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EXISTENCE OF SELF-SIMILAR PROFILE FOR A KINETIC

ANNIHILATION MODEL

VÉRONIQUE BAGLAND & BERTRAND LODS

Abstract. We show the existence of a self-similar solution for a modified Boltzmann equation
describing probabilistic ballistic annihilation. Such a model describes a system of hard-spheres
such that, whenever two particles meet, they either annihilate with probability α ∈ (0, 1) or they
undergo an elastic collision with probability 1− α. For such a model, the number of particles,
the linear momentum and the kinetic energy are not conserved. We show that, for α smaller
than some explicit threshold value α∗, a self-similar solution exists.
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1. Introduction

In the physics literature, various kinetic models have been proposed in the recent years in order
to test the relevance of non-equilibrium statistical mechanics for systems of reacting particles.
Such models are very challenging in particular for the derivation of suitable hydrodynamic models
because of the lack of collisional invariants. We investigate in the present paper a recent model,
introduced in [7, 9, 10, 16, 24, 28] to describe the so-called probabilistic ballistic annihilation .
Such a model describes a system of (elastic) hard-spheres that interact in the following way:
particles moves freely (ballistically) between collisions while, whenever two particles meet, they
either annihilate with probability α ∈ (0, 1) (and both the interacting particles disappear from
the system), or they undergo an elastic collision with probability 1 − α. For such a model,
not only the kinetic energy is not conserved during binary encounters, but also the number of
particles and the linear momentum are no longer conserved. Notice that, originally only pure
annihilation has been considered [7, 16] (corresponding to α = 1). Later on, a more elaborate
model has been built which allows to recover the classical Boltzmann equation for hard-spheres
in the limit α = 0. Notice that such a Boltzmann equation for ballistic annihilation in the special
(and unphysical) case of Maxwellian molecules has already been studied in the mid-80’s [26, 25]
and was referred to as Boltzmann equation with removal.

The present paper is the first mathematical investigation of the physical model of probabilis-
tic ballistic annihilation for the physical relevant hard-spheres interactions, with the noticeable
exception of the results of [18] which prove the validity of the spatially homogenous Boltzmann
equation for pure annihilation (i.e. whenever α = 1). We shall in particular prove the existence of
special self-similar profile for the associated equation. Before entering into details of our results,
let us introduce more precisely the model we aim to investigate.

1.1. The Boltzmann equation for ballistic annihilation. In a kinetic framework, the beha-
vior of a system of hard spheres which annihilate with probability α ∈ (0, 1) or collide elastically
with probability 1− α can be described (in a spatially homogeneous situation) by the so-called
velocity distribution f(t, v) which represents the probability density of particles with velocity
v ∈ R

d (d > 2) at time t > 0. The time-evolution of the one-particle distribution function f(t, v),
v ∈ R

d, t > 0 satisfies the following

∂tf(t, v) = (1− α)Q(f, f)(t, v) − αQ−(f, f)(t, v) = B(f, f)(t, v) (1.1)

where Q is the quadratic Boltzmann collision operator defined by the bilinear symmetrized form

Q(g, f)(v) =
1

2

∫

Rd×Sd−1

B(v − v∗, σ)
(

g′∗f
′ + g′f ′∗ − g∗f − gf∗

)

dv∗ dσ,

where we have used the shorthands f = f(v), f ′ = f(v′), g∗ = g(v∗) and g′∗ = g(v′∗) with
post-collisional velocities v′ and v′∗ parametrized by

v′ =
v + v∗

2
+

|v − v∗|

2
σ, v′∗ =

v + v∗
2

−
|v − v∗|

2
σ, σ ∈ S

d−1

and the collision kernel is given by

B(v − v∗, σ) = Φ(|v − v∗|)b(cos θ)

where cos θ =
〈

v−v∗
|v−v∗|

, σ
〉

. Typically, for the model we have in mind, we shall deal with

Φ(|v − v∗|) = |v − v∗|
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and constant b(·) corresponding to hard-spheres interactions which is the model usually consid-
ered in the physics literature [15, 19, 28]. We shall also consider more general kernel, typically,
we shall assume that

Φ(|v − v∗|) = |v − v∗|
γ γ ∈ (0, 1] (1.2)

and

‖b ‖1 := |Sd−2|

∫ 1

−1
b(t)(1− t)(d−3)/2dt <∞

where |Sd−2| is the area of (d − 2)-dimensional unit sphere. Without loss of generality, we will
assume in all the paper that

‖b ‖1 = 1.

Notice that, for constant collision kernel, this amounts to choose b(·) = 1/|Sd−1|. A very special
model is the one of so-called Maxwellian molecules which corresponds to γ = 0. The model of
Maxwellian molecules has been studied mathematically in [25, 26] and we will discuss this very
special case in the Appendix.

The above collision operator Q(f, f) splits as Q(f, f) = Q+(f, f) −Q−(f, f) where the gain
part Q+ is given by

Q+(f, f)(v) =

∫

Rd×Sd−1

B(v − v∗, σ)f
′
∗f

′ dv∗ dσ

while the loss part Q− is defined as

Q−(f, f)(v) = f(v)L(f)(v), with L(f)(v) =

∫

Rd×Sd−1

B(v − v∗, σ)f∗ dv∗ dσ.

One has

B(f, f) := (1− α)Q(f, f)− αQ−(f, f) = (1− α)Q+(f, f)−Q−(f, f).

Formally, if f(t, v) denotes a solution to (1.1) then, no macroscopic quantities are conserved. For
instance, the number density

n(t) =

∫

Rd

f(t, v)dv

and the kinetic energy

E(t) =

∫

Rd

|v|2 f(t, v)dv

are continuously decreasing since, multiplying (1.1) by 1 or |v|2 and integrating with respect to
v, one formally obtains

d

dt
n(t) = −α

∫

Rd

Q−(f, f)(t, v)dv 6 0

while
d

dt
E(t) = −α

∫

Rd

|v|2Q−(f, f)(t, v)dv 6 0.

It is clear therefore that (1.1) does not admit any non trivial steady solution and, still formally,
f(t, v) → 0 as t→ 0.
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1.2. Scaling solutions. Physicists expect that solutions to (1.1) should approach for large times
a self-similar solution fH to (1.1) of the form

fH(t, v) = λ(t)ψH(β(t)v) (1.3)

for some suitable scaled functions λ(t), β(t) > 0 with λ(0) = β(0) = 1 and some nonnegative
function ψH such that

ψH ≡/ 0 and

∫

Rd

ψH(ξ) (1 + |ξ|2) dξ <∞. (1.4)

The first step in the proof of the above statement is actually the existence of the profile ψH and
this is the aim of the present paper.

Using the scaling properties of the Boltzmann collision operators Q±, one checks easily that

B(fH , fH)(t, v) = λ2(t)β−(d+γ)(t)B(ψH , ψH)(β(t)v) ∀v ∈ R
d.

Then, fH(t, v) is a solution to (1.1) if and only if ψH(ξ) is a solution to the rescaled problem

λ̇(t)βd+γ(t)

λ2(t)
ψH(ξ) +

β̇(t)βd+γ−1(t)

λ(t)
ξ · ∇ξψH(ξ) = B(ψH , ψH)(ξ)

where the dot symbol stands for the time derivative. One sets then

A =
λ̇(t)βd+γ(t)

λ2(t)
, B =

β̇(t)βd+γ−1(t)

λ(t)

and using (1.4) one sees that the real coefficients A and B are both depending on the profile
ψH . More precisely, ψH is a solution to

AψH(ξ) +Bξ · ∇ξψH(ξ) = B(ψH , ψH)(ξ) (1.5)

where

A = −
α

2

∫

Rd

(

d+ 2
∫

Rd ψH(ξ∗) dξ∗
−

d |ξ|2
∫

Rd ψH(ξ∗) |ξ∗|2 dξ∗

)

Q−(ψH , ψH)(ξ)dξ

and

B = −
α

2

∫

Rd

(

1
∫

Rd ψH(ξ∗) dξ∗
−

|ξ|2
∫

Rd ψH(ξ∗) |ξ∗|2 dξ∗

)

Q−(ψH , ψH)(ξ)dξ.

We now observe that, with no loss of generality, one may assume that
∫

Rd

ψH(ξ) dξ = 1 and

∫

Rd

ψH(ξ) |ξ|
2 dξ =

d

2
. (1.6)

Indeed, if ψH denotes a solution to (1.5) satisfying (1.6) then, for any β = (β1, β2) ∈ (0,∞)2,
the function ψH,β defined by

ψH,β(ξ) = β1

(

dβ1
2β2

) d
2

ψH

(
√

dβ1
2β2

ξ

)

is a solution to (1.5) with mass β1 and energy β2. Assuming (1.6) and introducing

nH(t) =

∫

Rd

fH(t, v)dv, EH(t) =

∫

Rd

|v|2fH(t, v)dv,

one obtains nH(0) = 1, EH(0) = d/2,

β(t) =

√

dn(t)

2E(t)
, and λ(t) = βd(t)n(t).
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Thus, the self-similar solution fH is of the form

fH(t, v) =
n(t)

v(t)d
ψH

(

v

v(t)

)

, with v(t) =

√

2E(t)

dn(t)
. (1.7)

The main objective of the present work is to prove the existence of a self-similar

profile ψH satisfying (1.5), (1.6). Notice that the existence of such a self-similar profile
was taken for granted in several works in the physics community [15, 19, 28] but no rigorous
justification was available up to now. Our work aims to fill this blank, giving in turn the first
rigorous mathematical ground justifying the analysis performed in the op. cit.

1.3. Notations. Let us introduce the notations we shall use in the sequel. Throughout the
paper we shall use the notation 〈·〉 =

√

1 + | · |2. We denote, for any η ∈ R, the Banach space

L1
η =

{

f : Rd → R measurable ; ‖f‖L1
η
:=

∫

Rd

|f(v)| 〈v〉ηdv < +∞

}

.

More generally we define the weighted Lebesgue space Lpη(Rd) (p ∈ [1,+∞), η ∈ R) by the
norm

‖f‖Lp
η(Rd) =

[∫

Rd

|f(v)|p 〈v〉pηdv

]1/p

1 6 p <∞

while ‖f‖L∞

η (Rd) = ess− supv∈Rd |f(v)|〈v〉η for p = ∞.

1.4. Strategy and main results. To prove the existence of a steady state ψH , we shall use
a dynamical approach as in [4, 5, 12, 13, 20]. It then amounts to finding a steady state to the
annihilation equation

∂tψ(t, ξ) +Aψ(t)ψ(t, ξ) +Bψ(t) ξ · ∇ξψ(t, ξ) = B(ψ,ψ)(t, ξ) (1.8)

supplemented with some nonnegative initial condition

ψ(0, ξ) = ψ0(ξ), (1.9)

where ψ0 satisfies
∫

Rd

ψ0(ξ) dξ = 1,

∫

Rd

ψ0(ξ) |ξ|
2 dξ =

d

2
, (1.10)

while

Aψ(t) = −
α

2

∫

Rd

(

d+ 2− 2|ξ|2
)

Q−(ψ,ψ)(t, ξ)dξ,

and

Bψ(t) = −
α

2d

∫

Rd

(

d− 2|ξ|2
)

Q−(ψ,ψ)(t, ξ)dξ.

We now describe the content of this paper. As explained above, the existence of the profile
ψH is obtained by finding a steady state to the annihilation equation (1.8). As in previous works
[4, 5, 12, 13, 20], the proof relies on the application of a suitable version of Tykhonov fixed point
theorem (we refer to [4, Appendix A] for a complete proof of it):

Theorem 1.1 (Dynamic proof of stationary states). Let Y be a Banach space and (St)t≥0

be a continuous semi-group on Y such that

i) there exists Z a nonempty convex and weakly (sequentially) compact subset of Y which
is invariant under the action of St (that is Stz ∈ Z for any z ∈ Z and t ≥ 0);

ii) St is weakly (sequentially) continuous on Z for any t > 0.
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Then there exists z0 ∈ Z which is stationary under the action of St (that is Stz0 = z0 for any
t ≥ 0).

In a more explicit way, our strategy is therefore to identify a Banach space Y and a convex
subset Z ⊂ Y such that

(1) for any ψ0 ∈ Y there is a global solution ψ ∈ C([0,∞),Y) to (1.8) that satisfies (1.9);
(2) the solution ψ is unique in Y and if ψ0 ∈ Z then ψ(t) ∈ Z for any t > 0;
(3) the set Z is (weakly sequentially) compactly embedded into Y;
(4) solutions to (1.8) have to be (weakly sequentially) stable, i.e. for any sequence (ψn)n ∈

C([0,∞),Y) of solutions to (1.8) with ψn(t) ∈ Z for any t > 0, then, there is a subsequence
(ψnk

)k which converges weakly to some ψ ∈ C([0,∞),Y) such that ψ is a solution to (1.8).

According to the above program, a crucial step in the above strategy is therefore to investigate
the well-posedness of the Cauchy problem (1.8)-(1.9) and next section is devoted to this point.
The notion of solutions we consider here is as follows.

Definition 1.2. Given a nonnegative initial datum ψ0 satisfying (1.10) and given T > 0, a
nonnegative function ψ : [0, T ] × R

d → R is said to be a solution to the annihilation equation
(1.8) if

ψ ∈ C([0, T ] ; L1
2(R

d)) ∩ L1(0, T ;L1
2+γ(R

d))

and satisfies (1.8) in the weak form:
∫

Rd

ψ(t, ξ)̺(ξ)dξ +

∫ t

0
ds
[

Aψ(s)− dBψ(s)
]

∫

Rd

̺(ξ)ψ(s, ξ) dξ

=

∫ t

0
dsBψ(s)

∫

Rd

ψ(s, ξ) ξ · ∇ξ̺(ξ)dξ +

∫

Rd

̺(ξ)ψ0(ξ)dξ +

∫ t

0
ds

∫

Rd

B(ψ,ψ)(s, ξ)̺(ξ)dξ

(1.11)

for any ̺ ∈ C1
c (R

d).

Notice that the assumption ψ ∈ L1(0, T ;L1
2+γ(R

d)) is needed in order to both the quantities
Aψ(t) and Bψ(t) to be well-defined.

Let us point out the similarities and the differences between (1.8) and the well-known Boltz-
mann equation. First, it follows from the definition of the coefficients Aψ and Bψ that the mass
and the energy of solutions to (1.8) are conserved. However, there is no reason for the momen-
tum to be preserved. Even if we assume that the initial datum has vanishing momentum we
are unable to prove that this propagates. It is also not clear whether there exists an entropy for
(1.8). Let us note on the other hand that since the coefficients Aψ and Bψ involve moments of
order 2 + γ of ψ, a crucial step will be to prove, via suitable a priori estimates, that high-order
moments of solutions are uniformly bounded, ensuring a good control of both Aψ and Bψ . At
different stages of this paper, this lack of a priori estimates and this necessary control of Aψ and
Bψ complicate the analysis with respect to the Boltzmann equation. It also leads us to formulate
some assumptions, some of which we hope to be able to get rid of in a future work. Let us now
describe precisely what are the practical consequences of the aforementioned differences. Since
we are interested in the physically relevant model of hard-spheres interactions, the cross section
involved in the collision operator is unbounded. Consequently, the existence of a solution to
(1.8) is obtained by applying a fixed point argument to a truncated equation and then passing
to the limit. Such an approach is reminiscent from the well-posedness theory of the Boltzmann
equation [22] and relies on suitable a priori estimates and stability result. In particular, such
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a stability result allows to prove in a unique step the above points (1) and (4) of the above
program. We thereby prove the following theorem in Section 2.

Theorem 1.3. Let δ > 0 and p > 1. Let ψ0 ∈ L1
2+δ(R

d) ∩ Lp(Rd) be a nonnegative distribution

function satisfying (1.10). Then, there exists a nonnegative solution ψ ∈ C([0,∞);L1
2(R

d)) ∩
L1
loc((0,∞), L1

2+γ+δ(R
d)) ∩ L∞

loc((0,∞), L1
2+δ(R

d)) to (1.8) such that ψ(0, ·) = ψ0 and
∫

Rd

ψ(t, ξ) dξ = 1,

∫

Rd

ψ(t, ξ) |ξ|2 dξ =
d

2
∀t > 0.

Notice that, with respect to classical existence results on Boltzmann equation (see e.g. [22]),
we need here to impose an additional Lp-integrability condition on the initial datum ψ0. Such
an assumption is needed in order to control the nonlinear drift term in (1.8) and especially to
get bounds on the moments of order 2 + γ arising in the definition of Aψ(t) and Bψ(t), these
bounds need to be uniform with respect to the truncation.

The previous result allows to identify the space Y = L1
2(R

d) in the above Theorem 1.1 and
gives the existence of a semi-group for (1.8) and the next step is to finding a subset Z which
is left invariant under the action of this semi-group. Since Y is an L1-space and Z has to be
a weakly compact subset of Y, it is natural in view of Dunford-Pettis criterion to look for a
subspace involving higher-order moments of the solution ψ(t) together with additional integra-
bility conditions. We are therefore first lead to prove uniform in time moment estimates for the
solution ψ(t). More precisely, the main result of Section 3 is the following

Theorem 1.4. Let p > 1. Let ψ0 ∈ L1
2+γ(R

d) ∩ Lp(Rd) be a nonnegative distribution function

satisfying (1.10). Let then ψ ∈ C([0,∞);L1
2(R

d)) ∩ L1
loc((0,∞), L1

2+γ(R
d)) be the nonnegative

solution to (1.8)-(1.9) constructed by Theorem 1.3. Then, there exists α0 ∈ (0, 1] such that for
0 < α < α0, the solution ψ satisfies

sup
t>0

∫

Rd

ψ(t, ξ) |ξ|2+γdξ 6 max

{∫

Rd

ψ0(ξ) |ξ|
2+γdξ,M

}

,

for some explicit constant M depending only on α, γ, b(·) and d.

The proof of the above result relies on a careful study of the moment system associated to
the solution ψ(t) to (1.8)-(1.9). Since we are dealing with hard-spheres interactions, such a
system is not closed but a sharp version of Povzner-type inequalities allows to control higher-
order moments in terms of lower-order ones. Let us observe that the initial condition ψ0 belongs
here to L1

2+γ(R
d), that is we take δ = γ in Theorem 1.3. Indeed, since coefficients Aψ and Bψ

involve moments of order 2 + γ, this is the minimal assumption to ensure a uniform in time
propagation of moments. The restriction on the parameter α ∈ (0, α0) arises naturally in the
proof of the uniform in time bound of the moment of order 2 + γ (see Proposition 3.4).

At the end of Section 3 we establish a lower bound for L(ψ) where L denotes the operator in
the definition of Q−, namely

∫

Rd

ψ(t, ξ∗) |ξ − ξ∗|
γ dξ∗ > µα〈ξ〉

γ , ∀ξ ∈ R
d, t > 0, (1.12)

for some positive constant µα > 0 depending on γ, d, α, b(·) and on
∫

Rd ψ0(ξ)|ξ|
γdξ. Note that

this bound will be essential in Section 4 and that we need here to assume that ψ0 is an isotropic

function. Isotropy is indeed propagated by (1.8). For the Boltzmann equation, this assumption
is useless since such a bound may be obtained thanks to the entropy for elastic collisions (see
[23, Proposition 2.3]) or thanks to the Jensen inequality and vanishing momentum for inelastic
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collisions and γ = 1 (see [21, Eq. (2.7)]). This naturally leads us to Section 4 where we deal
with propagation of higher-order Lebesgue norms and where we obtain the following:

Theorem 1.5. Let p > 1. Let ψ0 ∈ L1
2+γ(R

d) ∩ Lp(Rd) be a nonnegative distribution function

satisfying (1.10). Let then ψ ∈ C([0,∞);L1
2(R

d)) ∩ L1
loc((0,∞), L1

2+γ(R
d)) be the nonnegative

solution to (1.8)-(1.9) constructed by Theorem 1.3. We assume furthermore that ψ0 is an isotropic
function, that is

ψ0(ξ) = ψ0(|ξ|) ∀ξ ∈ R
d. (1.13)

Then, there is some explicit α ∈ (0, 1] such that, for 0 < α < α there exists some explicit p⋆α > 1
such that, for any p ∈ (1, p⋆α),

sup
t>0

‖ψ(t)‖Lp 6 max {‖ψ0‖Lp , Cp(ψ0)}

for some explicit constant Cp(ψ0) > 0 depending only on α, γ, b(·), p, the dimension d and
∫

Rd ψ0(ξ)|ξ|
γdξ.

The proof of the above result comes from a careful study of the equation for higher-order
Lebesgue norms of the solution ψ(t) combined with the above bound (1.12) where we only
consider isotropic initial datum. Here again, one notices a restriction on the parameter α ∈
(0, α) for the conclusion to hold. The fact that the constant Cp(ψ0) depends on the initial datum
ψ0 through (the inverse of) its moment

∫

Rd ψ0(ξ)|ξ|
γdξ is no major restriction since we will be

able to prove the propagation of lower bound for such a moment along the solution to (1.8) (see
Sections 3 and 4 for details).

Combining the three above results with Theorem 1.1 we obtain our main result, proven in
Section 5:

Theorem 1.6. Assume γ ∈ (0, 1] and set α = min(α0, α). For any α ∈ (0, α) and any p ∈ (1, p⋆α)
there exists a radially symmetric nonnegative ψH ∈ L1

2+γ(R
d)∩Lp(Rd) satisfying (1.5) and (1.6).

The proof of the above result is rather straightforward in view of the previously obtained
results.

Open problems and perspectives are addressed in Section 6. As previously mentioned, one of
them consists in showing that solutions to (1.1) approach for large times a self-similar solution
fH to (1.1) of the form (1.3). The first step was the existence of the profile ψH , which has been
obtained in Section 5. Besides one is also interested in the well-posedness of (1.1) and, following
the same arguments as in the proof of Theorem 1.3 the existence of a solution to (1.1) may be
easily obtained. More precisely, we have

Theorem 1.7. Let f0 ∈ L1
2+γ(R

d) be a nonnegative distribution function. Then, there exists a

nonnegative solution f ∈ C([0,∞);L1
2(R

d))∩L1
loc((0,∞), L1

2+γ(R
d)) to (1.1) such that f(0, ·) = f0

and
∫

Rd

f(t, v) dv 6

∫

Rd

f0(v) dv,

∫

Rd

f(t, v) |v|2 dv 6

∫

Rd

f0(v) |v|
2 dv ∀t > 0. (1.14)

We give the main lines for the proof of this theorem in Appendix A. Finally, the particular
case of Maxwellian molecules is discussed in the Appendix B.

2. On the Cauchy problem

This section is devoted to the proof of Theorem 1.3. To this aim, we first consider a truncated
equation.



ON BALLISTIC ANNIHILATION 9

2.1. Truncated equation. In this section, we only assume that ψ0 ∈ W 1,∞(Rd) ∩ L1
2+δ(R

d) is
a fixed nonnegative distribution function that does not necessarily satisfy the above (1.10) and
we truncate the collision kernel B. Thereby, for n ∈ N, we consider here the well-posedness of
the following equation

∂tψ(t, ξ) +A
n
ψ(t)ψ(t, ξ) +B

n
ψ(t) ξ · ∇ψ(t, ξ) = B

n(ψ,ψ)(t, ξ), (2.1)

where the collision operator B
n(ψ,ψ) is given by

B
n(ψ,ψ) = (1− α)Qn

+(ψ,ψ) −Qn
−(ψ,ψ), (2.2)

where the collision operator Qn is defined as above with a collision kernel Bn given by

Bn(ξ − ξ∗, σ) = Φn(|ξ − ξ∗|)bn(cos θ)

with

Φn(r) = (min {r, n})γ , γ ∈ (0, 1]

and bn(x) = 1{|x|61−1/n}b(x). Finally,

A
n
ψ(t) := −

α

2

∫

Rd

(

d+ 2
∫

Rd ψ(0, ξ∗) dξ∗
−

d |ξ|2
∫

Rd ψ(0, ξ∗) |ξ∗|2 dξ∗

)

Qn
−(ψ,ψ)(t, ξ)dξ

and

B
n
ψ(t) := −

α

2

∫

Rd

(

1
∫

Rd ψ(0, ξ∗) dξ∗
−

|ξ|2
∫

Rd ψ(0, ξ∗) |ξ∗|2 dξ∗

)

Qn
−(ψ,ψ)(t, ξ)dξ.

We notice here that the definitions of An
ψ(t) and B

n
ψ(t) match the definitions of Aψ(t) and Bψ(t)

given in the introduction with Qn
− replacing Q− when ψ0 is assumed to satisfy (1.10). The main

result of this section is the following well-posedness theorem:

Theorem 2.1. Let δ > 0. Let ψ0 ∈W 1,∞(Rd)∩L1
2+δ(R

d) be a nonnegative distribution function.

Then, for any n > 1, there exists a nonnegative solution ψ ∈ C([0,∞);L1(Rd)) to the truncated
problem (2.1) such that ψ(0, ·) = ψ0 and

∫

Rd

ψ(t, ξ) dξ =

∫

Rd

ψ0(ξ) dξ,

∫

Rd

ψ(t, ξ) |ξ|2 dξ =

∫

Rd

ψ0(ξ) |ξ|
2 dξ ∀t > 0.

The proof of this well-posedness result follows classical paths already employed for the clas-
sical space homogeneous Boltzmann equation but is made much more technical because of the
contribution of some nonlinear drift-term. Let T > 0 and

h ∈ C([0, T ];L1(Rd)) ∩ L∞((0, T );L1(Rd, |ξ|2+δ dξ))

be fixed. We consider the auxiliary equation:










∂tψ(t, ξ) +A
n
h(t)ψ(t, ξ) +B

n
h(t) ξ · ∇ξψ(t, ξ) +C

n
h(t, ξ)ψ(t, ξ)

= (1− α)Qn
+(h, h)(t, ξ),

ψ(0, ξ) = ψ0(ξ).

(2.3)

Here, An
h and B

n
h are defined as A

n
ψ and B

n
ψ with Qn

−(h, h) replacing Qn
−(ψ,ψ) and

C
n
h(t, ξ) :=

∫

Rd×Sd−1

Bn(ξ − ξ∗, σ)h(t, ξ∗) dξ∗ dσ = ‖bn‖1

∫

Rd

Φn(|ξ − ξ∗|)h(t, ξ∗) dξ∗.
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We solve this equation using the characteristic method: notice that, by assumption on h, the
mapping t 7→ B

n
h(t) is continuous on [0, T ] and, for any ξ ∈ R

d, the characteristic equation

d

dt
X(t; s, ξ) = B

n
h(t)X(t; s, ξ), X(s; s, ξ) = ξ, (2.4)

gets a unique global solution given by

Xh(t; s, ξ) = ξ exp

(∫ t

s
B
n
h(τ) dτ

)

.

Then, the Cauchy problem (2.3) admits a unique solution given by

ψ(t, ξ) = ψ1(t, ξ) + ψ2(t, ξ) = ψ0 (Xh(0; t, ξ)) exp

(

−

∫ t

0
[An

h(τ) +C
n
h (τ,Xh(τ ; t, ξ))] dτ

)

+ (1− α)

∫ t

0
exp

(

−

∫ t

s
[An

h(τ) +C
n
h (τ,Xh(τ ; t, ξ))] dτ

)

Qn
+(h, h) (s,Xh(s; t, ξ)) ds. (2.5)

For any T > 0 and any M1,M2, L,Cδ > 0 (to be fixed later on), we define H = HT,M1,M2,L,Cδ

as the set of all nonnegative h ∈ C([0, T ];L1(Rd)) such that

sup
t∈[0,T ]

∫

Rd

h(t, ξ) dξ 6M1, sup
t∈[0,T ]

∫

Rd

h(t, ξ) |ξ|2 dξ 6M2,

and

sup
t∈[0,T ]

∫

Rd

h(t, ξ) |ξ|2+δ dξ 6 Cδ, sup
t∈[0,T ]

‖h(t)‖W 1,∞ 6 L.

Define then the mapping

T : H −→ C([0, T ];L1(Rd))

which, to any h ∈ H, associates the solution ψ = T (h) to (2.3) given by (2.5). We look for
parameters T,M1,M2, Cδ and L that ensure T to map H into itself. To do so, we shall use the
following lemma whose proof is omitted and relies only on the very simple estimate:

Qn
−(h, h)(t, ξ) = h(t, ξ)Cn

h(t, ξ) 6 (nγM1‖bn‖1) h(t, ξ) ∀t ∈ [0, T ]

valid for any h ∈ H.

Lemma 2.2. Define, for any n ∈ N and any M1 > 0,

µn = µn(M1) =
α

‖ψ0‖1
nγM1‖bn‖1 and νn = νn(M1) =

αnγM1‖bn‖1
∫

Rd ψ0(ξ) |ξ|2 dξ
.

For any fixed h ∈ H and any (t, ξ) ∈ [0, T ] × R
d the following hold

(i) 0 6 dBn
h(t)−A

n
h(t) =

α
‖ψ0‖1

∫

Rd

Qn
−(h, h)(t, ξ) dξ 6 µnM1.

(ii) −µn
2 M1 6 B

n
h(t) 6

νn
2 M2.

(iii) −µn(d+2)
2 M1 6 A

n
h(t).

(iv) 0 6 (d+ 2)Bn
h(t)−A

n
h(t) =

α
∫

Rd ψ0(ξ) |ξ|2 dξ

∫

Rd

|ξ|2Qn
−(h, h)(t, ξ) dξ 6 νnM2.
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Control of the density. By a simple change of variables, one checks easily that the solution
ψ(t, ξ) given by (2.5) fulfils

∫

Rd

ψ(t, ξ) dξ =

∫

Rd

ψ0(ξ) exp

(
∫ t

0
[dBn

h(τ)−A
n
h(τ)−C

n
h (τ,Xh(τ ; 0, ξ))] dτ

)

dξ

+ (1− α)

∫ t

0
ds

∫

Rd

exp

(
∫ t

s
[dBn

h(τ)−A
n
h(τ)−C

n
h (τ,Xh(τ, s, ξ))] dτ

)

Qn
+(h, h)(s, ξ) dξ.

It comes then from the above Lemma 2.2 that
∫

Rd

ψ(t, ξ) dξ 6 ‖ψ0‖1 exp (t µnM1) + (1− α)

∫ t

0
exp ((t− s)µnM1)

∫

Rd

Qn
+(h, h)(s, ξ) dξ ds,

6 ‖ψ0‖1 exp (tµnM1) +
1− α

α
µnM1‖ψ0‖1

∫ t

0
exp ((t− s)µnM1) ds,

from which we deduce that

sup
t∈[0,T ]

∫

Rd

ψ(t, ξ) dξ 6 ‖ψ0‖1

(

exp (T µnM1) +
1− α

α
(exp (T µnM1)− 1)

)

∀h ∈ H. (2.6)

Control of the moments. We now focus on the control of moments of order r with r > 2 to
the solution ψ given by (2.5). Arguing as above,

∫

Rd

ψ(t, ξ) |ξ|r dξ =

∫

Rd

ψ0(ξ) |ξ|
r exp

(∫ t

0
[(r + d)Bn

h(τ)−A
n
h(τ)−C

n
h (τ,Xh(τ, 0, ξ))] dτ

)

dξ

+ (1− α)

∫ t

0
ds

∫

Rd

exp

(∫ t

s
[(r + d)Bn

h(τ)−A
n
h(τ)−C

n
h (τ,Xh(τ, s, ξ))] dτ

)

Qn
+(h, h)(s, ξ) |ξ|

r dξ.

Using again Lemma 2.2, we get
∫

Rd

ψ(t, ξ) |ξ|r dξ 6 exp
(

t (µnM1 +
νn r

2
M2)

)

∫

Rd

ψ0(ξ) |ξ|
r dξ

+ (1− α)

∫ t

0
exp

(

(t− s) (µnM1 +
νn r

2
M2)

)

∫

Rd

Qn
+(h, h)(s, ξ) |ξ|

r dξ ds.

Now, the change of variables (ξ, ξ∗) → (ξ′, ξ′∗) together with the fact that |ξ′| 6 |ξ|+ |ξ∗|, yields
∫

Rd

Qn
+(h, h)(s, ξ) |ξ|

r dξ 6

∫

Rd×Rd

∫

Sd−1

Bn(ξ − ξ∗, σ)h(s, ξ)h(s, ξ∗) |ξ
′|r dσ dξ dξ∗

6 2r−1 nγ ‖bn‖1

∫

Rd×Rd

h(s, ξ)h(s, ξ∗) (|ξ|
r + |ξ∗|

r) dξ dξ∗

6 2r nγ ‖bn‖1M1

∫

Rd

h(s, ξ) |ξ|r dξ.

Hence,
∫

Rd

ψ(t, ξ) |ξ|r dξ 6 exp
(

t (µnM1 +
νn r

2
M2)

)

∫

Rd

ψ0(ξ) |ξ|
r dξ

+ (1− α)2r
µn
α

‖ψ0‖1

∫ t

0
exp

(

(t− s)(µnM1 +
νn r

2
M2)

)

∫

Rd

h(s, ξ) |ξ|r dξ ds.
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In particular, choosing successively r = 2 and r = 2 + δ one gets that

sup
t∈[0,T ]

∫

Rd

ψ(t, ξ) |ξ|2 dξ 6 exp
(

T (µnM1 + νnM2)
)

∫

Rd

ψ0(ξ) |ξ|
2 dξ

+ 4 ‖ψ0‖1
1− α

α

µnM2

µnM1 + νnM2

(

exp
(

T (µnM1 + νnM2)
)

− 1
)

(2.7)

and

sup
t∈[0,T ]

∫

Rd

ψ(t, ξ) |ξ|2+δ dξ 6 exp
(

T (µnM1 +
2 + δ

2
νnM2)

)

∫

Rd

ψ0(ξ) |ξ|
2+δ dξ

+ ‖ψ0‖1
1− α

α

Cδ 2
2+δ µn

µnM1 +
2+δ
2 νnM2

(

exp
(

T (µnM1 +
2 + δ

2
νnM2)

)

− 1

)

(2.8)

for any h ∈ H.

Control of the W 1,∞ norm. Our assumption on the collision kernel of the operator Qn allows
us to apply [23, Theorem 2.1] with k = η = 0 and sin2(θb/2) = 1/(2n) to get directly

‖Qn
+(h, h)‖L∞ 6 2n1+γ ‖bn‖1 ‖h‖L1 ‖h‖L∞ .

Then, the change of variable σ → −σ yields

∇Qn
+(h, h) = Qn

+(∇h, h) +Qn
+(h,∇h) = 2Qn

+(h,∇h)

and, applying again [23, Theorem 2.1]:

‖∇Qn
+(h, h)‖L∞ 6 2‖Qn

+(h,∇h)‖L∞ 6 4n1+γ ‖bn‖1 ‖h‖L1 ‖∇h‖L∞ .

Consequently

‖Qn
+(h, h)‖W 1,∞ 6 4n1+γ ‖bn‖1 ‖h‖L1 ‖h‖W 1,∞ .

In the same way, since d
drΦn(r) 6 γnγ−1 6 1, one checks easily that

‖Cn
h(t, ·)‖W 1,∞ 6 2nγ‖bn‖1‖h(t)‖L1 6 2

µn
α

‖ψ0‖1 ∀t ∈ [0, T ], h ∈ H

Recall now the expression of the solution ψ = ψ1 + ψ2 given in (2.5). It is easy to see that, for
any t ∈ [0, T ]

‖ψ1(t)‖W 1,∞ 6 exp

(

−

∫ t

0
A
n
h(τ)dτ

)

‖ψ0‖∞ + exp

(

−

∫ t

0
(An

h(τ) +B
n
h(τ))dτ

)

‖∇ξψ0‖∞

+ ‖ψ0‖∞ exp

(

−

∫ t

0
A
n
h(τ)dτ

)
∫ t

0
exp

(

−

∫ t

τ
B
n
h(s)ds

)

‖∇ξC
n
h(τ, ·)‖∞dτ

so that, using again Lemma 2.2:

‖ψ1(t)‖W 1,∞ 6 exp

(

µn(d+ 3)

2
M1 t

)

‖ψ0‖W 1,∞

+
2

α
µn‖ψ0‖1 ‖ψ0‖∞ exp

(

µn(d+ 2)

2
M1t

)∫ t

0
exp

(µn
2
M1(t− τ)

)

dτ

i.e.

‖ψ1(t)‖W 1,∞ 6 max

(

1,
4‖ψ0‖1
αM1

)

exp

(

µn(d+ 3)

2
M1 t

)

‖ψ0‖W 1,∞ ∀t ∈ [0, T ].
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In the same way,

‖ψ2(t)‖W 1,∞ 6 (1− α)max(1, 4‖ψ0‖1
αM1

)

∫ t

0
exp

(

µn(d+ 3)

2
M1(t− s)

)

‖Qn
+(h, h)(s)‖W 1,∞ds

6 (1− α)max(1, 4‖ψ0‖1
αM1

)
8n1+γ‖bn‖1 L

µn(d+ 3)

[

exp

(

µn(d+ 3)

2
M1t

)

− 1

]

.

Consequently,

sup
t∈[0,T ]

‖ψ(t)‖W 1,∞ 6 max

(

1,
4‖ψ0‖1
αM1

)

exp

(

µn(d+ 3)

2
M1 T

)

‖ψ0‖W 1,∞

+max

(

1,
4‖ψ0‖1
αM1

)

1− α

α

8nL‖ψ0‖1
M1(d+ 3)

[

exp

(

µn(d+ 3)

2
M1T

)

− 1

]

.

(2.9)

Now, from (2.6), (2.7), (2.8) and (2.9), one sees that, choosing for instance M1 = 4‖ψ0‖1,

M2 = 4

∫

Rd

ψ0(ξ) |ξ|
2 dξ, Cδ = 4

∫

Rd

ψ0(ξ) |ξ|
2+δ dξ, L =

4

α
‖ψ0‖W 1,∞

and

T =
2

µnM1
min

{

log 2

(4 + δ)
,

1

(4 + δ)
log

(

1 +
α (4 + δ)

(1− α) 22+δ

)

,
1

2
log

(

1 +
αM1

2(1− α)

)

,

log 2

d+ 3
,
| log(1− α)|

4
,

1

d+ 3
log

(

1 +
α2(d+ 3)

4n (1− α)

)

}

,

we get that ψ ∈ H, i.e. with the above choice of the parameters M1,M2, Cδ , L, T , one has
T (H) ⊂ H (notice that with this choice, µnM1 = νnM2). Moreover, one can prove the following:

Proposition 2.3. The mapping T : H → C([0, T ], L1
2(R

d)) is continuous for the topology induced
by C([0, T ], L1

2(R
d)). More precisely, there exists a constant C > 0 such that, for any h1, h2 ∈ H,

sup
t∈[0,T ]

‖T (h1)(t)− T (h2)(t)‖L1
2
6 C sup

t∈[0,T ]
‖h1(t)− h2(t)‖L1

2
. (2.10)

Moreover, T (H) is a relatively compact subset of C([0, T ], L1
2(R

d)).

In the proof of the above Proposition, we shall use the following result which is very classical:

Lemma 2.4. Let h1, h2 ∈ C([0, T ], L1
2(R

d)). Then,

‖Cn
h1(t, ·)−C

n
h2(t, ·)‖L∞ 6 ‖bn‖1‖Φn‖∞‖h1(t)− h2(t)‖L1 ∀t > 0.

Consequently, the following hold for any t > 0 :

|Bn
h1(t)−B

n
h2(t)| 6

α‖bn‖1‖Φn‖∞
2

(

‖h1(t)‖L1
2
+ ‖h2(t)‖L1

2

)

× ‖h1(t)− h2(t)‖L1
2

(

1
∫

Rd ψ0(ξ) |ξ|2 dξ
+

1

‖ψ0‖1

)

,

and

|An
h1(t)−A

n
h2(t)| 6

α‖bn‖1‖Φn‖∞
2

(

‖h1(t)‖L1
2
+ ‖h2(t)‖L1

2

)

× ‖h1(t)− h2(t)‖L1
2

(

d
∫

Rd ψ0(ξ) |ξ|2 dξ
+
d+ 2

‖ψ0‖1

)

.
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Proof of Proposition 2.3. Given h1, h2 ∈ H, we set ψ1 = T (h1) and ψ2 = T (h2). Define also

h = h1 − h2 and ψ = ψ1 − ψ2.

The difference function ψ(t, ξ) is a solution to the following problem

∂tψ(t, ξ) +A
n
h2(t)ψ(t, ξ) +B

n
h2(t)ξ · ∇ξψ(t, ξ) +C

n
h2(t, ξ)ψ(t, ξ)

=
[

C
n
h2(t, ξ)−C

n
h1(t, ξ)

]

ψ1(t, ξ) +
[

A
n
h2(t)−A

n
h1(t)

]

ψ1(t, ξ)

+
[

B
n
h2(t)−B

n
h1(t)

]

(ξ · ∇ξψ1(t, ξ))

+ (1− α)
(

Qn
+(h1, h1)−Qn

+(h2, h2)
)

.

We multiply this equation by sign(ψ(t, ξ))〈ξ〉2 and integrate over R
d. It is easy to see that

∫

Rd

[ξ · ∇ξψ(t, ξ)] sign(ψ(t, ξ))〈ξ〉
2dξ = −

∫

Rd

|ψ(t, ξ)|divξ
(

ξ〈ξ〉2
)

dξ

= −d

∫

Rd

|ψ(t, ξ)|〈ξ〉2dξ − 2

∫

Rd

|ψ(t, ξ)| |ξ|2dξ

= −(d+ 2)‖ψ(t)‖L1
2
+ 2‖ψ(t)‖L1

from which we get

d

dt
‖ψ(t)‖L1

2
+
(

A
n
h2(t)− (d+ 2)Bn

h2(t)
)

‖ψ(t)‖L1
2
+

2Bn
h2(t)‖ψ(t)‖L1 +

∫

Rd

C
n
h2(t, ξ)|ψ(t, ξ)|〈ξ〉

2dξ 6 I1 + I2 + I3 + I4

where

I1 :=

∫

Rd

∣

∣C
n
h2(t, ξ)−C

n
h1(t, ξ)

∣

∣ |ψ1(t, ξ)|〈ξ〉
2dξ

I2 :=
∣

∣A
n
h2(t)−A

n
h1(t)

∣

∣ ‖ψ1(t)‖L1
2

I3 :=
∣

∣B
n
h2(t)−B

n
h1(t)

∣

∣

∣

∣

∣

∣

∫

Rd

(ξ · ∇ξψ1(t, ξ)) sign(ψ(t, ξ))〈ξ〉
2dξ

∣

∣

∣

∣

while

I4 := (1− α)

∫

Rd

∣

∣Qn
+(h1, h1)(t, ξ)−Qn

+(h2, h2)(t, ξ)
∣

∣ 〈ξ〉2dξ.

According to Lemma 2.4, one has

I1 6 ‖bn‖1 ‖Φn‖∞ ‖h1(t)− h2(t)‖L1‖ψ1(t)‖L1
2
6 (nγ ‖bn‖1 (M1 +M2)) ‖h(t)‖L1 .

In the same way

I2 6
αnγ‖bn‖1

2

(

d+ 2

‖ψ0‖1
+

d
∫

Rd ψ0(ξ) |ξ|2 dξ

)

(

‖h1(t)‖L1
2
+ ‖h2(t)‖L1

2

)

‖h(t)‖L1
2
‖ψ1(t)‖L1

2

6

(

(d+ 2)µn
M1

+
d νn
M2

)

(M1 +M2)
2 ‖h(t)‖L1

2
.

Now, it is easy to see that
∣

∣

∣

∣

∫

Rd

(ξ · ∇ξψ1(t, ξ)) sign(ψ(t, ξ))〈ξ〉
2dξ

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

Rd

ψ1(t, ξ) divξ
(

ξ〈ξ〉2
)

dξ

∣

∣

∣

∣

6 (d+ 2)‖ψ1(t)‖L1
2
+ 2‖ψ1(t)‖L1 6 (d+ 4)‖ψ1(t)‖L1

2
.
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Consequently, using again Lemma 2.4, one gets

I3 6
αnγ‖bn‖1(d+ 4)

2

(

1

‖ψ0‖1
+

1
∫

Rd ψ0(ξ) |ξ|2 dξ

)

(

‖h1(t)‖L1
2
+ ‖h2(t)‖L1

2

)

‖h(t)‖L1
2
‖ψ1(t)‖L1

2

6 (d+ 4)

(

µn
M1

+
νn
M2

)

(M1 +M2)
2 ‖h(t)‖L1

2
.

Now, it is easy to see that

I4 = (1− α)
∥

∥Qn
+(h1, h1)−Qn

+(h2, h2)
∥

∥

L1
2
= (1− α)

∥

∥Qn
+(h1 − h2, h1)−Qn

+(h2, h1 − h2)
∥

∥

L1
2

6 nγ‖bn‖1

(

‖h1(t)‖L1
2
+ ‖h2(t)‖L1

2

)

‖h(t)‖L1
2
6 2nγ‖bn‖1(M1 +M2)‖h(t)‖L1

2
.

Summarizing the above estimates, there exists a positive constant Cn > 0 such that

d

dt
‖ψ(t)‖L1

2
+
(

A
n
h2(t)− (d+ 2)Bn

h2(t)
)

‖ψ(t)‖L1
2
+

2Bn
h2(t)‖ψ(t)‖L1 +

∫

Rd

C
n
h2(t, ξ)|ψ(t, ξ)|〈ξ〉

2dξ 6 Cn ‖h(t)‖L1
2

∀t ∈ [0, T ].

Now, using Lemma 2.2, we get that

d

dt
‖ψ(t)‖L1

2
− (µnM1 + νnM2)‖ψ(t)‖L1

2
6 Cn‖h(t)‖L1

2
.

This finally yields the estimate

sup
t∈[0,T ]

‖ψ1(t)− ψ2(t)‖L1
2
6 CnT exp(T (µnM1 + νnM2)) sup

t∈[0,T ]
‖h1(t)− h2(t)‖L1

2

since ψ1(0) = ψ2(0) = ψ0. Let us now prove the compactness of T (H). Recall that, according
to Riesz-Fréchet-Kolmogorov Theorem, the embedding

L1
2+δ(R

d) ∩W 1,∞(Rd) ⊂ L1
2(R

d)

is compact. Moreover, L1
2(R

d) is continuously embedded into
(

Hm(Rd)
)′

for m > d/2. On the
other hand,

T (H) is a bounded subset of L∞
(

(0, T );L1
2+δ(R

d) ∩W 1,∞(Rd)
)

and, setting ∂tT (H) = {∂tψ ; ψ = T (h), h ∈ H}, one has

∂tT (H) is a bounded subset of Lr((0, T ); (Hm(Rd))′),

with r > 1. As a consequence, one can apply [27, Corollary 4] to conclude that T (H) is a
relatively compact subset of C([0, T ];L1

2(R
d)). �

We are in position to conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. The proof is split into two parts: the first one consists in proving the
well-posedness of the Cauchy problem (2.1) on the time interval [0, T ] (where T > 0 has been
defined hereabove) through Schauder fixed point theorem. The second part consists in extending
this solution to a global solution.

Local existence: Since H is a closed bounded (non-empty) subset of C([0, T ];L1
2(R

d)) and since
T is a continuous and compact application from H to H, Schauder fixed point theorem en-
sures the existence of some fixed point ψ1 of T , i.e. there exists ψ1 ∈ C([0, T ];L1

2(R
d)) ∩
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L∞((0, T );L1
2+δ(R

d) ∩W 1,∞(Rd)) solution to (2.1).

Global existence: Integrating the equation (2.1) over R
d, we get

d

dt

∫

Rd

ψ1(t, ξ) dξ =
α

‖ψ0‖1

(∫

Rd

Qn
−(ψ

1, ψ1)(t, ξ) dξ

)(∫

Rd

ψ1(t, ξ) dξ − ‖ψ0‖1

)

.

Since

∫

Rd

ψ1(0, ξ) dξ = ‖ψ0‖1, we see that the density of ψ1 is conserved:

∫

Rd

ψ1(t, ξ) dξ =

∫

Rd

ψ0(ξ) dξ ∀t ∈ [0, T ].

In the same way, multiplying (2.1) by |ξ|2 and integrating over R
d yields

d

dt

∫

Rd

ψ1(t, ξ) |ξ|2 dξ = α

(∫

Rd

|ξ|2 Qn
−(ψ

1, ψ1)(t, ξ) dξ

)(

∫

Rd ψ
1(t, ξ) |ξ|2 dξ

∫

Rd ψ0(ξ) |ξ|2 dξ
− 1

)

.

Since

∫

Rd

ψ1(0, ξ) |ξ|2 dξ =

∫

Rd

ψ0(ξ) |ξ|
2 dξ, the energy of ψ1(t, ξ) is conserved:

∫

Rd

ψ1(t, ξ) |ξ|2 dξ =

∫

Rd

ψ0(ξ) |ξ|
2 dξ ∀t ∈ [0, T ].

Thus, ψ1(T, .) has the same mass and energy as ψ0. Since the time T only depends on these values,
by a standard continuation argument, we construct a global solution ψ to (2.1). Uniqueness
clearly follows from (2.10). �

2.2. Uniform estimates. In order to prove Theorem 1.3, we now need to get rid of the bound
in W 1,∞(Rd) for the initial condition and to pass to the limit as n→ +∞.

Let δ > 0 and p > 1. Let ψ0 ∈ L1
2+δ(R

d) ∩ Lp(Rd) be a nonnegative distribution function

satisfying (1.10). There exists a sequence of nonnegative functions (ψn0 )n∈N in W 1,∞(Rd) ∩
L1
2+δ(R

d) that converges to ψ0 in L1
2(R

d) and that satisfies, for any n ∈ N,

‖ψn0 ‖1 6 ‖ψ0‖1 and ‖ψn0 ‖Lp 6 ‖ψ0‖Lp .

Moreover, if ψ0 ∈ L1
s(R

d) with s > 2 then one may also assume that
∫

Rd

ψn0 (ξ) |ξ|
s dξ 6 2s−1‖ψ0‖1 + 2s−1

∫

Rd

ψ0(ξ) |ξ|
s dξ. (2.11)

We infer from the above properties of (ψn0 )n∈N and from (1.10) that there exists some N0 ∈ N

such that for n > N0,

1

2
6

∫

Rd

ψn0 (ξ) dξ 6 1 and
d

4
6

∫

Rd

ψn0 (ξ) |ξ|
2 dξ 6 d. (2.12)

For each n ∈ N, we denote by ψn the solution to (2.1) with initial condition ψn0 . Our purpose
is to show that (ψn)n∈N is a Cauchy sequence in C([0, T ];L1

2(R
d)) for any T > 0. However, this

requires uniform estimates on ψn. So, we now tackle this question and show uniform bounds for
moments of ψn. The underlying difficulty comes from the two terms An

ψn
and B

n
ψn

which already
involve moments of order 2 + γ and thereby prevent us from performing direct estimates. In all
the sequel, we shall simply set

An(t) = A
n
ψn

(t), Bn(t) = B
n
ψn

(t), n ∈ N, t > 0.
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We begin with proving that both An and Bn are bounded in L1
loc(0,∞). Here again we first

need to show uniform Lp-estimates, which is the aim of the following lemma.

Lemma 2.5. There exist some integer N1 > N0 and some constant C > 0 depending only on α,
p, d and γ such that, for all n > N1,

‖ψn(t)‖Lp 6 eCt ‖ψ0‖Lp , t > 0. (2.13)

Proof. For n ∈ N∗, we multiply (1.8) by pψn(t, ξ)
p−1 and integrate over R

d. An integration by
parts then leads to

d

dt
‖ψn(t)‖

p
Lp = (dBn(t)− pAn(t)) ‖ψn(t)‖

p
Lp

+ (1− α) p

∫

Rd

Qn
+(ψn, ψn)(t, ξ)ψn(t, ξ)

p−1 dξ

− αp

∫

Rd

Qn
−(ψn, ψn)(t, ξ)ψn(t, ξ)

p−1 dξ. (2.14)

First, since p > 1, we have, for n > N0,

dBn(t)− pAn(t) =
α

2

∫

Rd

(

d(p− 1) + 2p

‖ψn0 ‖1
−

d(p− 1)|ξ|2
∫

Rd ψn0 (ξ∗) |ξ∗|
2 dξ∗

)

Qn
−(ψn, ψn)(t, ξ) dξ

6 α(d(p − 1) + 2p)

∫

Rd

Qn
−(ψn, ψn)(t, ξ) dξ. (2.15)

But, since γ ∈ (0, 1],

Φn(|ξ − ξ∗|) 6 |ξ − ξ∗|
γ 6 |ξ|γ + |ξ∗|

γ . (2.16)

Consequently,
∫

Rd

Qn
−(ψn, ψn)(t, ξ) dξ 6 2 ‖bn‖1

∫

Rd

|ξ|γψn(t, ξ) dξ 6 2 ‖b‖1 (1 + d). (2.17)

Thereby, we obtain a bound for the first term in the right hand side of (2.14). We now need
to estimate the two remaining integrals. We first notice that, due to the symmetry, we can
reduce the domain of integration with respect to σ to those σ that satisfy 〈ξ − ξ∗, σ〉 > 0, which
corresponds to θ ∈ [0, π/2]. This amounts to taking bn(x) = 1{06x61−1/n}b(x) in the collision
operator Q where

b(x) = b(x) + b(−x).

Then, for some fixed θ0 ∈ [arccos(1− 1/n), π/2], we split bn as bn = bn,c + bn,r where

bn,c(x) = 1{06x6cos θ0}b(x) and bn,r(x) = 1{cos θ06x61−1/n}b(x).

It is important to point out that bn,c and consequently the norm ‖bn,c‖1 do not depend on n but
only on θ0. This splitting leads to the corresponding decomposition of the collision operators:

Qn
+ = Qn,c

+ +Qn,r
+ and Qn

− = Qn,c
− +Qn,r

− . (2.18)

We first consider Qn,r
+ and Qn,r

− . We have
∫

Rd

Qn,r
− (ψn, ψn)(t, ξ)ψn(t, ξ)

p−1 dξ > 0. (2.19)



18 VÉRONIQUE BAGLAND & BERTRAND LODS

Then, for the integral involving Qn,r
+ , the change of variables (ξ, ξ∗) → (ξ′, ξ′∗) yields

∫

Rd

Qn,r
+ (ψn, ψn)(t, ξ)ψn(t, ξ)

p−1 dξ

=

∫

Rd

∫

Rd

∫

Sd−1

ψn(t, ξ)ψn(t, ξ∗)ψn(t, ξ
′)p−1bn,r(cos θ)Φn(|ξ − ξ∗|) dσ dξ dξ∗

Now, we have

ψn(t, ξ)ψn(t, ξ
′)p−1

6
1

p
ψn(t, ξ)

p +
p− 1

p
ψn(t, ξ

′)p,

and (see [1, Section 3, proof of Lemma 1] or [11, Eq. (2.7)])
∫

Rd

∫

Sd−1

ψn(t, ξ
′)p 1{cos θ06cos θ61−1/n} b(cos θ)Φn(|ξ − ξ∗|) dσ dξ

= |Sd−2|

∫

Rd

∫ θ0

arccos(1−1/n)
ψn(t, ξ)

p Φn

(

|ξ − ξ∗|

cos(θ/2)

)

sind−2(θ)

cosd(θ/2)
b(cos θ)dθ dξ.

Then, thanks to the inequalities

Φn(|ξ−ξ∗|) 6 Φn(|ξ|)+|ξ∗|
γ and Φn

(

|ξ − ξ∗|

λ

)

6 λ−γ Φn(|ξ−ξ∗|), ∀0 < λ < 1, (2.20)

we get
∫

Rd

Qn,r
+ (ψn, ψn)(t, ξ)ψn(t, ξ)

p−1 dξ

6 |Sd−2|

∫ θ0

arccos(1−1/n)
b(cos θ)(1 + (cos(θ/2)−d−γ) sind−2(θ) dθ

×

(∫

Rd

ψn(t, ξ)
p Φn(|ξ|) dξ + (1 + d) ‖ψn(t)‖

p
Lp

)

. (2.21)

Let us now consider Qn,c
+ and Qn,c

− . We proceed as in the proof of [11, Proposition 2.4]. Since

Φn(|ξ − ξ∗|) > Φn(|ξ|)− |ξ∗|
γ , (2.22)

we deduce that
∫

Rd

Qn,c
− (ψn, ψn)(t, ξ)ψn(t, ξ)

p−1 dξ >
1

2
‖bn,c‖1

∫

Rd

ψn(t, ξ)
p Φn(|ξ|) dξ

− ‖bn,c‖1 (1 + d) ‖ψn(t)‖
p
Lp . (2.23)

On the other hand,
∫

Rd

Qn,c
+ (ψn, ψn)(t, ξ)ψn(t, ξ)

p−1 dξ = J1 + J2, (2.24)

where

J1 =

∫

R2d

∫

Sd−1

ψn(t, ξ
′)ψn(t, ξ

′
∗)1{|ξ′|6r}ψn(t, ξ)

p−1bn,c(cos θ)Φn(|ξ − ξ∗|) dσ dξ dξ∗,

J2 =

∫

R2d

∫

Sd−1

ψn(t, ξ
′)ψn(t, ξ

′
∗)1{|ξ′|>r}ψn(t, ξ)

p−1bn,c(cos θ)Φn(|ξ − ξ∗|) dσ dξ dξ∗,
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with r > 0. Performing the same calculations as in the proof of [11, Proposition 2.4] and using
the same notations, we prove easily (using again (2.20)) that the following hold for any µ1 > 0
and any µ2 > 0:

J1 6 (cos(π/4))−d−γ
(

1−
1

p

)

µ−1
1 ‖bn,c‖1

(∫

Rd

ψn(t, ξ)
p Φn(|ξ|) dξ + (1 + d) ‖ψn(t)‖

p
Lp

)

+
1

p
µp−1
1 ‖bn,c‖1 (1 + rγ + d) ‖ψn(t)‖

p
Lp (2.25)

and

J2 6 (sin(θ0/2))
−d−γ

(

1−
1

p

)

µ−1
2 ‖bn,c‖1

(

d

r2

∫

Rd

ψn(t, ξ)
p Φn(|ξ|) dξ +

d

r2−γ
‖ψn(t)‖

p
Lp

)

+
µp−1
2

p
‖bn,c‖1

(∫

Rd

ψn(t, ξ)
p Φn(|ξ|) dξ + (1 + d) ‖ψn(t)‖

p
Lp

)

. (2.26)

It remains now to choose the parameters θ0, µ1, µ2 and r so that all the terms involving
∫

Rd ψn(t, ξ)
pΦn(|ξ|) dξ that appear in the gain term can be absorbed by the one appearing

in the estimate of the loss term. Precisely, we first choose θ0 small enough such that

|Sd−2|

∫ θ0

0
b(cos θ)(1 + (cos(θ/2)−d−γ) sind−2(θ) dθ 6 a‖bn,c‖1

for some a > 0 to be determined later (recall that ‖bn,c‖1 only depends on θ0). Then, we choose
µ1 big enough and µ2 small enough such that

(p − 1)(cos(π/4))−d−γµ−1
1 6 ap and µp−1

2 6 ap.

Finally, we choose r big enough such that

(p− 1)(sin(θ0/2))
−d−γµ−1

2

d

r2
6 ap.

Let N1 ∈ N∗ be such that N1 > max
{

1
1−cos θ0

, N0

}

. Gathering (2.15), (2.17), (2.18), (2.19),

(2.21), (2.23), (2.24), (2.25) and (2.26) we conclude that, for n > N1,

d

dt
‖ψn(t)‖

p
Lp 6

8(1 − α)ap − αp

2
‖bn,c‖1

∫

Rd

ψn(t, ξ)
p Φn(|ξ|) dξ + C‖ψn(t)‖

p
Lp

for some positive constant C that only depends on α, b(·), p, d, µ1, r and γ. Taking then
a = α

16(1−α) we get

d

dt
‖ψn(t)‖

p
Lp +

αp

4
‖bn,c‖1

∫

Rd

ψn(t, ξ)
p Φn(|ξ|) dξ 6 C‖ψn(t)‖

p
Lp .

Recalling again that ‖bn,c‖1 does not depend on n, the Gronwall lemma and the inequality
‖ψn0 ‖Lp 6 ‖ψ0‖Lp then imply that (2.13) holds. �

We now deduce from these Lp-estimates the following lemma, which implies that An and Bn

are uniformly bounded in L1
loc(0,∞).

Lemma 2.6. Let T > 0. There exists some constant C depending only on α, d, γ, p, T and
‖ψ0‖Lp such that, for n > N1,

∫ T

0

∫

Rd

ψn(t, ξ) |ξ|
2 Φn(|ξ|) dξ dt 6 C. (2.27)
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Proof. Let n > N1. For s ∈ (0, 2), we multiply (2.1) by |ξ|s and integrate over R
d. Integrations

by parts then lead to

dY ns
dt

(t) =
α

2
Y n
s (t)

∫

Rd

(

2− s

‖ψn0 ‖1
+

s |ξ|2
∫

Rd ψn0 (ξ∗) |ξ∗|
2 dξ∗

)

Qn
−(ψn, ψn)(t, ξ) dξ

+
1− α

2

∫

Rd

∫

Rd

ψn(t, ξ)ψn(t, ξ∗)Φn(|ξ − ξ∗|)K
n
s (ξ, ξ∗) dξ dξ∗

− α

∫

Rd

Qn
−(ψn, ψn)(t, ξ) |ξ|

s dξ, (2.28)

where we set Y n
s (t) =

∫

Rd

ψn(t, ξ) |ξ|
s dξ and

Kn
s (ξ, ξ∗) =

∫

Sd−1

1{| cos θ|61−1/n}b(cos θ)
(

|ξ′|s + |ξ′∗|
s − |ξ|s − |ξ∗|

s
)

dσ.

By [22, Lemma 2.2 (ii)], one can write Kn
s (ξ, ξ∗) = Gns (ξ, ξ∗)−Hn

s (ξ, ξ∗) with

Hn
s (ξ, ξ∗) 6 0 and |Gns (ξ, ξ∗)| 6 c1 |ξ|

s/2 |ξ∗|
s/2,

for some constant c1 depending only on b(·), s and d. Integrating the previous inequality between
0 and T , we get

Y n
s (0) +

α s

2
∫

Rd ψn0 (ξ∗) |ξ∗|
2 dξ∗

∫ T

0

(∫

Rd

|ξ|2 Qn
−(ψn, ψn)(τ, ξ) dξ

)

Y n
s (τ) dτ

6 Y n
s (T ) + ‖bn‖1

∫ T

0

∫

Rd

∫

Rd

Φn(|ξ − ξ∗|) |ξ|
s ψn(τ, ξ)ψn(τ, ξ∗) dξ dξ∗ dτ

+
c1
2

∫ T

0

∫

Rd

∫

Rd

Φn(|ξ − ξ∗|) |ξ|
s/2 |ξ∗|

s/2 ψn(τ, ξ)ψn(τ, ξ∗) dξ dξ∗ dτ,

since s < 2 and 0 < α < 1. We then deduce from (2.12), (2.16) and (2.22) that

αs

2d

∫ T

0

(∫

Rd

Φn(|ξ|) |ξ|
2ψn(τ, ξ) dξ

)

Y n
s (τ) dτ 6

s

2

∫ T

0
Y n
γ (τ)Y

n
s (τ) dτ

+Y n
s (T ) + ‖bn‖1

∫ T

0

(

Y ns+γ(τ) + Y n
s (τ)Y

n
γ (τ)

)

dτ + c1

∫ T

0
Y n
s/2+γ(τ)Y

n
s/2(τ) dτ

Taking s = 2− γ and using that for any ν ∈ (0, 2), Y n
ν (τ) 6 Y n

0 (τ) + Y n
2 (τ) 6 1 + d we get

∫ T

0

(
∫

Rd

Φn(|ξ|) |ξ|
2ψn(τ, ξ) dξ

)

Y n
2−γ(τ) dτ 6 C,

for some constant C depending only on b(·), α, d, γ and T . Now, for R > 0 and p > 1,

Y n
2−γ(τ) > R2−γ

(

1

2
−

∫

|ξ|6R
ψn(τ, ξ) dξ

)

,

and, by the Hölder inequality,
∫

|ξ|6R
ψn(τ, ξ) dξ 6

(

|Sd−1|Rd

d

)p/(p−1)

‖ψn(τ)‖Lp 6

(

|Sd−1|Rd

d

)p/(p−1)

eCT ‖ψ0‖Lp .

Thus, (2.27) follows for R small enough. �

We are now in a position to prove that moments of ψn remain bounded uniformly in n > N1.
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Lemma 2.7. Let T > 0 and s > 2. Assume that ‖ψ0‖L1
s
<∞. Then, there exists some constant

C depending only on b(·), α, d, γ, p, s, T , ‖ψ0‖Lp and ‖ψ0‖L1
s

such that, for n > N1,

sup
t∈[0,T ]

∫

Rd

ψn(t, ξ) |ξ|
s dξ 6 C and

∫ T

0

∫

Rd

ψn(t, ξ)Φn(|ξ|) |ξ|
s dξ dt 6 C. (2.29)

Proof. Let s > 2 and n > N1. Our proof follows the same lines as the proof of [22, Lemma 4.2].
We use here the same notations as in the proof of Lemma 2.6. As previously, (2.28) holds. Now,
by [17, Lemma 11], we have

Kn
s (ξ, ξ∗) 6 c1 (|ξ|

s−γ |ξ∗|+ |ξ| |ξ∗|
s−γ)− c2(n)|ξ|

s,

for some constant c1 depending only on s and d and

c2(n) = 2−s
s− 2

2
|Sd−2|

∫ π

0
1{| cos θ|61−1/n} (min{cos θ, 1− cos θ})s b(cos θ)dθ.

Thus, by (2.12), (2.16), (2.20), (2.22) and the above estimate, (2.28) yields

d

dt
Y n
s (t) 6

2s

d
‖bn‖1 Y

n
s (t)

(∫

Rd

|ξ|2 Φn(|ξ|)ψn(t, ξ) dξ

)

+
s

2
‖bn‖1 Y

n
s (t)Y

n
γ (t)

+ c1

∫

Rd

∫

Rd

ψn(t, ξ)ψn(t, ξ∗) (|ξ|
γ + |ξ∗|

γ) |ξ|s−γ |ξ∗|dξ dξ∗

−
(1− α) c2(n)

2

∫

Rd

∫

Rd

ψn(t, ξ)ψn(t, ξ∗) (Φn(|ξ|) − |ξ∗|
γ) |ξ|s dξ dξ∗,

Consequently,

d

dt
Y n
s (t) +

(1− α) c2(n)

2

∫

Rd

ψn(t, ξ)Φn(|ξ|) |ξ|
s dξ

6
2s

d
‖bn‖1 Y

n
s (t)

(
∫

Rd

|ξ|2 Φn(|ξ|)ψn(t, ξ) dξ

)

+
s ‖bn‖1 + c2(n)

2
Y n
s (t)Y

n
γ (t)

+c1
(

Y n
s (t)Y

n
1 (t) + Y n

s−γ(t)Y
n
1+γ(t)

)

,

But, for each n > 2,

0 < c2(2) 6 c2(n) 6 c∞2 := 2−s
s− 2

2
|Sd−2|

∫ π

0
(min{cos θ, 1− cos θ})s b(cos θ)dθ.

Hence, since Y n
s−γ(t) 6 Y n

s (t) + 1, setting

hn(t) =
2s

d
‖bn‖1

∫

Rd

|ξ|2 Φn(|ξ|)ψn(t, ξ) dξ +
(s ‖bn‖1 + c∞2 + 4c1)(1 + d)

2

we obtain

d

dt
Y n
s (t) +

(1− α) c2(2)

2

∫

Rd

ψn(t, ξ)Φn(|ξ|) |ξ|
s dξ 6 hn(t)Y

n
s (t) + c1 (d+ 1).

Then, (2.29) follows easily from the Gronwall Lemma, (2.11) and Lemma 2.6. �

Let us now prove that the sequence of solutions (ψn)n is a Cauchy sequence in some suitable
space. Precisely, we state the following:

Proposition 2.8. For any T > 0, the sequence (ψn)n is a Cauchy sequence in C([0, T ];L1
2(R

d)).
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Proof. Let T > 0 be fixed and m > n > N1. For simplicity, we set

ϕ(t, ξ) = ψm(t, ξ)− ψn(t, ξ) and h(t, ξ) = sign(ϕ(t, ξ))〈ξ〉2,

for any (t, ξ) ∈ (0, T ) ×R
d. Then, it is easy to check that ϕ(t, ξ) satisfies

∂tϕ(t, ξ) +Am(t)ϕ(t, ξ) +Bm(t) ξ · ∇ϕ(t, ξ) =

(1− α) [Qm(ψm, ψm)(t, ξ)−Qn(ψn, ψn)(t, ξ)]

− α
[

Qm
− (ψm, ψm)(t, ξ)−Qn

−(ψn, ψn)(t, ξ)
]

+ [An(t)−Am(t)]ψn(t, ξ) + [Bn(t)−Bm(t)] ξ · ∇ψn(t, ξ).

Multiplying this identity by h(t, ξ) and integrating over R
d, we get

d

dt
‖ϕ(t)‖L1

2
+Am(t) ‖ϕ(t)‖L1

2
+Bm(t)

∫

Rd

(ξ · ∇ϕ(t, ξ)) h(t, ξ)dξ = Im,n(t)

where Im,n(t) = I1
m,n(t) + I2

m,n(t) + I3
m,n(t) with

I1
m,n(t) = [An(t)−Am(t)]

∫

Rd

ψn(t, ξ)h(t, ξ)dξ

+ [Bn(t)−Bm(t)]

∫

Rd

(ξ · ∇ψn(t, ξ)) h(t, ξ)dξ,

I2
m,n(t) = −α

∫

Rd

[

Qm
− (ψm, ψm)(t, ξ)−Qn

−(ψn, ψn)(t, ξ)
]

h(t, ξ)dξ,

and

I3
m,n(t) = (1− α)

∫

Rd

[Qm(ψm, ψm)(t, ξ)−Qn(ψn, ψn)(t, ξ)] h(t, ξ)dξ.

Define

M
1
k(t) =

∫

Rd

Qk
−(ψk, ψk)(t, ξ)dξ, M

2
k(t) =

∫

Rd

|ξ|2Qk
−(ψk, ψk)(t, ξ)dξ, k ∈ N.

Using the fact that
∫

Rd

(ξ · ∇ϕ(t, ξ)) h(t, ξ)dξ = −d

∫

Rd

|ϕ(t, ξ)|dξ − (d+ 2)

∫

Rd

|ϕ(t, ξ)| |ξ|2dξ

and, since

Am(t)− dBm(t) = −
α

‖ψm0 ‖1
M

1
m(t)

Am(t)− (d+ 2)Bm(t) = −
α

∫

Rd ψm0 (ξ) |ξ|2 dξ
M

2
m(t),

we get

d

dt
‖ϕ(t)‖L1

2
−

α

‖ψm0 ‖1
M

1
m(t)‖ϕ(t)‖L1

−
α

∫

Rd ψm0 (ξ) |ξ|2 dξ
M

2
m(t)

∫

Rd

|ϕ(t, ξ)| |ξ|2dξ = Im,n(t). (2.30)
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We estimate all the terms of Im,n(t) separately. We follow the method of proof of [22, Theorem
4.1]. We begin with I2

m,n(t). Setting Qn
−(g, g) = gLn(g) with

Ln(g)(ξ) = ‖bn‖1

∫

Rd

Φn(|ξ − ξ∗|)g(ξ∗)dξ∗,

we get

Qn
−(ψn, ψn)−Qm

− (ψm, ψm) = −ϕLn(ψn)− ψm Ln(ϕ) + ψm (Ln(ψm)− Lm(ψm)) .

Therefore,

I2
m,n(t) 6 −α

∫

Rd

|ϕ(t, ξ)|Ln(ψn)(t, ξ)〈ξ〉
2dξ + α

∫

Rd

〈ξ〉2ψm(t, ξ)Ln(|ϕ|)(t, ξ)dξ

+ α

∫

Rd

〈ξ〉2ψm(t, ξ) |Lm(ψm)(t, ξ)− Ln(ψm)(t, ξ)| dξ

(2.31)

One keeps the first right-hand-side term as it is and denotes respectively by I2,1
m,n(t) and I2,2

m,n(t)
the second and the third ones. One has

I2,1
m,n(t) = α‖bn‖1

∫

Rd

∫

Rd

〈ξ〉2ψm(t, ξ)|ϕ(t, ξ∗)|Φn(|ξ − ξ∗|) dξ∗dξ

Since ‖bn‖1 6 ‖b‖1 and since

Φn(|ξ − ξ∗|) 6 Φn(|ξ|) + 〈ξ∗〉
γ

one gets the estimate

I2,1
m,n(t) 6 α ‖b‖1

(

‖ϕ(t)‖L1

∫

Rd

Φn(|ξ|)ψm(t, ξ)〈ξ〉
2dξ + ‖ψm(t)‖L1

2
‖ϕ(t)‖L1

γ

)

.

Therefore, there exists C > 0 (independent of n and m) such that

I2,1
m,n(t) 6 C

(

1 +

∫

Rd

Φm(|ξ|)ψm(t, ξ)〈ξ〉
2dξ

)

‖ϕ(t)‖L1
2

∀t ∈ [0, T ], ∀m > n > 1.

(2.32)

We estimate now I2,2
m,n(t). To do so, we follow exactly the proof of [22, Theorem 4.1]. Notice

first that

|Lm(ψm)(t, ξ)− Ln(ψm)(t, ξ)| 6 ‖bm − bn‖1

∫

Rd

Φm(|ξ − ξ∗|)ψm(t, ξ∗)dξ∗

+ ‖bn‖1

∫

Rd

(Φm(|ξ − ξ∗|)−Φn(|ξ − ξ∗|))ψm(t, ξ∗)dξ∗

Since ‖bn‖1 6 ‖b‖1, one argues as above and gets that

I2,2
m,n(t) 6 ‖bm − bn‖1

(

‖ψm(t)‖L1

∫

Rd

Φm(|ξ|)ψm(t, ξ)〈ξ〉
2dξ + ‖ψm(t)‖L1

2
‖ψm(t)‖L1

γ

)

+ α‖b‖1

∫

Rd

∫

Rd

(Φm(|ξ − ξ∗|)− Φn(|ξ − ξ∗|))ψm(t, ξ)ψm(t, ξ∗)〈ξ〉
2dξdξ∗.

Now, since Φm(r)− Φn(r) = 0 if r 6 n, one gets that

I2,2
m,n(t) 6 ‖bm − bn‖1

(
∫

Rd

Φm(|ξ|)ψm(t, ξ)〈ξ〉
2dξ + ‖ψm(t)‖L1

2
‖ψm(t)‖L1

γ

)

+ α‖b‖1

∫

|ξ−ξ∗|>n
(Φm(|ξ − ξ∗|)− Φn(|ξ − ξ∗|))ψm(t, ξ)ψm(t, ξ∗)〈ξ〉

2dξdξ∗,
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and one estimates this last term exactly as in [22, Proof of Theorem 4.1, p. 489]. Precisely, since
{|ξ − ξ∗| > n} ⊂ {|ξ| > n/2} ∪ {|ξ∗| > n/2} and since

(Φm(|ξ − ξ∗|)− Φn(|ξ − ξ∗|)) 6 Φm(|ξ − ξ∗|) 6 Φm(|ξ|) + |ξ∗|
γ

we get
∫

|ξ−ξ∗|>n
(Φm(|ξ − ξ∗|)−Φn(|ξ − ξ∗|))ψm(t, ξ)ψm(t, ξ∗)〈ξ〉

2dξdξ∗

6

∫

{|ξ|>n/2}∪{|ξ∗|>n/2}
Φm(|ξ|)ψm(t, ξ)ψm(t, ξ∗)〈ξ〉

2dξdξ∗

+

∫

{|ξ|>n/2}∪{|ξ∗|>n/2}
ψm(t, ξ)ψm(t, ξ∗)〈ξ〉

2 |ξ∗|
γdξdξ∗

6

(

2

n

)δ (∫

Rd

Φm(|ξ|)ψm(t, ξ)〈ξ〉
2+δdξ +

∫

Rd

ψm(t, ξ∗)〈ξ∗〉
δdξ∗

∫

Rd

Φm(|ξ|)ψm(t, ξ)〈ξ〉
2dξ

)

+

(

2

n

)δ

‖ψm(t)‖L1
2

(∫

Rd

ψm(t, ξ)〈ξ〉
2+δdξ +

∫

Rd

ψm(t, ξ∗)〈ξ∗〉
γ+δdξ∗

)

.

We set

Hm(t) = 1 +

∫

Rd

Φm(|ξ|)ψm(t, ξ)〈ξ〉
2+δdξ, t ∈ [0, T ].

Recall that, according to Lemma 2.7, Hm is uniformly bounded in L1(0, T ). Now, one sees that
there is a positive constant CT > 0 such that

I2,2
m,n(t) 6 CT Hm(t)

(

‖bm − bn‖1 +
1

nδ

)

∀t ∈ [0, T ], ∀m > n > N1. (2.33)

Gathering (2.31), (2.32) and (2.33), we finally get that

I2
m,n(t) 6 CT Hm(t)

(

‖ϕ(t)‖L1
2
+ ‖bm − bn‖1 +

1

nδ

)

− α

∫

Rd

|ϕ(t, ξ)|Ln(ψn)(t, ξ)〈ξ〉
2dξ (2.34)

Let us consider now I1
m,n(t). As above, one uses the fact that

∫

Rd

(ξ · ∇ψn(t, ξ)) h(t, ξ)dξ = −d

∫

Rd

sign(ϕ(t, ξ))ψn(t, ξ)dξ

− (d+ 2)

∫

Rd

sign(ϕ(t, ξ))ψn(t, ξ) |ξ|
2dξ

Therefore,

I1
m,n(t) = −

α

‖ψn0 ‖1

[

M
1
n(t)−M

1
m(t)

]

∫

Rd

sign(ϕ(t, ξ))ψn(t, ξ)dξ

− αM
1
m(t)

[

1

‖ψn0 ‖1
−

1

‖ψm0 ‖1

] ∫

Rd

sign(ϕ(t, ξ))ψn(t, ξ)dξ

−
α

∫

Rd ψn0 (ξ) |ξ|
2 dξ

[

M
2
n(t)−M

2
m(t)

]

∫

Rd

sign(ϕ(t, ξ))ψn(t, ξ) |ξ|
2dξ

− αM
2
m(t)

[

1
∫

Rd ψn0 (ξ) |ξ|
2 dξ

−
1

∫

Rd ψm0 (ξ) |ξ|2 dξ

] ∫

Rd

sign(ϕ(t, ξ))ψn(t, ξ) |ξ|
2dξ
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First, we observe that, from the definitions of M1
m(t) and M

2
m(t) together with (2.17) and (2.20),

we have
∣

∣

∣

∣

M
1
m(t)

∫

Rd

sign(ϕ(t, ξ))ψn(t, ξ) dξ

∣

∣

∣

∣

6 2 ‖bm‖1 ‖ψn(t)‖L1 ‖ψm(t)‖
2
L1
2
6 2 ‖b‖1 (1 + d)2 ,

and
∣

∣

∣

∣

M
2
m(t)

∫

Rd

sign(ϕ(t, ξ))ψn(t, ξ) |ξ|
2dξ

∣

∣

∣

∣

6 ‖bm‖1 (1 + d)3 Hm(t).

On the one hand, we have

∣

∣

∣

∣

∫

Rd

sign(ϕ(t, ξ))ψn(t, ξ)dξ

∣

∣

∣

∣

6 ‖ψn(t)‖1 = ‖ψn0 ‖1,

and, on the other hand, with the above notations, one gets that

[

M
1
n(t)−M

1
m(t)

]

= −

∫

Rd

ϕ(t, ξ)Ln(ψn)(t, ξ)dξ −

∫

Rd

ψm(t, ξ)Ln(ϕ)(t, ξ)dξ

+

∫

Rd

ψm(t, ξ) (Ln(ψm)(t, ξ) − Lm(ψm)(t, ξ)) dξ.

We estimate the two latter terms as we did for I2,1
m,n(t) and I2,2

m,n(t) and we obtain the existence
of a constant CT > 0 (independent of m and n) for which the following upper bound holds:

−
α

‖ψn0 ‖1

[

M
1
n(t)−M

1
m(t)

]

∫

Rd

sign(ϕ(t, ξ))ψn(t, ξ)dξ

6 CT

(

‖ϕ(t)‖L1
2
+ ‖bm − bn‖1 +

Hm(t)

nδ

)

+ α

∫

Rd

|ϕ(t, ξ)|Ln(ψn)(t, ξ)dξ.

In the same way,

−
α

∫

Rd ψn0 (ξ) |ξ|
2 dξ

[

M
2
n(t)−M

2
m(t)

]

∫

Rd

sign(ϕ(t, ξ))ψn(t, ξ) |ξ|
2dξ

6 α

∫

Rd

|ϕ(t, ξ)|Ln(ψn)(t, ξ)|ξ|
2dξ + α

∫

Rd

ψm(t, ξ)Ln(|ϕ|)(t, ξ)|ξ|
2 dξ

+ α

∫

Rd

ψm(t, ξ) |Ln(ψm)(t, ξ) − Lm(ψm)(t, ξ)| |ξ|
2 dξ.

Therefore, we obtain, arguing again as in the estimates of I2,1
m,n(t) and I2,2

m,n(t) that

−
α

∫

Rd ψn0 (ξ) |ξ|
2 dξ

[

M
2
n(t)−M

2
m(t)

]

∫

Rd

sign(ϕ(t, ξ))ψn(t, ξ) |ξ|
2dξ

6 CT Hm(t)

(

‖ϕ(t)‖L1
2
+ ‖bm − bn‖1 +

1

nδ

)

+ α

∫

Rd

|ϕ(t, ξ)|Ln(ψn)(t, ξ)dξ

for some positive constant CT depending on T but not on n,m. Summing up all these terms,
this yields the existence of a positive constant CT > 0 (different from the previous ones but still
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independent of m,n) such that, ∀m > n

I1
m,n(t) 6 CT Hm(t)

(

‖ϕ(t)‖L1
2
+ ‖bm − bn‖1 +

1

nδ
+

∣

∣

∣

∣

1

‖ψn0 ‖1
−

1

‖ψm0 ‖1

∣

∣

∣

∣

+

∣

∣

∣

∣

1
∫

Rd ψn0 (ξ) |ξ|
2 dξ

−
1

∫

Rd ψm0 (ξ) |ξ|2 dξ

∣

∣

∣

∣

)

+ α

∫

Rd

|ϕ(t, ξ)|Ln(ψn)(t, ξ)〈ξ〉
2dξ. (2.35)

Gathering (2.34) and (2.35), we finally obtain the existence of some positive constant CT , inde-
pendent of m > n > 1 such that ∀m > n > N1, ∀t ∈ [0, T ],

I1
m,n(t) + I2

m,n(t) 6 CT Hm(t)

(

‖ϕ(t)‖L1
2
+ ‖bm − bn‖1 +

1

nδ
+

∣

∣

∣

∣

1

‖ψn0 ‖1
−

1

‖ψm0 ‖1

∣

∣

∣

∣

+

∣

∣

∣

∣

1
∫

Rd ψn0 (ξ) |ξ|
2 dξ

−
1

∫

Rd ψm0 (ξ) |ξ|2 dξ

∣

∣

∣

∣

)

.

The term I3
m,n(t) is estimated exactly in the same way (reproducing exactly the arguments of

[22, Theorem 4.1] and the above ones). Therefore, turning back to (2.30), we finally obtain an
estimate of the type

d

dt
‖ϕ(t)‖L1

2
6 CT Hm(t)

(

‖ϕ(t)‖L1
2
+ ‖bm − bn‖1 +

1

nδ
+

∣

∣

∣

∣

1

‖ψn0 ‖1
−

1

‖ψm0 ‖1

∣

∣

∣

∣

+

∣

∣

∣

∣

1
∫

Rd ψn0 (ξ) |ξ|
2 dξ

−
1

∫

Rd ψm0 (ξ) |ξ|2 dξ

∣

∣

∣

∣

)

for every t ∈ [0, T ] and m > n > N1. Again, since supm
∫ T
0 Hm(t)dt < ∞ according to Lemma

2.7, we deduce from Gronwall’s Lemma that there is some positive constant C1(T ) such that

sup
t∈(0,T )

‖ψm(t)− ψn(t)‖L1
2
6 C1(T )

(

‖bm − bn‖1 +
1

nδ
+

∣

∣

∣

∣

1

‖ψn0 ‖1
−

1

‖ψm0 ‖1

∣

∣

∣

∣

+

∣

∣

∣

∣

1
∫

Rd ψn0 (ξ) |ξ|
2 dξ

−
1

∫

Rd ψm0 (ξ) |ξ|2 dξ

∣

∣

∣

∣

)

for m > n > N1, which yields the result. �

2.3. Well-posedness for the rescaled equation. We are now in position to prove that the
rescaled equation (1.8) is well-posed. Before this, we notice that the same arguments of those
used in the previous Proposition apply to the rescaled (non truncated) Boltzmann equation.
Precisely, one has the following stability result:

Proposition 2.9. Let T > 0 and let ψ,ϕ ∈ C([0, T ];L1
2) ∩ L

∞(0, T ;L1
2+δ) ∩ L

1(0, T ;L1
2+γ+δ) be

two solutions to (1.8) with initial data ψ0, ϕ0 satisfying (1.10). Then, there exists CT > 0 such
that

‖ψ(t)− ϕ(t)‖L1
2
6 ‖ψ0 − ϕ0‖L1

2
exp(CT ) ∀t ∈ [0, T ].

Proof. The proof follows exactly from the same argument of the previous Proposition 2.8. Pre-
cisely, since ϕ,ψ ∈ L1(0, T ;L1

2+γ+δ), one has
∫ T

0
max(|Aψ(t)|, |Aϕ(t)|, |Bψ(t)|, |Bϕ(t)|) dt 6 CT <∞.
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Then, setting F (t, ξ) = ψ(t, ξ) − ϕ(t, ξ), multiplying by H(t, ξ) = sign(F (t, ξ))〈ξ〉2 the equation
satisfied by F and integrating over R

d, we get

d

dt
‖F (t)‖L1

2
6 λ(t)‖F (t)‖L1

2
+ I1

ψ,ϕ(t) + I2
ψ,ϕ(t) + I3

ψ,ϕ(t)

where λ ∈ L1(0, T ),

I1
ψ,ϕ(t) = (Aϕ(t)−Aψ(t))

∫

Rd

ϕ(t, ξ)H(t, ξ)dξ

+ (Bϕ(t)−Bψ(t))

∫

Rd

(ξ · ∇ϕ(t, ξ))H(t, ξ)dξ,

while

I2
ψ,ϕ(t) = −α

∫

Rd

(Q−(ψ,ψ) −Q−(ϕ,ϕ))H(t, ξ)dξ

and

I3
ψ,ϕ(t) = (1− α)

∫

Rd

(Q(ψ,ψ) −Q(ϕ,ϕ))H(t, ξ)dξ.

One obtains, as in Prop. 2.8 that

I1
ψ,ϕ(t) = α

[

M
1
ψ(t)−M

1
ϕ(t)

]

∫

Rd

ϕ sign(F )dξ +
2α

d

[

M
2
ψ(t)−M

2
ϕ(t)

]

∫

Rd

ϕ sign(F )|ξ|2dξ

where

M
1
ψ(t)−M

1
ϕ(t) =

∫

Rd

(

Q−(ψ,ψ)(t, ξ) −Q−(ϕ,ϕ)(t, ξ)

)

dξ

=

∫

Rd

(

F (t, ξ)L(ψ)(t, ξ) + ϕ(t, ξ)L(F )(t, ξ)

)

dξ,

and

M
2
ψ(t)−M

2
ϕ(t) =

∫

Rd

(

Q−(ψ,ψ)(t, ξ) −Q−(ϕ,ϕ)(t, ξ)

)

|ξ|2dξ

=

∫

Rd

(

F (t, ξ)L(ψ)(t, ξ) + ϕL(F )(t, ξ)

)

|ξ|2dξ.

Using the fact that
∫

Rd

ψ(t, ξ)|ξ|2dξ =

∫

Rd

ϕ(t, ξ)|ξ|2dξ =
d

2

one deduces as in the proof of Proposition 2.8 that there exists some positive constant cγ > 0
such that

I1
ψ,ϕ(t) 6 α

∫

Rd

|F (t, ξ)|L(ψ)(t, ξ)〈ξ〉2dξ + cγ max
(

‖ψ(t)‖L1
2+γ

, ‖ϕ(t)‖L1
2+γ

)

‖F (t)‖L1
2
.

In the same way,

I2
ψ,ϕ(t) 6 −α

∫

Rd

|F (t, ξ)|L(ψ)(t, ξ)〈ξ〉2dξ + cγ‖ϕ(t)‖L1
2+γ

‖F (t)‖L1
2
.

Finally, using that

I3
ψ,ϕ(t) 6 cγ max

(

‖ψ(t)‖L1
2+γ

, ‖ϕ(t)‖L1
2+γ

)

‖F (t)‖L1
2
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we get that there exists some function Λ ∈ L1(0, T ) such that

d

dt
‖F (t)‖L1

2
6 Λ(t) ‖F (t)‖L1

2
∀t ∈ [0, T ]

which gives the result. �

The existence of a solution to (1.8) comes now from Proposition 2.8. Indeed, let us denote
ψ = ψ(t, ξ) ∈ C([0, T ];L1

2(R
d)) the limit of the Cauchy sequence (ψn)n∈N. First, one notices that,

according to Lemma 2.7 and Fatou’s lemma,

sup
t∈[0,T ]

∫

Rd

ψ(t, ξ) |ξ|2+δ dξ 6 C, and

∫ T

0
dt

∫

Rd

ψ(t, ξ) |ξ|2+γ+δdξ 6 C,

which proves that

ψ ∈ L∞(0, T ;L1
2+δ(R

d)) ∩ L1(0, T ;L1
2+γ+δ(R

d)).

The above estimates, together with Lemma 2.7, the convergences of (ψn0 )n∈N and (ψn)n∈N enable
us to pass to the limit in (2.1). We finally get that ψ is indeed a solution to the annihilation
equation (1.8) in the sense of Definition 1.2.

3. Moment estimates

We now prove uniform in time estimates of higher-order moments of the solution to (1.8)
yielding to a proof of Theorem 1.4. We fix a nonnegative initial distribution ψ0 satisfying (1.10)
and such that

ψ0 ∈ L
1
2+γ(R

d) ∩ Lp(Rd)

for some p > 1. Let then ψ ∈ C([0,∞);L1
2(R

d)) ∩ L1
loc((0,∞), L1

2+γ (R
d)) be the nonnegative

solution to (1.8)-(1.9) constructed by Theorem 1.3. We define, for any k > 0, the following
moment of order 2k:

Mk(t) =

∫

Rd

ψ(t, ξ) |ξ|2kdξ k > 0.

Using (1.8), one easily gets that Mk(t) satisfies the following identity

d

dt
Mk(t) = − (Aψ(t)− (d+ 2k)Bψ(t))Mk(t) +

∫

Rd

B(ψ,ψ)(t, ξ) |ξ|2kdξ, t > 0.

Let us define

aψ(t) =

∫

Rd

Q−(ψ,ψ)(t, ξ)dξ and bψ(t) =

∫

Rd

Q−(ψ,ψ)(t, ξ) |ξ|
2 dξ

so that

Aψ(t) = −
α

2
(d+ 2)aψ(t) + αbψ(t) and Bψ(t) = −

α

2
aψ(t) +

α

d
bψ(t).

Then, Mk(t) satisfies

d

dt
Mk(t) + α(k − 1)aψ(t)Mk(t) =

2α k
d bψ(t)Mk(t) +

∫

Rd

B(ψ,ψ)(t, ξ) |ξ|2kdξ. (3.1)

In order to estimate in a precise way the last integral involving B(ψ,ψ), we shall resort to
Povzner’s estimates as derived in [8].
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3.1. Povzner-type inequalities. For any convex function Φ : R → R, one has
∫

Rd

B(ψ,ψ)(t, ξ)Φ(|ξ|2)dξ =

∫

R2d

ψ(t, ξ)ψ(t, ξ∗)|ξ − ξ∗|
γWΦ(ξ, ξ∗)dξdξ∗ (3.2)

where

WΦ(ξ, ξ∗) =
1

2

∫

Sd−1

[

(1− α)Φ(|ξ′|2) + (1− α)Φ(|ξ′∗|
2)− Φ(|ξ|2)− Φ(|ξ∗|

2)

]

b(cos θ)dσ. (3.3)

Clearly

WΦ(ξ, ξ∗) = (1− α)GΦ(ξ, ξ∗)−
1

2

(

Φ(|ξ|2) + Φ(|ξ∗|
2)
)

with

GΦ(ξ, ξ∗) =
1

2

∫

Sd−1

[

Φ(|ξ′|2) + Φ(|ξ′∗|
2)

]

b(cos θ)dσ

where we recall that we assumed ‖b‖1 = 1. The following lemma allows to estimate GΦ(ξ, ξ∗) for
any convex function Φ.

Lemma 3.1. Let Φ : R → R be convex. Then,

GΦ(ξ, ξ∗) 6
1

2

∫

Sd−1

[

Φ

(

E
1 + Û · σ

2

)

+Φ

(

E
1− Û · σ

2

)

]

b(û · σ)dσ (3.4)

where E = |ξ|2 + |ξ∗|
2.

Proof. We give a very short proof of the Lemma, referring to [8] for the general strategy. For
any fixed ξ, ξ∗, set

U =
ξ + ξ∗

2
, u = ξ − ξ∗, E = |ξ|2 + |ξ∗|

2, Û = U/|U |, û = u/|u|.

Then, cos θ = û · σ and

|ξ′|2 = E
1 + λÛ · σ

2
while |ξ′∗|

2 = E
1− λÛ · σ

2

where λ = 2
|u| |U |

E
6 1. Since Φ is convex, one can prove as in [8] that, for any fixed x, y > 0,

the mapping t 7→ Φ(x+ ty) + Φ(x− ty) is nondecreasing and, because λ 6 1, we have

Φ(|ξ′|2) + Φ(|ξ′∗|
2) = Φ

(

E
1 + λÛ · σ

2

)

+Φ

(

E
1− λÛ · σ

2

)

6 Φ

(

E
1 + Û · σ

2

)

+Φ

(

E
1− Û · σ

2

)

.

Since b(·) is nonnegative, this gives (3.4) after integration. �

With the special choice Φ(x) = xk, k > 1, one has the following estimate

Lemma 3.2. For any k > 1, one has
∫

Rd

B(ψ,ψ)(t, ξ) |ξ|2kdξ 6 −(1− βk(α))Mk+ γ
2
(t) + Sk(t)
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with

Sk(t) = βk(α)

[ k+1
2

]
∑

j=1

(

k
j

)

(

Mj+ γ
2
(t)Mk−j(t) +Mj(t)Mk−j+ γ

2
(t)
)

+ (1− βk(α))Mk(t)M γ
2
(t)

where [k+1
2 ] denote the integer part of k+1

2 , βk(α) = (1− α)̺k and

̺k =

∫

Sd−1





(

1 + Û · σ

2

)k

+

(

1− Û · σ

2

)k


 b(cos θ)dσ. (3.5)

Proof. One applies the above estimate (3.4) with the convex function Φ(x) = xk to get

GΦ(ξ, ξ∗) 6
1

2
̺k E

k

where E = |ξ|2 + |ξ∗|
2. One gets therefore

WΦ(ξ, ξ∗) 6 −
1

2
(1− βk(α))

(

|ξ|2k + |ξ∗|
2k
)

+
1

2
βk(α)

[ (

|ξ|2 + |ξ∗|
2
)k

− |ξ|2k − |ξ∗|
2k
]

where (1− βk(α)) > 0. Consequently,

∫

Rd

B(ψ,ψ)(t, ξ) |ξ|2kdξ 6 −(1− βk(α))

∫

Rd

ψ(t, ξ)|ξ|2kdξ

∫

Rd

ψ(t, ξ∗)|ξ − ξ∗|
γdξ∗

+
βk(α)

2

∫

R2d

ψ(t, ξ)ψ(t, ξ∗)|ξ − ξ∗|
γ
[ (

|ξ|2 + |ξ∗|
2
)k

− |ξ|2k − |ξ∗|
2k
]

dξdξ∗. (3.6)

One then applies [8, Lemma 2] with x = |ξ|2 and y = |ξ∗|
2 and uses the estimate

|ξ − ξ∗|
γ
6 |ξ|γ + |ξ∗|

γ

to get
∫

Rd

B(ψ,ψ)(t, ξ) |ξ|2kdξ 6 −(1− βk(α))

∫

Rd

ψ(t, ξ)|ξ|2kdξ

∫

Rd

ψ(t, ξ∗)|ξ − ξ∗|
γdξ∗

+ βk(α)

[ k+1
2

]
∑

j=1

(

k
j

)

(

Mj+γ/2(t)Mk−j(t) +Mj(t)Mk−j+γ/2(t)
)

.

To estimate the nonpositive term, one notices that

|ξ − ξ∗|
γ
> |ξ|γ − |ξ∗|

γ

and gets
∫

Rd

ψ(t, ξ)|ξ|2kdξ

∫

Rd

ψ(t, ξ∗)|ξ − ξ∗|
γdξ∗ >Mk+ γ

2
(t)−Mk(t)M γ

2
(t).

This clearly yields the conclusion. �

Remark 3.3. It is easy to check that ̺1 = ‖b‖1 = 1 and that the mapping k > 1 7→ ̺k > 0 is
strictly decreasing.
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3.2. Uniform estimates. Thanks to the above Lemma, we can derive uniform in time estimates
of Mk(t) for k = 1 + γ

2 . Precisely, one has the following:

Proposition 3.4. Let

α0 =
1− ̺1+ γ

2

1 + γ
2 − ̺1+ γ

2

∈ (0, 1]

where ̺k is defined by (3.5) for any k > 1. Then, if 0 < α < α0, there exists a constant M
depending only on α, γ, b(·) and d such that the unique solution ψ(t) to (1.8) satisfies

sup
t>0

M1+ γ
2
(t) 6 max

{

M1+ γ
2
(0),M

}

.

Proof. Let us fix k > 1. Since aψ(t) > 0, one gets from (3.1):

d

dt
Mk(t) 6

2αk
d bψ(t)Mk(t) +

∫

Rd

B(ψ,ψ)(t, ξ) |ξ|2kdξ.

Now, we recall that

bψ(t) =

∫

Rd×Rd

|ξ − ξ∗|
γψ(t, ξ)ψ(t, ξ∗)|ξ|

2dξdξ∗

so that, since |ξ − ξ∗|
γ 6 |ξ|γ + |ξ∗|

γ , one has

bψ(t) 6M1+ γ
2
(t) +M γ

2
(t)M1(t) 6M1+ γ

2
(t) +

d

2
(1 +

d

2
)

where we recall that M1(t) =M1(0) =
d
2 for any t > 0. We get therefore

d

dt
Mk(t) 6

2α k

d
M1+ γ

2
(t)Mk(t) + αk(1 +

d

2
)Mk(t) +

∫

Rd

B(ψ,ψ)(t, ξ) |ξ|2kdξ.

Now, one estimates the last integral thanks to Lemma 3.2 and get

d

dt
Mk(t) + (1 − βk(α))Mk+ γ

2
(t) 6 Sk(t) +

2α k

d
M1+ γ

2
(t)Mk(t) + αk(1 +

d

2
)Mk(t). (3.7)

Using now Hölder’s inequality, one has, for k > 1 + γ
2 ,

Mk+ γ
2
(t) >

(

2

d

)
γ

2k−2

(Mk(t))
2k+γ−2
2k−2 and M1+ γ

2
(t) 6

(

2

d

)−1+ γ
2k−2

(Mk(t))
γ

2k−2

where we used again that M1(t) =
d
2 for any t > 0. With these estimates, (3.7) becomes

d

dt
Mk(t) + cα,k,d

(

2

d

)
γ

2k−2

(Mk(t))
1+ γ

2k−2 6 Sk(t) + αk(1 +
d

2
)Mk(t), (3.8)

with

cα,k,d = 1− βk(α)− αk = 1− ̺k + α(̺k − k).

Notice that

cα,k,d > 0 ⇐⇒ 0 < α <
1− ̺k
k − ̺k

. (3.9)
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Taking now k = 1+ γ
2 in the above inequality (3.8) and using the explicit expression of S1+ γ

2
(t)

we find

d

dt
M1+ γ

2
(t) + cα,1+ γ

2
,d

(

2

d

)

M1+ γ
2
(t)2 6 β1+ γ

2
(α)

(

1 + γ
2

1

)

(

M1+ γ
2
(t)M γ

2
(t) +M1(t)Mγ(t)

)

+ (1− β1+ γ
2
(α))M1+ γ

2
(t)M γ

2
(t)

+ α(1 +
γ

2
)(1 +

d

2
)M1+ γ

2
(t).

Since γ 6 1 and M1(t) =
d
2 for any t > 0, it is clear that M γ

2
(t) and Mγ(t) are uniformly bounded

by 1 + d
2 so that there are two positive constants C0, C1 > 0 depending only on α, γ, b(·) and d

such that

d

dt
M1+ γ

2
(t) + cα,1+ γ

2
,d

(

2

d

)

M1+ γ
2
(t)2 6 C0M1+ γ

2
(t) + C1 ∀t > 0.

Therefore, using (3.9) and some comparison principle, we get the conclusion. �

Remark 3.5. The parameter α0 depends only on γ, d and the collision kernel b(·). In particular,

in dimension d = 3, for constant collision kernel b(·) =
1

4π
(recall that ‖b‖1 = 1) and with γ = 1,

one has ̺ 3
2
=

4

5
and α0 =

2

7
.

Notice that the above result allows actually to deal with higher-order moments:

Corollary 3.6. With the notations of the above Theorem, if 0 < α < α0 then the unique solution
ψ(t) to (1.8) satisfies for any k > 1 + γ

2

Mk(0) <∞ =⇒ sup
t>0

Mk(t) <∞. (3.10)

Proof. The strategy follows classical arguments already used in [8], the crucial point being that,
for k > 1 + γ

2 , the first term in the expression of Sk(t) :

Sk(t) = βk(α)

[ k+1
2

]
∑

j=1

(

k
j

)

(

Mj+ γ
2
(t)Mk−j(t) +Mj(t)Mk−j+ γ

2
(t)
)

+ (1− βk(α))Mk(t)M γ
2
(t)

involves only moments of order less than max{k − 1 + γ
2 , [

k+1
2 ] + γ

2} 6 max{k − 1
2 , [

k+1
2 ] + γ

2}
since γ 6 1.

First observe that mass is conserved and thus, using classical interpolation, it suffices to prove
the result for any k > 1 + γ

2 such that 2k ∈ N. We proceed by induction. Since γ ∈ (0, 1], the
first step consists in checking that the result holds for k = 3/2. We shall come back to this point
later on. Let k > 3/2 such that 2k ∈ N. Let us assume that for any j satisfying 2j ∈ N and
1 6 j 6 k − 1/2, there exists Kj > 0 such that Mj(t) 6 Kj for any t > 0. Note that for such a

k, then max{k − 1
2 , [

k+1
2 ] + γ

2} = k − 1
2 . Consequently, the induction hypothesis together with

the fact that M γ
2
(t) is uniformly bounded imply that

Sk(t) 6 Ck +AkMk(t)
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with Ak = (1− βk(α))(1 +
d
2) and

Ck = βk(α)

[ k+1
2

]
∑

j=1

(

k
j

)

(

Kj+ γ
2
Kk−j +Kj Kk−j+ γ

2

)

.

Then, from (3.7):

d

dt
Mk(t) + (1− βk(α))Mk+ γ

2
(t) 6 Ck +

(

Ak + αk(1 +
d

2
)

)

Mk(t) +
2α k

d
M1+ γ

2
(t)Mk(t).

Now, from Theorem 3.4, as soon as α ∈ (0, α0), supt>0M1+ γ
2
(t) < ∞ and the above identity

becomes
d

dt
Mk(t) + (1− βk(α))Mk+ γ

2
(t) 6 Ck +BkMk(t)

for some explicit constant Bk > 0. From Jensen’s inequality, one has

Mk+ γ
2
(t) > (Mk(t))

1+ γ
2k

from which the above differential inequality yields the conclusion.
It only remains to check that (3.10) holds for k = 3/2. If γ = 1, it directly follows from

Theorem 3.4. Otherwise, we have max{k − 1
2 , [

k+1
2 ] + γ

2} = max{1, [54 ] +
γ
2} = 1 + γ

2 and we
deduce from Theorem 3.4 and usual interpolations that

S3/2(t) 6 C3/2 +A3/2M3/2(t),

for some constants C3/2 > 0 and A3/2 > 0, which leads, following the same lines as above, to the
desired result. �

3.3. Lower bounds. We shall now use Lemma 3.1 to derive suitable lower bounds for the
moments of ψ(t, ξ):

Lemma 3.7. For any γ ∈ (0, 1], there exists α⋆ ∈ (0, 1) such that, for any α ∈ (0, α⋆) the
solution ψ(t, ξ) to (1.8) satisfies

∫

Rd

ψ(t, ξ∗)|ξ∗|
γdξ∗ > Cα

∫

Rd

ψ0(ξ∗)|ξ∗|
γdξ∗. (3.11)

for some explicit constant Cα > 0 depending only on α, γ, d and b(·). Moreover, one has the
following propagation of lower bounds

i) Assume that γ = 1 and, given 0 < α < α⋆, let 0 < κ(α) 6

√

√

√

√

(

β 1
2
(α) − 1

β 1
2
(α) + 1

)

d

2
. If M 1

2
(0) >

κ(α) then M 1
2
(t) > κ(α) for any t > 0.

ii) Assume that γ ∈ (0, 1) and let j0 ∈ N be such that k0 = j0γ
2 < 1 and k0 +

γ
2 > 1. Given

0 < α < α⋆ let (κj(α))j=1,...,j0 be some positive constants such that

κj0(α) 6

(

β j0γ
2

(α) − 1

β j0γ
2

(α) + 1

)

j0
1+j0

(

d

2

)

j0γ
2

and κj(α) 6

(

β jγ
2
(α)− 1

β jγ
2
(α) + 1

κj+1(α)

)
j

1+j

,

for j = 1, . . . , j0. If the initial datum ψ0 is such that M jγ
2
(0) > κj(α) for any j = 1, . . . , j0

then inft>0M jγ
2
(t) > κj(α) for any j = 1, . . . , j0.
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Proof. We first prove (3.11). We estimate the moment Mk(t) for k < 1 applying the above
Lemma 3.1 to the convex function Φ(x) = −xk. We obtain easily that

−

∫

Rd

B(ψ,ψ)(t, ξ) |ξ|2kdξ 6 −
βk(α)

2

∫

R2d

ψ(t, ξ)ψ(t, ξ∗)|ξ − ξ∗|
γ
(

|ξ|2 + |ξ∗|
2
)k

dξdξ∗

+
1

2

∫

R2d

ψ(t, ξ)ψ(t, ξ∗)|ξ − ξ∗|
γ
(

|ξ|2k + |ξ∗|
2k
)

dξdξ∗

where, as in Lemma 3.2, βk(α) = (1− α)̺k with ̺k given by

̺k =

∫

Sd−1





(

1 + Û · σ

2

)k

+

(

1− Û · σ

2

)k


 b(cos θ)dσ ∀0 < k < 1.

Using the fact that k − 1 < 0, aψ(t) > 0 and bψ(t) > 0, we deduce from (3.1) that

d

dt
Mk(t) >

1

2

∫

R2d

ψ(t, ξ)ψ(t, ξ∗)Jk(ξ, ξ∗)dξdξ∗

where

Jk(ξ, ξ∗) = βk(α)|ξ − ξ∗|
γ
(

|ξ|2 + |ξ∗|
2
)k

− |ξ − ξ∗|
γ
(

|ξ|2k + |ξ∗|
2k
)

.

Since γ ∈ (0, 1], one has | |ξ|γ − |ξ∗|
γ | 6 |ξ − ξ∗|

γ 6 |ξ|γ + |ξ∗|
γ while

(

|ξ|2 + |ξ∗|
2
)k

>

∣

∣

∣
|ξ|2k − |ξ∗|

2k
∣

∣

∣
∀k ∈ (0, 1).

As a consequence,

Jk(ξ, ξ∗) > βk(α) ( |ξ|
γ − |ξ∗|

γ )
(

|ξ|2k − |ξ∗|
2k
)

− (|ξ|γ + |ξ∗|
γ)
(

|ξ|2k + |ξ∗|
2k
)

= (βk(α)− 1)
(

|ξ|γ+2k + |ξ∗|
γ+2k

)

− (βk(α) + 1)
(

|ξ|γ |ξ∗|
2k + |ξ∗|

γ |ξ|2k
)

.

yielding the following inequality, for any 0 < k < 1:

d

dt
Mk(t) > (βk(α) − 1)Mk+ γ

2
(t)− (βk(α) + 1)M γ

2
(t)Mk(t). (3.12)

We are now in position to resume the argument of [14, Lemma 2] to get (3.11). We recall here
the main steps in order to explicit the parameter α⋆ (and, for γ = 1, the constant Cα). Assume
first that γ = 1, using then (3.12) with k = 1

2 , we get

d

dt
M 1

2
(t) >

(

β 1
2
(α) − 1

)

M1(t)−
(

β 1
2
(α) + 1

)

M 1
2
(t)2.

Since M1(t) =M1(0) = d/2 for any t > 0, we see that, if β 1
2
(α)− 1 > 0 then

M 1
2
(t) > min



M 1
2
(0),

√

√

√

√

β 1
2
(α) − 1

β 1
2
(α) + 1

M1(0)



 ∀t > 0. (3.13)

Since moreover M1(0) >M 1
2
(0)2 we obtain

M 1
2
(t) > CαM 1

2
(0) ∀0 < α < α⋆ :=

̺ 1
2
− 1

̺ 1
2
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where Cα =

√

√

√

√

β 1
2
(α) − 1

β 1
2
(α) + 1

(notice that 0 < α < α⋆ ⇐⇒ β 1
2
(α) > 1). In other words, for any

0 < α < α⋆,
∫

Rd

|ξ|ψ(t, ξ)dξ > Cα

∫

Rd

|ξ|ψ0(ξ)dξ ∀t > 0.

For γ < 1, one argues by induction as in [14, Lemma 2] iterating the above argument with k = jγ
2

for j = 1, . . . , j0 where j0 ∈ N is such that k0 =
j0γ
2 < 1 and k0 +

γ
2 > 1. Then, from (3.12) with

k = k0, we get

d

dt
Mk0(t) > (βk0(α)− 1)Mk0+

γ
2
(t)− (βk0(α) + 1)M γ

2
(t)Mk0(t).

A simple use of Jensen’s inequality shows that

d

dt
Mk0(t) > (βk0(α)− 1)

(

d

2

)k0+
γ
2

− (βk0(α) + 1)Mk0(t)
1+ γ

2k0

from which we deduce, as above, that

Mk0(t) >

(

βk0(α) − 1

βk0(α) + 1

) 1
1+

γ
2k0 Mk0(0) ∀t > 0

if βk0(α) > 1. Now, one can repeat the argument exactly with k1 = k0 −
γ
2 , k2 = k1 −

γ
2 and so

on. Notice that, if βk0(α) > 1, then βk(α) > 1 for any k 6 k0. In particular, we get (3.11) for

any 0 < α <
̺k0−1

̺k0
=: α⋆.

Let us now prove the second part of the Lemma, regarding the propagation of lower bounds.
The proof in the case γ = 1 is a direct consequence of (3.13). For 0 < γ < 1, the proof

uses arguments similar to those used in the proof of (3.11). Precisely, since M γ
2
(t) 6 M jγ

2
(t)

1
j

according to Jensen’s inequality, one deduces from Eq. (3.12) that

d

dt
M jγ

2
(t) >

(

β jγ
2
(α) − 1

)

M (j+1)γ
2

(t)−
(

β jγ
2
(α) + 1

)

M jγ
2
(t)

1+j
j , for any j = 1, . . . , j0.

According to Jensen’s inequality one also has

M (j0+1)γ
2

(t) >M1(t)
(j0+1)γ

2 =

(

d

2

)

(j0+1)γ
2

∀t > 0

and, by a simple decreasing induction argument, one checks that if M jγ
2
(0) > κj(α) holds for

any j = 1, . . . , j0, then inft>0M jγ
2
(t) > κj(α) will hold for any j = 1, . . . , j0. �

Remark 3.8. With the notations of Lemma 3.7, we define the set Cγ(α) (0 < α < α⋆) as follows:

(i) If γ = 1 then C1(α) is the set of nonnegative ψ(ξ) such that
∫

Rd ψ(ξ)|ξ|dξ > κ(α).

(ii) If γ ∈ (0, 1) let j0 ∈ N be such that k0 = j0γ
2 < 1 and k0 +

γ
2 > 1. Then, Cγ(α) is defined

as the set of nonnegative ψ(ξ) such that
∫

Rd ψ(ξ)|ξ|
jγdξ > κj(α) for any j = 1, . . . , j0.

The second part of Lemma 3.7 can be reformulated as follows: given γ ∈ (0, 1] and 0 < α < α⋆, if
the initial datum ψ0 ∈ Cγ(α) then the associated solution ψ(t) to (1.8) is such that ψ(t) ∈ Cγ(α)
for any t > 0.
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The above lower bounds have several important consequences when dealing with isotropic
functions. Precisely, one has the following result, already stated in [17, Lemma 10] in dimension
d = 3:

Lemma 3.9. Assume that f(ξ) = f(|ξ|) > 0 is an isotropic integrable function and let k(r) > 0
be a non decreasing mapping on [0,∞). Then, for any ξ ∈ R

d,
∫

Rd

f(ξ∗)k (|ξ − ξ∗|) dξ∗ >
1

2

∫

Rd

f(ξ∗)k
(

√

|ξ|2 + |ξ∗|2
)

dξ∗.

Proof. We give an elementary proof of this result. Using spherical coordinates, with ξ∗ = ̺ω
and ξ = rσ, r, ̺ > 0, ω, σ ∈ S

d−1, one has
∫

Rd

f(ξ∗)k (|ξ − ξ∗|) dξ∗ =

∫ ∞

0
f(̺)̺d−1d̺

∫

Sd−1

k
(

√

̺2 + r2 − 2r ̺ σ · ω
)

dω

>

∫ ∞

0
f(̺)̺d−1d̺

∫

S
d−1
−

k
(

√

̺2 + r2 − 2r ̺ σ · ω
)

dω

where S
d−1
− =

{

ω ∈ S
d−1 ; σ · ω < 0

}

. Then, for any ω ∈ S
d−1
− , since k(·) is non decreasing,

k
(

√

̺2 + r2 − 2r ̺ σ · ω
)

> k
(

√

̺2 + r2
)

and
∫

Rd

f(ξ∗)k (|ξ − ξ∗|) dξ∗ >

∫ ∞

0
f(̺)̺d−1k

(

√

̺2 + r2
)

d̺

∫

S
d−1
−

dω

which, turning back to the original variables yields the conclusion, the factor 1
2 coming from the

integration over the half-sphere S
d−1
− . �

Thanks to the above Lemma, one can complement Lemma 3.7 for isotropic solutions. We first
recall that, if ψ0(ξ) = ψ0(|ξ|) is an isotropic function, then the solution ψ(t, ξ) constructed in
Theorem 1.3 is isotropic for any t > 0. This leads to

Lemma 3.10. Assume that ψ0(ξ) = ψ0(|ξ|) is a nonnegative isotropic initial datum satisfying
(1.10). For any γ ∈ (0, 1], there exists α⋆ ∈ (0, 1) such that, for any α ∈ (0, α⋆) the solution
ψ(t, ξ) to (1.8) satisfies

∫

Rd

ψ(t, ξ∗)|ξ − ξ∗|
γdξ∗ > µα〈ξ〉

γ , ∀ξ ∈ R
d, t > 0

for some positive constant µα > 0 depending on b(·), γ, d, α and on the initial datum ψ0.

Proof. Applying Lemma 3.9 with the function k(x) = xγ we get that
∫

Rd

ψ(t, ξ∗)|ξ − ξ∗|
γdξ∗ >

1

2

∫

Rd

ψ(t, ξ∗)
(

|ξ|2 + |ξ∗|
2
)

γ
2 dξ∗.

Moreover, for any γ ∈ (0, 1], there exists cγ > 0 such that
(

|ξ|2 + |ξ∗|
2
)

γ
2 > cγ(|ξ|

γ + |ξ∗|
γ) for

any ξ, ξ∗ ∈ R
d. Then,

∫

Rd

ψ(t, ξ∗)|ξ − ξ∗|
γdξ∗ >

cγ
2

(

|ξ|γ +

∫

Rd

ψ(t, ξ∗)|ξ∗|
γdξ∗

)

.

Now, according to Lemma 3.7, whenever α ∈ (0, α⋆) there exists Cα such that
∫

Rd

ψ(t, ξ∗)|ξ∗|
γdξ∗ > Cα

∫

Rd

ψ0(ξ∗)|ξ∗|
γdξ∗, t > 0.
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Consequently,
∫

Rd

ψ(t, ξ∗)|ξ − ξ∗|
γdξ∗ >

cγ
2
min

{

1,Cα

∫

Rd

ψ0(ξ∗)|ξ∗|
γdξ∗

}

(1 + |ξ|γ) ∀ξ ∈ R
d, t > 0.

Now, since there exists κγ > 0 such that (1 + |ξ|γ) > κγ
(

1 + |ξ|2
)

γ
2 for any ξ ∈ R

d, we finally

obtain the conclusion with µα =
cγ κγ
2 min

(

1,Cα

∫

Rd ψ0(ξ∗)|ξ∗|
γdξ∗

)

. �

Remark 3.11. The parameter α⋆ is exactly the one of Lemma 3.7. Precisely,

α⋆ =
̺k0 − 1

̺k0

where k0 =
j0γ
2 < 1 with j0 ∈ N such that k0 < 1 and k0+

γ
2 > 1. In particular, for γ = 1, k0 =

1
2

and, in dimension d = 3 and hard-spheres interactions b(·) = 1
4π , one sees that α⋆ =

1
4 .

4. Lp-estimates

We are now interested in uniform in time propagation of Lp-norms for the solution to (1.8)
and we prove Theorem 1.5. As in the previous section, we fix a nonnegative initial distribution
ψ0 satisfying (1.10) and such that

ψ0 ∈ L
1
2+γ(R

d) ∩ Lp(Rd)

for some fixed p > 1 and we let then ψ ∈ C([0,∞);L1
2(R

d)) ∩ L1
loc((0,∞), L1

2+γ(R
d)) be the

nonnegative solution to (1.8) with ψ(0, ·) = ψ0 constructed by Theorem 1.3. We assume in

this section that ψ0 is an isotropic function, that is (1.13) holds. For a given p > 1,
multiplying (1.8) by pψ(t, ξ)p−1 and integrating over R

d, we get

d

dt
‖ψ(t)‖pLp + (pAψ(t)− dBψ(t)) ‖ψ(t)‖

p
Lp

= p(1− α)

∫

Rd

Q+(ψ,ψ)(t, ξ)ψ(t, ξ)
p−1dξ − p

∫

Rd

Q−(ψ,ψ)(t, ξ)ψ(t, ξ)
p−1dξ

=: (1− α)pGp(ψ(t)) − pLp(ψ(t))

(4.1)

where we set

Gp(ψ(t)) =

∫

Rd

Q+(ψ,ψ)(t, ξ)ψ(t, ξ)
p−1dξ,

and

Lp(ψ(t)) =

∫

Rd

Q−(ψ,ψ)(t, ξ)ψ(t, ξ)
p−1dξ.

The estimates for Gp(ψ(t)) are well-known [23, 2] and, for ε > 0, there exists some (explicit)
θ ∈ (0, 1) and Cε > 0 such that

Gp(ψ(t)) 6 Cε‖ψ(t)‖
1+pθ
L1 ‖ψ(t)‖p−pθLp + ε‖ψ(t)‖L1

2
‖ψ(t)‖p

Lp
γ
p

,

i.e.

Gp(ψ(t)) 6 Cε‖ψ(t)‖
p−pθ
Lp + ε

(

1 +
d

2

)

‖ψ(t)‖p
Lp

γ
p

. (4.2)

Now, all the strategy consists in finding conditions on α and p > 1 ensuring that

− (pAψ(t)− dBψ(t)) ‖ψ(t)‖
p
Lp − pLp(ψ(t))
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can absorb the leading order term ε(1− α)p
(

1 + d
2

)

‖ψ(t)‖p
Lp

γ
p

. One has

(pAψ(t)− dBψ(t)) = −
α

2
(d(p − 1) + 2p)aψ(t) + α(p − 1)bψ(t)

and, since bψ(t) > 0, it is enough to estimate

Kp :=
α

2
(d(p − 1) + 2p) aψ(t) ‖ψ(t)‖

p
Lp − pLp(ψ(t)).

Compounding ‖ψ(t)‖pLp and aψ(t) into a unique integral, we get

aψ(t) ‖ψ(t)‖
p
Lp =

∫

R3d

|ξ − ξ∗|
γψ(t, ξ)ψ(t, ξ∗)ψ(t, z)

pdzdξdξ∗.

One has |ξ − ξ∗|
γ 6 |z − ξ|γ + |z − ξ∗|

γ so that

aψ(t) ‖ψ(t)‖
p
Lp 6

∫

R3d

|z − ξ|γψ(t, ξ)ψ(t, ξ∗)ψ(t, z)
pdzdξdξ∗

+

∫

R3d

|z − ξ∗|
γψ(t, ξ)ψ(t, ξ∗)ψ(t, z)

pdzdξdξ∗

i.e.

aψ(t) ‖ψ(t)‖
p
Lp 6 2

∫

R2d

|z − ξ|γψ(t, ξ)ψ(t, z)pdzdξ = 2Lp(ψ(t)).

One sees then that Kp 6 −ηpLp(ψ(t)) with ηp = p− 2α p− αd(p − 1) and

ηp > 0 ⇐⇒ p(αd+ 2α− 1) < αd.

One can distinguish between two cases:

(i) if α 6 1
d+2 then one has ηp > αd > 0 for any p > 1;

(ii) if α > 1
d+2 then ηp > 0 if and only if p < p⋆α where p⋆α = αd

αd+2α−1 . Notice that p⋆α > 1 if

and only if 0 < α < 1
2 .

In other words, for any α < 1
2 , there exists p⋆α > 1 such that

Kp 6 −ηpLp(ψ(t)) with ηp > 0 ∀p ∈ (1, p⋆α). (4.3)

Putting together (4.1), (4.2) and (4.3) we get, for α < 1
2 and p ∈ (1, p⋆α):

d

dt
‖ψ(t)‖pLp 6 Cε(1− α)p‖ψ(t)‖p−pθLp + ε(1 − α)p

(

1 +
d

2

)

‖ψ(t)‖p
Lp

γ
p

− ηpLp(ψ(t)).

It remains now to compare Lp(ψ(t)) to ‖ψ(t)‖p
Lp

γ
p

. This is the only point where we shall invoke

our assumption (1.13). Precisely, from (1.13) and Lemma 3.10, if α ∈ (0, α⋆) there exists µα > 0
depending on ψ0 such that

∫

Rd

|ξ − ξ∗|
γψ(t, ξ∗)dξ∗ > µα〈ξ〉

γ ∀t > 0, ∀ξ ∈ R
d.

Therefore,

Lp(ψ(t)) > µα

∫

Rd

ψ(t, ξ)p〈ξ〉γdξ = µα‖ψ(t)‖
p
Lp

γ
p

. (4.4)
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Then, for any fixed 0 < α < min(12 , α⋆) and fixed p ∈ (1, p⋆α), one can choose ε > 0 such that

ε(1 − α)p
(

1 + d
2

)

=
ηp µα

2 to get the following

d

dt
‖ψ(t)‖pLp 6 K‖ψ(t)‖p−pθLp −

ηp µα
2

‖ψ(t)‖p
Lp

γ
p

,

for some positive constant K > 0. This implies clearly that

sup
t>0

‖ψ(t)‖Lp 6 max

{

‖ψ0‖Lp ,

(

2K

ηpµα

) 1
pθ

}

.

This proves Theorem 1.5 with Cp(ψ0) =
(

2K
ηpµα

)
1
pθ

. Notice that, as announced, Cp(ψ0) depends

on the initial datum ψ0 only through µα and so only through the moment M γ
2
(0).

Remark 4.1. One sees from the above proof that α = min(12 , α⋆) where α⋆ is the parameter of
Lemma 3.10 (see also Remark 3.11).

Remark 4.2. The constant Cp(ψ0) depends on the initial datum ψ0 only through the inverse
of the moment M γ

2
(0) =

∫

Rd ψ0(ξ)|ξ|
γdξ. In particular, with the notations of Lemma 3.7 and

Remark 3.8, one sees that, given γ ∈ (0, 1] and 0 < α < α then for any p ∈ (1, p⋆α),

sup
t>0

‖ψ(t)‖Lp < max {‖ψ0‖Lp , Cp}

for some constant Cp > 0 depending only on α, γ, b(·) and the dimension d provided ψ0 ∈ Cγ(α)
satisfies the assumption of Theorem 1.5.

5. Existence of self-similar profile

We now proceed to the proof of the main result of this paper, that is the proof of Theorem 1.6.
As already announced, the existence of a stationary solution to (1.8) relies on the application of
Theorem 1.1 to the evolution semi-group (St)t>0 governing (1.8). We set α = min(α0, α). Let
us now fix α < α and let p ∈ (1, p⋆α) be fixed. For any nonnegative ψ0 ∈ L1

2+γ(R
d) ∩ Lp(Rd)

let ψ(t) = Stψ0 denote the unique solution to (1.8) with initial state ψ(0) = ψ0 constructed
by Theorem 1.3. The continuity properties of the semi-group are proved by the study of the
Cauchy problem in Section 2. On the Banach space Y = L1

2(R
d), thanks to the uniform bounds

on the L1
2+γ(R

d) and Lp(Rd) norms provided by Proposition 3.4 and Theorem 1.5 respectively

combined with the propagation of lower bounds for M γ
2
(t) (see Lemma 3.7, Remarks 3.8 & 4.2)

the nonempty convex subset

Z =

{

0 6 ψ ∈ Y, ψ(ξ) = ψ(|ξ|) ∀ξ ∈ R
d,

∫

Rd

ψ(ξ)dξ = 1,

∫

Rd

ψ(ξ)|ξ|2dξ =
d

2

‖ψ‖L1
2+γ

6Mγ , ‖ψ‖Lp 6Mp and

∫

Rd

ψ(ξ) |ξ|jγ dξ > Kj, j = 1, . . . , j0

}

is stable by the semi-group provided Mγ , Mp are big enough and K1, . . . ,Kj0 are small enough

where we recall that j0 is the largest integer such that j0γ
2 < 1 and (j0+1)γ

2 > 1 (in particular, for
true hard-spheres, γ = j0 = 1). This set is weakly compact in Y by Dunford-Pettis Theorem, and
the continuity of St for all t ≥ 0 on Z follows from Proposition 2.9. Then, Theorem 1.1 shows
that, for any α < α, there exists a nonnegative stationary solution to (1.8) in L1

2+γ(R
d)∩Lp(Rd)

with unit mass and energy equal to d
2 .
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Remark 5.1. Notice that, unfortunately, we are able to construct only radially symmetric so-
lutions to (1.5). Clearly, this relies on the restriction (1.13) for the control of Lp norms. At
first sight, it may seem possible to construct solutions to (1.5) with zero bulk velocity but it is
not known whether this property is preserved by the semigroup (St)t>0. Since the property of
being radially symmetric is preserved by (St)t>0, we have to restrict our choice to that class of
self-similar solutions.

Remark 5.2. In the special case of hard-spheres interactions in dimension d = 3, i.e. whenever

B(ξ − ξ∗, σ) = |ξ−ξ∗|
4π , one has according to Remarks 3.5, 3.11 and 4.1 that α0 = 2

7 , α = 1
4 .

Therefore, α = 1
4 and p⋆α > 2.

6. Conclusion and perspectives

We derived in the present paper the existence of a self-similar profile ψH associated to the
probabilistic ballistic annihilation equation (1.1). Such a self-similar profile is actually the steady
state of the rescaled equation (1.8) and the existence of such a steady state was taken for granted
in various papers in the physics literature [15, 19, 28]. Our paper thus provides a rigorous
justification of some of the starting point of the analysis of the op. cit.. The self-similar profile
ψH we constructed is isotropic, i.e.

ψH(ξ) = ψH(|ξ|), ξ ∈ R
d

and the existence is proven only in a given (explicit) range of the probability parameter α.
Namely, we proved the existence of ψH only whenever the probability parameter α lies in some
interval (0, α) with some explicit α > 0. Even if the parameter α > 0 is certainly not optimal,
this restriction arises naturally from our method of proof; in particular, it seems difficult to prove
uniform in time estimates of the higher-order moments for all range of parameters α ∈ (0, 1).
However, our restriction on the initial datum (isotropy, Lp-integrability) and on the probability
parameter α leaves several questions open. Let us list a few of them that can be seen as possible
perspectives for future works.

6.1. Uniqueness. A first natural question that should be addressed is of course the uniqueness
of the self-similar profile ψH . Clearly, since our existence result is based upon a compactness
argument (via Tykhonov fixed point Theorem 1.1) it does not provide any clue for uniqueness.
We believe that, as it is the case for the Boltzmann equation with inelastic hard-spheres [21, 6],
a perturbation argument is likely to be adapted here. Such an approach consists in taking profit
of the knowledge of the stationary solution in the "pure collisional limit" α = 0 (for which the
steady state is clearly a uniquely determined Maxwellian distribution) and to prove quantitative
estimates of the convergence of stationary solution as the parameter α goes to 0. It is likely
that such a uniqueness result would require a good knowledge of some quantitative a posteriori
estimates for the self-similar profile ψH .

6.2. A posteriori estimates for ψH . Typically, we may wonder what are the thickness of the
tail of ψH ; more precisely, one should try to find explicit r > 0, a > 0 - possibly independent of
the parameter α - such that

∫

Rd

ψH(ξ) exp(a|ξ|
r)dξ <∞.

Besides such integral upper bound, one also may wonder if good L∞-bounds can be derived for
ψH (at least in the limit α → 0), i.e. is it possible to derive universal explicit functions M(ξ)
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and M(ξ) such that

M(ξ) 6 ψH(ξ) 6M(ξ) ∀ξ ∈ R
d and any α ∈ (0, α).

6.3. Intermediate asymptotics. A fundamental problem, related to the original probability
annihilation equation (1.1), is to understand the role of the self-similar profile ψH (if unique).
Indeed, we know that solutions to (1.1) are vanishing as t→ ∞

lim
t→∞

f(t, v) = 0

and physicists expect that the self-similar profile should play the role of an intermediate asymp-
totic in the following sense. One expects to find suitable explicit scaling functions a(·), b(·) a
rescaled density ψ = ψ(τ, ξ) and a rescaled time τ(t) which are such that, if f is a solution to
(1.1) in the form

f(t, v) = a(t)ψ(τ(t), b(t)v)

then the rescaled density ψ is such that

ψ(τ, ξ) −→ ψH(ξ) as τ → ∞.

The convergence, in rescaled variables, to a unique self-similar profile is a well-known feature
of kinetic equation exhibiting a lack of collisional invariants. In particular, for granular flows
described by inelastic hard-spheres, such a self-similar profile (known as the homogeneous cooling
state) is known to attract all the solutions to the associated Boltzmann equation yielding a proof
of the so-called Ernst-Brito conjecture (see [21] for a proof and a complete discussion on this
topic).

A related question is also the exact decay of the macroscopic quantities associated to solutions
f(t, v) to (1.1): it has already been observed that the number density

n(t) =

∫

Rd

f(t, v)dv

and the kinetic energy

E(t) =

∫

Rd

f(t, v)|v|2dv

are continuously decreasing if α ∈ (0, 1) and converge to zero as t→ ∞. To determine the precise
rate of convergence to zero for such quantities is a physically relevant problem. Partial answers,
based upon heuristic and dimensional arguments, are provided by physicists [24] and it would be
interesting to provide a rigorous justification of these results. Exploiting again the analogy with
the Boltzmann description of granular flows, expliciting the decay rate of the number density
and the kinetic energy would be the analogue of the so-called Haff’s law for inelastic hard-spheres
(see [20, 3]).

6.4. Improvement of our result: the special role of entropy. Besides the above cited fun-
damental questions, we may also discuss some possible improvements of the results we obtained
in the present paper. First, one may try to extend the range of parameters α for which our
result holds. Notice that, since we strongly believe that the self-similar profile ψH is unique in
some peculiar regime (at least whenever α ≃ 0), getting rid of the isotropic assumption on ψH
is not particularly relevant. However, in both Theorems 1.3 and Theorem 1.6, the hypothesis of
Lp-integrability does not have a clear physical meaning. It would be interesting to investigate
if such an assumption can be relaxed: for instance, it would be more satisfactory to prove the
well-posedness result Theorem 1.3 under the sole assumption that the initial datum is of finite
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entropy. Unfortunately, we did not succeed in proving that the flow solution associated to (1.8)
propagates suitable bounds of the entropy functional.

Appendix A. Well-posedness for the Boltzmann equation with ballistic

annihilation

In this appendix, we only give the main lines of the proof of Theorem 1.7. Indeed, the proof
of Theorem 1.7 may be easily adapted from that of Theorem 1.3.

Let us denote by f0 a nonnegative distribution function from W 1,∞(Rd) ∩ L1
2+γ(R

d). Let
n ∈ N. We consider first the well-posedness of the following truncated equation

∂tf(t, v) = B
n(f, f)(t, v) (A.1)

where the collision operator B
n(f, f) is given by (2.2). Let T > 0 and

h ∈ C([0, T ];L1(Rd)) ∩ L∞((0, T );L1(Rd, |v|2+γ dv))

be fixed. We introduce the auxiliary equation:
{

∂tf(t, v) +C
n
h(t, v) f(t, v) = (1− α)Qn

+(h, h)(t, v),

f(0, v) = f0(v).
(A.2)

Here, as in Section 2,

C
n
h(t, v) :=

∫

Rd×Sd−1

Bn(v − v∗, σ)h(t, v∗) dv∗ dσ = ‖bn‖1

∫

Rd

Φn(|v − v∗|)h(t, v∗) dv∗.

The Cauchy problem (A.2) admits a unique solution given by

f(t, v) = f0(v) exp

(

−

∫ t

0
C
n
h(τ, v) dτ

)

+ (1− α)

∫ t

0
exp

(

−

∫ t

s
C
n
h(τ, v) dτ

)

Qn
+(h, h)(s, v) ds. (A.3)

For any T > 0 and any M1,M2, L,Cγ > 0 (to be fixed later on), we define H = HT,M1,M2,L,Cγ

as the set of all nonnegative h ∈ C([0, T ];L1(Rd)) such that

sup
t∈[0,T ]

∫

Rd

h(t, v) dv 6M1, sup
t∈[0,T ]

∫

Rd

h(t, v) |v|2 dv 6M2,

and

sup
t∈[0,T ]

∫

Rd

h(t, v) |v|2+γ dv 6 Cγ , sup
t∈[0,T ]

‖h(t)‖W 1,∞ 6 L.

Define then the mapping

T : H −→ C([0, T ];L1(Rd))

which, to any h ∈ H, associates the solution f = T (h) to (A.2) given by (A.3). We look for
parameters T,M1,M2, Cγ and L that ensures T to map H into itself.

Control of the density. One checks easily that the solution f(t, v) given by (A.3) fulfils

sup
t∈[0,T ]

∫

Rd

f(t, v) dv 6 ‖f0‖1 + (1− α)nγ ‖bn‖1M
2
1 T, ∀h ∈ H. (A.4)
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Control of the moments. Arguing as above and as in Section 2, we get

sup
t∈[0,T ]

∫

Rd

f(t, v) |v|2 dv 6

∫

Rd

f0(v) |v|
2 dv + 4 (1− α)nγ ‖bn‖1M1M2 T, (A.5)

sup
t∈[0,T ]

∫

Rd

f(t, v) |v|2+γ dv 6

∫

Rd

f0(v) |v|
2+γ dv + 22+γ (1− α)nγ ‖bn‖1M1Cγ T, (A.6)

for any h ∈ H.

Control of the W 1,∞ norm. Here again as in Section 2, we obtain,

sup
t∈[0,T ]

‖f(t)‖W 1,∞ 6 ‖f0‖W 1,∞ (1 + 2nγ ‖bn‖1M1 T )

+ 2 (1 − α)n1+γ ‖bn‖1M1 LT (2 + nγ ‖bn‖1M1 T ).
(A.7)

Now, from (A.4), (A.5), (A.6) and (A.7), one sees that, choosing for instance M1 = 2‖f0‖1,

M2 = 2

∫

Rd

f0(v) |v|
2 dξ, Cγ = 2

∫

Rd

f0(ξ) |ξ|
2+γ dξ, L = 4 ‖f0‖W 1,∞

and

T =
1

16 ‖bn‖1M1 n1+γ
min{1, 21−γ n},

we get that f ∈ H, i.e. with the above choice of the parameters M1,M2, Cγ , L, T , one has T (H) ⊂
H. Moreover, one can perform the same calculations as in the proof of Proposition 2.3 and one
obtains that (2.10) holds and that T (H) is a relatively compact subset of C([0, T ], L1

2(R
d)). Thus,

the Schauder fixed point theorem ensures the existence of some fixed point f1 of T , i.e. there
exists f1 ∈ C([0, T ];L1

2(R
d)) ∩ L∞((0, T );L1

2+γ(R
d) ∩W 1,∞(Rd)) solution to (A.1). Integrating

equation (A.1) against 1 and |v|2 over R
d, we get

d

dt

∫

Rd

f1(t, v) dv 6 0 and
d

dt

∫

Rd

f1(t, v) |v|2 dv 6 0.

Consequenly, f1 satisfies (1.14) and ‖f1(T, .)‖1 6 ‖f0‖1. Since the time T only depends on the
inverse of ‖f0‖1, by a standard continuation argument, we construct a global solution f to (A.1).
Uniqueness clearly follows from (2.10).

In order to prove Theorem 1.7, we now need to get rid of the bound in W 1,∞(Rd) for the initial
condition and to pass to the limit as n→ +∞. Let f0 ∈ L1

2+γ(R
d) be a nonnegative distribution

function. There exists a sequence of nonnegative functions (fn0 )n∈N in W 1,∞(Rd) ∩ L1
2+γ(R

d)

that converges to f0 in L1
2(R

d) and that satisfies, for any n ∈ N,

‖fn0 ‖1 6 ‖f0‖1 and

∫

Rd

fn0 (v) |v|
2+γ dv 6 21+γ‖f0‖1 + 21+γ

∫

Rd

f0(v) |v|
2+γ dv. (A.8)

We infer from the above properties of (fn0 )n∈N that there exists some N0 ∈ N such that for
n > N0,

1

2
‖f0‖1 6

∫

Rd

fn0 (v) dv 6 ‖f0‖1 (A.9)

and
1

2

∫

Rd

f0(v) |v|
2 dv 6

∫

Rd

fn0 (v) |v|
2 dv 6 2

∫

Rd

f0(v) |v|
2 dv. (A.10)



44 VÉRONIQUE BAGLAND & BERTRAND LODS

For each n ∈ N, we denote by fn the solution to (A.1) with initial condition fn0 . Our purpose
is to show that (fn)n∈N is a Cauchy sequence in C([0, T ];L1

2(R
d)) for any T > 0. However, this

requires uniform estimates on fn. So, we now show uniform bounds for moments of fn.

Lemma A.1. Let T > 0 and s > 2. Assume that ‖f0‖L1
s
<∞. Then, there exists some constant

C depending only on α, d, γ, s, T , b(·) and ‖f0‖L1
s

such that, for n > N0,

sup
t∈[0,T ]

∫

Rd

fn(t, v) |v|
s dv 6 C and

∫ T

0
‖fn(t)‖L1

∫

Rd

fn(t, v)Φn(|v|) |v|
s dv dt 6 C. (A.11)

Proof. Let s > 2 and n > N0. Our proof follows the same lines as the proof of Lemma 2.7. As
previously, we have

dY ns
dt

(t) =
1− α

2

∫

Rd

∫

Rd

fn(t, v) fn(t, v∗)Φn(|v − v∗|)K
n
s (v, v∗) dv dv∗

− α

∫

Rd

Qn
−(fn, fn)(t, v) |v|

s dv,

where Y n
s (t) =

∫

Rd fn(t, v) |v|
s dv. Now, arguing as in the proof of Lemma 2.7, we obtain

d

dt
Y n
s (t) +

(1− α) c2(n)

2
‖fn(t)‖L1

∫

Rd

fn(t, v)Φn(|v|) |v|
s dv

6
c2(n)

2
Y n
s (t)Y

n
γ (t) + c1

(

Y n
s (t)Y

n
1 (t) + Y n

s−γ(t)Y
n
1+γ(t)

)

.

Finally,

d

dt
Y n
s (t) +

(1− α) c2(2)

2
‖fn(t)‖L1

∫

Rd

fn(t, v)Φn(|v|) |v|
s dv 6 C3 Y

n
s (t) + 2 c1 ‖f0‖L1

2
,

where C3 = (c∞2 + 4c1)‖f0‖L1
2
. Then, (A.11) follows easily from the Gronwall Lemma and

(A.8). �

Observe that the second inequality of (2.29) has to be modified in that case. Since the mass
of the solution is decreasing, we do not recover, as previously, that moments of order 2 + γ are
integrable. This is the reason why we assume here that the initial condition lies in L1

2+γ . Thanks
to Lemma A.1, it then follows that moments of order 2 + γ are uniformly bounded. We are
thus in a position to prove that (fn)n∈N is a Cauchy sequence in C([0, T ];L1

2(R
d)) for any T > 0.

We omit the proof since it follows exactly the same lines as the proof of Proposition 2.8. Then
denoting by f ∈ C([0, T ];L1

2(R
d)) the limit of the sequence (fn)n∈N, it is easy to check that f is

a weak solution to (1.1).

Appendix B. The case of Maxwellian molecules kernel

We discuss in this Appendix the particular case of Maxwellian molecules. Notice that the
Boltzmann equation for ballistic annihilation associated to Maxwellian molecules has been al-
ready studied in the mid-80’s [26, 25], and was referred to as Boltzmann equation with removal.
Consider as above, the equation

∂tf(t, v) = (1− α)Q(f, f)(t, v) − αQ−(f, f)(t, v) = B(f, f)(t, v), f(0, v) = f0(v) (B.1)

where Q is the quadratic Boltzmann collision operator associated to the Maxwellian collision
kernel

B(v − v∗, σ) = b(cos θ)
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For any solution f(t, v) to (B.1), we denote

n(t) =

∫

Rd

f(t, v)dv, n(t)u(t) =

∫

Rd

vf(t, v)dv,

and

Θ(t) =
1

dn(t)

∫

Rd

|v − u(t)|2f(t, v)dv.

Since, for Maxwellian molecules

Q−(f, f)(t, v) = ‖b‖1f(t, v)

∫

Rd

f(t, v∗)dv∗ = ‖b‖1n(t)f(t, v)

one sees easily that the evolution of the density n(t) is given by

d

dt
n(t) = −µn2(t), ∀t > 0, (B.2)

with µ = α‖b‖1. Thus

n(t) =
n0

µn0t+ 1
, ∀t > 0. (B.3)

In the same way,

d

dt
(n(t)u(t)) = −µn2(t)u(t), and

d

dt
(n(t)Θ(t)) = −µn2(t)Θ(t) (B.4)

from which we deduce that

u(t) = u(0) and Θ(t) = Θ(0) ∀t > 0.

One sees therefore that, for the special case of Maxwellian molecules, the evolution of the mo-
ments of f(t, v) are explicit. Another striking property, very peculiar to Maxwellian molecules,
has been noticed in [25]: if one defines

s(t) =
1− α

n0

∫ t

0
n(τ)dτ =

1− α

µn0
log(1 + µn0 t), t > 0,

then, the change of unknown

f(t, v) =
n(t)

n0
g(s(t), v) t > 0 (B.5)

shows that, f(t, v) is a solution to (B.1) if and only if g(s, v) is a solution to the classical
Boltzmann equation

∂sg(s, v) = Q(g, g)(s, v) (s > 0) with g(0, v) = f0(v). (B.6)

Moreover, one has
∫

Rd

g(s, v)dv = n0 =

∫

Rd

g(0, v)dv ,

∫

Rd

vg(s, v)dv = n0u(0)

and
∫

Rd

|v − u(0)|2g(s, v)dv = dn0Θ(0) ∀s > 0.

In other words, the ballistic annihilation equation (B.1) is equivalent to the classical Boltzmann
equation with Maxwellian molecules interactions. The mathematical theory of Eq. (B.6) is by
now completely understood (see e.g. [29]) and it is well-known that (under suitable conditions
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on the initial distribution f0) the solution g(s, v) to (B.6) converges (in suitable L1-norm) as
s→ ∞ to the Maxwellian distribution

M(v) =
n0

(2πΘ(0))d/2
exp

(

−
|v − u(0)|2

2Θ(0)

)

v ∈ R
d

with an explicit rate (we do not wish to explicit the minimal assumption on f0 nor the precise
convergence result and rather refer the reader to [29] for details). Turning back to the original
variable, this proves that

f(t, v)−
n(t)

n0
M(v) −→ 0 as t→ ∞.

The long-time behavior of the solution to (B.1) is therefore completely described by the evolu-
tion of the density n(t) given by (B.3) and the moments of the initial datum f0 (through the
Maxwellian M). This gives a complete picture of the asymptotic behavior of (B.1) and answers
the problem stated in Section 6.3 for the special case of Maxwellian molecules.
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