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Abstract

The Multipoint Expected Improvement criterion (@El) has recently been stud-
ied in batch-sequential Bayesian Optimization. This paeeits with the new way
of computingg-El, without using Monte-Carlo simulations, through a néesed-
form formula. The latter allows a very fast computationgeiEl for reasonably
low values ofq (typically, less than 10). New parallel kriging-based optation
strategies, tested on a 6-dimensional toy example, shomipitng results.

1 Introduction

In the last decades, metamodeling, or surrogate-mode#iadben increasingly used for problems
involving costly computer codes (or “black-box simulatyrg he practitioners typically dispose of
a very limited evaluation budget and aim at selecting evadngoints cautiously when attempting to
solve a given problem. In global optimization, the code tel&een as a real-valued functipwith

d scalar inputs. In this settings, [1] proposed the now fantftisient Global Optimization (EGO)
algorithm, relying on a Kriging metamodel [2] and on the Extgel Improvement (EI) criterion [3].
In EGO, f is optimized by sequentially evaluating points maximizkig A crucial advantage of
this criterion is its fast computation (besides, the anedygradient of El is implemented in [4]), so
that the hard optimization problem is replaced by serieswémsimpler ones.

Coming back to the decision-theoretic roots of El [5], a mpaiint EI for batch-sequential opti-
mization was defined in [6] and further developed in [7, 8]eEthough an analytical formula was
derived in [7] forqg = 2, the only available method for computiggEl wheng > 3 seems to be
the Monte Carlo (MC) approach of [8]. However, the latter emkhe criterion itself expensive-to-
evaluate, and quite tricky to optimize. A lot of effort haseatly been paid to adress this problem.
The pragmatic approach proposed by [8] consists in circumitvg a direcy-El maximization, and
replacing it by simpler strategies where batches are obdaising on offling-point EGO. In such
strategies, the model updates are done using dummy respalnss such as the Kriging mean pre-
diction (Kriging Believer) or a constant (Constant Liar).[9] and [10],¢-El optimization strategies
were proposed relying on the MC approach, where the numbgaraples is tuned online to dis-
criminate between candidate designs. Finally, [11] prepas;-El optimization strategy involving
stochastic gradient, with the crucial advantageatfrequiring to evaluate-El itself.

Here we derive a formula allowing a fast deterministic ea#ittn of g-El. This formula may con-
siderably speed-up strategies relying on this criterionllo®wing the main result in Section 2, the
usability of the proposed formula is illustrated in Sect®tinrough a benchmark experiment.



2 Computation of ¢g—points Expected Improvement based on Tallis formula

In this section we give an explicit formula allowing a fastarcurate deterministic evaluation of
g-El. LetY := (Y1, ...,Y,) be a Gaussian Vector with mean veatarc R? and covariance matrix
3. We consider a maximization problem and a thresiald” is typically the maximum of the:
available response values. Our goal is then to explicilgutate:

El, =E,[( max Y;—-T 1

q [(ieu”m )+ €y

where(.)+ := max(.,0). Inan EGO algorithmY is the unknown response ¢fat a given batch of
q points(x, . ..,x,) € X? whereX is the input set off (often, a compact subsetBf, d > 1).

To obtain a tractable analytical expression for Expresgignlet us first recall a useful formula
given and proven in [12], and recently used in [13] in a Gars8irocess framework:

Proposition 1 (Tallis formulas) LetZ := (Z, ..., Z,) be a centred, normalised Gaussian Vector
(meaning that'k € {1,...,q}, E,(Zx) = 0andVar(Z;) = 1) with correlation matrixR. Let

b = (b1,...,by) € R?. One can calculate the expectation of any coordingteunder the linear
constraintZ < b with the following formula:

. 1< L
B (29 € (Lo ooah, 23 < bj) = =3~ R o(bi) B (b, ) 2)
=1

where:

o p:=P(Z<b)=2,b,R)

Q,(u,X) (u € RLY € R™ ¢ > 1) is the c.d.f. of the centred multivariate Gaussian
distribution with covariance matrix.

©(.) is the p.d.f. of the standard univariate Gaussian distiidnt

b is the vector oR?~! with general term\b/f%}%,j £

R isthe(q — 1) x (¢ — 1) matrix of partial correlations knowing variable This matrix

is obtained by computing\/% foru # i andv # 1.

A crucial point for the practical use of this result is thatth exist very fast procedures to compute
the c.d.f. of the multivariate Gaussian distribution. Feample, the work of [14], [15] have been

used in many R packages (see, e.g., [16], [17]). The Forn2)kaove is a crucial tool to efficiently
compute Expression (1) as shown with the following Property

Proposition 2. Theg—points Expected Improvement can be efficiently computegplyiag For-
mula (2)q times, ory different “well chosen” Gaussian vectors.

Proof. Using thatl (., ., vi>7) = et Lvi>T, vy <vi vik}» WE g€t
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The calculation ofj-El then amounts to calculate theerms of this sum. Each term can be calcu-
lated using the same method. In particular, #ieerm may be rewritten as follows:

En (Yi = T|=Yi € =T, ¥; = Yi S0V) £ k) P(-Yi £ ~T,Y; = Yi 0Vj # k)



We then consider the following Gaussian Vedst) := (z\¥) .. z{")y;

ZM =Y~ Yi, j#k

ZM = v,
The mean vector and covariance matrix of this random ve@orbe calculated straightforwardly
from m andX. Now, the calculation oP(Z,(f) < -T, Zj(k) < 0Vj # k) simply requires one call
to the®, function and the calculation (En(Z,(f)|Z,gk) < -T, Zj(k) < 0Vj # k) can be done by
normalising the vectoZ(*) and applying Tallis formula (2). O

Remark. From Properties (1) and (2), it appears that compugitg) requires a total of calls to
®, andg? calls to®,_;. The proposed approach performs thus well whémoderate (typically:
lower than10). For higher values aof, estimatingz-El by Monte-Carlo might remain competitive.

3 Application: using ¢-El to choose between different candidate batches

Let us first illustrate Proposition 2 and show that gtk calculation is actually consistent with an
MC estimation. From a Kriging model based tihobservations of the Branin-Hoo function [1], we
generated d-point batch (Figure 2, left plot) and calculatedqjt&| value (middle plot, dotted line).
The MC estimate converges to a value close to the latter, trdedative error is less thai®—>.
Batches of four points generated from three strategiesle@taelow are drawn (right plot).
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Figure 1: Convergence (middle) of an MC estimate to the qafile calculated with Proposition 2
in the case of a batch of four points (shown on the left ploifghR candidate batches obtained by
g-El stepwise maximisation (squares), CL-min (circles) @h-max (triangles) strategies.

We now compare a few kriging-based batch-sequential opaéitian methods on the function
r — —log(—Hartman6z)) (see, e.g., [1]), defined o0, 1]°. For each run of the benchmark,
we start with a random initial Latin hypercube design (LHE)9 = 50 points and estimate the
covariance parameters by Maximum Likelihood (here a Mekérnel withv = 5/2 is chosen). For
all strategies, batches gf= 4 points are added at each iteration, and the covariance pteesrare
re-estimated with the new observations. The results are analyzed in terms of goplaf the cur-
rent observed minimum along the runs. Since the tests arefdoseveral designs of experiments,
we chose to represent quantiles (at levil%, 50%, and90%) curves summing up th&0 curves
obtained for the30 considered LHS designs (See Figure 2). The tested strategge

e (1) ¢-El stepwise maximizatiory sequentiali-dimensional optimizations are performed.
We start with the maximization of thepoint EI and add this point to the new batch. We
then maximize th&-point El (keeping the first point obtained as first argumeadyd the
maximizer to the batch, and iterate untiboints are selected.



e (2) Constant Liar min (CL-min): We start with the maximizatiof thel-point El and add
this point to the new batch. Then we assume a dummy respotiigs)(at this point, and
update the Kriging metamodel with this point and the lie. Wentmaximize thé-point El
obtained with updated Kriging metamodel, get a second paitt iterate the same process
until a batch of; points is selected. The dummy response has the same valueye- 1
lies, and is here fixed to the minimum of the current obseowati

e (3) Constant Liar max (CL-max): The lie in this Constant L#&trategy is fixed to the
maximum of the current observations.

e (4) Constant Liar mix (CL-mix): At each iteration, two ba&share generated with the CL-
min and CL-max strategies. From these two “candidate” letcive choose the batch with
the best actuaj-El value, calculated based on Proposition 2.

Note that CL-min tends to explore the function near the cunmanimizer (as the lie is a low value)
while CL-max is more exploratory. For all the tests we uselitoeKriging and DiceOptim packages
[4]. The optimizations of the different criteria are dondtwa genetic algorithm, available in the
rgenoud package [18]. Figure 2 represents the comparegrperfices of these strategies.
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Figure 2: Compared performances of the four consideredhbsgquential optimization strategies

From these plots we draw two main conclusions. First, then@h-strategy has roughly the same
performance as th@El stepwise maximization strategy. It points out that Clarseems particu-
larly well-adapted to this test case, but also potenti&lit the wayy-El is heuristically maximized
is sub-optimal. Since running a CL is computationally mubbaper, it is tempting to recommend
CL-min here. However, it is not straightforward to know invadce which of CL-min or CL-max
will perform better on a given test case. A drawback consigdgthe performances of CL-max here.
Second, we can see that usipl in the CL-mix heuristic enables a performance close tertih
without having to select one of the two lie values in advarites suggest that a good heuristic might
be to generate, at each iteration, candidate batches ettaiith different strategies (e.g. CL with
different lies) and to discriminate those batches usgjfi§l. Another perspective, currently under
study, is the crucial need to improve the optimization metbbg-El, e.g. through a more adapted
choice of the algorithm and/or a gradient calculation-&l as a function ofl x ¢ arguments.
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