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Abstract. The Multi-points Expected Improvement criterion (or q-EI)
has recently been studied in batch-sequential Bayesian Optimization.
This paper deals with a new way of computing q-EI, without using
Monte-Carlo simulations, through a closed-form formula. The latter al-
lows a very fast computation of q-EI for reasonably low values of q (typ-
ically, less than 10). New parallel kriging-based optimization strategies,
tested on different toy examples, show promising results.
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1 Introduction

In the last decades, metamodeling (or surrogate modeling) has been increasingly
used for problems involving costly computer codes (or “black-box simulators”).
Practitioners typically dispose of a very limited evaluation budget and aim at
selecting evaluation points cautiously when attempting to solve a given problem.

In global optimization, the focus is usually put on a real-valued function f
with d-dimensional source space. In this settings, [1] proposed the now famous
Efficient Global Optimization (EGO) algorithm, relying on a kriging metamodel
[2] and on the Expected Improvement (EI) criterion [3]. In EGO, the optimiza-
tion is done by sequentially evaluating f at points maximizing EI. A crucial
advantage of this criterion is its fast computation (besides, the analytical gra-
dient of EI is implemented in [4]), so that the hard optimization problem is
replaced by series of much simpler ones.

Coming back to the decision-theoretic roots of EI [5], a Multi-points Expected
Improvement (also called “q-EI”) criterion for batch-sequential optimization was
defined in [6] and further developed in [7, 8]. Maximizing this criterion enables
choosing batches of q > 1 points at which to evaluate f in parallel, and is of
particular interest in the frequent case where several CPUs are simultaneously
available. Even though an analytical formula was derived for the 2-EI in [7], the
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Monte Carlo (MC) approach of [8] for computing q-EI when q ≥ 3 makes the
criterion itself expensive-to-evaluate, and particularly hard to optimize.

A lot of effort has recently been paid to address this problem. The pragmatic
approach proposed by [8] consists in circumventing a direct q-EI maximization,
and replacing it by simpler strategies where batches are obtained using an offline
q-points EGO. In such strategies, the model updates are done using dummy
response values such as the kriging mean prediction (Kriging Believer) or a
constant (Constant Liar), and the covariance parameters are re-estimated only
when real data is assimilated. In [9] and [10], q-EI optimization strategies were
proposed relying on the MC approach, where the number of MC samples is tuned
online to discriminate between candidate designs. Finally, [11] proposed a q-EI
optimization strategy involving stochastic gradient, with the crucial advantage
of not requiring to evaluate q-EI itself.

In this article we derive a formula allowing a fast and accurate approximate
evaluation of q-EI. This formula may contribute to significantly speed up strate-
gies relying on q-EI. The main result, relying on Tallis’ formula, is given in
Section 2. The usability of the proposed formula is then illustrated in Section 3
through benchmark experiments, where a brute force maximization of q-EI is
compared to three variants of the Constant Liar strategy. In particular, a new
variant (CL-mix) is introduced, and is shown to offer very good performances
at a competitive computational cost. For self-containedness, a slightly revisited
proof of Tallis’ formula is given in appendix.

2 Multi-points Expected Improvement explicit formulas

In this section we give an explicit formula allowing a fast and accurate determin-
istic approximation of q-EI. Let us first give a few precisions on the mathematical
settings. Along the paper, f is assumed to be one realisation of a Gaussian Pro-
cess (GP) with known covariance kernel and mean known up to some linear trend
coefficients, so that the conditional distribution of a vector of values of the GP
conditional on past observations is still Gaussian (an improper uniform prior is
put on the trend coefficients when applicable). This being said, most forthcoming
derivations boil down to calculations on Gaussian vectors. Let Y := (Y1, . . . , Yq)
be a Gaussian Vector with mean m ∈ R

q and covariance matrix Σ. Our aim in
this paper is to explicitly calculate expressions of the following kind:

E

[

(

max
i∈{1,...,q}

Yi − T

)

+

]

(1)

where (.)+ := max(., 0). In Bayesian optimization (say maximization), expecta-
tions and probabilities are taken conditional on response values at a given set of
n points (x1, . . . ,xn) ∈ X

n where X is the input set of f (often, a compact subset
of Rd, d ≥ 1), the threshold T ∈ R is usually the maximum of those n available
response values, and Y is the vector of unknown responses at a given batch of q
points, Xq := (xn+1, . . . ,xn+q) ∈ X

q. In such framework, the vector m and the
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matrix Σ are the so-called “Kriging mean” and “Kriging covariance” at Xq and
can be calculated relying on classical Kriging equations (see, e.g., [12]).

In order to obtain a tractable analytical formula for Expression (1), not
requiring any Monte-Carlo simulation, let us first give a useful formula obtained
by [13], and recently used in [14] for GP modeling with inequality constraints:

Proposition 1 (Tallis formulas) Let Z := (Z1, . . . , Zq) be a Gaussian Vector

with mean m ∈ R
q and covariance matrix Σ ∈ R

q×q. Let b = (b1, . . . , bq) ∈
R

q. The expectation of any coordinate Zk under the linear constraint (∀j ∈
{1, . . . , q}, Zj ≤ bj) denoted by Z ≤ b can be expanded as follows:

E(Zk|Z ≤ b) = mk −
1

p

q
∑

i=1

Σik ϕmi,Σii
(bi) Φq−1 (c.i, Σ.i) (2)

where:

– p := P(Z ≤ b) = Φq(b−m, Σ)
– Φq(u, Σ) (u ∈ R

q, Σ ∈ R
q×q, q ≥ 1) is the c.d.f. of the centered multivariate

Gaussian distribution with covariance matrix Σ.
– ϕm,σ2(.) is the p.d.f. of the univariate Gaussian distribution with mean m

and variance σ2

– c.i is the vector of Rq−1 with general term (bj −mj)− (bi −mi)
Σij

Σii
, j 6= i

– Σ.i is a (q−1)×(q−1) matrix obtained by computing Σuv−
ΣiuΣiv

Σii
for u 6= i

and v 6= i. This matrix corresponds to the conditional covariance matrix of

the random vector Z−i := (Z1, . . . , Zi−1, Zi+1, . . . , Zq) knowing Zi.

For the sake of brevity, the proof of this Proposition is sent in the Appendix.
A crucial point for the practical use of this result is that there exist very fast
procedures to compute the c.d.f. of the multivariate Gaussian distribution. For
example, the work of [15], [16] have been used in many R packages (see, e.g.,
[17], [18]). The Formula (2) above is an important tool to efficiently compute
Expression (1) as shown with the following Property:

Proposition 2 Let Y := (Y1, . . . , Yq) be a Gaussian Vector with mean m ∈
R

q and covariance matrix Σ. For k ∈ {1, . . . , q} consider the Gaussian vectors

Z(k) := (Z
(k)
1 , . . . , Z

(k)
q ) defined as follows:

Z
(k)
j := Yj − Yk , j 6= k

Z
(k)
k := − Yk

Denoting by m(k) and Σ(k) the mean and covariance matrix of Z(k), and defining

the vector b(k) ∈ R
q by b

(k)
k = −T and b

(k)
j = 0 if j 6= k, the EI of Xq writes:

EI(Xq) =

q
∑

k=1

(

(mk − T )pk +

q
∑

i=1

Σ
(k)
ik ϕ

m
(k)
i

,Σ
(k)
ii

(b
(k)
i )Φq−1

(

c
(k)
.i , Σ

(k)
.i

)

)

(3)
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where:

– pk := P(Z(k) ≤ b(k)) = Φq(b
(k) −m(k), Σ(k)).

pk is actually the probability that Yk exceeds T and Yk = maxj=1,...,q Yj.

– Φq(., Σ) and ϕm,σ2(.) are defined in Proposition 1

– c
(k)
.i is the vector of Rq−1 constructed like in Proposition 1, by computing

(b
(k)
j −m

(k)
j )− (b

(k)
i −m

(k)
i )

Σ
(k)
ij

Σ
(k)
ii

, with j 6= i

– Σ
(k)
.i is a (q−1)× (q−1) matrix constructed from Σ(k) like in Proposition 1.

It corresponds to the conditional covariance matrix of the random vector

Z
(k)
−i := (Z

(k)
1 , . . . , Z

(k)
i−1, Z

(k)
i+1, . . . , Z

(k)
q ) knowing Z

(k)
i .

Proof. Using that 1{maxi∈{1,...,q} Yi≥T} =
∑q

k=1 1{Yk≥T, Yj≤Yk ∀j 6=k}, we get

EI(Xq) = E

[

(

max
i∈{1,...,q}

Yi − T

) q
∑

k=1

1{Yk≥T, Yj≤Yk ∀j 6=k}

]

=

q
∑

k=1

E
(

(Yk − T )1{Yk≥T, Yj≤Yk ∀j 6=k}

)

=

q
∑

k=1

E

(

Yk − T
∣

∣

∣
Yk ≥ T, Yj ≤ Yk ∀j 6= k

)

P (Yk ≥ T, Yj ≤ Yk ∀j 6= k)

=

q
∑

k=1

(

−T − E

(

Z
(k)
k

∣

∣

∣
Z(k) ≤ b(k)

))

P

(

Z(k) ≤ b(k)
)

Now the computation of pk := P
(

Z(k) ≤ b(k)
)

simply requires one call to the Φq

function and the proof can be completed by applying Tallis formula (2) to the
random vectors Z(k) ( 1 ≤ k ≤ q).

Remark 1. From Properties (1) and (2), it appears that computing q-EI requires
a total of q calls to Φq and q2 calls to Φq−1. The proposed approach performs
thus well when q is moderate (typically lower than 10). For higher values of q,
estimating q-EI by Monte-Carlo might remain competitive.

Remark 2. In the particular case q = 1 and with the convention Φ0(., Σ) = 1,
Equation (3) corresponds to the classical EI formula proven in [5, 1].

3 Batch sequential optimization using Multi-points EI

Let us first illustrate Proposition 2 and show that the proposed q-EI calculation
based on Tallis’ formula is actually consistent with a Monte Carlo estimation.
From a kriging model based on 12 observations of the Branin-Hoo function [1],
we generated a 4-point batch (Figure 1, left plot) and calculated its q-EI value
(middle plot, dotted line). The MC estimates converge to a value close to the
latter, and the relative error after 5 ∗ 109 runs is less than 10−5. 4-point batches
generated from the three strategies detailed below are drawn on the right plot.
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Branin function
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Fig. 1. Convergence (middle) of MC estimates to the q-EI value calculated with Propo-
sition 2 in the case of a batch of four points (shown on the left plot). Right: candidate
batches obtained by q-EI stepwise maximisation (squares), and the CL-min (circles)
and CL-max (triangles) strategies.

We now compare a few kriging-based batch-sequential optimization methods
on two different functions: the function x 7→ − log(−Hartman6(x)) (see, e.g.,
[1]), defined on [0, 1]6 and the Rastrigin function ([19, 20]) in dimension two
restricted to the domain [0, 2.5]2. The first function in dimension 6 is unimodal,
while the second one has a lot of local optima (see: Figure 2). The Rastrigin
function is one of the 24 noiseless test function of the Black-Box Optimization
Benchmark (BBOB) [19].

For each runs, we start with a random initial Latin hypercube design (LHS)
of n0 = 10 (Rastrigin) or 50 (Hartman6) points and estimate the covariance
parameters by Maximum Likelihood (here a Matérn kernel with ν = 3/2 is
chosen). For both functions and all strategies, batches of q = 6 points are added
at each iteration, and the covariance parameters are re-estimated after each
batch assimilation. Since the tests are done for several designs of experiments,
we chose to represent, along the runs, the relative mean squared error:

rMSE =
1

M

M
∑

i=1

(

y
(i)
min − yopt

yopt

)2

(4)

where y
(i)
min in the current observed minimum in run number i and yopt is the

real unknown optimum. The total number M of different initial designs of ex-
periments is fixed to 50. The tested strategies are:
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Fig. 2. Contour lines of the Rastrigin function (grayscale) and location of the global
optimizer (black triangle)

– (1) q-EI stepwise maximization: q sequential d-dimensional optimizations
are performed. We start with the maximization of the 1-point EI and add
this point to the new batch. We then maximize the 2-point EI (keeping the
first point obtained as first argument), add the maximizer to the batch, and
iterate until q points are selected.

– (2) Constant Liar min (CL-min): We start with the maximization of the
1-point EI and add this point to the new batch. We then assume a dummy
response (a“lie”) at this point, and update the Kriging metamodel with
this point and the lie. We then maximize the 1-point EI obtained with the
updated kriging metamodel, get a second point, and iterate the same process
until a batch of q points is selected. The dummy response has the same
value over the q − 1 lies, and is here fixed to the minimum of the current
observations.

– (3) Constant Liar max (CL-max): The lie in this Constant Liar strategy is
fixed to the maximum of the current observations.

– (4) Constant Liar mix (CL-mix): At each iteration, two batches are gener-
ated with the CL-min and CL-max strategies. From these two “candidate”
batches, we choose the batch with the best actual q-EI value, calculated
based on Proposition 2.

– (5) Random sampling.
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Note that CL-min tends to explore the function near the current minimizer (as
the lie is a low value and we are minimizing f) while CL-max is more exploratory.
Thus, CL-min is expected to perform well on unimodal functions. On the con-
trary, CL-max may perform better on multimodal functions. For all the tests
we use the DiceKriging and DiceOptim packages [4]. The optimizations of the
different criteria rely on a genetic algorithm using derivatives, available in the
rgenoud package [21]. Figure 3 represents the compared performances of these
strategies.
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Fig. 3. Compared performances of the five considered batch-sequential optimization
strategies, on two test functions.

From these plots we draw the following conclusions: first, the q-EI stepwise
maximization strategy outperforms the strategies based on constant lies, CL-
min and CL-max. However, the left graph of Figure 3 points out that the CL-
min strategy seems particularly well-adapted to the Hartman6 function. Since
running a CL is computationally much cheaper than a brute fore optimization of
q-EI, it is tempting to recommend the CL-min strategy for Hartman6. However,
it is not straightforward to know in advance which of CL-min or CL-max will
perform better on a given test case. Indeed, for example, CL-max outperforms
CL-min on the Rastrigin function.

Now, we observe that using q-EI in the CL-mix heuristic enables very good
performances in both cases without having to select one of the two lie values
in advance. For the Hartman6 function, CL-mix even outperforms both CL-
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min and CL-max and has roughly the same performance as a brute force q-
EI maximization. This suggests that a good heuristic might be to generate, at
each iteration, candidate batches obtained with different strategies (e.g. CL with
different lies) and to discriminate those batches using q-EI.

Conclusion

In this article we give a closed-form expression enabling a fast computation of
the Multi-points Expected Improvement criterion for batch sequential Bayesian
global optimization. This formula is consistent with the classical Expected Im-
provement formula and its computation does not require Monte Carlo simula-
tions. Optimization strategies based on this criterion are now ready to be used
on real test cases, and a brute maximization of this criterion shows promising
results. In addition, we show that good performances can be achieved by us-
ing a cheap-to-compute criterion and by discriminating the candidate batches
generated by such criterion with the q-EI. Such heuristics might be particularly
interesting when the time needed to generate batches becomes a computational
bottleneck, e.g. when q ≥ 10 and calls to the Gaussian c.d.f. become expensive.

A perspective, currently under study, is to improve the maximization of q-EI
itself, e.g. through a more adapted choice of the algorithm and/or an analytical
calculation of q-EI’s gradient.
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Appendix: proof for Tallis formula (2)
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matrix equal to the correlation matrix). Here, the proof is slightly more detailed and
applies in a more general case.
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Let Z := (Z1, . . . , Zq) ∼ N (m,Σ) withm ∈ R
q andΣ ∈ R

q×q . Let b = (b1, . . . , bq) ∈
R

q. Our goal is to calculate: E(Zk|Z ≤ b). The method proposed by Tallis consists in
calculating the conditional joint moment generating function (MGF) of Z defined as
follows:

MZ(t) := E(exp(t⊤Z)|Z ≤ b) (5)

It is known (see, e.g., [22]) that the conditional expectation of Zk can be obtained by
deriving such MGF with respect to tk, in t = 0. Mathematically this writes:

E(Zk|Z ≤ b) =
∂MZ(t)

∂tk

∣

∣

∣

∣

∣

t=0

(6)

The main steps of this proof are then to calculate such MGF and its derivative with
respect to any coordinate tk.

Let us consider the centered random variable Zc := Z−m. Denoting h = b−m,
conditioning on Z ≤ b or on Zc ≤ h are equivalent. The MGF of Zc can be calculated
as follows:

MZc(t) :=E(exp(t⊤Zc)|Zc ≤ h)

=
1

p

∫ h1

−∞

. . .

∫ hq

−∞

exp(t⊤u)ϕ0,Σ(u)du

=
1

p
(2π)−

q
2 |Σ|−

1
2

∫ h1

−∞

. . .

∫ hq

−∞

exp

(

−
1

2

(

u⊤
Σ

−1u− 2t⊤u
)

)

du

where p := P(Z ≤ b) and ϕv,Σ(.) denotes the p.d.f. of the multivariate normal dis-
tribution with mean v and covariance matrix Σ. The calculation can be continued by
noting that:

MZc(t) =
1

p
(2π)−

q
2 |Σ|−

1
2 exp

(

1

2
t⊤Σt

)∫ h1

−∞

. . .

∫ hq

−∞

exp

(

−
1

2
(u−Σt)⊤ Σ

−1 (u−Σt)

)

du

=
1

p
exp

(

1

2
t⊤Σt

)

Φq(h−Σt, Σ)

where Φq(., Σ) is the c.d.f. of the centered multivariate normal distribution with co-
variance matrix Σ.

Now, let us calculate for some k ∈ {1, . . . , q} the partial derivative ∂MZc (t)
∂tk

in t = 0,

which is equal by definition to E(Zc
k|Z

c ≤ h).

p E(Zc
k|Z

c ≤ h) = p
∂MZc(t)

∂tk

∣

∣

∣

∣

∣

t=0

= 0 + 1.
∂

∂tk






Φq






h− tk







Σ1k

...
Σqk






, Σ













∣

∣

∣

∣

∣

tk=0

=−

q
∑

i=1

Σik

∫ h1

−∞

. . .

∫ hi−1

−∞

∫ hi+1

−∞

. . .

∫ hq

−∞

ϕ0,Σ(u−i, ui = hi)du−i

The last step is obtained applying the chain rule to x 7→ Φq(x, Σ) at the point x =
h. Here, ϕ0,Σ(u−i, ui = hi) denotes the c.d.f. of the centered multivariate normal
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distribution at given points (u−i, ui = hi) := (u1, . . . , ui−1, hi, ui+1, . . . , uq). Note that
the integrals in the latter Expression are in dimension q − 1 and not q. In the ith

term of the sum above, we integrate with respect to all the q components except the
component i. To continue the calculation we can use the identity:

∀u ∈ R
q
, ϕ0,Σ(u) = ϕ0,Σii

(ui)ϕΣ
−1
ii

Σiui,Σ−i,−i−ΣiΣ
−1
ii

Σ⊤
i

(u−i) (7)

where Σi = (Σ1i, . . . , Σi−1i, Σi+1i, . . . , Σqi)
⊤ (Σi ∈ R

q−1) and Σ−i,−i is the (q − 1)×
(q−1) matrix obtained by removing the line and column i from Σ. This identity can be
proven using Bayes formula and Gaussian vectors conditioning formulas. Its use gives:

p E(Zc
k|Z

c ≤ h) =−

q
∑

i=1

Σikϕ0,Σii
(hi)Φq−1(h−i −Σ

−1
ii Σihi, Σ−i,−i −ΣiΣ

−1
ii Σ

⊤

i )

=−

q
∑

i=1

Σikϕmi,Σii
(bi)Φq−1(h−i −Σ

−1
ii Σihi, Σ−i,−i −ΣiΣ

−1
ii Σ

⊤

i )

which finally delivers the Tallis formula, see Equation (2).


