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We discuss the results of intensive Brownian dynamics simulations of a simple model of
tetrahedral patchy particles in the optimal network density region. This choice allows us to
investigate the evolution of the structure and of the dynamics in a wide range of temperatures
without encountering any phase separation. The slowing down of the dynamics in this model
system is driven by the progressive bond formation and the increasing bond lifetime. Despite
dynamical arrest is different from the glass case, where excluded volume interactions are
dominant, the decay of the self and collective correlation functions of the resulting fluid bears
similarities with the one observed in glassy systems.

1. Introduction

Patchy colloidal particles[1–3] continue to be the subject of an intense investi-
gation, both experimentally and theoretically. There is indeed much expectation
in the outcome of recent efforts of creating colloidal particles that interact via
anisotropic potentials. The challenge faced by physicists, chemical engineers and
material scientists is to organize these new geometries into structures for func-
tional materials and devices via self–assembly, the spontaneous organization of
matter into desired arrangements. The aim is to achieve — via the rational design
of elementary building blocks (i.e. the particles) — pre-defined specific, ordered or
disordered, structures, shifting from the top-down to the bottom-up approach, in
which effort is made in the direction of controlling particle shape and patterning.

Theoretical and numerical studies of the phase behavior of patchy colloidal
particles has been very much rewarding. Quite unexpectedly, a very rich frame-
work for interpreting phenomena like thermoreversible gelation, the competition
between gelation and glass transition or the competition between condensation
and polymerization[4] has been unraveled. New concepts like empty liquids[5–7],
equilibrium gels[8, 9], unconventional gas-liquid phase diagrams[10–12] have been
introduced and have been very fruitful in promoting further developments[13, 14].
One of the unexpected connections concerns the analogy between gelation in patchy
colloids and glass formation in atomic and molecular network forming systems[13].
Indeed, studying the role of the ”valence” M (defined here as the maximum num-
ber of possible bonded nearest neighbors) it has been disclosed that the packing
fraction φ of the liquid coexisting with the gas decreases on decreasing M [5]. For
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the case of hard-sphere colloids with four patches, φ is of the order of 30%. This
implies that, for larger values of φ, gas-liquid phase separation is not encountered
on cooling. On progressively decreasing temperature T , the average lifetime of a
patch-patch bond increases and particles become arrested by being part of a long-
lived network of bonds. Energetic bonds thus determine the slowing down of the
dynamics and the approach to a non-ergodic state, a dynamic arrest that we call
gelation[6, 8, 15, 16]. Dynamic arrest can thus be expected to be different from
the one characterizing glassy states, where caging is controlled by excluded volume
interactions. Limited valence is crucial for observing gelation, since only when va-
lence is limited this region of intermediate densities where packing does not play
a major role is accessible at low T . For spherically interacting colloids, the gas-
liquid phase separation is much wider and the coexisting liquid density is found at
φ ≈ 0.6 − 0.7. Hence, if crystallization is preempted, a liquid of spherically inter-
acting particles can be brought to low T to form a glass without phase separating
only at very large densities.

In this article we investigate in details the evolution on cooling of the self and
collective dynamics of a model for tetrahedral patchy colloids in the gel region at
a fixed value of the density, in the so-called optimal network density region. In
this window of densities the system is expected to be able to form an ideal (fully
connected) random tetrahedral network[17]. At lower densities, gas-liquid phase
separation takes place, while at larger densities packing prevents the possibility of
geometrically arranging all molecules with proper angular and distance constraints
required to form bonds. Despite the different nature of the dynamical arrest process,
driven by bonding and not by packing, the decay of the correlation functions for
this four coordinated model resembles the one observed in glasses.

2. Models and numerical methods

We study a simple continuous model for tetrahedral patchy particles by means of
Brownian dynamics simulations. A particle is modeled as a rigid body defined by
the position of its center of mass and by M = 4 vectors indicating the locations of
the four patches[6]. The interaction potential between particles 1 and 2 is

V (1, 2) = VCM + VP (1)

where VCM is the potential acting between the centers of mass of the two particles,
and VP is the interaction between patches:

VCM (1, 2) =

(
1

r12

)m
(2)

VP (1, 2) = −
M∑
i=1

M∑
j=1

ε exp

[
−1

2

(
rij12

α

)n]
. (3)

The large value m = 200 is chosen to approximate the hard-sphere behavior, the
quantity n = 10 makes the exponential function resemble a square well, α = 0.12
guaranties that the single bond per patch condition is satisfied and ε = 1.001
fixes the absolute minimum at unitary depth. The distance between the centers of
particles 1 and 2 is indicated as r12 while the distance between patches on differ-
ent particles with the symbol rij12. Bond forces thus act on surface spots allowing
momenta which can induce particle rotations.
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The parameters entering in the functional form (Eqs. 2 and 3) have been chosen
in such a way that the resulting potential has a depth u0 = −1 and it resembles the
one resulting from respectively an hard sphere and a square well potential, allowing
greater flexibility in the study of the dynamics of these systems compared to step-
wise potentials. Note that, while in the Kern-Frenkel potential[18] the interaction
range and the angular width of the bond can be independently controlled, in the
present continuous potential the patch-patch interaction depends only on the patch-
patch distance and hence the patch-patch interaction range and angular width are
coupled.

We perform Brownian dynamics simulations in the NVT ensemble using 10000
particles in a cubic box of size L = 26 with periodic boundary conditions. In the
following, the energy unit is chosen to be the depth u0 of the potential, the length
unit is chosen to be the colloids diameter σ and time is in units of σ

√
m/u0, where

m is the mass of the colloids. The Brownian algorithm used in the simulations is
described in the appendix of Ref. [6]. Here we summarize its features. A Velocity
Verlet integrator with a timestep δt = 0.001 is used to integrate the equations of
motion. To model Brownian diffusion, we define a probability p for each particle to
undergo a random collision every N time steps. By tuning p it is possible to obtain
the desired free particle diffusion coefficient D0 using the relation

D0 =
kBTNδt

m

(
1

p
− 1

2

)
(4)

In the simulation units the chosen translational bare diffusion coefficient is DT
0 =

0.01 and the corresponding rotational diffusion coefficient id DR
0 = 0.03 (so that

DR
0 /D

T
0 = 3, as expected for non-slip particles). These values fix pT and pR for

each temperature.
The average time between two random collisions is given by

∆t =
Nδt

p
=
kBTNδt+ 2mD0

2kBT
(5)

thus our simulations follow a Newtonian dynamics for t < ∆t and a Brownian
dynamics after that time.

In order to equilibrate at the lowest temperatures we implemented a version of
the code that runs on GPUs using CUDA[19]. The simulations were performed on
Tesla C2050 GPUs. While on this hardware peak performances can be achieved
only if single precision is used, the numerical instability makes it unfeasible to
use float precision[20]. To overcome these instabilities but still retain good perfor-
mances we use double precision for time integration and single precision for force
calculation[20, 21]. While using full double precision results in a two-fold perfor-
mance loss, using this mixed single-double precision results only in a 10%− 15%
decrease in performances.

The performances achieved on GPUs depend heavily on interaction details (such
as cut-off distances), number of particles and density[20–23]. For the state points
investigated in this work (N = 10000, ρσ3 = 0.57) we obtained a 30x speed-up
with respect to a Xeon E5620 (single core).

We have used up to 1010 MD steps for equilibration and from 107 to 2 · 109 MD
steps for data generation, depending on the temperature.

In Brownian dynamics simulations particles are subject to a random force which
accounts for the collisions between colloidal particles and the solvent. Even if the
random force has a zero mean, the position of the center of mass of the system
becomes a random variable, again with zero mean. In standard simulations the
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random motion of the center of mass (COM) is negligible and the particle dynamics
is weakly affected by this random process. In the study of very long simulations,
as the ones reported here (which extend to 109 integration time steps), the motion
of the center of mass can be quite substantial and can produce artifacts in the
evaluation of dynamical quantities. For this reason, in all data presented in this
work the trajectories of the single particles have been corrected to subtract the
center of mass motion. Care need to be taken in the analysis of Brownian dynamics
trajectories in glassy states, especially now that the increased power of GPUs for
scientific application is opening the possibility of investigating glassy states via
lengthy simulations.

3. Results

3.1. Static

To proper frame the investigation of the dynamics, we start by showing in Fig. ??(a)
the potential energy per particle as a function of T . The energy has the typical
sigmoidal shape characteristic of bond interactions, reminiscent of the two-state
behavior of the bonds (broken or formed). On cooling, the system changes from a
collection of isolated clusters to a percolating network to an essentially fully bonded
configuration, with a few isolated monomers, detaching from the infinite cluster,
as indicated by the cluster size distribution, reported in Fig. ??(b). Two particles
are considered connected (and hence belonging to the same cluster) if their pair
interaction energy is lower than −0.5. Below T = 0.15, a large fraction of particles
belongs to the infinite cluster and at the lowest investigated T , more than 99% of
the particles is in the infinite cluster (see inset of Fig. ??(b)). Hence, at low T the
system can be visualized as a percolating network which incorporates most of the
particles.

[Figure 1 here]

3.2. Bond Lifetime

The bond-bond autocorrelation function Cb(t), defined as the probability that a
bond existing at t = 0 exists also at time t, provides a quantification of the typ-
ical microscopic time, setting the scale for the dynamics, separating the (short)
time scale in which the dynamics takes place at fixed bonding pattern from the
(long) time scale where dynamics is intrinsically connected to bond breaking events.
Fig. ??(a) shows Cb(t) for all the investigated T , showing that more than five order
of magnitudes in bond lifetime are properly explored. The decay of the correlation
function can be fitted with a stretched exponential function, e−(t/τb)βb , and the
values of βb are reported in the inset, while the T dependence of τb is shown in
Fig ??(b). The decay is clearly stretched, suggesting that the different local bond-
ing environments have a role in the process of bond breaking. From the fit, an

average bond time can be calculated as 〈τb〉 = τb
βb

Γ
(

1
βb

)
, where Γ(x) is the Gamma

function.
[Figure 2 here]

3.3. MSD and D

Fig. ??(a) shows the mean square displacement (MSD) for all the investigated T .
Above and around percolation, no plateau in the time dependence of the MSD is
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observed. Indeed, close to T = 0.15, the lifetime of the bonds is still very short and
no dynamical signatures of the presence of a transient infinite cluster are observed.
Below percolation, an inflection develops which gives rise to a plateau which in-
creases on further cooling. The height of the inflection point significantly changes
with T , signaling that bonding progressively reduces the cage volume. At the lowest
T , the MSD becomes comparable to the square of the bonding distance, suggesting
that in a (almost) fully bonded locally tetrahedral structure, bond confinement can
be quite effective.

The diffusion coefficient D, evaluated from the long time limit of the mean square
displacement (MSD = 6Dt) is shown in Fig. ??(b). D is clearly super-Arrhenius
around the percolation temperature. In this T -interval indeed the structure of the
system changes significantly, since particles first aggregate into larger and larger
clusters and, beyond percolation, join more and more the spanning cluster. As
discussed later on, upon entering well inside percolation the structure of the sys-
tem reaches its equilibrium gel state and no further significant structural changes
take place. At these low T , D shows an apparent Arrhenius behavior, with an
activation energy of about −4.5, a value slightly larger than the energy required
to completely break four bonds. The Arrhenius dependence classifies the present
model in the category of strong glass forming systems[24], which includes all tetra-
hedral network fluids. In this respect, the present results confirm once more that
there is a strong connection between the insurgence of an open local structure held
together by strong directional forces and the observation of an Arrhenius dynamics.
It is also interesting to observe that a similar value has been recently reported in
the study of ST2 water at the optimal network density[25]. Values of the activation
energy of the order of four bonds have also been observed in a model of tetrahe-
dral DNA constructs[26] and in a primitive model for water[17], suggesting that
the mechanism for microscopic dynamics in tetrahedral networks shares common
features.

[Figure 3 here]

3.4. Self dynamics

[Figure 4 here]
To analyze the tagged particle motion in the wave vector ~q space, we evaluate

the self-intermediate scattering functions Fs(q, t), defined as

Fs(q, t) =
1

N

N∑
i=1

< e−i~q·(~ri(t)−~ri(0)) > (6)

where ~ri(t) is the position of the center of particle i at time t. The behavior of
the correlation functions is shown in Fig. ?? as a function of T for two different
wave-vector values ((a) and (b) panels) and as a function of q at T = 0.10 ((c)
panel). To help comparing the characteristic timescales, the bond autocorrelation
function is also reported. The long time decay of these functions can be rather well
modeled via stretched exponentials,

Fs(q, t) = fsq e
−(t/τs(q))

βsq

(7)

where fsq plays the role of the non-ergodicity factor, τs(q) is the characteristic
decay time and βsq is the stretching exponent. The wave-vector dependence of fsq ,
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τs(q) and βsq is reported in Fig. ??. The non-ergodicity parameter shows the typical
gaussian shape, but with an amplitude that is clearly T dependent, confirming that
the cage volume decreases on cooling. A similar effect is also observed in glasses,
but only below the so-called mode-coupling critical temperature[27], suggesting
that somehow network liquids remain sufficiently fluid to be observed well below
the point where dynamics crosses from power-law to Arrhenious. The stretching
exponent is also T dependent and varies significantly on varying q. At small q, where
dynamics has to convert to diffusive dynamics, βsq approaches one and τs(q) ∼ q−2.

Finally, Fig. ??(c) shows τs(q) and Fig. ??(d) shows τs(q)q
2. It also shows the

corresponding lifetime of the bond. Interestingly, the crossing between τb and τs(q)
takes place to larger and larger q values on cooling, suggesting that the dynamics on
smaller and smaller timescales becomes more and more slaved to the bond breaking
process. Only when time has become longer than the bond-breaking time particles
are able to restructure themselves and relax the density fluctuations. Fig. ??(d)
also shows that at the lowest investigated T , the approach to the diffusive limit
is not clearly reached within the wave-vector range which can be explored by our
simulation.

[Figure 5 here]

3.5. Collective dynamics

To analyze the collective particle motion in wave vector ~q space, we evaluate the
coherent intermediate scattering functions Fc(q, t), defined as

Fc(q, t) =
1

N
<

N∑
i,j=1

e−i~q·(~ri(t)−~rj(0)) > (8)

As for the self-case, we show in Fig. ?? the q and T dependence of the collective
correlation function. The data are significantly more noisy, reflecting the absence
in the average over the distinct tagged particles. Despite the noise, some trends are
clear and worth discussing. At low temperatures, very long times and small wave
vectors, Fc(q, t) shows an oscillatory behavior which has been tentatively attributed
to the presence of acoustic sound modes[8]. If we use Eq. 7 to fit these curves, we can
note that also the collective non ergodicity parameter shows a clear T dependence
at low T . The values of f cq indeed oscillate around the self ones, in phase with the
position of the peaks of the structure factor S(q) (Fig. ??(e)), similarly to what
has been observed for glasses[28–30]. Beside the main peak at qσ ≈ 8, the structure
factor shows a pre-peak characteristic of tetrahedral networks, where the slowest
collective modes are found. On passing, we note that the T dependence of S(q)
tends to saturate at low T (S(q) at T = 0.10 and T = 0.105 are identical within
the noise) suggesting that the system structure does not significantly evolve any
longer with T . This saturation of S(q) at small T has been interpreted as evidence
of an equilibrium gel state[5, 31].

Interestingly, the decay of the density fluctuations does not always requires the
breaking of bonds. For example, at T = 0.115, τc(q) is always smaller than τb,
suggesting that the decay of the density fluctuations at small q happens at a fixed
network structure. On further cooling, τc(q) and τb get closer, and at T = 0.10
τc(q) & τb for intermediate and large values of q.

This means that the breathing modes of the network, diffusive in nature, are of
sufficient amplitude to relax the density fluctuations at large wave-length. Only at
very low T the gel becomes so stiff that the decay of the density fluctuations takes

Page 6 of 9

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

July 5, 2011 16:48 Molecular Physics reatto

7

place on a time scale comparable or longer than τb. This is more clearly shown in
Fig. ??: at T = 0.115 the bond-bond autocorrelation decays faster than the density
fluctuations at qσ = 4.59; at T = 0.105 the two times are similar while at T = 0.10
the opposite behavior is observed and the decay of the density fluctuations requires
the breaking of the network to take place.

[Figure 6 here]
[Figure 7 here]

4. Conclusions

We have reported a study of the self and collective dynamics of a simple tetrahe-
dral patchy model for a colloidal particle decorated by four attractive sites, located
on the vertex of a tetrahedron. The shape and range of the site-site interaction is
chosen in such a way that particles can form at most one bond per site. On cooling,
the system progresses from a collection of isolated clusters to an essentially fully
bonded tetrahedral network, in which most of the particles are engaged in four
bonds. We have investigated the model at a fixed density, in the optimal network
density region. Indeed, the presence of a limited number of strong directional in-
teractions determines a limited range of densities which are compatible with the
possibility of satisfying all possible interacting sites. This optimal density region
is limited at low density by the presence of a gas-liquid coexistence and at high
density by increasing packing, preventing the possibility of approaching the fully
bonded network state. Along this isochore, the dynamics progressively slows down,
first with a super-Arrhenious T dependence (around percolation), then crossing to
an Arrhenious dependence at low T . The behavior is similar to the one reported
for silica and water, where also a cross-over from super-Arrhenious to Arrhenious
has been observed in connection to the establishment of an extensively connected
network[32, 33]. In the case of silica this crossover has been interpreted as a mani-
festation of the Mode Coupling temperature[34]. In this model, in which bonding is
unambiguously defined, it appears that Arrhenious dynamics sets in when most of
the particles belong to the spanning cluster. Interestingly, the comparison between
the timescales of bond-breaking events and diffusional processes clearly shows that
diffusion over long distances (as detected by Fs(q, t)) is slaved to the bond life-
time and a truly diffusional process (such that τsq

2 is approximately constant) can
be observed at very small wave vectors only. The characteristic timescale of the
collective dynamics shows oscillations in phase with the structure factor, similarly
to what has been found in the case of atomic and molecular glass formers[28–30].
Interestingly, the decay of the density fluctuations does not always requires the
breaking of bonds. Only at very low T the gel has become so stiff that the decay
of the density fluctuations, even on length scales comparable to the particle size,
requires the preliminary breakdown of the bond network. Under these conditions,
the self and collective dynamic become slaved to the time scale set by τb.
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Figure captions:

(1) (a) Potential energy per particle U as a function of temperature (black
circles). Also shown for comparison is the potential energy per particle in a
diamond crystal structure (red squares). (b) Number of clusters n(s) of size s
for different temperatures for a system of 10000 monomers. For T < 0.15 the
system always contains a percolating cluster (disconnected points at s ≈ 104).
Inset: percentage of particles that are in the infinite cluster (P∞) as a function
of T .
(2) (a) Bond-bond autocorrelation function for different temperatures
(T=0.098, 0.10, 0.105, 0.11, 0.115, 0.12, 0.15, 0.25). A stretched exponential
fit to Cb(t) at T = 0.12 is also included (dashed line). Inset: values of the fit
parameter βb (see text) for different temperatures. (b) Values of the fit param-
eter τb (black circles) and the average bond time 〈τb〉 (red squares, see text)
for different temperatures.
(3) (a) Mean square displacement for different temperatures. The dashed line
shows the expected time dependence of the diffusive behavior at long times for
monomers (for which Dt = 0.01). (b) Diffusion coefficient D extracted from
the slope of the MSD at long time for different temperatures (black circles).
The red line is an Arrhenious fit performed over the five lowest temperatures.
(4) (a) Fs(q, t) at different temperatures for qσ = 0.48. (b) Fs(q, t) at different
temperatures for qσ = 4.59 (corresponding to the first peak in the S(q), see
Fig. ??(e)). (c) Fs(q, t) at T = 0.10 for different values of the wave vector qσ
(0.24, 2.1, 3.9, 5.7, 7.5, 9.3, 11, 13, 15, 17, 18, 20, 22, 24). Also shown is the
Cb(t) at the same temperature (dashed red line).
(5) Fit results for the self (solid lines) and collective (symbols) intermediate
scattering functions for different temperatures as functions of the wave vector.
(a) Non ergodicity factors. (b) Stretched exponents. (c) Characteristic decay
times (dashed lines are τb, added for comparison). (d) Characteristic decay
times multiplied q2. (e) Structure factors for the lowest temperatures.
(6) (a) Fc(q, t) at different temperatures for qσ = 0.48. (b) Fc(q, t) at different
temperatures for qσ = 4.59. (c) Fc(q, t) at T = 0.10 for different values of the
wave vector. Also shown is the Cb(t) at the same temperature (dashed magenta
line).
(7) Fc(q, t) for qσ = 4.59 (solid lines) and Cb(t) (dashed lines) at three different
temperatures.
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