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We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz
in ultra-thin free-standing silicon membranes. Using an ultrafast pump-probe technique of asyn-
chronous optical sampling, we observe that the decay time of the first-order dilatational mode
decreases significantly from ∼ 4.7 ns to 5 ps with decreasing membrane thickness from ∼ 194 to 8
nm. The experimental results are compared with theories considering both intrinsic phonon-phonon
interactions and extrinsic surface roughness scattering including a wavelength-dependent specular-
ity. Our results provide insight to understand some of the limits of nanomechanical resonators and
thermal transport in nanostructures.

Mechanical and acoustic properties in the nanoscale
are receiving increasing attention as they are key prop-
erties affecting the limits of ultrasensitive detectors of
force [1], mass [2, 3], charge [4, 5] and spin [6], influenc-
ing platforms for biosensing [7] and the investigation of
quantum behaviour in extended objects [8]. In partic-
ular, phonon lifetimes influence the achievable mechan-
ical quality (Q) -factors in nanomechanical resonators,
which often limit device performance [9]. Moreover, they
are necessary input parameters for accurate calculations
of nanoscale thermal transport, with high-impact ap-
plications such as heat management in nanoelectronics
[10] and the engineering of novel thermoelectric materi-
als [11]. Despite their importance, phonon lifetimes are
perhaps the least well known of all phonon properties
due to the challenges associated with their quantitative
determination and theoretical modelling. Even though
silicon is the most important material for nanoelectron-
ics, MEMS and NEMS, there are few experimental re-
ports of direct measurements of phonon lifetimes in the
gigahertz to terahertz range [12] and for all materials
open questions remain about the relative contributions
of intrinsic and extrinsic scattering processes at high fre-
quencies in both bulk and nanoscale structures [9, 13–16].
Recent experimental investigations of phonons in super-
lattice cavities with frequencies of around 1 THz have
suggested that lifetimes of high-frequency phonons could
be limited by an average interface roughness of just 0.06
nm [17]. On the other hand, phonon wavepackets ex-
periments in bulk silicon with frequencies up to approxi-
mately 100 GHz were analysed with a simplified Akhiezer
relaxation damping model [12, 18] of intrinsic scatter-
ing, using an average lifetime of high-frequency thermal

phonons of 17 ps. Other intrinsic damping models in-
clude clamping losses [19], thermoelastic dissipation [20]
and three-phonon interactions [21], which predict a dif-
ferent behaviour depending on the frequency and temper-
ature regimes. In this context, generation and detection
of coherent acoustic phonons at high frequencies in dif-
ferent materials and nanostructures is an ideal method
to obtain quantitative information on phonon lifetimes
and compare with the main theoretical models.

Here we use free-standing single-crystalline silicon
membranes fabricated by back-etching (100)-oriented
silicon-on-insulator (SOI) wafers to study the decay of
coherent phonons. These membranes are model systems
for such studies, as they can be fabricated with precisely
controlled dimensions and physical parameters, facilitat-
ing comparison with theoretical models since the analysis
is free from interplay with a substrate. This type of mem-
brane was used previously to observe confined acoustic
phonons [22] and study their dispersion relation [23] us-
ing inelastic light scattering. We use the ultrafast pump-
probe technique of high-speed asynchronous optical sam-
pling (ASOPS) to generate and detect coherent acoustic
phonons [24], without the use of any transducing metal-
lic layer. We perform measurements over a large range
of thickness values from 7.7 ± 0.5 to 194 ± 1 nm, allow-
ing us to investigate the trend in phonon lifetime with
frequency up to ∼ 500 GHz and compare with predictive
models. We compare the experimental results with the-
ories involving intrinsic phonon-phonon interactions and
extrinsic surface roughness scattering with a wavelength-
dependent specularity parameter.

The ASOPS experiments were performed at room tem-
perature in reflection geometry. The spot size on the
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membranes was about 1.75 μm in diameter and the wave-
lengths used for pump and probe beams were 780 and 810
nm, respectively. Due to the large optical penetration
depth of approximately 8 μm, the pump pulse causes a
symmetric strain in the membrane via thermal expansion
and the hydrostatic deformation potential [25, 26]. As a
consequence, the first-order dilatational mode at q‖ = 0,
D1

q‖=0, is excited in the illuminated region, which oscil-

lates at a frequency of ω = πvL/d , where vL = 8433 m
s−1 is the longitudinal velocity and d is the thickness of
the membrane. This mode is identified in the dispersion
relation in Fig. 1(a). The dilatational oscillation changes
the optical cavity thickness of the membrane, which in
turn modulates the reflectivity according to well-known
Fabry-Perot effects. Even though the change in mem-
brane thickness is of the order of 1 pm and below (Fig.
1(b)), corresponding to a small change in reflectivity of
about one part in 10−5, the ASOPS system is sensitive
enough to detect these small changes in reflectivity. A
change in reflectivity is also caused by the photoelastic
effect; however the change of the optical cavity thickness
is the dominant contribution, owing to the small photoe-
lastic constants of silicon. The subsequent dynamics of
the confined phonons are then observed by recording the
light modulation induced by phonon-photon coupling in
a one-dimensional photo-acoustic cavity.

Figure 2 shows typical time traces of the reflectivity
signal from silicon membranes with thickness values of 30
and 100 nm after excitation. At short times, the fast elec-
tronic response of the membrane is observed. The elec-
tronic contribution can be modelled by a bi-exponential
decay and subtracted to reveal the acoustic modes [27],
shown in the inset. The decay of the excited coherent
phonons is then modelled as a damped harmonic oscil-

lator of the form
∆R

R
(t) = A sin(ωt) exp(−t/τ) to ex-

tract a single phenomenological decay time τ . The ob-
tained lifetimes are plotted in Fig. 3 and compared to
reported values for bulk silicon [12] and previous results
for a 222 nm silicon membrane [27]. The frequencies are
those of the D1

q‖=0 mode, which increase with decreas-

ing membrane thickness. It is observed that the lifetimes
of coherent phonons in thin silicon membranes decrease
dramatically with increasing frequency (decreasing thick-
ness) and do not exhibit a simple behavior as a function
of frequency.

In order to analyze our experimental data we first con-
sider intrinsic damping mechanisms, which are inherent
to even perfectly crystalline bulk materials. At high fre-
quencies (> 10 GHz) there are two main approaches to
model the intrinsic phonon lifetimes due to the anhar-
monicity of the lattice. One commonly used model is
that of Akhiezer relaxation damping, which considers
the effect of the acoustic strain field on the populations
of wavepackets of high-frequency phonons [12, 18, 29].
We found that this model as presented in Ref. [12] does

Figure 1. (a) Dispersion relation of a free-standing silicon
membrane, showing flexural () and dilatational () modes. The
mode primarily excited by the pump pulse is the first-order
dilatational mode at zero parallel wavevector, D1

q‖=0. (b)

Schematic diagram of the displacement field of the excited
mode calculated by finite element simulations. The change
in thickness d due to the oscillation of the D1

q‖=0 mode is of

the order of 1 pm and below, with a corresponding change in
reflectivity of the order of 10−5.

not reproduce the strong frequency dependence observed
and overestimates the measured phonon lifetimes by at
least one order of magnitude (Fig. 3, dashed grey line).
The other commonly used approach to model intrinsic
damping is a microscopic formulation considering three-
phonon interactions, where the scattering probabilities
are derived by applying first-order perturbation theory
to a harmonic potential. The phonon-phonon scattering
rates are generally derived under the single-mode relax-
ation time approximation, which assumes that during the
decay of one phonon the other phonons maintain an equi-
librium distribution, or equivalently, that the energy of
the interacting phonon ~ω is large compared to the uncer-
tainty in energies of the high-frequency phonons ∼ ~/τth
due to their finite lifetime τth, i.e. ωth � 1 [29]. Due
to the great difficulty to evaluate qualitatively the ele-
ments of the interaction matrix, early pioneering works
[28, 30–32] made additional heuristic considerations re-
garding energy conservation surfaces and temperature
regimes to arrive at convenient expressions of the fre-
quency ω and temperature T dependence of the phonon
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Figure 2. Fractional change in reflectivity as a function of
time (∆R/R(t)) for the 100 nm silicon membrane. The sharp
initial change in reflectivity is due to the electronic response
of the membrane. The subsequent weaker oscillations are due
to the excited acoustic modes. Inset: Close-up of ∆R/R(t)
due to the acoustic modes after subtraction of the electronic
response for membranes with 100 and 30 nm thickness shown
by a blue and a red line, respectively. The sinusoidal decay
of the reflectivity due to the first-order dilatational mode is
clearly observed as a function of time, with a faster decay
observed for the thinner membrane. The time trace of the 30
nm membrane has been magnified by a factor of 10 for clarity.

Figure 3. Phonon lifetime of the first-order dilatational mode
in free-standing silicon membranes as a function of frequency.
Experimental data of free-standing silicon membranes with
thickness values ranging from approximately 222 to 8 nm
(black square [27], blue circles) and bulk silicon (red triangles
[12]). The red dashed lines show the contributions to the finite
phonon lifetime from normal three-phonon interactions τ3−ph

and boundary scattering τb as indicated. The total contribu-
tion, calculated using Matthiessens rule τ−1

T = τ−1
3−ph + τ−1

b ,
is shown by the solid red line labelled τT . Other models for
intrinsic (grey dotted line: Herring [12, 28], grey dashed line:
Akhiezer [12, 18]) and extrinsic (dot-dash grey lines: Casimir
limit p = 0, p = 0.95) scattering processes are shown for
reference.

lifetimes. These expressions generally take the form:

τ−1 = BTnωm (1)

where the parameters B, n and m are dependent on
the temperature regime, polarizations of the interacting
modes and crystal symmetry, and may be either approx-
imated theoretically or empirically adjusted to fit exper-
imental data. Results of this expression are shown in
Fig. 3, with values BD = 2.4× 10−19 s K−1, n = 1, and
m = 2 as used by Daly et al. [12] and Cahill et al. [33]
for bulk silicon, derived from a fit to thermal conductiv-
ity data measured by thermo-reflectance. In Ref. [12],
it was found that BD overestimated the measured bulk
relaxation times. The best fit to our experimental data
is obtained for a value of BEXP = 5.7 × 10−17 s K−1,
two orders of magnitude larger than BD, which raises
doubts about the validity of such an expression in our
case. Moreover, the data clearly shows different trends
in the studied frequency range.

Here, we calculate explicitly the intrinsic scattering
times under a Debye approximation, which we modify
to consider specifically the D1

q‖=0 mode. Although the

phonon cavity nature of the membrane causes a dis-
cretization of the out-of-plane acoustic spectrum [23],
the Debye approximation neglects changes in the phonon
density of states and therefore, this approximation can
be expected to yield reasonable results for membranes
thicker than ∼ 30 nm at room temperature [34, 35].
Notwithstanding the fact that this model does not in-
clude the effects of optical phonon modes, the dispersion
of the bands for small wavelengths or acoustic anisotropy,
it removes all adjustable parameters from the calcula-
tion with only the mode-averaged Grneisen parameter
not precisely known. As the D1

q‖=0 mode is purely longi-

tudinal, we can express the relaxation time for a phonon
with frequency undergoing normal three-phonon process
of the type ωL + ω′s′ → ω′′s′′ as [36]:

τ−13−ph(ωL) =
~vL
4πρv̄

γ2
∑
s′,s′′

1

v2s′v
2
s′′
×

∫
ω′s′(ωL + ω′s′)

2n(ω′s′)(n(ω′′s′′) + 1)

n(ωL) + 1)
dω

(2)

where s is the mode polarization, n is the Bose-Einstein
distribution function, v̄ is the phonon average group ve-
locity and γ is the mode-averaged Grneisen parameter.
In bulk silicon, the mode-dependent Grneisen parame-
ter lies in the range of 0.9 – 1.3 [37] for longitudinal
modes. We take a value of 1.08 for the mode-averaged
value, which has given the best fit to thermal conduc-
tivity data of Si nanowires [38]. Decay processes of the
type ωL → ω′s′ + ω′′s′′ are not represented in Eq. (2) as
they are unlikely to occur due to the low phonon en-
ergy and so have a negligible contribution to the total
relaxation time [37]. The three-phonon interactions can
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be separated into those of the type ωL + ω′L → ω′′L and
ωL + ω′T → ω′′L, where L and T represent longitudinal
and transverse polarizations, respectively. Collinear pro-
cesses of the type ωL+ω′L → ω′′L are sometimes neglected
due to the dispersion of the branches, however, previ-
ous works have shown that these processes may occur as
the finite lifetime of the branches compensates for the
dispersion [39, 40] and that they can play a large role
especially at short wavevectors where the dispersion re-
lation is quasi-linear. In fact, we find that ωL → ω′L +ω′′L
processes contribute most to the total intrinsic phonon
lifetime.

The results of Eq. (2) are shown in Fig. 3 by the red
dashed line labelled τ3−ph. We observe that this sim-
plified theory yields the correct order of magnitude for
phonon lifetimes in thicker membranes. However, the
τ ∝ ω−1 frequency dependence is different from that ex-
hibited by our experimental data for thinner membranes.
While discrepancies at frequencies of ∼ 100 GHz and be-
low could be related to uncertainties in the energies of
the high-frequency phonons compared to the interacting
phonon frequency, i.e., ωτth 6� 1, this relationship is ex-
pected to be well within its range of validity at higher fre-
quencies. However, the experimental lifetimes are found
to be orders of magnitude shorter than predicted.

To explain this reduced lifetimes, we consider the im-
pact of surface roughness scattering. We model its effect
following the approach of Ziman [41], where a single phe-
nomenological parameter p represents the “polish” of the
surface, with p = 0 for perfectly rough surfaces and p = 1
for perfectly smooth surfaces. The D1

q‖=0 mode can be

considered as a standing wave formed by the superposi-
tion of two counter-propagating longitudinal plane waves.
We can then derive the wavelength-dependent specular-
ity p(λ) = exp(−16π3η2/λ2), where is η the root mean
square deviation of the height of the surface from the
reference plane. Shorter wavelengths will therefore feel a
stronger effect of the surface roughness than longer wave-
lengths. After considering a series of multiple reflections
at the boundary, the mean free path can be written as

Λ =
1 + p

1− p
Λ0 where Λ0 is the characteristic dimension

of the structure, i.e., the membrane thickness d [41]. As
a consequence, the lifetime due to boundary roughness
scattering is

τb = Λ/vL =
d

vL

1 + exp
(
−16π3η3/λ2

)
1− exp (−16π3η3/λ2)

=
d

vL
coth

(
8π3η2

λ2

)
∼ d

ω2

vL
2πη2

(3)

The results of this expression are shown in Fig.
3 (red dashed line labelled τb) and are compared to
the frequently-used model considering a wavelength-
independent specularity [42], with a value of p = 0.95 and
to the Casimir limit of p = 0, shown by grey dot-dash

lines. The experimental trend in lifetime as a function
of frequency for the ultrathin (> 30 nm) membranes is
very well-described by the wavelength-dependent model
with a roughness value of η = 0.5 nm. We observe that
the phonon lifetime scales approximately as τ ∝ ω−3 due
to the frequency-thickness relationship inherent to our
sample set. We note that the native oxide layer on both
sides of the membranes may introduce additional extrin-
sic scattering at the boundaries and we have included
this effect empirically in the roughness value η. A sim-
ple combination of the lifetimes using Matthiessen rule
τ−1T = τ−13−ph + τ−1b appears to fit the lifetimes over the
frequency range investigated.

By varying phonon populations and lifetimes, further
temperature-dependent measurements should help to dis-
tinguish between the different scattering mechanisms.
However, this work already provides much needed exper-
imental data on phonon lifetimes in nanoscale systems
at room temperature, for, e.g., direct use in the design
of nano-mechanical oscillators and as input parameters
for calculations of thermal conductivity in nanoelectron-
ics and nanoscale thermoelectric materials. Furthermore,
future work should also shed light on the predicted tran-
sition between Landau-Rumer and Akhiezer damping as
the frequencies are in a suitable range [29, 43].

To conclude, we have shown experimental measure-
ments of the relaxation times of coherent confined
phonons in ultra-thin single-crystalline silicon mem-
branes using the ASOPS technique, free from interference
with a substrate or a deposited metal layer. The relax-
ation times of the ultra-thin membranes were found to
be dominated by boundary roughness scattering which
was modelled including a wavelength-dependent specu-
larity. In the case of thicker membranes, phonon-phonon
interactions were predicted to be the dominant scatter-
ing processes. The latter processes were calculated ex-
plicitly with a theory based upon three-phonon normal
interactions, which gives the correct order of magnitude.
However, further theoretical work is required to include
the finite lifetimes of the high-frequency phonons in the
three-phonon interaction model. We suggest that this
may account for the discrepancies observed near 100 GHz
and below where the phonon period becomes comparable
to the lifetime of higher frequency phonons. Nevertheless,
the preliminary combination of these theories seems able
to predict phonon lifetimes in silicon membranes over
several orders of magnitude up to 1 THz.
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