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Dynamical density functional theory for colloidal particles
with arbitrary shape

Raphael Wittkowskia∗ and Hartmut Löwena†

aInstitut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität
Düsseldorf, D-40225 Düsseldorf, Germany

(July 15, 2011)

Starting from the many-particle Smoluchowski equation, we derive dynamical density func-
tional theory for Brownian particles with an arbitrary shape. Both passive and active (self-
propelled) particles are considered. The resulting theory constitutes a microscopic framework
to explore the collective dynamical behaviour of biaxial particles in nonequilibrium. For spher-
ical and uniaxial particles, earlier derived dynamical density functional theories are recovered
as special cases. Our study is motivated by recent experimental progress in preparing colloidal
particles with many different biaxial shapes.

Keywords: density functional theory, dynamical density functional theory, self-propelled
biaxial colloidal particles, active soft matter, Brownian dynamics of anisotropic particles

Invited contribution to the Special Issue of Molecular Physics in honor of Luciano Reatto

1. Introduction

In its original form, classical dynamical density functional theory (DDFT) was de-
rived by Marconi and Tarazona [1] in 1999 for spherical, i.e., isotropic, colloidal
particles. Their derivation started from the Langevin equation for spherical par-
ticles [2] that interact via a pair potential. Later, in 2004, DDFT was rederived
by Archer and Evans [3] from the Smoluchowski equation that corresponds to the
Langevin equation for interacting spherical particles. In 2007, DDFT was general-
ized by Rex, Wensink, and Löwen [4] to systems of uniaxial anisotropic particles
with orientational degrees of freedom. This generalization is based on the Smolu-
chowski equation for rigid rods [5]. It made DDFT applicable to the important class
of uniaxial liquid crystals.
Nowadays, it is already possible to produce colloidal particles with rather compli-

cated shapes including biaxial particles. Although static classical density functional
theory (DFT) has presently available very powerful tools like fundamental measure
theory [6] that allow to consider also such complicated colloidal particles in the
context of DFT, the dynamics of these biaxial particles could up to now not be
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investigated on the basis of DDFT. For these reasons, it is of high importance to
push forward the development of DDFT.
In this paper, we present a further generalization of DDFT, which is now also

applicable to biaxial particles. This extension of DDFT contains the previous DDFT
equations as special cases and does not assume a certain shape for the colloidal
particles. Instead, it is derived for arbitrarily shaped colloids. In comparison with
the former DDFT approach, this leads to three independent rotational diffusion
coefficients instead of only one. Since our new DDFT equation holds also for screw-
like particles, it takes even a possible translational-rotational coupling into account.
Additionally, we consider a possible self-propulsion mechanism of the particles so
that our results are also relevant for the investigation of the collective dynamics of
active particles like swarms of swimming microorganisms as, for example, protozoa
[7].
The paper is organized as follows: after giving a short overview in Sec. 2 about

anisotropic colloidal particle shapes that can already be synthesized, we present our
derivation of the extended DDFT equation in Sec. 3 and discuss special cases that
are known from literature. Sec. 4 is addressed to possible applications of the DDFT
equation. Finally, we give conclusions and mention possible further extensions of
DDFT in Sec. 5.

2. Geometric classification of colloidal particles

Induced by technological advance in the processing of nanomaterials, a large number
of differently shaped colloidal particles became synthetizable during the last years.
The different shapes of these colloidal particles can be classified by means of their
geometric properties. Figure 1 shows a detailed classification of colloidal shapes with
respect to symmetry and convexity. Such a classification is of big importance since
colloidal particles may form a huge set of mesotropic phases (mesophases) [8, 9] that
go along with different states of translational and orientational order. The possible
states of translational and orientational order depend strongly on the shapes of the
particles and a classification of their shapes is therefore also a classification of the
possible phases that these particles may evolve.
The most simple and at once full symmetric, i.e., isotropic, shape is the sphere.

This is the traditional shape for colloids in theoretical soft matter physics, because it
is simple to produce and due to a lack of orientational degrees of freedom relatively
simple to describe theoretically. Since spheres possess only translational degrees of
freedom, they solely appear in the completely disordered isotropic phase and in
the crystalline state [10]. The shape of a sphere is globally convex and there is
no non-convex analogue with full symmetry. All other colloidal particle shapes are
anisotropic and either uniaxial or biaxial. The characteristic property of uniaxial
particles is a symmetry axis, whose orientation is denoted by the unit vector û in
the following. These particles have rotational symmetry and possess one orienta-
tional degree of freedom in two spatial dimensions and two orientational degrees
of freedom in three spatial dimensions. Uniaxial particles are further distinguished
into apolar and polar particles. An uniaxial particle is called apolar, if it has head-
tail symmetry and polar otherwise. Rod-like particles [11, 12] like spherocylinders,
spheroids, and ellipsoids are the most simple anisotropic colloidal particles. They are
convex and apolar and of big importance since they may evolve the industrially im-
portant nematic phase and serve as excellent model systems for most liquid crystals
[13–15]. A further member of convex and apolar particles are the platelets [16–20].
They have a similar phase diagram to rod-like particles with a strong affinity to
form columnar stacks [21]. Systems of such disk-like particles are realized in nature
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Figure 1. Classification of synthetizable colloidal particles with respect to their shape. Geometrical prop-
erties that were used to classify the shapes are symmetry and convexity.

for example by clay suspensions [22–24]. Examples for non-convex apolar particles
are dumbbells (dimers) [25–27], that are produced by mergence of two spheres of
equal size, and rings [28, 29], that can be made by etching from colloidal spheres
that are partially embedded in a metal layer. The complement of apolar particles is
built by the polar particles, that have no head-tail symmetry. A famous member of
this particle class are the Janus particles [30–32]. They are spheres with a different
coating at one half of the surface. The original Janus particles had a hydrophilic and
a hydrophobic coating. Nowadays, one coating is often reactive like a platinic coat-
ing that decomposes hydrogen peroxide catalytically. Such particles are immersed
into a hydrogen peroxide solution to realize active particles (micro-swimmers) that
are driven by an intrinsic drive [33]. Cones are a further member of uniaxial polar
particles. Carbon nanocones appear naturally in graphite [34–36] and do not need to
be produced by an elaborate method. By the mergence of two spheres with different
diameters, one obtains a pear-like particle [37, 38]. Pears and also bowls [39, 40] are
non-convex particles that are uniaxial and polar. The latter stack into each other
and form columnar structures [41].
Particles with less symmetry are biaxial. They are the complement to the uniaxial

particles in the class of the anisotropic particles. Biaxial particles have either only
discrete symmetries, like inflection symmetry and discrete rotational symmetry, or
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are completely asymmetric. In both cases, the biaxial particles have three orienta-
tional degrees of freedom and a unit vector is no longer sufficient to describe their
orientation. Instead, two perpendicular unit vectors or Eulerian angles have to be
used [42]. Due to the additional orientational degree of freedom, the phase diagrams
of biaxial colloidal particles are much richer than those for uniaxial particles [43].
Convex colloidal particles with discrete rotational or inflection symmetry are, for
example, polyhedra like cubes [44–47] and tetrahedra [48, 49], boards [50], pyramids
[51–53], and regular patchy particles [54–57]. The latter differ from Janus particles
by a patchy coating with a regular, e. g., tetrahedral, arrangement. Non-convex
particles with discrete rotational or inflection symmetry include special colloidal
molecules that are realized by more than two spheres that are merged in a regular
arrangement. Examples for this include trimers [58] consisting of three equal spheres
and chiral particles [59, 60] consisting of many equal spheres in a helical arrange-
ment, multipod-shaped nanocrystals [61, 62], stars [46, 63], and some lock-and-key
particles [64]. Patchy particles may also belong to the class of colloidal particles
without any kind of symmetry. This is the case, if the patches are arranged or sized
in an irregular way. Irregular patchy particles that are made by coating of spherical
particles are always convex. Colloidal molecules of arbitrary shape and size belong
on the other hand to the completely asymmetric colloidal particles that are not
convex [65–68].

3. Derivation of the DDFT equation

In this derivation, we consider a set of N asymmetric rigid particles in a solvent with
dynamic (shear) viscosity η and neglect possible additional (for example vibrational)
degrees of freedom. We choose the centre-of-mass positions ~ri = (x1,i, x2,i, x3,i) and
the Eulerian angles ~$i = (φi, θi, χi) with i = 1, . . . , N to describe their positions and
orientations completely. Alternatively, the orientation of the particles could also be
described by means of two perpendicular axes [69], but for our purposes, the use of
Eulerian angles is more appropriate, since they do not involve additional geometric
constraints and lead to simpler equations with a more compact notation. The angular
velocities ~ωi that describe the instantaneous rotational motion of the particles can
be expressed in terms of the Eulerian angles and their temporal derivatives [70]. For
convenience, we use the convention of Gray and Gubbins [71], which is equivalent
to the second convention of Schutte [70], for the Eulerian angles, since with this
convention, the first two Eulerian angles φ and θ are identical to the usual azimuthal
and polar angles of the spherical coordinate system, respectively. The whole set of
particles is then characterized by the positional and orientational "multivectors"
~rN = (~r1, . . . , ~rN ) and ~$N = (~$1, . . . , ~$N ), respectively. For completeness, we also
introduce the abbreviation ~ωN = (~ω1, . . . , ~ωN ), here. The particles are exposed to
the (time-dependent) total potential

U(~rN, ~$N, t) = Uext(~rN, ~$N, t) + Uint(~rN, ~$N ) , (1)

which consists of the external potential

Uext(~rN, ~$N, t) =
N∑
i=1

U1(~ri, ~$i, t) (2)
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and the total particle interaction potential

Uint(~rN, ~$N ) =
N∑

i,j=1
i<j

U2(~ri, ~rj , ~$i, ~$j) . (3)

For both the one-particle interaction potentials U1(~ri, ~$i, t) and the two-particle
interaction potentials U2(~ri, ~rj , ~$i, ~$j), we assume pairwise additivity. Moreover,
we neglect many-particle interaction potentials of higher order than pair interaction
potentials. We further introduce the N -particle probability distribution function
P (~rN, ~$N, t) for the probability density to find the N particles at time t with the
orientations ~$N at the positions ~rN . Successive integration of this function with
respect to its positional and orientational degrees of freedom leads to the n-particle
density [3]

ρ(n)(~rn, ~$n, t) = N !
(N − n)!

∫
V
dVn+1· · ·

∫
V
dVN

∫
S
dΩn+1· · ·

∫
S
dΩNP (~rN, ~$N, t) , (4)

where V = R3 and S = [0, 2π) × [0, π) × [0, 2π) are the domains for spatial and
orientational integration, respectively, dV = dx1dx2dx3 and dΩ = dφdθ sin(θ)dχ
are the corresponding differentials, and

∫
V
dV =

∫ ∞
0
dx1

∫ ∞
0
dx2

∫ ∞
0
dx3 ,∫

S
dΩ =

∫ 2π

0
dφ

∫ π

0
dθ sin(θ)

∫ 2π

0
dχ

(5)

are common abbreviations.

3.1. Smoluchowski equation

We start with the derivation of the Smoluchowski equation for the overdamped
Brownian dynamics of N self-propelled biaxial particles. In analogy to the uniax-
ial passive case (see reference [5]), we define the translational gradient operator
~∇~r = (∂x1 , ∂x2 , ∂x3) and the rotational gradient operator ~∇~$ = iL̂, where i is the
imaginary unit and L̂ = (Lx1 ,Lx2 ,Lx3) is the angular momentum operator, which
can be expressed in terms of the Eulerian angles by [70]

iLx1 = − cos(φ) cot(θ) ∂
∂φ
− sin(φ) ∂

∂θ

+ cos(φ) csc(θ) ∂
∂χ

,

iLx2 = − sin(φ) cot(θ) ∂
∂φ

+ cos(φ) ∂
∂θ

+ sin(φ) csc(θ) ∂
∂χ

,

iLx3 = ∂

∂φ
.

(6)
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We further define the vectors ~xN = (~rN, ~$N ) and ~vN = (~̇rN, ~ωN ) with ~̇rN = d~rN/dt

and the operators ~∇~rN = (~∇~r1 , . . . , ~∇~rN
), ~∇~$N = (~∇~$1 , . . . , ~∇~$N

), and ~∇~xN =
(~∇~rN , ~∇~$N ) and write down the continuity equation

∂

∂t
P (~xN, t) = −~∇~xN ·

(
~vNP (~xN, t)

)
, (7)

which is a trivial generalization of the continuity equation for passive rods that is
described by Dhont in Ref. [5]. On the Brownian time scale, the total force and
torque, acting on an arbitrary particle i ∈ {1, . . . , N} are zero. The total force and
torque consist of the force ~F

(A)
i (~xN, t) and torque ~T

(A)
i (~xN, t) due to the activity of

the self-propelled particle i, the hydrodynamic force ~F (H)
i (~xN ) and torque ~T (H)

i (~xN ),
the interaction force ~F

(I)
i (~xN, t) and torque ~T (I)

i (~xN, t) due to the potential U(~xN, t),
and the Brownian force ~F (Br)

i (~xN, t) and torque ~T (Br)
i (~xN, t). With the definition ~X =

( ~X1, . . . , ~XN ) for ~X ∈ {~F ( · ), ~T ( · ), ~K( · )} and the abbreviations

~K(A)(~xN, t) = (~F (A)(~xN, t), ~T (A)(~xN, t)) ,
~K(H)(~xN ) = (~F (H)(~xN ), ~T (H)(~xN )) ,
~K(I)(~xN, t) = (~F (I)(~xN, t), ~T (I)(~xN, t)) ,
~K(Br)(~xN, t) = (~F (Br)(~xN, t), ~T (Br)(~xN, t)) ,

(8)

this force balance for the N colloidal particles can be expressed by

~0 = ~K(A)(~xN, t) + ~K(H)(~xN ) + ~K(I)(~xN, t) + ~K(Br)(~xN, t) . (9)

The forces and torques resulting from the self-propulsion mechanism of the particles
are supposed to be constant with respect to their orientations in the respective body-
fixed coordinate systems, but their strengths may vary slowly with time. We denote
these forces and torques for a certain particle i in body-fixed Cartesian coordinates
by the vector ~K(A)

0,i (~ri, t) for i = 1, . . . , N and the corresponding vector in space-fixed
coordinates by

~K
(A)
i (~ri, ~$i, t) = R−1

0 (~$i) ~K(A)
0,i (~ri, t) (10)

with the diagonal block rotation matrix

R0(~$) = diag
(
R(~$),R(~$)

)
, (11)

where the rotation matrix R(~$) is defined by

R(~$) = R3(χ)R2(θ)R3(φ) ,

R−1(~$) = RT(~$) = R3(−φ)R2(−θ)R3(−χ)
(12)
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with the elementary rotation matrices

R2(ϕ) =

cos(ϕ) 0 − sin(ϕ)
0 1 0

sin(ϕ) 0 cos(ϕ)

 ,
R3(ϕ) =

 cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

 .
(13)

Note that ~K(A)
0,i depends most often only on time t, but one could also think of swim-

ming microorganisms in a poisoned environment, where ~K(A)
0,i also depends on ~ri. To

simplify the notation in the following, we collect all the N vectors ~K(A)
i (~ri, ~ωi, t) in

the vector

~K(A)(~xN, t) = R−1(~$N ) ~K(A)
0 (~rN, t) (14)

with the 6N×6N -dimensional rotation matrix

R(~$N ) = diag
(
R0(~$1), . . . ,R0(~$N )

)
(15)

and the 6N -dimensional vector

~K
(A)
0 (~rN, t) =

(
~K

(A)
0,1 (~r1, t), . . . , ~K(A)

0,N (~rN , t)
)
. (16)

Next, we focus on the hydrodynamic force and torque. They are given by

~K(H)(~xN ) = −Υ(~xN )~vN (17)

with the microscopic friction matrix [5]

Υ(~xN ) =
(

ΥTT(~xN ) ΥTR(~xN )
ΥRT(~xN ) ΥRR(~xN )

)
, (18)

where ΥTT(~xN ), ΥTR(~xN ), ΥRT(~xN ), and ΥRR(~xN ) are 3N×3N -dimensional subma-
trices. The submatrices ΥTT(~xN ) and ΥRR(~xN ) correspond to pure translational and
rotational motion, respectively, while ΥTR(~xN ) and ΥRT(~xN ) have to be taken into
account for particles with a translational-rotational coupling as, for example, screw-
like particles. For many other particles like those that are orthotropic, however,
ΥTR(~xN ) and ΥRT(~xN ) vanish. In the following, we neglect hydrodynamic interac-
tions between the colloidal particles. With this assumption, the microscopic friction
submatrices simplify to the block diagonal matrices

ΥTT(~$N ) = diag
(
ΥTT

11 (~$1), . . . ,ΥTT
NN (~$N )

)
, (19)

ΥTR(~$N ) = diag
(
ΥTR

11 (~$1), . . . ,ΥTR
NN (~$N )

)
, (20)

ΥRT(~$N ) = diag
(
ΥRT

11 (~$1), . . . ,ΥRT
NN (~$N )

)
, (21)

ΥRR(~$N ) = diag
(
ΥRR

11 (~$1), . . . ,ΥRR
NN (~$N )

)
(22)
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with the 3×3-dimensional matrices

ΥTT
ii (~$i) = ηR−1(~$i)KR(~$i) , (23)

ΥTR
ii (~$i) = ηR−1(~$i)C(S)TR(~$i) , (24)

ΥRT
ii (~$i) = ηR−1(~$i)C(S) R(~$i) , (25)

ΥRR
ii (~$i) = ηR−1(~$i) Ω(S) R(~$i) (26)

for i = 1, . . . , N , which are related to the translation tensor K, the coupling tensor
C(S), its transposed C(S)T, and the rotation tensor Ω(S) [72] by an orthogonal trans-
formation with the rotation matrix R(~$). The tensors K, C(S), and Ω(S) are constant
and depend on shape and size of the colloidal particles that are considered, but are
independent of the viscosity of the solvent. In addition, C(S) and Ω(S) depend also
on the reference point S, for which the centre-of-mass position of the considered col-
loidal particle should be chosen. In the special case of no hydrodynamic interaction,
the inverse of the microscopic friction matrix

Υ−1(~xN ) = βD(~xN ) (27)

with the inverse temperature β = 1/(kBT ), the Boltzmann constant kB, and the
microscopic short-time diffusion matrix

D(~xN ) =
(
DTT(~xN ) DTR(~xN )
DRT(~xN ) DRR(~xN )

)
, (28)

which we need in the following, has the same structure as the microscopic friction
matrix. We further have the equation

~K(I)(~xN, t) = −~∇~xNU(~xN, t) (29)

for the interaction force and torque. Moreover, the Brownian force and torque
~F (Br)(~xN, t) and ~T (Br)(~xN, t) can be derived from the equilibrium condition

lim
t→∞

P (~xN, t) ∝ e−βU(~xN,t) (30)

when ~K(A)(~xN, t) is neglected and the vector ~vN in Eq. (7) is expressed in terms of
the vectors ~xN , ~K(I)(~xN, t), and ~K(Br)(~xN, t) with the help of Eq. (9). This results in

~K(Br)(~xN, t) = − 1
β
~∇~xN ln

(
P (~xN, t)

)
. (31)

Using Eqs. (9), (17), (29), and (31), the Smoluchowski equation

∂

∂t
P (~xN, t) = L̂P (~xN, t) (32)

with the Smoluchowski operator

L̂ = ~∇~xN ·
(
D(~xN ) ·

(
β ~∇~xNU(~xN, t)− β ~K(A)(~xN, t) + ~∇~xN

))
(33)

follows now directly from the continuity equation (7).
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3.2. DDFT equation

Next, we proceed in our derivation by applying the integration operator
N
∫
VdV2· · ·

∫
VdVN

∫
SdΩ2· · ·

∫
SdΩN from the left on the Smoluchowski equation (32)

and obtain the expression

∂

∂t
ρ(~x, t) = ~∇~x ·

(
D(~x) ·

(
− β ~KA(~x, t)ρ(~x, t)

+~∇~xρ(~x, t) + βρ(~x, t)~∇~xU1(~x, t)− βK̄(~x, t)
)) (34)

with the short-time diffusion tensor1

D(~$) =
(
DTT

11 (~$) DTR
11 (~$)

DRT
11 (~$) DRR

11 (~$)

)
(35)

for the one-particle density ρ(~x, t) ≡ ρ(1)(~x, t), where we omitted the index 1 in ~r1 and
~$1 and used the abbreviations ~x = (~r, ~$), ~∇~x = (~∇~r, ~∇~$), ~KA(~x, t) = ~K

(A)
1 (~x, t),

and K̄(~x, t) = (F̄ (~x, t), T̄ (~x, t)). When we further introduce the integration operator∫
G
dV =

∫
V
dV

∫
S
dΩ (36)

with the total integration domain G = V × S and the corresponding differential
dV = dV dΩ, the average force F̄ (~x, t) and torque T̄ (~x, t) due to the interaction with
other particles in Eq. (34) are given by

K̄(~x, t) = −
∫
G
dV′ ρ(2)(~x,~x′, t)~∇~xU2(~x,~x′) . (37)

In equilibrium with ~KA(~x, t) = ~0 and U1 = U1(~x), Eq. (34) reduces to the first equa-
tion of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for molecular fluids
[71]:

βK̄0(~x) = ~∇~xρ0(~x) + βρ0(~x)~∇~xU1(~x) . (38)

Here, a zero in the index of a function denotes the time-independent equilibrium
state of this function. For example, the function ρ0(~x) denotes the equilibrium one-
particle density field that corresponds to the time-independent prescribed external
potential U1(~x). On the other hand, we have in equilibrium the relation

~∇~xρ0(~x) + βρ0(~x)~∇~xU1(~x) = −βρ0(~x)~∇~x
δFexc[ρ0(~x)]
δρ0(~x) (39)

with the equilibrium Helmholtz excess free-energy functional Fexc[ρ0(~x)]. This rela-
tion follows with

~∇~xc
(1)
0 (~x) =

∫
G
dV′ c

(2)
0 (~x,~x′)~∇~x′ρ0(~x′) , (40)

1The reason for us to write D(~x) instead of D(~$) in Eqs. (33) and (34) is that one could in principle also
describe systems with a space-dependent short-time diffusion tensor. This is especially relevant for fluids
with a space-dependent viscosity.
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where c(n)
0 (~x1, . . . ,~xn) is the n-particle direct correlation function in equilibrium, and

c
(1)
0 (~x) = −β δFexc[ρ0(~x)]

δρ0(~x) (41)

from the more general form

~∇~xρ0(~x) + βρ0(~x)~∇~xU1(~x) = ρ0(~x)
∫
G
dV′ c

(2)
0 (~x,~x′)~∇~x′ρ0(~x′) (42)

of Eqs. (14) and (16) in reference [73]. Equations (38) and (39) lead to the equilibrium
relation

K̄0(~x) = −ρ0(~x)~∇~x
δFexc[ρ0(~x)]
δρ0(~x) , (43)

which we use instead of Eq. (37) as closure relation for Eq. (34) in the time-
dependent (non-equilibrium) situation. A similar adiabatic approximation was used
in the derivations of the DDFT equations for isotropic [1, 3] and uniaxial [4] colloidal
particles. The approximation results in the generalized DDFT equation

∂ρ(~x, t)
∂t

= β ~∇~x ·
(
D(~x) ·

(
ρ(~x, t)

(
~∇~x

δF [ρ(~x, t)]
δρ(~x, t) − ~KA(~x, t)

)))
(44)

for anisotropic colloidal particles with the total equilibrium Helmholtz free-energy
functional

F [ρ0(~x)] = Fid[ρ0(~x)] + Fexc[ρ0(~x)] + Fext[ρ0(~x)] (45)

that can be decomposed into the ideal rotator gas part [74]

βFid[ρ0(~x)] =
∫
G
dV ρ0(~x)

(
ln
(
Λ3ρ0(~x)

)
− 1

)
(46)

with the thermal de Broglie wavelength Λ, the excess free-energy part Fexc[ρ0(~x)],
and the contribution [74]

Fext[ρ0(~x)] =
∫
G
dV ρ0(~x)U1(~x, t) (47)

due to the external potential U1(~x, t). The DDFT equation (44) describes the time
evolution of the one-particle density for a system of similar anisotropic self-propelled
colloidal particles that interact over a pair potential and is the main result of this
paper.

4. Special cases and possible applications

There is no translational-rotational coupling in the uniaxial case, which means that
DTR(~xN ) and DRT(~xN ) and therefore also DTR

11 (~$) and DRT
11 (~$) vanish in this case.

Furthermore, the one-particle density and the free-energy functional do not depend
on the angle χ for uniaxial particles and the translational diffusion tensor can then
be written as the matrix DTT(û) = D‖û ⊗ û + D⊥(1 − û ⊗ û), which obviously
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only depends on the two independent short-time diffusion coefficients D‖ and D⊥
for diffusion parallel and perpendicular to the orientation of the symmetry axis
û = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) of the uniaxial particle, respectively, where
1 denotes the 3×3-dimensional unit matrix. Also the rotational diffusion matrix
becomes quite simple for uniaxial particles. When we use DRR = DR1 with the ro-
tational short-time diffusion coefficient DR and the considerations above and neglect
the self propulsion, we obtain the uniaxial DDFT equation [4] from our more general
DDFT equation (44). From the uniaxial DDFT equation, one can in turn derive the
DDFT equation for two spatial dimensions [75] as well as the traditional DDFT
equation for colloidal particles with spherical symmetry [1, 3] as special cases.
The generalized dynamical density functional theory for passive and active biaxial

particles as proposed in Eq. (44) can be numerically solved for a plenty of differ-
ent problems. For passive particles, one can explore for example: i) the relaxation
dynamics towards equilibrium [4], ii) the response of the system to time-dependent
external potentials [76], iii) the growth of a thermodynamically stable phase into
an unstable phase [77]. Interesting effects for self-propelled particles include among
others: i) the swarming and clustering behavior of biaxial particles in the bulk and in
confinement [75, 78], ii) the combined impact of self-propulsion and external forcing
[75], iii) the effect of space- and time-dependent internal forcing [79].

5. Conclusions and outlook

In conclusion, starting from the multi-body Smoluchowski equation, we have derived
dynamical density functional theory for self-propelled Brownian colloidal particles
with arbitrary shape. This study was motivated by recent progress in synthesizing
colloidal particles with (almost) arbitrary shape. Our results constitute an important
framework for further numerical explorations. This is in particular appealing as
since recently an equilibrium density functional is known for arbitrarily shaped hard
colloids [6, 80, 81] which can serve as an input for the dynamical density functional
theory. Another possibility to construct a density functional for biaxial particles is a
mean-field approximation for repulsive segment potentials [4], which works for soft
interactions [82], or a perturbation theory [83, 84] for anisotropic attractions around
a spherical reference system. A large number of dynamical problems can then in
principle be addressed including the dynamics [85–87] and relaxation of nematic-
like order in confined systems [4, 88], nematic phases driven by external fields [76],
nucleation kinetics of liquid crystalline phases [89–92], and collective behavior of self-
propelled particles [75, 78]. The results can be checked against Brownian dynamics
computer simulations [93, 94].
Possible extensions for the future are the inclusions of hydrodynamic interactions

between the particles which are mediated by the solvent. Dynamical density func-
tional theory of spherical particles was generalized for hydrodynamic interactions
[95–97], but this is not yet done for anisotropic particles. Another interesting ex-
tension would be towards molecular dynamics which is the appropriate dynamics
for molecular liquid crystals. But even for spheres it is much more complicated to
formulate a dynamical density functional theory for molecular dynamics [98–100].
Finally, the theory can readily be generalized towards binary mixtures [101].
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