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Abstract

The Multipoint Expected Improvement criterion (orq-EI) has recently been stud-
ied in batch-sequential Bayesian Optimization. This paperdeals with the new way
of computingq-EI, without using Monte-Carlo simulations, through a new closed-
form formula. The latter allows a very fast computation ofq-EI for reasonably
low values ofq (typically, less than 10). New parallel kriging-based optimization
strategies, tested on a 6-dimensional toy example, show promising results.

1 Introduction

In the last decades, metamodeling, or surrogate-modeling has been increasingly used for problems
involving costly computer codes (or “black-box simulators”). The practitioners typically dispose of
a very limited evaluation budget and aim at selecting evaluation points cautiously when attempting to
solve a given problem. In global optimization, the code is often seen as a real-valued functionf with
d scalar inputs. In this settings, [1] proposed the now famousEfficient Global Optimization (EGO)
algorithm, relying on a Kriging metamodel [2] and on the Expected Improvement (EI) criterion [3].
In EGO,f is optimized by sequentially evaluating points maximizingEI. A crucial advantage of
this criterion is its fast computation (besides, the analytical gradient of EI is implemented in [4]), so
that the hard optimization problem is replaced by series of much simpler ones.

Coming back to the decision-theoretic roots of EI [5], a multipoint EI for batch-sequential opti-
mization was defined in [6] and further developed in [7, 8]. Even though an analytical formula was
derived in [7] forq = 2, the only available method for computingq-EI whenq ≥ 3 seems to be
the Monte Carlo (MC) approach of [8]. However, the latter makes the criterion itself expensive-to-
evaluate, and quite tricky to optimize. A lot of effort has recently been paid to adress this problem.
The pragmatic approach proposed by [8] consists in circumventing a directq-EI maximization, and
replacing it by simpler strategies where batches are obtained using on offlineq-point EGO. In such
strategies, the model updates are done using dummy responsevalues such as the Kriging mean pre-
diction (Kriging Believer) or a constant (Constant Liar). In [9] and [10],q-EI optimization strategies
were proposed relying on the MC approach, where the number ofsamples is tuned online to dis-
criminate between candidate designs. Finally, [11] proposed aq-EI optimization strategy involving
stochastic gradient, with the crucial advantage ofnot requiring to evaluateq-EI itself.

Here we derive a formula allowing a fast deterministic evaluation of q-EI. This formula may con-
siderably speed-up strategies relying on this criterion. Following the main result in Section 2, the
usability of the proposed formula is illustrated in Section3 through a benchmark experiment.
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2 Computation of q−points Expected Improvement based on Tallis formula

In this section we give an explicit formula allowing a fast anaccurate deterministic evaluation of
q-EI. LetY := (Y1, . . . , Yq) be a Gaussian Vector with mean vectorm ∈ R

q and covariance matrix
Σ. We consider a maximization problem and a thresholdT ; T is typically the maximum of then
available response values. Our goal is then to explicitly calculate:

EIq := En[( max
i∈{1,...,q}

Yi − T )+] (1)

where(.)+ := max(., 0). In an EGO algorithm,Y is the unknown response off at a given batch of
q points(x1, . . . ,xq) ∈ X

q whereX is the input set off (often, a compact subset ofRd, d ≥ 1).

To obtain a tractable analytical expression for Expression(1), let us first recall a useful formula
given and proven in [12], and recently used in [13] in a Gaussian Process framework:

Proposition 1 (Tallis formulas). LetZ := (Z1, . . . , Zq) be a centred, normalised Gaussian Vector
(meaning that∀k ∈ {1, . . . , q}, En(Zk) = 0 andV ar(Zk) = 1 ) with correlation matrixR. Let
b = (b1, . . . , bq) ∈ R

q. One can calculate the expectation of any coordinateZk under the linear
constraintZ ≤ b with the following formula:

En(Zk|∀j ∈ {1, . . . , q}, Zj ≤ bj) = −1

p

q
∑

i=1

Rik ϕ(bi) Φq−1

(

b
(i), R(i)

)

(2)

where:

• p := P (Z ≤ b) = Φq(b, R)

• Φq(u,Σ) (u ∈ R
q,Σ ∈ R

q×q, q ≥ 1) is the c.d.f. of the centred multivariate Gaussian
distribution with covariance matrixΣ.

• ϕ(.) is the p.d.f. of the standard univariate Gaussian distribution

• b
(i) is the vector ofRq−1 with general term bj−Rij√

1−R2

ij

, j 6= i

• R(i) is the(q− 1)× (q− 1) matrix of partial correlations knowing variablei. This matrix
is obtained by computing Ruv−RiuRiv√

1−R2

iu

√
1−R2

iv

for u 6= i andv 6= i.

A crucial point for the practical use of this result is that there exist very fast procedures to compute
the c.d.f. of the multivariate Gaussian distribution. For example, the work of [14], [15] have been
used in many R packages (see, e.g., [16], [17]). The Formula (2) above is a crucial tool to efficiently
compute Expression (1) as shown with the following Property:

Proposition 2. Theq−points Expected Improvement can be efficiently computed by applying For-
mula (2)q times, onq different “well chosen” Gaussian vectors.

Proof. Using that1{maxi∈{1,...,q} Yi≥T} =
∑q

k=1 1{Yk≥T, Yj≤Yk ∀j 6=k}, we get

EIq = En

[

(

max
i∈{1,...,q}

Yi − T

) q
∑

k=1

1{Yk≥T, Yj≤Yk ∀j 6=k}

]

=

q
∑

k=1

En

(

(Yk − T )1{Yk≥T, Yj≤Yk ∀j 6=k}

)

=

q
∑

k=1

En

(

Yk − T
∣

∣

∣
Yk ≥ T, Yj ≤ Yk ∀j 6= k

)

P (Yk ≥ T, Yj ≤ Yk ∀j 6= k)

The calculation ofq-EI then amounts to calculate theq terms of this sum. Each term can be calcu-
lated using the same method. In particular, thekth term may be rewritten as follows:

En

(

Yk − T
∣

∣

∣
− Yk ≤ −T, Yj − Yk ≤ 0 ∀j 6= k

)

P (−Yk ≤ −T, Yj − Yk ≤ 0 ∀j 6= k)
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We then consider the following Gaussian VectorZ
(k) := (Z

(k)
1 , . . . , Z

(k)
q ):

Z
(k)
j := Yj − Yk , j 6= k

Z
(k)
k := − Yk

The mean vector and covariance matrix of this random vector can be calculated straightforwardly
from m andΣ. Now, the calculation ofP (Z

(k)
k ≤ −T, Z

(k)
j ≤ 0 ∀j 6= k) simply requires one call

to theΦq function and the calculation ofEn(Z
(k)
k |Z(k)

k ≤ −T, Z
(k)
j ≤ 0 ∀j 6= k) can be done by

normalising the vectorZ(k) and applying Tallis formula (2).

Remark. From Properties (1) and (2), it appears that computingq-EI requires a total ofq calls to
Φq andq2 calls toΦq−1. The proposed approach performs thus well whenq is moderate (typically:
lower than10). For higher values ofq, estimatingq-EI by Monte-Carlo might remain competitive.

3 Application: using q-EI to choose between different candidate batches

Let us first illustrate Proposition 2 and show that ourq-EI calculation is actually consistent with an
MC estimation. From a Kriging model based on12 observations of the Branin-Hoo function [1], we
generated a4-point batch (Figure 2, left plot) and calculated itsq-EI value (middle plot, dotted line).
The MC estimate converges to a value close to the latter, and the relative error is less than10−5.
Batches of four points generated from three strategies detailed below are drawn (right plot).
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Figure 1: Convergence (middle) of an MC estimate to the q-EI value calculated with Proposition 2
in the case of a batch of four points (shown on the left plot). Right: candidate batches obtained by
q-EI stepwise maximisation (squares), CL-min (circles) and CL-max (triangles) strategies.

We now compare a few kriging-based batch-sequential optimization methods on the function
x 7→ − log(−Hartman6(x)) (see, e.g., [1]), defined on[0, 1]6. For each run of the benchmark,
we start with a random initial Latin hypercube design (LHS) of n0 = 50 points and estimate the
covariance parameters by Maximum Likelihood (here a Matérn kernel withν = 5/2 is chosen). For
all strategies, batches ofq = 4 points are added at each iteration, and the covariance parameters are
re-estimated with theq new observations. The results are analyzed in terms of evolution of the cur-
rent observed minimum along the runs. Since the tests are done for several designs of experiments,
we chose to represent quantiles (at levels10%, 50%, and90%) curves summing up the30 curves
obtained for the30 considered LHS designs (See Figure 2). The tested strategies are:

• (1) q-EI stepwise maximization:q sequentiald-dimensional optimizations are performed.
We start with the maximization of the1-point EI and add this point to the new batch. We
then maximize the2-point EI (keeping the first point obtained as first argument), add the
maximizer to the batch, and iterate untilq points are selected.
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• (2) Constant Liar min (CL-min): We start with the maximization of the1-point EI and add
this point to the new batch. Then we assume a dummy response (a“lie”) at this point, and
update the Kriging metamodel with this point and the lie. We then maximize the1-point EI
obtained with updated Kriging metamodel, get a second point, and iterate the same process
until a batch ofq points is selected. The dummy response has the same value over theq−1
lies, and is here fixed to the minimum of the current observations.

• (3) Constant Liar max (CL-max): The lie in this Constant Liarstrategy is fixed to the
maximum of the current observations.

• (4) Constant Liar mix (CL-mix): At each iteration, two batches are generated with the CL-
min and CL-max strategies. From these two “candidate” batches, we choose the batch with
the best actualq-EI value, calculated based on Proposition 2.

Note that CL-min tends to explore the function near the current minimizer (as the lie is a low value)
while CL-max is more exploratory. For all the tests we use theDiceKriging and DiceOptim packages
[4]. The optimizations of the different criteria are done with a genetic algorithm, available in the
rgenoud package [18]. Figure 2 represents the compared performances of these strategies.
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Figure 2: Compared performances of the four considered batch-sequential optimization strategies

From these plots we draw two main conclusions. First, the CL-min strategy has roughly the same
performance as theq-EI stepwise maximization strategy. It points out that CL-min seems particu-
larly well-adapted to this test case, but also potentially that the wayq-EI is heuristically maximized
is sub-optimal. Since running a CL is computationally much cheaper, it is tempting to recommend
CL-min here. However, it is not straightforward to know in advance which of CL-min or CL-max
will perform better on a given test case. A drawback considering the performances of CL-max here.
Second, we can see that usingq-EI in the CL-mix heuristic enables a performance close to CL-min
without having to select one of the two lie values in advance.This suggest that a good heuristic might
be to generate, at each iteration, candidate batches obtained with different strategies (e.g. CL with
different lies) and to discriminate those batches usingq-EI. Another perspective, currently under
study, is the crucial need to improve the optimization method of q-EI, e.g. through a more adapted
choice of the algorithm and/or a gradient calculation ofq-EI as a function ofd× q arguments.
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