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On the Statistical Decorrelation of the

Wavelet Packet Coefficients of a

Band-Limited Wide-Sense Stationary

Random Process

Abdourrahmane M. Atto∗ Dominique Pastor†

Alexandru Isar‡

Abstract

This paper is a contribution to the analysis of the statistical correla-
tion of the wavelet packet coefficients resulting from the decomposition
of a random process, stationary in the wide-sense, whose power spectral
density is bounded with support in [−π, π].

Consider two quadrature mirror filters (QMF) that depend on a pa-
rameter r, such that these filters tend almost everywhere to the Shan-
non QMF when r increases. The parameter r is called the order of the
QMF under consideration. The order of the Daubechies filters (resp. the
Battle-Lemarié filters) is the number of vanishing moments of the wavelet
function (resp. the spline order of the scaling function).

Given any decomposition path in the wavelet packet tree, the wavelet
packet coefficients are proved to decorrelate for every packet associated
with a large enough resolution level, provided that the QMF order is large
enough and above a value that depends on this wavelet packet.

Another consequence of our derivation is that, when the coefficients
associated with a given wavelet packet are approximately decorrelated, the
value of the autocorrelation function of these coefficients at lag 0 is close to
the value taken by the power spectral density of the decomposed process
at a specific point. This specific point depends on the path followed in
the wavelet packet tree to attain the wavelet packet under consideration.

Some simulations highlight the good quality of the “whitening” effect
that can be obtained in practical cases.

Keywords Wavelet packets, wide-sense stationary random process, auto-
correlation function, Daubechies filters, Battle-Lemarié filters, mean-square in-
tegral, spectral representation of a process.

1 Introduction

The transforms that map an original continuous-time random process into a set
of uncorrelated random variables can be regarded as optimal discretisations in
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the sense that the analysis of a random sequence whose elements are not cor-
related is much simpler than the analysis of a continuous-time random process.
Therefore, such transforms are of great practical interest in signal processing
and communications applications. The Karhunen-Loève (KL) expansion is a
typical example of such an optimal discretisation. It applies to any Wide-Sense-
Stationary (WSS) random process, that is, any Hilbertian or second-order pro-
cess X(t) (E[|X(t)|2] < ∞) whose correlation function R(t, s) = E[X(t)X(s)]
depends only on the time-increment t − s between its two arguments.

The analysis of time-series through the Wavelet transform has thus received
much interest in recent years. Many authors have studied various aspects of the
statistical correlation of the wavelet coefficients (see [1, 2, 3, 4, 5, 6, 7], amongst
others). These works highlight that, for many stationary and non-stationary
input random processes, the between-scale and within-scale coefficients returned
by a Discrete Wavelet Transform (DWT) tend to decorrelate as the resolution
level increases; for further details, the reader may refer to the very nice overview
given in [7]. The DWT can thus be regarded as a “nearly” optimal discretisation.
For WSS processes, it is a relevant alternative to KL theory because, unlike the
KL expansion, the DWT expansion achieves the “whitening effect” without
solving any eigen equation and without having to assume that the process is
time-limited, a constraint of importance in KL theory. For instance, in [8], the
DWT whitening effect is used to design a telecommunication receiver robust in
presence of WSS noise; this system performs without knowing the noise Power
Spectral Density (PSD) and it yields binary error rates comparable to those
achieved by the optimal receiver based on the noise KL expansion. Note also
that when the autocorrelation function of a given WSS process is known, it is
even possible to construct a non-orthogonal wavelet basis in terms of which the
process can be expanded with uncorrelated coefficients; the construction of this
basis still requires no eigen equation to solve and does not need us to assume
that the process is time-limited [9].

In addition to the results recalled above and dedicated to the DWT, the
present paper addresses the Discrete Wavelet Packet Transform (DWPT) of a
zero-mean WSS random process. In particular, it proposes an analysis of the
whitening effect that the DWPT can achieve in any path when the resolution
level increases. This analysis is motivated by the following facts.

Let (cj,n[k])k∈Z be the sequence of the DWPT within-scale coefficients that
are returned at node (j, n) of the wavelet packet tree by decomposing the input
WSS random process; j is the resolution level and n is the shift parameter
valued in {0, 1, . . . , 2j − 1} (see section 2.2).

If n is constant with j or if the value of n depends on j but remains upper-
bounded by a constant independent of j, it follows from [10] that, when j
tends to infinity, the coefficients (cj,n[k])k∈Z tend to decorrelate and that the
autocorrelation function at lag 0 of the discrete random process (cj,n[k])k∈Z

tends to the value of the PSD of the input random process at the origin.
However, as explained below, when n is not a fixed constant or does not

remain upper-bounded by a value independent of j, the analysis of the au-
tocorrelation function of (cj,n[k])k∈Z becomes significantly more intricate: in
this case, given an arbitrary pair of quadrature mirror filters (QMF), we can-
not guarantee that increasing only the resolution level is sufficient to obtain
asymptotically decorrelated wavelet packet coefficients. Moreover, even when
the whitening effect is guaranteed, the value of the asymptotic autocorrelation

2



function at lag 0 of the discrete random process (cj,n[k])k∈Z is no longer the
value of the PSD at the origin but actually depends on the sequence of the
values of n in the DWPT path followed when j varies; for example, if we choose
n = 2j−1 at every resolution level j, the value of the asymptotic autocorrelation
function at the origin is the value taken by the PSD at π.

The principal contribution of this paper is thus theorem 1. The asymptotic
decorrelation of the wavelet packet coefficients stated by this theorem for a large
class of WSS random processes encountered in practice is obtained by consid-

ering QMF h
[r]
0 and h

[r]
1 whose Fourier transforms H

[r]
0 and H

[r]
1 tend almost

everywhere to the Fourier transforms of the Shannon QMF when r increases.

The parameter r is hereafter called the order of the QMF h
[r]
0 and h

[r]
1 . If h

[r]
0

and h
[r]
1 are Daubechies QMF, the order r is the number of vanishing moments

of the wavelet function associated with H
[r]
0 ; if these QMF are Battle-Lemarié

filters, r is the spline order of the scaling function associated with H
[r]
0 .

Several papers have already stressed the importance of parameters such as
the order r for analysing the statistical correlation of the DWT and DWPT coef-
ficients. For a fractional Brownian motion, [1] shows that the larger the number
of wavelet vanishing moments, the more decorrelated the wavelet coefficients.
In [11], an asymptotic within-scale nearly-whiteness inequality is achieved for
wavelet packet coefficients when the regularity of the scaling function increases.
Recently, [7] has highlighted the role played by the length L of the impulse
response of the Daubechies filters to obtain decorrelated between-scale wavelet
coefficients: the covariance of the between-scale coefficients of some stationary
process tends to 0 at rate L−1/4 as L tends to infinity.

This paper is organized as follows. In section 2, we recall basic results con-
cerning the wavelet packet decomposition of a random process. In particular, we
give the expressions of the autocorrelation functions of the discrete sequences
formed by the wavelet packet coefficients. The convergence of these function
sequences when the resolution level tends to infinity is studied in section 3,
and is achieved in two steps. In section 3.2, the asymptotic decorrelation is
established for the Shannon wavelet packet decomposition, which employs the
Shannon QMF that are ideal filters. In section 3.3, we consider QMF for which
the above notion of order makes sense. We use the convergence of such filters
to the Shannon filters when the order increases to prove that the wavelet packet
coefficients tend to be decorrelated when both the resolution level and the order
of the QMF are large enough; the order must be chosen according to the reso-
lution level. In section 4, we present some experimental results to illustrate the
role played by the resolution level and the order of the QMF in the decorrelation
process. Finally, we conclude in section 5.

2 Discrete wavelet packet decomposition of a

wide-sense stationary random process

In section 2.1, we present some aspects concerning wavelet packet analysis. We
adopt the same notations as [12]. Section 2.2 gives the decomposition of a
WSS random process and the expressions of the autocorrelation functions of its
wavelet packet coefficients.
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2.1 Discrete wavelet packet analysis

Let Φ be a function such that {τkΦ : k ∈ Z} is an orthonormal system of L2(R),
where τkΦ : t 7−→ Φ(t − k). Let U be the closure of the space spanned by this
orthonormal system.

Consider two QMF h0 and h1 and define





H0(ω) = 1√
2

∑
ℓ∈Z

h0[ℓ]e
−iℓω,

H1(ω) = 1√
2

∑
ℓ∈Z

h1[ℓ]e
−iℓω.

(1)

The functions H0 and H1 are, up to the factor 1/
√

2, the Fourier transforms of
h0 and h1, respectively. The quadrature mirror condition is equivalent to the
unitarity of the matrix

M(ω) =

(
H0(ω) H1(ω)

H0(ω + π) H1(ω + π)

)
, (2)

for every ω. We assume that the functions H0 and H1 are such that

H1(ω) = e−iωH0(ω + π). (3)

where z stands for the complex conjugate of z.
We define the sequence (Wn)n≥0 of elements of L2(R) by :





W0(t) =
√

2
∑

ℓ∈Z
h0[ℓ]Φ(2t − ℓ)

W1(t) =
√

2
∑

ℓ∈Z
h1[ℓ]Φ(2t − ℓ),

(4)

and by setting, for all n ≥ 1,





W2n(t) =
√

2
∑

ℓ∈Z
h0[ℓ]Wn(2t − ℓ)

W2n+1(t) =
√

2
∑

ℓ∈Z
h1[ℓ]Wn(2t − ℓ).

(5)

The wavelet packet functions are then defined by

Wj,n(t) = 2−j/2Wn(2−jt). (6)

For j ≥ 1 and k ∈ Z, we put Wj,n,k = τ2jkWj,n, that is,

Wj,n,k(t) = 2−j/2Wn(2−jt − k). (7)

The set {Wj,n,k : k ∈ Z} is orthonormal. With a slight abuse of language, the
closure of the space spanned by {Wj,n,k : k ∈ Z} will hereafter be called the
packet Wj,n.

The wavelet packet decomposition of the function space U is obtained by
recursively applying the so-called splitting lemma (see [13], for example). We
can thus write that

U = W1,0 ⊕ W1,1, (8)

and
Wj,n = Wj+1,2n ⊕ Wj+1,2n+1, (9)
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for every j = 1, 2, · · · , and every n ∈ Ij with

Ij = {0, 1, · · · , 2j − 1}. (10)

The sets {Wj+1,2n,k : k ∈ Z} and {Wj+1,2n+1,k : k ∈ Z} are orthonormal
bases of the vector spaces Wj+1,2n and Wj+1,2n+1, respectively. The wavelet
packet tree of figure 1 illustrates such a decomposition.

U
hhhhhh

((((((

W1,0̀
``

   

W2,0
aa!!

W3,0 W3,1

W2,1
aa!!

W3,2 W3,3

W1,1̀
``

   

W2,2
aa!!

W3,4 W3,5

W2,3
aa!!

W3,6 W3,7

Figure 1: Wavelet packet decomposition tree down to resolution level j = 3.

The projection of a function f ∈ U on Wj,n yields the coefficients

cj,n[k] =

∫

R

f(t)Wj,n,k(t)dt. (11)

Remark 1 With respect to what follows, it is worth emphasizing that the de-
composition concerns an arbitrary space U generated by the translated versions
of Φ. Therefore, the function Φ is not necessarily the scaling function associated
with the low-pass filter H0. If Φ is this scaling function, we have W0 = Φ in
(4).

In practice, when the input data of the wavelet packet decomposition are the
samples of some function that satisfies Shannon’s sampling theorem, we im-
plicitly use the wavelet packet decomposition of the space U = US of those
elements of L2(R) that have their Fourier transforms with support in [−π, π].
The elements of US are said to be band-limited functions. According to Shan-
non’s sampling theorem, US is the space spanned by the translated versions of
ΦS = sinc.

2.2 Discrete wavelet packet decomposition of a second-

order WSS random process

Let (Ω,A, P ) be a probability space, where P is a probability measure on the
elements of A, and let X : R × Ω −→ R be a second-order random process:

‖X‖2
L2(Ω) = E

[
|X|2

]
=

∫

Ω

|X|2dP < ∞. (12)

We assume that X is zero-mean and continuous in quadratic mean. The auto-
correlation function of X, denoted by R, is a continuous function. This function
is defined by

R(t, s) = 〈X(t), X(s)〉L2(Ω) = E[X(t)X(s)].

The wavelet packet decomposition of X returns, at level j and for n ∈ Ij ,
the random variables

cj,n[k] =

∫

R

X(t)Wj,n,k(t)dt, k ∈ Z, (13)
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provided that the Riemann integral
∫∫

R2

R(t, s)Wj,n,k(t)Wj,n,k(s)dtds (14)

exists (see appendix A). The discrete random process (cj,n[k])k∈Z, where cj,n[k]
is defined by the mean-square integral (13), represents the sequence of the co-
efficients of X on the packet Wj,n.

Remark 2 According to the splitting lemma (9), Wj,n is decomposed into two
packets Wj+1,2n and Wj+1,2n+1. For ǫ ∈ {0, 1}, the coefficients of X on the
packet Wj+1,2n+ǫ are defined by

cj+1,2n+ǫ[k] =

∫

R

X(t)Wj+1,2n+ǫ,k(t)dt. (15)

We have (see appendix B),

Wj+1,2n+ǫ,k =
∑

ℓ∈Z

hǫ[ℓ − 2k]Wj,n,ℓ (16)

and then, we can write, with convergence in L2(Ω),

cj+1,2n+ǫ[k] =
∑

ℓ∈Z

hǫ[ℓ − 2k]cj,n[ℓ]. (17)

Thus, we can obtain the wavelet packet coefficients of a second-order random
process by applying Mallat’s algorithm based on convolution and downsampling
[14]. The principle of the decomposition is then the same as that used to de-
compose functions of L2(R), the only difference being the kind of convergence
involved.

Now, let Rj,n stand for the autocorrelation function of the discrete random
process cj,n defined by (13). We have

Rj,n[k, ℓ] = E
[
cj,n[k]cj,n[ℓ]

]

= E

[∫

R

X(t)Wj,n,k(t)dt

∫

R

X(s)Wj,n,ℓ(s)ds

]

=

∫∫

R2

R(t, s)Wj,n,k(t)Wj,n,ℓ(s)dtds. (18)

Assume that X is a WSS random process. As usual, we write that R(t, s) =
R(t− s). We also assume that X has a Power Spectral Density (PSD) γ, which
is the Fourier transform of R, and that γ ∈ L∞(R).

If we denote by f̂ the Fourier transform of any element f of L1(R) or L2(R),
it follows from (18) and appendix C, that the discrete random process cj,n is
WSS and that

Rj,n[m] =
1

2π

∫

R

γ(
ω

2j
)|Ŵn(ω)|2eimωdω. (19)

where, with the same abuse of language as above, Rj,n[k − ℓ] = Rj,n[k, ℓ]. This
autocorrelation function can also be written

Rj,n[m] =
1

2π

∫

R

γ(ω)|2j/2Ŵn(2jω)|2ei2jmωdω. (20)
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With an easy change of variable, we obtain

Rj,n[m] =
1

2π

∫

R

γ(ω)|Ŵj,n(ω)|2ei2jmωdω, (21)

which will prove useful in the sequel.

3 Asymptotic decorrelation of the wavelet packet

coefficients of a band-limited wide-sense sta-

tionary random process

Our purpose is to analyse the behaviour of the autocorrelation functions (21)
when the resolution level j tends to infinity.

If n is constant, Lebesgue’s dominated convergence theorem can be used to
compute the limit of Rj,n[m] when j tends to infinity. More precisely, if we
assume that the PSD γ of X is an element of L∞(R), it follows from (19) that

|Rj,n[m]| ≤ ‖γ‖∞‖Wn‖2
L2(R) = ‖γ‖∞, (22)

and therefore, if n is constant, we have from (19):

lim
j→+∞

Rj,n[m] =
1

2π
γ(0)

∫

R

|Ŵn(ω)|2eimωdω. (23)

But ∫

R

|Ŵn(ω)|2eimωdω = 2π 〈τmWn,Wn〉 = 2πδ[m], (24)

where

δ[m] =

{
1 if m = 0
0 if m 6= 0

(25)

and then
lim

j→+∞
Rj,n[m] = γ(0)δ[m]. (26)

The result thus obtained is that given in [10] and is partially proved in [15].
Note that (26) embraces the cases n = 0 and n = 1, which correspond to the
approximation coefficients and the detail coefficients of the DWT, respectively.

The situation becomes more intricate if n is a function of j. For instance, if
we choose n = 2j − 1 for all j > 0 or n = 2j−L where L ∈ N, the behaviour of
Rj,n[m] when j tends to infinity is no longer a straightforward consequence of
Lebesgue’s dominated convergence theorem.

The approach proposed below is valid whether n depends on j or not. This
approach concerns the case where the random process X is second-order, zero-
mean, WSS, continuous in quadratic mean, with PSD γ ∈ L∞([−π, π]). There-
fore X is a band-limited random process, and we have (see proof in appendix
D), ∫

R

X(t)ΦS(t − k)dt = X[k]. (27)

Consequently, US is the natural representation space of such a random process.
Note that according to (27), we can initialise the decomposition with the samples
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(X[k])k, by setting c0,0[k] = X[k], and calculating the wavelet packet coefficients
with the recurrence described by relation (17). From now on, we will assume
that the wavelet packet decomposition concerns the space US .

Before detailing this approach, the next subsection reminds the reader of
a useful description of an arbitrary sequence (Wj,n)j≥1 of wavelet packets by
means of a binary sequence [16]. Then, in subsection 3.2, we treat the case
where the quadrature mirror filters are the ideal low and high pass filters of the
Shannon decomposition. The general case is addressed in subsection 3.3.

3.1 The binary sequence associated with a given sequence

of wavelet packets

Let κ = (ǫℓ)ℓ ∈ {0, 1}N be an infinite binary sequence. For any natural number
j, let nj(κ), in short nj , stand for the non negative integer

nj = nj(κ) =

j∑

ℓ=1

ǫℓ2
j−ℓ (28)

associated with the finite subsequence (ǫℓ)ℓ=1,2,...,j . Clearly, nj is an element of
Ij : nj = 0 when “ ǫℓ = 0 for all ℓ = 1, 2, · · · , j ”, and nj = 2j −1 when “ ǫℓ = 1
for all ℓ = 1, 2, · · · , j ”.

Given an arbitrary infinite sequence κ = (ǫℓ)ℓ ∈ {0, 1}N, the finite sub-
sequence (ǫℓ)ℓ=1,2,...,j , formed by the j first terms of κ, defines a unique non
negative integer nj ∈ Ij and hence, is associated with the unique wavelet packet
located at node (j, nj) of the decomposition tree. Moreover, this subsequence
gives the unique path from US to Wj,nj

in the wavelet packet tree. Basically,
(ǫℓ)ℓ=1,2,...,j corresponds to the sequence Hǫ1 ,Hǫ2 , . . . ,Hǫj

, of filters successively
used to calculate the packet Wj,nj

.
Conversely, let n ∈ Ij . There exists a unique finite sequence (ǫℓ)ℓ∈{1,2,...,j}

of {0, 1}j such that n = nj where nj is given by (28).
From now on, given an infinite sequence κ, the natural number nj = n(κj)

and the packet Wj,nj
are said to be associated with each other. We also say

that the sequences κ and (Wj,nj
)j are associated with each other.

Example 1: The following four sequences will often be used in the sequel to
illustrate the results we present. These four sequences are

κ0 = (0, 0, 0, 0, 0, 0, · · · ), κ1 = (1, 0, 0, 0, 0, 0, · · · ),
κ2 = (0, 1, 0, 0, 0, 0, · · · ), κ3 = (0, 0, 1, 0, 0, 0, · · · ).

In other words, the general term of the sequence κq, q = 0, 1, 2 and 3, is δ[q− ℓ]
for every natural number ℓ. Clearly, we have that nj(κ0) = 0 for every natural
number j. It is also very easy to see that, for q = 1, 2, 3, we have nj(κq) = 0 for
j = 1, 2, . . . , q − 1, and that nj(κq) = 2j−q for j = q, q + 1, . . ..

8



3.2 Asymptotic decorrelation with the Shannon wavelet

packets

The QMF hS
0 and hS

1 of the Shannon wavelet packet decomposition are the ideal
low pass and high pass filters whose Fourier transforms HS

0 and HS
1 are:





HS
0 (ω) =

√
2

∑
ℓ∈Z

χ∆0
(ω − 2πℓ)

HS
1 (ω) =

√
2

∑
ℓ∈Z

χ∆1
(ω − 2πℓ),

(29)

where ∆0 =
[
−π

2 , π
2

]
, and ∆1 =

[
−π,−π

2 ] ∪ [π
2 , π

]
. Hereafter, we will use an

upper index S in the notations of section 2 when the decomposition is achieved
by using the ideal QMF HS

0 and HS
1 .

Let us define the map G by G(0) = 0 and the recurrence

G(2ℓ) =

{
2G(ℓ) if G(ℓ) is even

2G(ℓ) + 1 if G(ℓ) is odd,
(30)

G(2ℓ + 1) =

{
2G(ℓ) + 1 if G(ℓ) is even

2G(ℓ) if G(ℓ) is odd.
(31)

In a more compact form, we can write that

G(2ℓ + ǫ) = 3G(ℓ) + ǫ − 2

⌊
G(ℓ) + ǫ

2

⌋
, (32)

where ǫ ∈ {0, 1} and ⌊z⌋ is the largest integer less than or equal to z. The map
G is a permutation of N.

For every (k, ℓ) ∈ N2, we define the sets ∆k,ℓ by

∆k,ℓ =

[
− (ℓ + 1)π

2k
,−ℓπ

2k

]
∪

[
ℓπ

2k
,
(ℓ + 1)π

2k

]
. (33)

According to [14, p. 328] (see also [17]), for every j > 0 and every n ∈ Ij , there
exists a unique p = G(n) ∈ Ij such that

|ŴS
j,n(ω)| = 2j/2χ∆j,p

(ω), (34)

where, like in (6), WS
j,n(t) = 2−j/2WS

n (2−jt), WS
n stands for the map Wn recur-

sively defined by (5) when the pair of QMF is (HS
0 ,HS

1 ), and ∆j,p is given by
(33). The set ∆j,p is the so-called subband. The wavelet packet decomposition
of a signal of US , when this decomposition is based on the Shannon QMF, is
the ideal subband coding of the signal under consideration. The parameters of
each subband can be selected using the integers j and p. The first one controls
the bandwidth and the second one controls the central frequency.

For every j > 0, we have G(Ij) = Ij . Hence, the restriction of G to Ij is a
permutation of Ij . This permutation makes it possible to re-order the wavelet
packets WS

j,n from the lowest to the highest frequency supports. For further
details on this re-ordering, the reader may refer to [14, p. 329-330].

Consider the sequence of wavelet packets (WS
j,nj

)j associated with an arbi-
trary binary sequence κ in the sense given in subsection 3.1. At every resolution
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level j, it follows from (34) that, |ŴS
j,nj

| = 2j/2χ∆j,pj
, with

∆j,pj
=

[
− (pj + 1)π

2j
,−pjπ

2j

]
∪

[
pjπ

2j
,
(pj + 1)π

2j

]
(35)

and pj = G(nj). When j ranges over N, (35) defines a sequence (
pjπ
2j )j . It

is easy to see that this sequence is Cauchy. Indeed, according to (9), we have
nj+1 = 2nj + ǫ, for some ǫ ∈ {0, 1}. Taking (32) into account, we can write that
pj+1 = 2pj + ǫ′, for some ǫ′ ∈ {0, 1}. With an easy recurrence, we obtain

pj+q = 2pj+q−1 + ǫ′j+q

= 2qpj + 2q−1ǫ′j+1 + · · · + 21ǫ′j+q−1 + ǫ′j+q.

Therefore,

pj+qπ

2j+q
− pjπ

2j
=

1

2j

q∑

ℓ=1

ǫ′ℓ+j

2ℓ
≤ 1

2j
− 1

2j+q
<

1

2j
.

As the sequence (
pjπ
2j )j is Cauchy, it has a unique limit. This limit

a(κ) = lim
j→+∞

pjπ

2j
(36)

will play a crucial role in the sequel. Note that 0 ≤ a(κ) ≤ π for every arbitrary
sequence κ.

Example 1 (continued): Consider the four sequences kq, q = 0, 1, 2, 3, in-
troduced in example 1 above. For every natural number j, we have that
pj(κ0) = G(nj(κ0)) = 0 since the general term of the sequence κ0 is zero.

The first q−1 terms of the sequence κq when q = 1, 2, 3 are also 0. Therefore,
we have pj(κq) = G(nj(κq)) = 0 for j = 1, 2, . . . , q−1. Now, an easy recurrence
shows that pj(κq) = G(nj(κq)) = 2j−q+1 − 1 for j = q, q + 1, . . ..

As far as the value of a(κq) is concerned, for q = 0, 1, 2, 3, we easily see
that limj→∞ pj(κ0)/2j = 0, whereas limj→∞ pj(κq)/2j = 1/2q−1 for q 6= 0.
Therefore, we have a(κ0) = 0 and a(κq) = π/2q−1 for q = 1, 2 and 3.

We now state the following result.

Proposition 1 Let X be a second-order random process. Assume that X is
zero-mean, WSS, continuous in quadratic mean with PSD γ ∈ L∞([−π, π]).

Let κ = (ǫk)k∈N be a binary sequence of {0, 1}N. If a(κ) is a continuity point
of γ, then

lim
j→+∞

RS
j,nj(κ)[m] = γ(a(κ))δ[m] (37)

uniformly in m ∈ Z, and where RS
j,nj(κ) is the autocorrelation function of the

wavelet packet coefficients of X with respect to WS
j,nj

.

Remark 3 The autocorrelation function RS
j,nj

of the Shannon wavelet packet

coefficients cj,nj
derives from (21) and, hence, is given by

RS
j,nj

[m] =
1

2π

∫

R

γ(ω)|ŴS
j,nj

(ω)|2ei2jmωdω. (38)

10



Proof: [of proposition 1]
The function γ is even because it is the Fourier transform of the even function

R. As above, we write nj for nj(κ). From (34) and (38), we derive

RS
j,nj

[m] =
2j

π

∫

∆+
j,pj

γ(ω) cos (2jmω)dω. (39)

where

∆+
j,pj

=

[
pjπ

2j
,
(pj + 1)π

2j

]
. (40)

Let η > 0. Since γ is continuous at a(κ), there exists a positive real number
α > 0, such that, for every ω ∈ [a(κ)−α, a(κ)+α], we have |γ(ω) − γ(a(κ))| < η.

In addition, it follows from (36) that

lim
j→+∞

pjπ2−j = lim
j→+∞

(pj + 1)π2−j = a(κ), (41)

Thereby, there exists an integer j0 = j0(α), such that, for every natural number
j ≥ j0, the values pjπ2−j and (pj + 1)π2−j are within the interval [a(κ) −
α, a(κ)+α]. It follows that, for every natural number j ≥ j0 and every ω ∈ ∆+

j,pj
,

|γ(ω) − γ(a(κ))| < η. (42)

Therefore, for any natural number j ≥ j0,

2j

π

∫

∆+
j,pj

|γ(ω) − γ(a(κ))| dω < η
2j

π

∫

∆+
j,pj

dω = η. (43)

On the other hand, we derive from (39) that for any natural number j ≥ j0,

∣∣∣RS
j,nj

[m] − 2j

π

∫

∆+
j,pj

γ(a(κ)) cos (2jmω)dω
∣∣∣

=
∣∣∣2

j

π

∫

∆+
j,pj

(γ(ω) − γ(a(κ))) cos (2jmω)dω
∣∣∣,

≤ 2j

π

∫

∆+
j,pj

|γ(ω) − γ(a(κ))| dω. (44)

Hence, we derive from (43) and (44) that, for every natural number j ≥ j0 and
every integer m,

|RS
j,nj

[m] − 2j

π

∫

∆+
j,pj

γ(a(κ)) cos (2jmω)dω| < η. (45)

Since
2j

π

∫

∆+
j,pj

γ(a(κ)) cos (2jmω)dω = γ(a(κ))δ[m], (46)

we conclude that, for every natural number j ≥ j0,
∣∣∣RS

j,nj
[m] − γ(a(κ))δ[m]

∣∣∣ < η (47)

uniformly in m ∈ Z.
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Remark 4 Proposition 1 shows that the coefficients returned by the Shannon
wavelet packet decomposition of process X tend to be decorrelated when the res-
olution level tends to infinity.

Roughly speaking, the spectral measure of the discrete signal returned in a
given subband by the Shannon wavelet packet decomposition of a WSS process
tends, with increasing j, to γ(a(κ)).

This result also emphasizes the dependence between the autocorrelation func-
tion and the binary sequence κ. For instance, if we consider the four sequences
κq, q = 0, 1, 2, 3 of example 1, we have

lim
j→+∞

RS
j,nj(κq)[m] = γ(π/2q−1)δ[m] (48)

for q = 1, 2 and 3, whereas

lim
j→+∞

RS
j,nj(κ0)

[m] = γ(0)δ[m]. (49)

Remark 5 (On the speed of the decorrelation process) Let ω0 > 0 and

γ(ω) =

(
1 − |ω|

ω0

)
χ[−π,π]∩[−ω0,ω0](ω). (50)

We assume that γ represents the PSD of some zero-mean WSS random process.
We have

RS
j,nj

[m] =
2j

π

∫

∆+
j,pj

∩[0,ω0]

(1 − ω

ω0
) cos (2jmω)dω. (51)

If ω0 > π, ∆+
j,pj

∩ [0, ω0] = ∆+
j,pj

, and we obtain that

RS
j,nj

[m] =





1 − π
ω0

pj

2j − π
ω0

1
2j+1 if m = 0

(−1)mpj −(−1)m(pj+1)

πω0m22j if m 6= 0,

(52)

and thus, ∣∣∣RS
j,nj

[m] − γ(
πpj

2j
)δ[m]

∣∣∣ ≤ π

ω0

1

2j+1
. (53)

It follows that γ(πpj/2j)δ[m] is an approximation of RS
j,nj

[m] with a margin of

π/ω02
j+1. This highlights the speed of the decorrelation process for ω0 > π.

If ω0 ≤ π, then the function γ is null on [ω0, π]. If a(κ) is such that ω0 <
a(κ) ≤ π, then there exists α > 0 such that γ is null on ]a(κ)−α, a(κ) + α[ and
there exists j1 such that for all j ≥ j1, ∆+

j,pj
⊂ ]a(κ) − α, a(κ) + α[. Thus, the

autocorrelation RS
j,nj

[m] is null for all j ≥ j1. Now, consider that 0 ≤ a(κ) <

ω0. Then for j greater than or equal to a certain j2, ∆+
j,pj

⊂ [0, ω0]. Thus, for

all j ≥ j2, ∆+
j,pj

∩ [0, ω0] = ∆+
j,pj

and we obtain that (53) holds true. It is also

easy to see that for j greater than or equal to a certain j3, (53) holds true when
a(κ) = ω0. It follows that if ω0 ≤ π, there exists j0 such that for all j ≥ j0,
(53) holds true.

More generally, consider an arbitrary PSD γ with support in [−π, π]. When
the resolution level j is sufficiently large, γ can be seen as a linear function

12



in ∆+
j,pj

. Then, we can generalise the above result, saying that there exists a

finite level j0 such that for any resolution level j ≥ j0, RS
j,nj

[m] is appreciatively

equivalent to γ(πpj/2j)δ[m] with a margin of A/2j. The constant A and the
level j0 depend on the shape of γ on ∆+

j,pj
.

3.3 Asymptotic decorrelation with non-ideal QMF

We consider QMF (h
[r]
0 , h

[r]
1 ) that depend on a parameter r such that, for ǫ ∈

{0, 1},
lim

r→∞
H [r]

ǫ = HS
ǫ (a.e), (54)

where H
[r]
0 and H

[r]
1 are the Fourier transforms of h

[r]
0 and h

[r]
1 respectively, and

where, as above, HS
0 and HS

1 are the Fourier transforms of the Shannon QMF.
We assume that r is an integer. As mentioned in the introduction, this param-

eter is called the order of the QMF H
[r]
0 and H

[r]
1 . It has different meanings for

the Daubechies and the Battle-Lemarié QMF.
According to [18, 19, 20], the Daubechies QMF satisfy (54), the order r of

a given pair (h
[r]
0 , h

[r]
1 ) of such QMF being the number of vanishing moments

of the associated Daubechies wavelet function. The order r is also the zero
multiplicity at π of H

[r]
0 .

It follows from [21] that the Battle-Lemarié filters satisfy (54) as well; the

order r of a given pair (h
[r]
0 , h

[r]
1 ) of such QMF is the spline order of the scaling

function associated with H
[r]
0 .

Theorem 1 Let X be a second-order random process that satisfies the assump-
tions of proposition 1. Let κ = (ǫk)k∈N be a binary sequence of {0, 1}N. Con-

sider, for every r, the sequence of wavelet packets (W
[r]
j,nj(κ))j≥0 associated with

κ, where the decomposition of US is achieved by the QMF (h
[r]
0 , h

[r]
1 ).

For every given natural number j, let R
[r]
j,nj(κ) stands for the autocorrelation

function of X with respect to the packet W
[r]
j,nj(κ).

i) We have

lim
r→+∞

R
[r]
j,nj

[m] = RS
j,nj

[m], (55)

and this convergence is uniform in m ∈ Z.

ii) In addition, if γ is continuous at a(κ), then,

lim
j→+∞

(
lim

r→+∞
R

[r]
j,nj(κ)[m]

)
= γ(a(κ))δ[m] (56)

uniformly in m ∈ Z.

Remark 6 According to theorem 1 and if γ is continuous at a(κ), then, for
every given real number η > 0, there exists a natural number j0 with the following

13



property: For every j ≥ j0, there exists r0 = r0(j, nj) > 0 such that, for every
r ≥ r0 and every m ∈ Z,

∣∣∣R[r]
j,nj(κ)[m] − γ(a(κ))δ[m]

∣∣∣ < η. (57)

Thus, according to (57) we obtain nearly-white DWPT coefficients (with a mar-
gin of η) at resolution level j0 and by using QMF with order r0.

Proof: [of theorem 1]

As above, we set nj = nj(κ). The autocorrelation function R
[r]
j,nj

derives

from (21) and is equal to

R
[r]
j,nj

[m] =
1

2π

∫

R

γ(ω)|̂W [r]
j,nj

(ω)|2ei2jmωdω. (58)

For every m ∈ Z, we have

∣∣ R
[r]
j,nj

[m] − RS
j,nj

[m]
∣∣

≤ 1

2π

∫

R

|γ(ω)|
∣∣∣∣ |

̂
W

[r]
j,nj

(ω)|2 − |ŴS
j,nj

(ω)|2
∣∣∣∣ dω. (59)

But from appendix E, we have

ŴS
nj

(ω) =

[
j∏

ℓ=1

HS
ǫℓ

(
ω

2j+1−ℓ
)

]
Φ̂S(

ω

2j
), (60)

and

Ŵ
[r]
nj (ω) =

[
j∏

ℓ=1

H [r]
ǫℓ

(
ω

2j+1−ℓ
)

]
Φ̂S(

ω

2j
). (61)

Thus, from (6), (54), (60) and (61), and taking into acount that |H [r]
ǫℓ (ω)|

and |HS
ǫℓ

(ω)| are less than or equal to 1, we obtain

lim
r→+∞

|̂W [r]
j,nj

|2 = |ŴS
j,nj

|2 (a.e), (62)

and ∣∣∣∣ |
̂
W

[r]
j,nj

(ω)|2 − |ŴS
j,nj

(ω)|2
∣∣∣∣ ≤ 2j+1

∣∣∣Φ̂S(ω)
∣∣∣
2

. (63)

Statement i) follows from (59), (62), (63), and Lebesgue’s dominated con-
vergence theorem.

We just obtain statement ii) from proposition 1 and statement i).

4 Experimental results

The theoretical results presented above are of asymptotic nature. The role
of this section is to reflect the manner in which the decorrelation appears in
practice when the resolution level and the order of the filters are finite.

Consider a random process satisfying the assumptions of theorem 1. With
the same notations as those used above, a consequence of theorem 1 is the

14



existence of some resolution level j and some order r such that (57) holds true
when the wavelet packet decomposition is initialised with the samples of the
process. Equation (56) also tells us that the value of the autocorrelation function
at lag 0 of the wavelet packet coefficients tends to the value of the PSD at a
specific point that depends on the path followed in the wavelet packet tree. The
following experimental results are aimed at illustrating these two facts.

We carried out experimental tests where the samples (X(k))k of process X at
the input of the wavelet packet decomposition form a discrete Auto-Regressive
(AR) process. This AR process is such that X(k) = αX(k − 1) + W (k), where
0 < α < 1, and k = 1, 2, . . . , 220. The random variables (W (k))k are Gaussian,
independent and identically distributed with zero-mean and unitary standard-
deviation. The samples (X(k))k were generated by filtering the discrete random
process (W (k))k through the discrete AR filter whose transfer function is (1 −
α)/(1−αz−1). We present the results obtained with α = 0.9. The corresponding
PSD is displayed in figure 2, and the autocorrelation is displayed in figure 3.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω

γ(ω)

Figure 2: PSD of the random process used to carried out experimental tests.
These random processes were synthesized by filtering some white noise with a
first order AR filter.

The experimental results detailed below show that, for the AR process con-
sidered above, the asymptotic decorrelation stated by theorem 1 can actually be
attained with reasonable values for the resolution level j and the order r of the
filters. These experimental results have been obtained by achieving full wavelet
packet decompositions of 100 realizations of the AR random process specified
above. The decompositions are performed by using Daubechies filters and the
results given hereafter are average values over these 100 realizations.

We begin with experimental results illustrating the influence of the resolu-
tion level and the order of the QMF on the decorrelation process. We then
address the convergence of the autocorrelation functions of the wavelet packet
coefficients at lag 0.
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Figure 3: Autocorrelation function of the random process whose PSD is plotted
in figure 2.

4.1 Influence of the resolution level and the order of the

filters on the decorrelation process

The full wavelet packet decompositions are now achieved when the QMF are the
Daubechies filters of orders 1, 2, . . . , 20. The average empirical autocorrelation
functions of the wavelet packet coefficients cj,nj(κq) for q = 0, 1, 2, 3, (see example
1) are calculated on the basis of 1500 coefficients per packet Wj,nj(κq), which is
possible for every decomposition level considered below since we have 220 input
samples.

It turns out that the wavelet packet coefficients can be considered as signif-
icantly decorrelated when the resolution level is 6 and the order of the QMF is
greater than, or equals 7. For instance, figure 4 shows the empirical normalized
autocorrelation functions at resolution levels 3 and 6, when r equals 1 and 7
for the AR process. These autocorrelation functions are normalized in order to
appreciate the gain in decorrelation. These figures underline the importance of
the role played by the resolution level and the order of the QMF.

The importance of the resolution level can be appreciated by noting that the
coefficients at resolution level 6 are less correlated than those obtained at level
3 (compare the first and the second columns of figure 4).

The role played by the QMF order is the following. At level 6 and for every
wavelet packet, the decomposition based on the Daubechies QMF with order 7
yields better decorrelation than that obtained by the decomposition based on
the Daubechies QMF of order 1 (in figure 4, compare the second and the third
columns).

4.2 The limit value of the correlation function at lag 0

Consider the sequence (R
[r]
j,nj

)j where, for every natural number j, R
[r]
j,nj

is
the autocorrelation function of the wavelet packet coefficients associated with

X with respect to the sequence (W
[r]
j,nj

)j . According to theorem 1, the value

R
[r]
j,nj

[m] must be close to γ(a(κ))δ[m] if j and r are both large enough, r being

above a value that depends on j. We recall that γ(a(κ)) is the value of the PSD
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of the random process X at a(κ) where a(κ) is given by (36) and κ is the binary

sequence associated with (W
[r]
j,nj

)j .
Let us illustrate this result for the value of the autocorrelation function at

lag 0 and the binary sequences κ0, κ1, κ2, and κ3, introduced in example 1. We
focus on the Daubechies QMF with order r = 7.

We consider again the AR random process introduced above and whose PSD
is that of figure 2. We observe that, quite rapidly, the terms of the sequence

(R
[7]
j,nj

[0])j become close to γ(a(κ)) when j increases. This is shown in figure

5. This figure displays the average values R
[7]
j,nj(κq)[0] for j = 0, 1, 2, · · · , 9 and

q = 0, 1, 2, 3. We plot the limit value γ(a(κ)) in dotted line in these figures.
We see that, as the resolution level j increases up to 6, the value at 0 of the
autocorrelation function of the wavelet packet coefficients associated with each
of the four sequences is sufficiently close to the value of the PSD at a(κ).

In order to specify the accuracy of the results of figure 5, the following table

presents the average values R
[7]
j,nj(κq)[0] for j = 6, 7, 8, 9, as well as their 95%

confidence intervals calculated via the standard t-test. Compare these average
values with the exact values of γ(a(κq)) that can easily be computed for the AR
process considered in this section. We have γ(a(κ0)) = 1, γ(a(κ1)) = 0.002770,
γ(a(κ2)) = 0.005703 and γ(a(κ3)) = 0.020086.

Level (j) 6 7

R
[7]
j,nj(κ0)

(0) 0.9313 ± 0.0074 0.9810 ± 0.0075

R
[7]
j,nj(κ1)

(0) 0.002777 ± 0.000021 0.002778 ± 0.000022

R
[7]
j,nj(κ2)

(0) 0.005587 ± 0.000041 0.005591 ± 0.000041

R
[7]
j,nj(κ3)

(0) 0.01887 ± 0.00012 0.01862 ± 0.00012

Level (j) 8 9

R
[7]
j,nj(κ0)

(0) 0.9957 ± 0.0075 0.9938 ± 0.0061

R
[7]
j,nj(κ1)

(0) 0.002779 ± 0.000020 0.002776 ± 0.000019

R
[7]
j,nj(κ2)

(0) 0.005602 ± 0.000042 0.005555 ± 0.000041

R
[7]
j,nj(κ3)

(0) 0.01849 ± 0.00012 0.01863 ± 0.00012

Table 1: Average values and associated 95% confidence intervals for R
[7]
j,nj(κq)[0]

computed over 100 realizations of the process whose PSD is that of figure 2.

To conclude this section, note that the AR process used to illustrate the
decorrelation process is chosen so that the slope of its PSD is quite sharp at
ω = 0. According to remark 5, this sharpness slows down the DWPT whitening
effect stated by theorem 1. In fact, the flatter the PSD, the faster the decorre-
lation is achieved by increasing the decomposition level and the QMF order. In
particular, the foregoing experimental results are even better for an AR process
X(k) = αX(k − 1) + W (k) with 0 < α < 0.9.
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Figure 4: Some normalized autocorrelation functions of the wavelet packet coef-
ficients returned for the 4 sequences of example 1, at decomposition levels 3 and
6. The decompositions concern the random process with PSD given by figure
2. They are achieved by using the Daubechies filters of orders 1 and 7.
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Figure 5: Convergence of R
[7]
j,nj(κq)[0] to γ(a(κq)) with j for the four test se-

quences. The decomposition concerns the random process whose PSD is that
of figure 2, and has been achieved by using the Daubechies filters of order 7.
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5 Conclusion

This paper provides further details concerning the asymptotic decorrelation
of the wavelet packet coefficients resulting from the decomposition of a band-
limited WSS random process. By choosing a sufficiently large resolution level
and, then, by increasing the order of the filters with respect to the chosen res-
olution level, the wavelet packet coefficients tend to become decorrelated. The
results presented in this paper complement those established in [10], [11] and
[15].

Figure 4 highlights the quality of the decorrelation process. This quality
can be regarded as rather good: compare the autocorrelation functions of the
input WSS process (figure 3) to the autocorrelation functions of the associated
coefficients (figure 4). The performance of this experiment can be improved by
increasing the order of the QMF (compare the second and the third column
of figure 4). These results suggest using a full wavelet packet decomposition
with six or more resolution levels and Daubechies filters with seven or more
vanishing moments. The experimental results presented in this paper indicate
that the asymptotic decorrelation can be approximately attained in practice
with reasonable values for the resolution level and the order of the QMF. This
relates to the convergence speed of the Daubechies QMF to the Shannon filters
(see figure 6) and also to the speed of the decorrelation process (see remark 5).
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Figure 6: Magnitude response of some Daubechies scaling filters. This figure
illustrates the convergence speed of the Daubechies QMF to the Shannon filters.
It displays the magnitude response of the Daubechies scaling filters with orders
r = 1, 2, 4, 7, 20, and 40. This scaling filter is obtained by using the matlab

routine dbaux of the wavelet toolbox.

Various applications of these results are thinkable. Indeed, many basic mod-
els and techniques employed in signal processing and statistics are valid, or
significantly much simpler and efficient, when data are uncorrelated. For in-
stance, we can think of immediate applications in spectral analysis, but also
in denoising and deconvolution. In particular, the authors’ feeling is that the
result of the present paper can contribute to the study of non-uniform sampling
or local analysis of the PSD of a signal [22], [23]. The analysis of the variance
of the wavelet packets in order to detect change-points, [24], seems to be an-
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other application of interest. Theorem 1 also suggests extending Donoho and
Johnstone’s approach [25], [26] to the denoising of signals corrupted by coloured
noise. The idea would be to determine a wavelet packet basis that decorrelates
sufficiently well the input noise. In each packet, noise could then be removed by
applying a suitable thresholding function whose threshold height is a function
of the variance of the noise coefficients. Denoising and deconvolution being very
similar problems [14], [27], the approach described just above could possibly be
extended to deconvolution.

In future work, we plan to investigate how the theoretical results presented
above apply to telecommunication systems where wavelets are gaining more
and more interest (see [28], [29], [30], [31], among others). In particular, it
seems relevant to study to what extent the results of this paper extend to non-
stationary or almost cyclostationary processes and relate to properties such as
those given in [32].
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A

According to Loeve’s lemma ([33]), and for −∞ < a ≤ b < ∞, the stochastic
integral ∫ b

a

X(t)Wj,n,k(t)dt (64)

is well defined if, and only if

E

[∫ b

a

X(t)Wj,n,k(t)dt

∫ b

a

X(s)Wj,n,k(s)ds

]
(65)

is well defined, i.e. if, and only if the Riemann integral

∫ b

a

∫ b

a

R(t, s)Wj,n,k(t)Wj,n,k(s)dtds (66)

exists and is finite. We can then define the stochastic integral
∫

R

X(t)Wj,n,k(t)dt (67)

as the limit of
∫ b

a
X(t)Wj,n,k(t)dt (with convergence in quadratic mean) when

a → −∞ and b → +∞, and this, provided that the integral
∫∫

R2

R(t, s)Wj,n,k(t)Wj,n,k(s)dtds (68)

exists. This is the case if we suppose that Wn is compactly supported or has
a sufficiently fast decay (see [6] among others). Given a resolution level j and
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n ∈ Ij (so, given Wj,n), the wavelet packet decomposition of X returns the
random variables

cj,n[k] =

∫

R

X(t)Wj,n,k(t)dt, k ∈ Z. (69)

B

According to (5), (6) and (7), and for ǫ ∈ {0, 1}, we have

Wj+1,2n+ǫ,k(t) = τ2j+1kWj+1,2n+ǫ(t)

= τ2j+1k2−(j+1)/2W2n+ǫ(2
−(j+1)t)

= τ2j+1k2−(j+1)/2
√

2
∑

ℓ∈Z

hǫ[ℓ]Wn(2−jt − ℓ)

= τ2j+1k2−j/2
∑

ℓ∈Z

hǫ[ℓ]Wn(2−jt − ℓ)

= 2−j/2
∑

ℓ∈Z

hǫ[ℓ]Wn(2−jt − 2k − ℓ)

= 2−j/2
∑

ℓ∈Z

hǫ[ℓ − 2k]Wn(2−jt − ℓ)

=
∑

ℓ∈Z

hǫ[ℓ − 2k]Wj,n,ℓ(t), (70)

and thus Wj+1,2n+ǫ,k =
∑

ℓ∈Z
hǫ[ℓ − 2k]Wj,n,ℓ. The equalities above must be

understood in the quadratic sense. If the impulse response of the filters have
finite length, these equalities hold true pointwise.

C

With the notations of appendix A, we assume that the mean-square integral
(64) is well defined. The autocorrelation function Rj,n of the discrete random
process cj,n is defined by

Rj,n[k, ℓ] =

∫∫

R2

R(t − s)Wj,n,k(t)Wj,n,ℓ(s)dtds, (71)

which can be written in the following form

Rj,n[k, ℓ] =

∫∫

R2

R(t)Wj,n,k(t + s)Wj,n,ℓ(s)dtds. (72)

In addition, since Wj,n,k(t) = 2−j/2Wn(2−jt − k), we have

∫

R

Wj,n,k(t + s)Wj,n,ℓ(s)ds =

∫

R

Wn(s + 2−jt − k)Wn(s − ℓ)ds,

= 〈τk−ℓ−2−jtWn,Wn〉L2(R) ,

=
1

2π

∫

R

|Ŵn(ω)|2ei(k−ℓ−2−jt)ωdω, (73)

22



where we use the Parseval formula to obtain the last equality. We thus have

Rj,n[k, ℓ] =
1

2π

∫∫

R2

R(t)|Ŵn(ω)|2ei(k−ℓ−2−jt)ωdtdω. (74)

And since ∫

R

R(t)e−i2−jtωdt = γ(
ω

2j
), (75)

we derive that

Rj,n[k, ℓ] =
1

2π

∫

R

γ(
ω

2j
)|Ŵn(ω)|2ei(k−ℓ)ωdω. (76)

D

Let Z be the orthogonal stochastic measure, associated with the spectral mea-
sure m of the continuous and second order WSS random process X (Wiener-
Khintchine’s theorem). We have

m(dω) =
1

2π
γ(ω)dω, (77)

where γ is the PSD of X, γ has support in [−π, π]. Then, we can write X(t) as
a stochastic integral :

X(t) =

∫

R

eitωZ(dω). (78)

Now, according to [34, lemma 5, p. 197-198], we have
∫

R

X(t)ΦS(t − k)dt =

∫

R

(∫

R

eitωZ(dω)

)
ΦS(t − k)dt,

=

∫

R

(∫

R

ΦS(t − k)eitωdt

)
Z(dω),

=

∫

R

Φ̂S(ω)eikωZ(dω). (79)

We obtain

X(k) −
∫

R

X(t)ΦS(t − k)dt =

∫

R

eikω(1 − Φ̂S(ω))Z(dω), (80)

and then,

E

[∣∣∣∣X(k) −
∫

R

X(t)ΦS(t − k)dt

∣∣∣∣
2
]

=

∫

R

∣∣∣1 − Φ̂S(ω)
∣∣∣
2

m(dω).

=
1

2π

∫ π

−π

∣∣∣1 − Φ̂S(ω)
∣∣∣
2

γ(ω)dω. (81)

Taking into account the fact that Φ̂S = χ[−π,π], we derive

E

[∣∣∣∣X(k) −
∫

R

X(t)ΦS(t − k)dt

∣∣∣∣
2
]

= 0, (82)
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and thus,

X(k) =

∫

R

X(t)ΦS(t − k)dt (83)

in quadratic mean.

E

Lemma 1 With the same notations as in section 2.1, and for n =
∑j

ℓ=1 ǫℓ2
j−ℓ,

we have

Ŵn(ω) =

[
j∏

ℓ=1

mǫℓ
(

ω

2j+1−ℓ
)

]
Φ̂(

ω

2j
). (84)

Proof:
According to (5), for ǫ ∈ {0, 1}, we have

Ŵ2n+ǫ(ω) = mǫ(
ω

2
)Ŵn(

ω

2
). (85)

By taking of account (28), we obtain successively

Ŵn(ω) = mǫj
(
ω

2
)Ŵn−ǫj

2

(
ω

2
),

= mǫj
(
ω

2
)mǫj−1

(
ω

22
) · · ·mǫ1(

ω

2j
)Φ̂(

ω

2j
), (86)

and thus

Ŵn(ω) =

[
j∏

ℓ=1

mǫℓ
(

ω

2j+1−ℓ
)

]
Φ̂(

ω

2j
). (87)
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[11] D. Pastor and R. Gay, “Décomposition d’un processus stationnaire du sec-
ond ordre : Propriétés statistiques d’ordre 2 des coefficients d’ondelettes et
localisation frequentielle des paquets d’ondelettes,” Traitement du Signal,
vol. 12, no. 5, 1995.

[12] R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for
best basis selection,” IEEE Transactions on Information Theory, vol. 38,
no. 2, pp. 713–718, Mar. 1992.

[13] I. Daubechies, Ten lectures on wavelets. SIAM, Philadelphie, PA, 1992.

[14] S. Mallat, A wavelet tour of signal processing, second edition. Academic
Press, 1999.
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