0.02 * (0.002) 0.01 * (0.002)	σ4 σ5 σ6	0.01 * (0.002) 0.04 * (0.002) 0.01 * (0.002)
	β7 β8	0.002(0.002) 0.01 * (0.002)	σ7 σ8	-0.003 * (0.002) 0.01 * (0.002)
	β9 β10	0.02 * (0.001) 0.06 * (0.001)	σ9 σ10	-0.01 * (0.002) 0.02 * (0.002)
	κ	0.001 * (0.000)	σ11	0.04 * (0.002)
	β µ0 γ1 γ2 γ3	-0.04 * (0.0003) σ12 σ13 -1.10 * (0.002) 0.05 * (0.0003) σ14 -0.01 * (0.0001) σ15 0.17 * (0.002) σ16	0.02 * (0.002) 0.02 * (0.002) -0.01 * (0.002) -0.01 * (0.002) 0.01 * (0.002)
	γ4 γ5	-0.003 * (0.001) 0.001 * (0.000)		
	loglikelihood -17,806.1		

Table 8

 8 Estimation results of the extended dynamic Poisson model with observable and latent R&D spilloversNotes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. We estimated the following specification for t = 1979, . . . , 2000, i = 1, . . . , 4476 and j = 1, . . . , 16:

	Parameter	Variable	Estimation	Parameter Variable	Estimation
	β0	rit	1.17 * (0.002)	µ	l * t-1	0.88 * (0.002)
	β1 β2 β3	rit-1 rit-2 rit-3	-0.02 * (0.002) 0.03 * (0.002) 0.03 * (0.002)	σ1 σ2 σ3	l * t l * t l * t	-0.02 * (0.002) -0.01 * (0.002) 0.01 * (0.002)
	β4 β5	rit-4 rit-5	-0.03 * (0.002) 0.03 * (0.002)	σ4 σ5	l * t l * t	0.02 * (0.002) 0.06 * (0.002)
	β6	rit-6	0.005 * (0.002)	σ6	l * t	0.03 * (0.002)
	β7	rit-7	0.01 * (0.002)	σ7	l * t	0.01 * (0.002)
	β8 β9 β10	rit-8 rit-9 rit-10	0.02 * (0.002) 0.03 * (0.001) 0.06 * (0.001)	σ8 σ9 σ10	l * t l * t l * t	-0.001(0.002) -0.02 * (0.002) 0.02 * (0.002)
	κ	nit-1	0.002 * (0.000)	σ11	l * t	0.05 * (0.002)
	β µ0 γ1 γ2 γ3	r 2 it -t trit Di	-0.05 * (0.0003) σ12 σ13 -1.04 * (0.002) 0.04 * (0.0003) σ14 -0.01 * (0.0001) σ15 0.12 * (0.002) σ16	l * t l * t l * t l * t l * t	0.01 * (0.002) 0.03 * (0.002) -0.003 * (0.001) -0.01 * (0.002) 0.01 * (0.002)
	γ4	zi	0.01 * (0.001)			
	γ5	ni1	0.0002 * (0.000)			
	ω0	ritc2it	0.002 * (0.0003)	φ0	ritc3it	0.01 * (0.001)
	ω1 ω2	ritc2it-1 ritc2it-2	-0.01 * (0.0004) φ1 0.003 * (0.001) φ2	ritc3it-1 ritc3it-2	-0.02 * (0.001) 0.01 * (0.001)
	ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10	ritc2it-3 ritc2it-4 ritc2it-5 ritc2it-6 ritc2it-7 ritc2it-8 ritc2it-9 ritc2it-10 0.07 * (0.003) -0.003 * (0.001) φ3 -0.02 * (0.001) φ4 -0.001 * (0.001) φ5 0.03 * (0.001) φ6 -0.02 * (0.002) φ7 -0.02 * (0.002) φ8 -0.003 * (0.004) φ9 φ10	ritc3it-3 ritc3it-4 ritc3it-5 ritc3it-6 ritc3it-7 ritc3it-8 ritc3it-9 ritc3it-10 0.10 * (0.002) 0.03 * (0.001) -0.001 * (0.001) 0.01 * (0.002) -0.15 * (0.002) -0.03 * (0.002) -0.04 * (0.002) 0.01 * (0.002)
	log-likelihood -16,668.0				

Table 9
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	Variable	LF-Poisson Variable	Extended Poisson Basic Poisson
				(Table 8)		(Table 5)	(Table 3)
	t			0.262	t	0.294	0.275
	Di			1.080	Di	0.820	1.740
	zi			0.761	zi	0.611	1.120
	ni1			0.001	ni1	0.001	-
	nit-1	0.011	nit-1	0.004	-
	ritt		-0.669	ritt	-0.821	-0.365
	r 2 it			-0.191	r 2 it	-0.100	-
	rit			5.190	rit	4.854	3.371
	ω10(L)ritc2it 0.002	ω10(L)ritc2it -	-
	φ10(L)ritc3it 0.005	φ10(L)ritc3it -	-
	rit	4.325	rit	3.933	3.006
	σ1l	* t	-0.078	Ii1	2.332	-
	σ2l	* t	-0.001	Ii2	1.602	-
	σ3l	* t	0.028	Ii3	0.992	-
	σ4l	* t	0.082	Ii4	0.978	-
	σ5l	* t	0.280	Ii5	-0.388	-
	σ6l	* t	0.156	Ii6	1.445	-
	σ7l	* t	-0.018	Ii7	1.297	-
	σ8l	* t	-0.006	Ii8	1.908	-
	σ9l	* t	-0.098	Ii9	0.525	-
	σ10l	* t	0.100	Ii10	0.164	-
	σ11l	* t	0.233	Ii11	0.154	-
	σ12l	* t	0.057	Ii12	-0.072	-
	σ13l	* t	0.207	Ii13	-0.608	-
	σ14l	* t	-0.021	Ii14	1.348	-
	σ15l	* t	-0.025	Ii15	2.874	-
	σ16l	* t	0.055	-	-	-

  Notes: We computed λ for the latent-factor Poisson specification presented in Table8by computing the following means of λit:

	Table 10A															
	The estimates of average patent intensity, λ over 1979-2000 by industry						
	year/indu. 1-16 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	1979-2000	4.9	6.5	17.5 2.2 2.1 1.8 1.2 3.3 12.5 10.0 21.3 0.6 4.8 2.1 7.8	22.1 1.4

  We present the p-values corresponding to the mean N -SSR test statistic for each year, where the mean is computed over R trajectories of the latent factor. The test statistics corresponding to the Box-Cox type model and the

	Table 11			
	Mean N-SSR statistic for two alternative conditional mean functions
	Box-Cox model		RESET
	year 1989 1.45 N -SSR p-value N -SSR p-value 0.23 1.49 0.47
	1990 1.56	0.21	2.98	0.23
	1991 1.30	0.25	1.42	0.49
	1992 1.13	0.29	2.74	0.25
	1993 1.92	0.17	6.44	0.04
	1994 0.04	0.84	7.30	0.03
	1995 1.09	0.30	2.98	0.23
	1996 0.80	0.37	4.00	0.14
	1997 1.07	0.30	3.19	0.20
	1998 1.37	0.24	1.37	0.50
	1999 1.66	0.20	2.32	0.31
	2000 5.15	0.02	5.16	0.08
	Notes:			

Table 12

 12 Estimates of ρi for various count data models to test the endogeneity of R&D expenditure Notes: Robust standard errors are reported in parentheses. * = coefficient significant at the 5 percent level. We estimated the following specifications for t = 1979, . . . , 2000, i = 1, . . . , 4476 and j = 1, . . . , 16: HHG (1984) Poisson model with fixed effects (see Table3):λit = exp(X it β + ρ1v1it + ρ3v3it)αi X it β = γ1t + γ2trit + β5(L)ritExtended dynamic Poisson model with fixed effects (see Table5):λit = exp(X it β + ρ1v1it + ρ2v2it + ρ3v3it)αi X it β = γ1t + γ2trit + βr 2 it + Ψit Ψit = β10(L)rit + κnit-1Latent-factor dynamic Poisson model (see Table8):λit = exp(µ0 + X it β + σjl * t + ρ1v1it + ρ2v2it + ρ3v3it + ρ4v4it + ρ5v5it) X it β = γ1t + γ2trit + γ3Di + γ4zi + γ5ni1 + βr 2 it + Ψit Ψit = β10(L)rit + κnit-1 + rit[ω10(L)c2it] + rit[φ10(L)c3it]

	A. HHG (1984) Poisson model with fixed effects (see Table 3):
	Parameter Estimation
	ρ1	0.00 (0.001)
	ρ3	-0.15 * (0.009)
	B. Extended dynamic Poisson model with fixed effects (see Table 5):
	Parameter Estimation
	ρ1	0.00 (0.000)
	ρ2	0.01 (0.012)
	ρ3	-0.14 * (0.004)
	C. Latent-factor dynamic Poisson model (see Table 8):
	Parameter Estimation
	ρ1	0.00 (0.001)
	ρ2	-0.02 (0.020)
	ρ3	-0.03 (0.025)
	ρ4	-0.01 (0.010)
	ρ5	-0.03 (0.028)

See Hausman et al (1984),[START_REF] Pakes | On Patents, R&D, and the Stock Market Rate of return[END_REF],[START_REF] Lanjouw | How to Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data[END_REF] or[START_REF] Trajtenberg | A Penny for your Quotes: Patent Citations and the Value of Innovations[END_REF].

[START_REF] Ph | Competition and Growth: Reconciling Theory and Evidence[END_REF] provide an interesting overview.

We assume that the innovation terms in the latent AR(1) process of l * t are i.i.d. because we follow the specification of the latent intensity component and the statistical inference procedure proposed by[START_REF] Bauwens | Stochastic Conditional Intensity Processes[END_REF]. The statistical inference of the latent-factor Poisson model would be more complicated if {ηt} formed a serially correlated time series.

The ln L(w, θ) function corresponds to the q(w, θ) function in equation 12.8 of[START_REF] Wooldridge | Econometric Analysis of Cross Section and Panel Data[END_REF] in the definition of the M-Estimator.
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where {l * tr : t = 1, . . . , T } denotes the r-th trajectory of i.i.d. draws from {m t : t = 1, . . . , T } and r = 1, . . . , R. There are two questions arising related the above formulation: (A) How to choose m t ? and (B) How to choose the θ * t parameters?

(A) [START_REF] Richard | Efficient High-Dimensional Importance Sampling[END_REF] suggests to define the auxiliary sampler, m t with its associated density kernel, k t :

where

denotes the t-th integrating constant associated to k t . [START_REF] Richard | Efficient High-Dimensional Importance Sampling[END_REF] suggests to choose k t as a normal density kernel. Following [START_REF] Bauwens | Stochastic Conditional Intensity Processes[END_REF], we include the conditional density of the latent variable l * t into m t . Thus, the t-th normal density kernel has the following form:

where θ * t = (θ * t1 , θ * t2 ) determine the conditional mean and variance of the t-th auxiliary sampler m t . We can find relatively easily that the conditional mean, µ t and conditional variance, π 2 t of the normal auxiliary sampler, m t are given by the following expressions [START_REF] Bauwens | Stochastic Conditional Intensity Processes[END_REF] have the same expressions for the conditional moments of the latent factor):

Therefore, for given parameters of the auxiliary sampler a trajectory of {l * t } can be generated from the following autoregressive process:

where η t ∼ N (0, 1) i.i.d.. Moreover, from (A8) we may deduce that the t-th integrating constant is given by:

The EIS methodology relies on the optimal choice of parameters of the auxiliary samplers in the sense that for given m the variance of LR (N T , θ, θ * ) is minimized, i.e.:

In order to show that the Poisson QMLE is weakly consistent given that the conditional mean function is correctly specified, we use Theorem 12.2 of [START_REF] Wooldridge | Econometric Analysis of Cross Section and Panel Data[END_REF]. This theorem states under which conditions the M-Estimators are consistent. This is useful to us as the Poisson QMLE is a special case of the M-Estimation methods (see Wooldridge, 2002, pp.341).

Theorem 12.2 requires the following conditions: (a) Let w be a random vector of variables taking values in W ∈ R M , where M is the number of variables.

(b) Let the Θ parameter space be a subset of R p , where p is the number of parameters.

(c) Let the log QML function ln L(w, θ) :

(h) Identification assumption: the solution of the QMLE problem, θ 0 is unique: The figure presents patent propensity, i.e. mean number of patent applications, nit divided by mean R&D expenses, rit for each year for the 1979-2000 period. We employ this time period for the estimation of our econometric models. We also present the fitted quadratic regression line of β0 + β1t + β2t 2 to show the positive trend of the patent propensity. The figure presents the average number of citations received corrected for sample truncation bias using the fixed effects approach of [START_REF] Hall | The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools[END_REF]. That is for each patent we divide the number of citations received from future patents by the average number of patent citations received in the corresponding technological category and year.
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Fig. 8. Observable R&D spillovers by industries. Notes: The figure shows the average quality of knowledge that firms receive from past patents by citing them in the patent documents. Patent citations are classified as (1) self-citations, (2) intra-industry citations and (3) inter-industry citations. The quality of knowledge is measured by the number of citations received from future patents (corrected for sample truncation bias). Firms are classified into the following 16 industries:

(1) paper and printing, (2) chemicals, (3) rubber and plastics, (4) wood and misc., (5) primary metals, (6) fabricated metals, (7) machinery, (8) electrical machinery, (9) autos, (10) aircrafts and other trans., (11) textiles and leather, (12) pharmaceuticals, (13) food, ( 14) computers and inst., (15) oil, ( 16) non-manufacturing. [START_REF] Hall | Estimating the Productivity of Research and Development in French and United States Manufacturing Firms[END_REF] ACCEPTED MANUSCRIPT