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Wavelet Shrinkage: Unification of Basic Thresholding

Functions and Thresholds

Abdourrahmane M. Atto, ∗ Dominique Pastor, † Grégoire Mercier ‡

Abstract

This work addresses the unification of some basic functions and thresholds used in non-

parametric estimation of signals by shrinkage in the wavelet domain. The Soft and Hard

thresholding functions are presented as degenerate smooth sigmoid based shrinkage func-

tions. The shrinkage achieved by this new family of sigmoid based functions is then shown

to be equivalent to a regularisation of wavelet coefficients associated with a class of penalty

functions. Some sigmoid based penalty functions are calculated, and their properties are

discussed. The unification also concerns the universal and the minimax thresholds used

to calibrate standard Soft and Hard thresholding functions: these thresholds pertain to a

wide class of thresholds, called the detection thresholds. These thresholds depend on two

parameters describing the sparsity degree for the wavelet representation of a signal. It is

also shown that the non-degenerate sigmoid shrinkage adjusted with the new detection

thresholds is as performant as the best up-to-date parametric and computationally expen-

sive method. This justifies the relevance of sigmoid shrinkage for noise reduction in large

databases or large size images.
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1 Introduction

The soft and hard shrinkage (thresholding) functions are basic functions widely used for esti-

mating a signal via projection in the wavelet domain. The soft and hard shrinkages [1] involve

forcing to zero the coefficients with amplitudes lower than the selected threshold, and preserv-

ing (hard) or shrinking (soft) any coefficient, with amplitude above this threshold, by a value

that equals the threshold height. Threshold selection for calibrating soft and hard thresholding

functions has also been addressed by Donoho and Johnstone in [1]. These authors proposed the

use of the universal and minimax thresholds: the estimation by soft or hard thresholding with

any of these thresholds yields near-optimal risk in the sense that, asymptotically, the estimator

achieves within a factor of 2log N of the ideal risk, which is the risk achieved with the aid of an

oracle (see Donoho and Johnstone’s paper for further details).

However, in practice, the hard and the soft WaveShrink estimators present drawbacks such

as an important variance, when using hard thresholding, or a large bias, when using soft thresh-

olding [2]. Many suggestions have been made in order to improve the performance of these

WaveShrink estimators. Some of them relate to the choice of the threshold ([3], [4]), and oth-

ers address the choice of the shrinkage (parametric Bayesian shrinkage: [5, 6, 7, 8, 9, 10]; non-

parametric shrinkage functions: [11], [12], [13], [14]; among others).

The different contributions proposed in the literature and aiming at improving the denoising

performance have resulted in a huge number of wavelet based methods for image denoising. In

addition, there exist many ways to improve a given method (using suitable wavelet transform,

adding intra-inter-scale predictors, exploiting redundancy, combining several methods, and so
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forth). Actually, the most efficient denoising algorithms such as [8] and [13] combine several of

these techniques (interscale predictors, Gaussian smoothing, laborious parameterizations) and

thus, they loose the simplicity (single function with explicit close form) and the portability (using

different wavelet transforms without additional computations) of basic shrinkage functions.

However, note that processing large size signals and images requires computationally fast

techniques and processing large databases requires portability of the method. We are thus in-

terested in efficient denoising by wavelet shrinkage when the shrinkage function has an explicit

close form, without any additional a priori consideration such as interscale predictor.

In this respect, the present work revisits the concept of shrinkage function by addressing the

consequences of two recent results: the Smooth Sigmoid Based Shrinkage (SSBS) functions of

[14] and the detection thresholds of [4].

The SSBS functions are smooth functions and they allow for a flexible control of the shrink-

age through parameters that model the attenuation imposed to small, median and large data.

This makes it possible to correct the main drawbacks of the soft and hard shrinkage functions.

In contrast to the “sum of derivative of Gaussian” parameterization of [13], the SSBS functions

are defined by an explicit close form so that we can first adapt their shape according to the noise

level and the expected denoising level; in addition these functions can be used for any wavelet

transform (orthogonal, redundant, multi-wavelets, complex wavelets, among others) without

additional computation, which is not the case for the methods such as the SURELET of [13] and

the BLS-GSM of [8].

The detection thresholds are synthesized by considering a risk function chosen to be the

probability of error for deciding that a coefficient is significant or not. They depend on two

parameters that can be used to bound the sparsity degree of the wavelet representation [15].

These thresholds are optimal in the sense that, for a certain class of signals, including sparse

signals, they lead to the same upper bound for the probability of error than the Bayes test with
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minimal probability of error among all possible tests [4]. It is shown below that the standard

minimax and universal thresholds are detection thresholds corresponding to different degrees

of sparsity.

Summarizing, the present paper extends the results established in [14] by providing 1) the

general description of the SSBS parameters, that is, the relation that allows for computing the

SSBS attenuation degree with respect to the SSBS threshold and the asymptotic attenuation pa-

rameters (this has been adressed in [14] only for the case of vanishing asymptotic attenuation);

2) the penalty functions associated with the SSBS functions in a regularization problem; 3) the

combination between the SSBS functions and the detection thresholds defined in [4]; 4) exper-

imental results emphasizing the relevance of SSBS functions, combined with detection thresh-

olds, in image denoising of synthetic and real noisy data.

The organization of the paper is as follows. Section 2 briefly describes the SSBS functions

and provides their parameter interpretation. This section also highlights that the hard and soft

thresholding functions can be seen as limit SSBS functions. Section 3 provides the characteriza-

tion of the SSBS functions in a regularization problem by computing the SSBS penalty functions.

Section 4 addresses the properties of the detection thresholds. This section also discusses the

selection of appropriate detection thresholds with respect to the wavelet decomposition proper-

ties of some signals such as smooth and piecewise regular ones. Section 5 presents experimental

tests aimed at assessing the denoising quality achieved by using the SSBS functions combined

with detection thresholds. Finally, section 6 concludes this work.

2 Unification of Basic Thresholding functions

In what follows, we consider standard wavelet-based estimation procedures for discrete time

signals with dyadic sample sizes, equally spaced and fixed sample points. We use the standard
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model

ci = di +ǫi , i = 1,2, . . . , N , (1)

where c = {ci }16i6N is the orthonormal wavelet transform of a noisy observation, d = {di }16i6N

is a sparse vector representing the wavelet coefficients of the unknown deterministic signal and

noise ǫ = {ǫi }16i6N is such that the random variables {ǫi }16i6N are independent and identi-

cally distributed (iid), Gaussian, with null mean and variance σ2. In short, ǫi
iid
∼ N (0,σ2) for

i = 1,2, . . . , N . Vector d is supposed to be sparse, meaning that the wavelet basis concentrates a

large proportion of the energy of the signal in a small number of coefficients with large ampli-

tudes. This heuristic notion of sparsity ranges from strong to weak sparsity.

By strong sparsity, we mean that the energy of the signal is “almost entirely” contained in

a small number of coefficients with large amplitudes (see the example given in figure 1). In

this case, almost all the coefficients described as “small” are in fact quasi-null or with very small

amplitudes, and so, do not contain significant information on the signal. For this reason, thresh-

olding rules like hard or soft thresholding are proved to be the relevant strategies for estimating

the signal (see [1]).

In the case of a representation which is not strongly sparse, it may often be useful to process

small coefficients. In fact, wavelet representations of natural images fail to be sparse enough

(see the example of figure 2): textures, contours are characterized by many small coefficients,

and forcing all the small coefficients to zero may result in over-smoothing these image charac-

teristics and a loss of significant information when the threshold height is large. Thus, in such a

case of weakly sparse representation, it may be preferable to consider, not a thresholding func-

tion, but a shrinkage function that performs a penalized shrinkage without systematically forc-

ing to zero the small coefficients [14]. The family of Smooth Sigmoid-Based Shrinkage (SSBS)

functions (introduced in [14]) are shrinkage functions of that kind.
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Figure 1: The discrete wavelet transform (DWT) of the ‘Cusp’ signal is strongly sparse. Almost all the energy of the

‘Cusp’ wavelet coefficients is concentrated in a very few number of large coefficients. In contrast, the sparsity of the

wavelet representation of the ‘Blocks’ signal must be understood in the weak sense: this representation admits many

small, but significant coefficients, because these coefficients characterize the singularities of the ‘Blocks’ signal. The

Symlet wavelet or order 8 and 4 decomposition levels are used for the wavelet representation.
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Figure 2: The wavelet representation (DWT) of natural images such as the 8-bit grayscale ‘Boat’

image fails to be sparse enough. The Symlet wavelet or order 8 and 4 decomposition levels are

used for the wavelet representation. The noise standard deviation is 35.
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Remark 1

The model of Eq. (1) (in the wavelet domain) is justified when the input signal (in the temporal or

spatial domain) is corrupted by Additive White Gaussian Noise (AWGN) and the wavelet trans-

form used is orthonormal. In the case where additive noise is either colored or not Gaussian,

this model remains approximately valid in the following sense. The wavelet transform has inter-

esting asymptotic statistical properties. In fact, the coefficients returned by the wavelet trans-

form tend to be iid Gaussian when the decomposition level is large enough for stationary ran-

dom processes [16, 17, 18, 19, 20] and some non-stationary random processes such as fractional

Brownian motions or fractionally differenced processes [21, 22, 23, 24, 25]. Thus, for a large class

of random noises, one can expect that the wavelet coefficients are quasi-decorrelated and ap-

proximately Gaussian distributed for large resolution levels. Note that the above property might

not be satisfied at the first resolution levels for strongly correlated processes and the wavelet

coefficients may thus remain strongly correlated at resolution levels that are not large enough.

In this case, a solution would be to use the coefficients, provided by a full wavelet packet de-

composition, at large enough resolution levels. Indeed, the wavelet packet decomposition also

returns coefficients that tend to be iid Gaussian at every node of sufficiently large resolution

levels. However, the convergence is more intricate than in the case of the wavelet transform,

because the wavelet packet decomposition filters play an important role in this convergence. In

fact, the asymptotic decorrelation and Gaussianity at large enough decomposition levels have

been established for decomposition filters that are sufficiently regular. For filters with smaller

regularity, the convergence to sequences of iid Gaussian wavelet packet coefficients remains

an open issue. With respect to the foregoing, and since, for natural images, which are piece-

wise regular rather than smooth, sparse wavelet representations are better achieved by using

small regularities, only wavelet transforms are considered below. In case of correlated noise, the

threshold heights must be level-dependent because the noise wavelet coefficients have different
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standard deviations depending on the resolution level.

The SSBS functions are the family of real-valued functions defined by [14]:

δt ,τ,λ(x) =
sgn(x)(|x|− t )+

1+e−τ(|x|−λ)
, (2)

for x ∈ R, (t ,τ,λ) ∈ R+×R∗
+×R+, where sgn(x) = 1 (resp. -1) if x > 0 (resp. x < 0), and (x)+ = x

(resp. 0) if x > 0 (resp. x < 0). Each δt ,τ,λ is the product of the soft thresholding function with a

sigmoid-like function. As such, the function δt ,τ,λ is called a Smooth Sigmoid-Based Shrinkage

(SSBS) function. The soft and hard thresholding functions can be regarded as SSBS functions

for degenerate values of the parameter τ (see Appendix A). In the rest of the paper, the soft and

hard thresholding functions will be referred as degenerate SSBSs.

The following addresses the role of the SSBS parameters. First, note that the parameter t

controls the attenuation imposed to data with large amplitudes (see figure 3). Thus, it will be

called the asymptotic attenuation parameter. In the rest of the paper, we assume that λ> t . In

(a) δt ,τ,λ : t = 0 (b) δt ,τ,λ : t > 0

Figure 3: Graphs of δt ,τ,λ for t = 0 and t 6= 0. The dotted lines represent the values ±λ.

fact, if λ < t , then δt ,τ,λ behaves as the soft thresholding function sgn(x)(|x| − t )+ when x 6 t

and x is large. Unfortunately, soft thresholding is known to over-smooth the estimate when t is

either the universal or the minimax threshold.
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Second, the parameter λ will be described as the SSBS threshold since it acts as a threshold:

δ0,∞,λ is a hard thresholding function with threshold height λ.

Finally, after a re-parametrerization of the SSBS model (see appendix B), we obtain that τ

can be written as a function of t , θ and λ, where θ is an angle that relates to the curvature of the

SSBS arc in the interval (t ,λ), that is, the attenuation we want to impose to data with in-between

amplitudes. Since we have 0 < θ < arccos
(
(λ− t )/

√
4λ2 + (λ− t )2

)
, the larger θ, the stronger the

attenuation of the coefficients with amplitudes in (t ,λ). Hereafter, parameter θ will be called the

attenuation degree and the SSBS functions are written, equivalently, in the form δt ,θ,λ, where the

bijection between (t ,θ,λ) and (t ,τ,λ) is detailed in appendix B (see in particular Eqs. (25) and

(26) in the said appendix).

In practice, when t and λ are fixed, the foregoing makes it possible to control the attenua-

tion degree we want to impose to the data in (t ,λ) by choosing θ, a rather natural parameter.

This interpretation of the SSBS parameters makes it easier to select convenient values of these

parameters for practical applications. Summarizing, the estimation procedure is performed in

three steps:

1. Fix the asymptotic attenuation t , the threshold λ and the attenuation degree θ of the SSBS

function.

2. Compute the corresponding value of τ from Eq. (26).

3. Shrink the data according to the SSBS function δt ,τ,λ of Eq. (2).

Some SSBS graphs are plotted in figure 4 for different values of the attenuation degree θ

(threshold λ is fixed and the asymptotic attenuation parameter t is 0).
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Figure 4: Shapes of SSBS functions δθ,λ for different values of the attenuation degree θ: θ = π/6

for the continuous (blue) curve, θ = π/4 for the dotted (red) curve, and θ = π/3 for the dashed

(magenta) curve.

3 Penalty functions associated to SSBS in a regularization problem

Consider signal estimation by using the penalized least squares approach given in [12]. In this

reference, the signal estimation is addressed by considering a penalty function qλ = qλ(·) and by

looking for the vector d that minimizes

||d −c ||2ℓ2
+2

N∑

i=1

qλ(|di |). (3)

In [26], the unification between shrinkages and regularization procedures is discussed. It fol-

lows from this reference that shrinkages and regularization procedures are linked in the sense

that a shrinkage function corresponds to a regularization problem with a specific penalty func-

tion. This correspondence is made more precise by the following proposition:

Proposition 1

[26, Proposition 3.2].
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Let δ be a real valued thresholding function that is increasing, antisymmetric, such that 0 6

δ(x) 6 x for x > 0 and δ(x) tends to infinity as x tends to infinity. Then, there exists a continuous

positive penalty function q, with q(|x|) 6 q(|y |) whenever |x|6 |y |, such that δ(z) is the unique

solution of the minimization problem mint (t − z)2 +2q(|t |) for every z at which δ is continuous.

The penalty q associated with δ is given by

q(x) =
∫x

0
(r (z)− z)dz, (4)

for x > 0, where r is the generalized inverse of δ: r (x) = sup{z |δ(z)6 x}.

An SSBS function δt ,τ,λ satisfies the assumptions of proposition 1. It follows that the shrink-

age obtained by using a function δt ,τ,λ can be seen as a regularization approximation with a

continuous positive penalty function. The following characterizes the penalty function associ-

ated to δτ,λ = δ0,τ,λ.

Proposition 2

The shrinkage obtained by using an SSBS function δτ,λ can be seen as a regularization approxi-

mation with penalty function qτ,λ, where qτ,λ is the function defined for every x > 0 by

qτ,λ(x) =
1

τ

∫x

0
L

(
τze−τ(z−λ)

)
dz, (5)

with L being the Lambert function defined as the inverse of the function: t > 0 7−→ te t .

PROOF

Since SSBS functions are continuous and strictly increasing functions, the generalized inverse

of any SSBS function δτ,λ is the inverse, denoted rτ,λ, of this SSBS function. From proposition 1,

the penalty associated with δτ,λ is then

qτ,λ(x) =
∫x

0
(rτ,λ(z)− z)dz. (6)
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Now, because the SSBS function δτ,λ is continuous, strictly increasing and antisymmetric,

its inverse rτ,λ has the form

rτ,λ(z) = zG(z), (7)

for every real value z and where G is such that

G(z) = 1+e−τ(|z|G(z)−λ).

Therefore, G(z) > 1 for any real value z. We thus have

(G(z)−1)eτ(|z|(G(z)−1) = e−τ(|z|−λ),

which is also equivalent to

τ|z| (G(z)−1)eτ(|z|(G(z)−1) = τ|z|e−τ(|z|−λ).

It follows that

τ|z| (G(z)−1) =L

(
τ|z|e−τ(|z|−λ)

)
,

which leads to

G(z) = 1+L

(
τ|z|e−τ(|z|−λ)

)
/(τ|z|) (12)

for z 6= 0. Taking into account (7), (12) and the fact that rτ,λ(0) = 0 since δτ,λ(0) = 0, we obtain

rτ,λ(z) = z + sgn(z)L
(
τ|z|e−τ(|z|−λ)

)
/τ (13)

for any real value z. The result then follows by injecting Eq. (13) into Eq. (6). �

From proposition 2, we derive that for every real value x, the value δτ,λ(x) is the unique

solution of the minimization problem mind

(
(x −d)2 +2qτ,λ(|d |)

)
where qτ,λ is given by Eq. (5).
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The shape of the SSBS penalty qτ,λ(|x|) is given for fixed λ and several values of τ in figure 5; the

penalties displayed in this figure are those associated with the SSBS functions of figure 4.

Figure 5: Penalty functions associated with the SSBS functions of figure 4 in the regularization

problem of Eq. (3). The attenuation degree θ is: θ =π/6 for the continuous (blue) curve, θ =π/4

for the dotted (red) curve, and θ =π/3 for the dashed (magenta) curve.

It follows that the penalty associated with an SSBS function is regular everywhere. This reg-

ularity depends on the SSBS shape. When the attenuation degree is small, the variability of

treatment among data is reduced: the shape of the penalty function is more regular. In contrast,

a large attenuation degree amplifies the variability of treatment: the slope of the penalty shape

is strong for small data and tends to be quasi-null for large data (small data are strongly shrunk

whereas large data are approximately kept). Note, by comparing figure 5 with [26, Figure 3], that

the larger the SSBS attenuation degree, the closer to the hard penalty the SSBS penalty is.
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4 Unification of basic thresholds

In [4], it is shown that soft thresholding estimation of signals in the wavelet domain can be im-

proved by using the detection thresholds. In this section, we derive some properties of the de-

tection thresholds proposed in [4]. In particular, Section 4.1 highlights that standard minimax

and universal thresholds correspond to detection thresholds associated with different sparsity

degrees and Section 4.2 provides some detection thresholds suitable for selecting the significant

wavelet coefficients.

4.1 Detection thresholds

Consider the following decision problem with binary hypothesis model (H0,H1), where H0 :

ci ∼N (0,σ2) versus H1 : ci = di +ǫi , |di |> a> 0,ǫi ∼N (0,σ2).

Assume that the a priori probability of occurrence of hypothesis H1 is less than or equal

to some value p6 1/2. Then, for deciding H0 versus H1, the thresholding test with threshold

height

λD (a,p) =σξ(a/σ,p), (14)

where

ξ(a,p) =
a

2
+

1

a

[
ln

1−p

p
+ ln

(
1+

√
1−

p2

(1−p)2
e−a

2

)]
, (15)

has the same sharp upper bound for its probability of error than the Bayes test with the least

probability of error (see [4] for details).

Parameter p reflects the presence (quantity) of significant coefficients of the signal amongst

the noisy coefficients. Assuming that p is less than or equal to 1/2 ensures that the representa-

tion of the signal is, at least, sparse in the weak sense. Parameter a can be seen as the minimum

amplitude considered to be significant for a signal coefficient. Parameters p and a can thus be

used to measure the sparsity degree of the signal representation (see [4], [15]).

15



The following proposition makes it possible to unify the minimax, universal, and detection

thresholds.

Proposition 3

For any positive real value η>σ, there exist a0 > 0 and p0, with 06 p0 6 1/2, such that

λD (a0,p0) = η. (16)

PROOF

The result simply follows by noting that the function ξ is continuous, positive, lima→0 ξ(a,1/2) =

1, and lima→+∞ ξ(a,p) =+∞ for any p such that 0 < p6 1/2. �

Let λu(N ) = σ
p

2ln N , the so-called universal threshold. This threshold reflects the maxi-

mum amplitude of the noise coefficients. Indeed, since ǫi
iid
∼ N (0,σ2) for i = 1,2, . . . , N , then it

follows from [27, p. 187] or [28, p. 454], that

lim
N→+∞

P

[
λu(N )−

σ ln(ln N )

ln N
6max

{
|ǫi |,16 i 6 N

}
6λu(N )

]
= 1. (17)

Thus, the maximum amplitude of {ǫi }16i6N has a strong probability of being close to the uni-

versal threshold when N is large.

From proposition 3, it follows that for any N > 2, there exist some values a,p such that

λD (a,p) = λu(N ). Figure 6 shows the level curves λD (a,p) = λu(N ) for different values of N .

It appears that large values of a are associated with small values of p (strong sparsity) and vice

versa (weak sparsity).

The same remark (as for the universal threshold) holds true for the minimax threshold. The

minimax thresholdλm(N ) is defined as the largest valueλ among the values attaining a minimax

risk bound given in [1].

Assume that the noise standard deviation σ is fixed. Let σ= 1 for the sake of simplicity and

we consider that noise is AWGN in the time/spatial domain. For a given signal, it is well-known
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Figure 6: Level curves λD (a,p) =
p

2ln N for different values of N .

that varying the threshold height λ used for selecting the signal wavelet coefficients yields differ-

ent regularities for the signal estimate, larger threshold heights resulting in smoother estimates

[1], [3]. Now, one can look for the class of signals (in terms of their sparsity measures a and p)

that correspond to the same threshold height λ. We have from Eqs. (15) and (14) that

λD (a,p) = ap

(
1

2p
+ϑ(a,p)

)
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where

ϑ(a,p) =
1

a2p

[
ln

1−p

p
+ ln

(
1+

√
1−

p2

(1−p)2
e−a

2

)]
.

Since 0 < p6 1/2, it follows that λD (a,p)> ap. Thus, for any η> 1, we have

λD (a,p) = η =⇒ ap6 η (18)

Eq. (18) confirms the fact that for a given value η (threshold height), the “minimum significant

amplitude for the signal” a and the “proportion of significant signal coefficients” p characteris-

ing the surface λD (a,p) = η cannot be both arbitrarily large because of the constraint ap6 η.

In addition, we have Γ(a,p)> 1
a2p

ln
1−p
p

and thus λD (a,p)> 1
a

ln
1−p
p

. By setting

p
∗ = 1/ln

1−p

p
,

we have

λD (a,p) = η =⇒ ap
∗
>

1

η
(19)

Note that p∗ is a positive and strictly increasing function of p (0 < p 6 1/2) and p∗ tend to 0

when p tend to 0. Thus, from Eq. (19), it follows that for any given threshold height η > 1,

the “minimum significant amplitude for the signal” a and the “proportion of significant signal

coefficients” p characterising the surface λD (a,p) = η cannot be both arbitrarily small because

of the constraint ap∗ > 1/η.

Summarizing, the class of signals (identified by the sparsity measures a and p) that admit

the same threshold height is such that the uncertainty relations given by Eqs. (18) and (19) are

satisfied. This class does not contain non-sparse signals since both a and p cannot be arbitrary

large or small (as a matter of justification, note that thresholding is not very appropriate for

estimating non-sparse signals). This class contains sparse signals with different sparsity degrees:

when a is large and p is small, we will say that the signal under consideration admit a strongly
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sparse representation; in contrast, a weak sparse signal representation is such that a is small and

p is large (with the upper-bound for p fixed to be 1/2: p6 1/2).

The above uncertainty relations thus allows for classifying signals according to their sparsity

measures a and p and it follows that strongly and weakly sparse signals have the same threshold

height η whenever their sparsity measures a and p are such that λD (a,p) = η (see figure 6 for

some examples of level curves such that λD (a,p) = η).

4.2 Detection thresholds adapted to the wavelet decomposition

Detection thresholds are well-adapted to estimate wavelet coefficients corrupted by AWGN be-

cause of the sparsity of the wavelet transform [4]. Moreover, these thresholds are adaptable to

the wavelet transform decomposition schemes: sparsity ensures that for reasonable resolution

levels, signal coefficients are less present than noise coefficients among the detail wavelet coef-

ficients and that signal coefficients have large amplitudes (in comparison to noise coefficients).

More precisely, it is known that for smooth or piecewise regular signals, the proportion of

significant coefficients, which plays a role similar to that of p, increases with the resolution level

[28, Section 10.2.4, p. 460]. Therefore, if we can give, first, upper-bounds (p j ) j=1,2,··· ,J ;p j 6 1/2

for every decomposition levels j = 1,2, · · · , J , and second , lower-bounds (a j ) j=1,2,··· ,J for the am-

plitudes of the significant wavelet coefficients, then we can derive level-dependent detection

thresholds that can select significant wavelet coefficients at every resolution level. Since signifi-

cant information tends to be absent among the first resolution level detail wavelet coefficients, it

is reasonable to set a1 =σ
p

2ln N , that is the universal threshold. Now, when the resolution level

increases, it follows from [28, Theorem 6.4] that a convenient choice for a j , j > 1 is a j = a1/
p

2 j−1

when the signal of interest is smooth or piecewise regular.

In addition, since noise tends to be less present when the resolution level increases, p j must

be an increasing function of j . Note that detection thresholds are defined for p j 6 1/2. It is

19



thus necessary to stop the shrinkage at a resolution level J for which pJ is less than or equal

to 1/2. We propose the use of exponentially or geometrically increasing sequences for the val-

ues (p j ) j=1,2,··· ,J since p1 must be a very small value (significant information tends to be absent

among the first resolution level detail wavelet coefficients) and the presence of significant infor-

mation increases significantly as the resolution level increases. In the following, we consider a

sequence (p j ) j=1,2,··· ,J such that p j+1 = (p j )1/µ with µ> 1.

Summarizing, we consider the thresholds λD (a j ,p j ), where λD is defined by Eq. (14) and

(a j ,p j ), for j = 1,2, · · · , J are given by

a j =σ
p

ln N /2 j /2−1, (20)

and

p j = 1/2µJ− j

. (21)

5 SSBS and detection thresholds in practice

This section provides experimental results which highlight that SSBS allows for noise reduction

with preservation of structural details of images. We first discuss the calibration of the SSBS

parameters and assess the SSBS performance when noise is AWGN (Section 5.1). We then apply

SSBS to the denoising of SAR (Synthetic Aperture Radar) images (Section 5.2).

Experimental tests are carried out by using the Stationary Wavelet Transform (SWT) [29].

The maximum decomposition level is fixed to J = 4. The SWT has appreciable properties in

denoising. Its redundancy makes it possible to reduce residual noise and some possible artifacts

incurred by the translation sensitivity of the orthonormal wavelet transform.
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5.1 Denoising images corrupted by synthetic AWGN

In this section, we consider a class of test images corrupted by synthetic AWGN. We use the

PSNR and the SSIM index in order to assess the quality of a denoised image. The PSNR (Peak

Signal-to-Noise Ratio, in deciBel unit, dB) refers to the Mean Square Error (MSE) and is given by

PSNR = 10log10

(
2552/MSE

)
, (22)

The SSIM (Structural SIMilarity) index [30] is a perceptual measure that compares patterns of

pixel intensities for images, on the basis of the local luminance and contrast of the analyzed

pixels. Let x and y be two data vectors assumed to contain non-negative values only and rep-

resenting the pixel values to be compared. The luminance and the contrast of these pixels are

estimated by the mean and the standard deviation of x and y , respectively. The SSIM index

between x and y is then given by [30]:

SSIM =
(2µxµy +C1)(2σx y +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
, (23)

where µx , σx ,(resp. µy , σy ) are the mean and standard deviation of x (resp. y) and σx y designate

the covariance between x and y . The local statistics µx ,µy ,σx ,σy and σx y are computed within

a window with size 11×11 and the pixel values in this window are normalized by using a unit sum

circular-symmetric Gaussian weighting function (see [30] for details). We also use the constants

C1 and C2 suggested by the authors in [30]: C1 = (K1L)2,C2 = (K2L)2 with K1 = 0.01 and K2 = 0.03,

where L is the dynamic range of the pixel values (L = 255 for 8-bit grayscale images). The SSIM

index of two images is then the average value of the different SSIM indices obtained by sliding

the local window over the entire image.

5.1.1 Preliminary tests

We first run some preliminary tests in order to choose the SSBS parameters and analyze the

sensitivity of these parameters. We consider the standard ‘House’, ‘Barbara’ and ‘Lena’ images,
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which are very popular in the image denoising community. The tests are based on an analysis

of the means and variances of the PSNRs and SSIMs computed over 10 noise realizations, when

the test images are denoised by the SSBS method. The tested images are corrupted by AWGN

with standard deviation σ = 5,10,15,20,25,30,35 and the SWT is computed by using different

Daubechies, spline, and symlet wavelet filters.

Given a fixed global threshold that can be either the universal threshold (λu), the minimax

threshold (λm) or the universal-detection threshold (λud , obtained by setting a=σ
p

2ln N and

p= 1/2 in Eq. (14), see [4] for the properties of this threshold), the tests suggest using small (resp.

large) asymptotic attenuation t and attenuation degree θ when the noise level is small (resp.

large). The same remark holds for the level-dependent detection thresholds λD ( j ) = λD (a j ,p j )

defined by Eq. (14), where (a j ,p j ), for j = 1,2, · · · , J are given by Eqs. (20) and (21). The value

µ= 2.35 in Eq. (21) tends to be a good compromise for the different test images used, when we

assume that pJ = 1/2.

Among the global thresholds, the minimax and the universal-detection thresholds outper-

form the universal threshold, and the universal-detection threshold tends to be more perfor-

mant than the minimax threshold, especially when the noise level is not very large. The level-

dependent thresholds perform better than the global thresholds described above when the noise

standard deviation is larger than 10. In addition, the preliminary tests show that reasonable

asymptotic attenuation and attenuation degree parameters for SSBS are

• 06 t 6σ/10 and 0 < θ6π/10 when the noise standard deviation σ is less than 10,

• 06 t 6σ/5 and π/106 θ6π/6 when 106σ< 20,

• σ/106 t 6σ/3 and π/66 θ6π/4 when σ is larger than or equal to 20.

For fixed parameters, we also test the sensitivity of the SSBS method according to the wavelet

filters used. It follows that, for a given wavelet family, there is no significant variability of the
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results with respect to the length of the wavelet filter used. In addition, there is no significant

difference between the results obtained whatever the wavelet family used, provided that the

length of the filters remain approximately of the same order.

5.1.2 SSBS denoising performance

In this section, we compare SSBS and BLS-GSM denoising performance. The BLS-GSM of [8]

(free MatLab software 1) is a parametric method using redundant wavelet transform and mod-

els neighbourhoods of wavelet coefficients with Gaussian vectors multiplied by random positive

scalars. BLS-GSM also takes into account the orientation and the interscale dependencies of the

wavelet coefficients. It is actually the best parametric method using redundant wavelet trans-

form.

We present in tables 1, 2 and 3, some experimental results (PSNRs and SSIMs performed

by the SSBS) when the tested image is the ‘Boat’ image (the variances are very small in com-

parison with the mean PSNRs). The results are similar with other standard images such as the

‘Peppers’ and the ‘Fingerprint’ images. We focus on the case where the noise standard devi-

ation σ is between 5 and 15. Indeed, this case is of interest since when σ 6 3, noise is often

non-perceptible and noise observed in images processed by modern acquisition systems is of-

ten moderate. We run the SSBS denoising procedure described above. The SWT is computed

by using the biorthogonal spline wavelet with order 3 for the decomposition and order 1 for the

reconstruction (‘bior1.3’ in Matlab Wavelet toolbox). Several values for the SSBS parameters are

tested. These values are chosen according to the recommendations made in the previous sec-

tion. We also present in the captions of tables 1, 2 and 3, the PSNRs and SSIMs achieved by the

BLS-GSM method of [8].

According to the experimental results presented in tables 1, 2 and 3, the performance of

1avalaible at http://decsai.ugr.es/~javier/denoise/software/index.htm
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Table 1: Means of the PSNRs and SSIMs computed over 10 noise realizations, when denoising

the ‘Boat’ image by the SSBS method. The SSBS parameters (t ,θ,λ) used are given in the table.

The PSNR and the SSIM performed by the BLS-GSM method are 36.72 dB and 0.929 respectively.

σ= 5

PSNR

t = 0 t =σ/10 t =σ/5

θ =π/14

θ =π/12

θ =π/10

θ =π/8

θ =π/6

λm λud λD ( j )

36.16 36.53 36.28

36.23 36.55 36.32

36.25 36.54 36.30

36.18 36.48 36.20

35.94 36.30 35.87

λm λud λD ( j )

36.01 36.48 36.14

36.09 36.52 36.19

36.12 36.52 36.16

36.05 36.47 36.06

35.82 36.28 35.75

λm λud λD ( j )

35.84 36.38 35.99

35.92 36.44 36.04

35.96 36.45 36.03

35.92 36.40 35.93

35.68 36.24 35.64

SSIM

t = 0 t =σ/10 t =σ/5

θ =π/14

θ =π/12

θ =π/10

θ =π/8

θ =π/6

λm λud λD ( j )

0.928 0.933 0.930

0.928 0.933 0.930

0.928 0.934 0.929

0.926 0.933 0.926

0.921 0.930 0.919

λm λud λD ( j )

0.926 0.932 0.928

0.926 0.933 0.928

0.926 0.933 0.926

0.924 0.932 0.923

0.918 0.929 0.916

λm λud λD ( j )

0.923 0.931 0.926

0.924 0.931 0.925

0.923 0.931 0.924

0.921 0.931 0.921

0.915 0.928 0.913
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Table 2: Means of the PSNRs and SSIMs computed over 10 noise realizations, when denoising

the ‘Boat’ image by the SSBS method. The SSBS parameters (t ,θ,λ) used are given in the table.

The PSNR and the SSIM performed by the BLS-GSM method are 33.48 dB and 0.878 respectively.

σ= 10

PSNR

t = 0 t =σ/10 t =σ/5

θ =π/14

θ =π/12

θ =π/10

θ =π/8

θ =π/6

λm λud λD ( j )

32.25 32.38 32.55

32.41 32.46 32.70

32.58 32.55 32.84

32.70 32.62 32.92

32.66 32.63 32.84

λm λud λD ( j )

32.20 32.45 32.52

32.36 32.55 32.65

32.51 32.65 32.78

32.61 32.72 32.85

32.55 32.72 32.76

λm λud λD ( j )

32.10 32.47 32.46

32.28 32.59 32.59

32.42 32.69 32.70

32.51 32.77 32.76

32.44 32.76 32.64

SSIM

t = 0 t =σ/10 t =σ/5

θ =π/14

θ =π/12

θ =π/10

θ =π/8

θ =π/6

λm λud λD ( j )

0.851 0.849 0.860

0.856 0.853 0.864

0.861 0.857 0.869

0.865 0.862 0.872

0.864 0.865 0.870

λm λud λD ( j )

0.853 0.853 0.861

0.857 0.857 0.865

0.861 0.861 0.869

0.864 0.865 0.871

0.861 0.867 0.867

λm λud λD ( j )

0.853 0.856 0.861

0.856 0.859 0.865

0.860 0.863 0.868

0.861 0.867 0.869

0.857 0.868 0.864
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Table 3: Means of the PSNRs and SSIMs computed over 10 noise realizations, when denoising

the ‘Boat’ image by the SSBS method. The SSBS parameters (t ,θ,λ) used are given in the table.

The PSNR and the SSIM performed by the BLS-GSM method are 31.63 dB and 0.839 respectively.

σ= 15

PSNR

t = 0 t =σ/10 t =σ/5

θ =π/14

θ =π/12

θ =π/10

θ =π/8

θ =π/6

λm λud λD ( j )

29.84 29.78 30.21

30.08 29.94 30.43

30.35 30.11 30.68

30.60 30.31 30.91

30.74 30.47 31.01

λm λud λD ( j )

29.87 29.95 30.28

30.09 30.11 30.49

30.34 30.30 30.70

30.57 30.48 30.89

30.66 30.64 30.95

λm λud λD ( j )

29.86 30.06 30.29

30.08 30.24 30.48

30.30 30.42 30.69

30.50 30.60 30.85

30.54 30.73 30.86

SSIM

t = 0 t =σ/10 t =σ/5

θ =π/14

θ =π/12

θ =π/10

θ =π/8

θ =π/6

λm λud λD ( j )

0.770 0.758 0.783

0.781 0.766 0.794

0.794 0.777 0.807

0.808 0.789 0.821

0.817 0.802 0.828

λm λud λD ( j )

0.776 0.768 0.790

0.786 0.776 0.800

0.797 0.786 0.811

0.809 0.798 0.822

0.815 0.810 0.827

λm λud λD ( j )

0.781 0.777 0.794

0.790 0.785 0.803

0.800 0.794 0.814

0.809 0.805 0.822

0.811 0.814 0.825
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SSBS and BLS-GSM are of the same order, both in terms of PSNR and SSIM. The BLS-GSM yields

a PSNR slightly higher than the SSBS, the difference in PSNR between SSBS and BLS-GSM being

less than 1 dB. The (best) SSBS yields higher SSIM quality index when the noise standard devia-

tion is 5 and the BLS-GSM SSIM is slightly higher when the noise standard deviation is 10,15.

From these results, il follows that SSBS and BLS-GSM are comparable, both in terms of PSNR

and SSIM quality index. In comparison with BLS-GSM, the advantage of SSBS is then its extreme

algorithmic simplicity. Indeed, SSBS can be seen as a weighting function that simply applies to

the wavelet coefficients, whereas BLS-GSM is computationally expensive and cannot be used in

an operational context (see [13] for an appreciation of the BLS-GSM computing time). Note that,

in contrast with the BLS-GSM and other denoising methods such as the SURELET of [13], which

yields performances of the same order as BLS-GSM, SSBS uses neither interscale nor intrascale

predictors. These predictors can be included in the shrinkage process for SSBS and they can cer-

tainly allows for better denoising results. However, such predictors are generally specific to the

wavelet transform used and, in this respect, they are detrimental to the portability of a method.

For this reason, we do not consider interscale and intrascale predictors in this paper. Note also

that SSBS might be adapted to other a priori knowledge by using some directional processing

similar to that employed by BLS-GSM. However, when the noise level is small (which is the case

of interest in practical applications such as SAR denoising) then it follows, from the SSIM in-

dices given in table 1, that SSBS, without any additional a priori information, guarantees better

preservation of structural information contained in the images than BLS-GSM. In other words,

SSBS guarantees noise reduction without impacting significantly the signal characteristics (fig-

ures 7, 8 and 9 provide SSBS and BLS-GSM denoisings for the ‘Boat’ image as an illustration). In

addition, it follows from tables 1, 2 and 3 that SSBS denoising performance is not really affected

by slightly different SSBS parameter values. This highlights the robustness of the method
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Noisy image

AWGN, σ= 5

PSNR=34.1514 dB

SSIM=0.8853

Noisy image

AWGN, σ= 15

PSNR=24.6090 dB

SSIM=0.5364

Figure 7: Noisy ‘Boat’ image corrupted by AWGN with standard deviation σ.
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Denoising

SSBS δ0, π
10

,λud

PSNR=36.5719 dB

SSIM=0.9339

Denoising

BLS-GSM

PSNR=36.7129 dB

SSIM=0.9290

Figure 8: SSBS and BLS-GSM denoising of noisy ‘Boat’ image corrupted by AWGN with σ= 5.
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Denoising

SSBS δ0, π
6

,λD ( j )

PSNR=30.9954 dB

SSIM=0.8274

Denoising

BLS-GSM

PSNR=31.6396 dB

SSIM=0.8394

Figure 9: SSBS and BLS-GSM denoising of noisy ‘Boat’ image corrupted by AWGN with σ= 15.
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5.2 Denoising SAR images

In image processing, denoising is of interest, specifically for high resolution images such as

biomedical ultrasonic or SAR images, for instance. In such images, the signal reflectance z is

corrupted by speckle noise ǫ. Speckle noise is modeled as a correlated stationary process, mul-

tiplicative with the signal reflectance. The observation is then ǫz. We can write ǫz = z + z(ǫ−1)

so as to consider that a SAR image is the sum of the signal reflectance z and a signal-dependent

noise z(ǫ− 1). In this signal-dependent noise case, the performance of a wavelet shrinkage is

not guaranteed to be as performant as in the AWGN case. Furthermore, we cannot guarantee

that the signal-dependent noise wavelet coefficients can be rendered sufficiently iid Gaussian.

However, for SAR images, speckle removal (despeckling) by wavelet shrinkage has been success-

fully addressed by several authors, mostly in the case of parametric models (see [31], [32], [33],

among others). We thus carry out some experiments on SAR images to assess the relevance of

SSBS in this case.

According to Section 5.1.2 above, the advantage of SSBS in the context of SAR image despeck-

ling is that SSBS is a simple and performant non-parametric method that allows for different

levels of noise reduction, the noise reduction being smoothly adjustable thanks to the flexibility

of the SSBS parameters. Because of this flexibility, we can investigate noise reduction instead of

full denoising for the SAR images. Indeed, because speckle contains much information, it must

not be considered as pure noise. More precisely, we do not wish to fully remove speckle, but we

want to reduce the variability due to it, without impacting the structural information of the SAR

data.

• [Quality criterion] Since the reference (noise free) image is not available, we use, as a

quality criterion, the Equivalent Number of Looks (ENL) for the SAR images combined
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with the “method-noise” approach of [34]. The ENL of a SAR intensity image x is given by

ENL(x) =
(Mean(x))2

Variance(x)

In an homogeneous region, and for a speckle free image, this quantity will often be very

large since homogeneity assumes small variability among the data. In contrast, in pres-

ence of large variability among the data, this quantity will often be small. When speckle is

fully developped in an homogeneous region of a SAR image, then ENL is a good estimate

of the number of looks used to form the SAR intensity image.

In addition, and since ENL does not make it possible to measure the signal distortion

caused by the denoising, we also use another quality criterion: a variant of the ‘method-

noise’. The method-noise [34] simply involves analyzing the difference between the origi-

nal (noisy) image and the denoised image. According to this method, denoising quality is

appreciated by checking the structural contents of the method-noise (difference) image.

Assuming that noise is additive, this method-noise image looks like a pure noise image

for methods capable of reducing noise without impacting the structural contents of the

images. In the case of SAR despeckling, we consider the following variant of the method-

noise. This variant is hereafter called the ‘method-noise ratio’ and involves computing the

ratio between the noisy image and the denoised image. Indeed, the difference is less infor-

mative than the ratio because in the ideal case where the estimate equals the reflectance

z, the difference consists of the signal-dependent noise z(ǫ−1) whereas the ratio is exactly

the speckle noise ǫ. For the above variant, speckle reduction can be considered to be more

accurate, that is, to better preserve the structural contents of the signal reflectance, when

the method-noise ratio image looks like pure speckle noise.

• [Estimation of the noise standard deviation] Let us denote by ( j ,α) where j ∈ {1,2, . . . , J }

is the wavelet decomposition level and α denotes either the horizontal, the vertical or the
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diagonal detail sub-image obtained from the SWT of a given input image. In order to esti-

mate the noise standard deviation in a given sub-image ( j ,α), we follow a strategy similar

to that proposed in [35, Section 2.3]. Specifically, we use the standard MAD (Median of

the Absolute Deviation) based estimator of the noise standard deviation [1]. The differ-

ence with [35, Section 2.3] is that we apply this estimator to a high-pass filtered version of

the sub-image under consideration. More precisely, we decompose again this sub-image

( j ,α) by using a one-level DWT and apply the MAD based estimator on the diagonal detail

DWT coefficients. The rationale is that outliers present in the sub-image ( j ,α) will be less

present among the detail DWT coefficients of this sub-image, because of the high-pass

filtering effect [28, Section 10.2.4, p. 459]. We use the diagonal detail coefficients because

these coefficients usually contain less signal coefficients than vertical and horizontal de-

tail coefficients. In particular, when the noise standard deviation is known, the tests we

performed showed that its MAD based estimate computed on the basis of the diagonal

detail coefficients tends to be more precise than the estimate obtained by averaging the

3 MAD based estimates computed from the horizontal, vertical and diagonal detail coef-

ficients. We recall that the MAD based estimate of the noise standard deviation of a data

set x = (xi )i is given by σ̃ = Median(|x|)/0.6745. The robustness of the MAD is due to the

fact that the median is not really affected by a small number of outliers and is not very

sensitive to a small change in the data [1], [36].

Figure 10 provides the SAR images used for the experimental tests. Table 4 presents the

ENLs obtained by SSBS denoising of these images (different SSBS parameters are used for the

denoising). The ENLs are computed within a window located in an homogeneous region for

the images under consideration (original images and denoised images). From table 4, it fol-

lows that the variability reduction in the SAR data is more effective for SSBS adjusted with the

level-dependent detection thresholds than for SBBS adjusted with the minimax or the universal-
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(a) ESAR Image

(b) ERS Image, © ESA

Figure 10: SAR images used the for experimental tests. (a): ESAR image with metric resolution;

(b): ERS image with decametric resolution.
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detection threshold.

Examples of SAR SSBS denoisings are given in figures 11-(a) and 12-(a). The SSBS parame-

ters used are indicated below the figure. The method-noise ratio images obtained from these

denoisings are given in figures 13-(a) and 14-(a). As can be seen in these figures, the ratio

between an orginal SAR image and its SSBS denoised version looks like speckle noise: it does

not contain significant signal components. Thus, SSBS performs noise reduction without im-

pacting significantly the signal characteristics: the non-informative speckle components are

removed in homogenous areas whereas the speckle-like textural information contained in the

original data is preserved. Figures 11-(b), 12-(b), 13-(b) and 14-(b) also provide experimental re-

sults for the BLS-GSM denoising of the SAR images of figure 10, for comparison with SSBS. The

method-noise ratio images obtained from the BLS-GSM denoising still contain non-speckled

signal components, as can be seen in figures 13-(b) and 14-(b): the rough denoising performed

by BLS-GSM (see figures 11-(b) and 12-(b)) thus affects the structural information of the SAR

Table 4: ENLs obtained for SSBS denoising of the SAR images of figure 10. The SSBS parameter

t is fixed to 0 for the denoising. The ENLs equal 3.0729 for the original ESAR image and 2.6664

for the original ERS image. The BLS-GSM denoising of these images yield ENLs equal 3.9285 for

the ESAR image and 13.4375 for the ERS image.

θ =π/8 θ =π/6

λm λud λD ( j ) λm λud λD ( j )

SSBS ESAR image denoising

4.8164 4.0227 5.4051 4.6342 3.8766 5.3136

SSBS ERS image denoising

4.6397 3.6993 4.8125 4.4943 3.5570 4.7546
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data.

(a) ESAR Image

Denoising by using

SSBS δ0, π
8

,λD ( j )

(b) ESAR Image

Denoising by using

BLS-GSM

Figure 11: SSBS and BLS-GSM denoisings for the ESAR image of figure 10-(a).
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(a) ERS Image, © ESA

Denoising by using

SSBS δ0, π
8

,λD ( j )

(b) ERS Image, © ESA

Denoising by using

BLS-GSM

Figure 12: SSBS and BLS-GSM denoisings for the ERS image of figure 10-(b).
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(a) ESAR Image

method-noise ratio with

SSBS δ0, π
8

,λD ( j )

(b) ESAR Image

method-noise ratio with

BLS-GSM

Figure 13: Image (a) is the ratio between the image of figure 10-(a) and the image of figure 11-(a). Image

(b) is the ratio between the image of figure 10-(a) and the image of figure 11-(b).
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(a) ERS Image, © ESA

method-noise ratio with

SSBS δ0, π
8

,λD ( j )

(b) ERS Image, © ESA

method-noise ratio with

BLS-GSM

Figure 14: Image (a) is the ratio between the image of figure 10-(b) and the image of figure 12-(a). Image

(b) is the ratio between the image of figure 10-(b) and the image of figure 12-(b).
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To conclude this section, note that a sub-class of SSBS functions constitutes a class of in-

vertible functions. These SSBS functions are those obtained by setting t = 0. For such an SSBS

function, its inverse is given by Eq. (13). This allows for lossless denoising in the sense that

one can retrieve an original image from its denoised version by simply applying the inverse de-

noising procedure: decompose the denoised image with the same wavelet transform as that

initially used, apply the inverse of the SSBS function to the wavelet coefficients and reconstruct

the original image by using the inverse wavelet transform. This lossless denoising might be rel-

evant in many applications involving large databases. As a matter of fact, SAR, oceanography

and medical ultrasonic sensors record many gigabits of data per day. These data (images) are

mainly corrupted by speckle noise. Lossless despeckling of these databases is appealing since

it is not essential to conserve a copy of the original database (thousands and thousands of gi-

gabits recorded every year). By using SSBS denoising, one can thus retrieve an original image

(when needed) by simply applying the inverse denoising procedure, which involves the inverse

function of the SSBS used for the denoising.

6 Conclusion

Some noticeable properties of the SSBS functions and the detection thresholds have been high-

lighted. The SSBS functions are a family of smooth sigmoid based shrinkage functions that per-

form a penalized shrinkage. The standard hard and soft thresholding functions can be seen as

degenerate SSBS functions. The properties of the SSBS functions have been addressed on the

basis of the geometrical interpretation of their parameters. It follows that the SSBS functions are

parameterized by 3 parameters that allow for controlling the attenuation degrees to be applied

to small, median and large values, the shrinkage process being regular since non-degenerate

SSBS functions are smooth functions.
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On the other hand, this paper has also analyzed the properties of the detection thresholds.

Detection thresholds depend on two parameters that describe the sparsity of the wavelet rep-

resentation in terms of “minimum significant amplitude” for the signal and “probability of oc-

currence” of the significant signal coefficients in the sequence of the wavelet coefficients. It

is shown that the universal and minimax thresholds are particular detection thresholds corre-

sponding to different degrees of sparsity.

Finally, the use of detection thresholds for calibrating SSBS functions has been addressed.

We have selected the SSBS detection thresholds on the basis of the known behavior of the wavelet

coefficients for smooth and piecewise regular signals. The resulting shrinkage is performant

for many images, including SAR images. The experimental results show that SSBS functions

adjusted with these detection thresholds achieve denoising PSNRs and SSIMs comparable to

those attained with the best parametric and computationally expensive method, the BLS-GSM

of [8]. This performance is remarkable for a non-parametric method where no interscale or in-

trascale predictors are used to provide information about significant wavelet coefficients. The

SSBS functions are thus suitable functions for noise reduction of large size signals and images.

They also allow for a lossless denoising (due to the invertibility of a sub-class of SSBS functions),

which can be relevant in many applications involving large databases.

An extension to this work could concern the estimation of the detection thresholds param-

eters a and p on the basis of the input noisy signal wavelet coefficients. This extension involves

estimating the minimum significant wavelet coefficient for the signal and an upper bound on

the probability of occurrence of significant wavelet coefficients. Combining this extension with

predictors for detecting significant (small) wavelet coefficients could probably improve the SSBS

performance.
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A The soft and hard thresholding functions are degenerate SSBS func-

tions

For fixed t and λ, and if T = max(t ,λ), then the function δt ,τ,λ(x) tends to the soft thresholding

function sgn(x)(|x|−T )+ when τ tends to +∞.

Now, when τ tends to infinity, δ0,τ,λ(x) tends to δ0,∞,λ(x), which is a hard thresholding func-

tion defined by:

δ0,∞,λ(x) =





x1{|x|>λ} if x ∈R\ {−λ,λ},

±λ/2 if x =±λ,
(24)

where 1∆ is the indicator function of a given set ∆ ⊂ R: 1∆(x) = 1 if x ∈ ∆; 1∆(x) = 0 if x ∈ R \∆.

Note that δ0,∞,λ sets a coefficient with amplitude λ to half of its value and so, minimizes the

local variation around λ, since limx→λ+ δ0,∞,λ(x)−2δ0,∞,λ(λ)+ limx→λ− δ0,∞,λ(x) = 0.
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B Re-parameterization for the class of SSBS functions

Let t > 0 and λ > t . The sub-class of SSBS functions generated by varying τ admits two fixed

points with non-null ordinates: in Cartesian-coordinates, A = (λ, [λ− t ]/2) and A′ = (−λ,−[λ−

t ]/2) belong to the curve of function δt ,τ,λ for every τ> 0. Indeed, according to Eq. (30), we have

δt ,τ,λ(±λ) = ±[λ− t ]/2 for any τ > 0. It follows that τ parameterizes the curvature of the arc of

the SSBS function in the interval ]t ,λ[. This curvature directly relates to the attenuation degree

we want to apply to data whose amplitudes belong to the interval ]t ,λ[.

Let C be the intersection between the abscissa axis and the tangent at point A to the curve

of the SSBS function. The equation of this tangent is y = 0.25(2+τ(λ− t ))(x−λ)+0.5(λ− t ). The

coordinates of point C are C = ((2t +τλ(λ− t ))/(2+τ(λ− t )),0). We can easily control the arc

�O A curvature via the angle, denoted by θ, between vector
−−→
O A, which is fixed, and vector

−−→
C A,

which is carried by the tangent to the curve of δt ,τ,λ at point A. The larger θ, the stronger the

attenuation of the coefficients with amplitudes in ]t ,λ[. For fixed t and λ, the relation between

angle θ and parameter τ is cosθ =−−→
O A.

−−→
C A/||−−→O A||.||−−→C A||:

cosθ =
10λ−2t +τ(λ− t )2

√
4λ2 + [λ− t ]2

√
20+4τ(λ− t )+τ2(λ− t )2

. (25)

It easily follows from Eq. (25) that

0 < θ < arccos
(
(λ− t )/

√
4λ2 + (λ− t )2

)
.

When θ = arccos((λ− t )/
√

4λ2 + (λ− t )2), then τ=+∞, and δt ,τ,λ is the hard thresholding func-

tion of Eq. (24).

From Eq. (25), we derive that τ can be written as a function of t , θ and λ as follows:

τ(t ,θ,λ) =
1

λ− t

(
−
Γ(t ,θ,λ)

Λ(t ,θ,λ)
+

√
Γ2(t ,θ,λ)

Λ2(t ,θ,λ)
−

20Υ(t ,θ,λ)−4(5λ− t )2

Λ(t ,θ,λ)

)
(26)
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where

Υ(t ,θ,λ) =
(
λ2 + (λ− t )2

)
cos2θ,

Γ(t ,θ,λ) = 2(Υ(t ,θ,λ)− (λ− t )(5λ− t )) ,

and

Λ(t ,θ,λ) =Υ(t ,θ,λ)− (λ− t )2.

Figure 15: Graph of δt ,τ,λ in the positive half plan (t=0).

When no attenuation is required for large data, we are concerned by the particular case t = 0

(the SSBS shape is that of figure 15) and if we put δτ,λ = δ0,τ,λ, Eqs. (2), (25) and (26) simplify:

δτ,λ(x) =
x

1+e−τ(|x|−λ)
, (30)

cosθ =
10+τλ

√
5(20+4τλ+τ2λ2)

, (31)
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with 0 < θ < arccos(
p

5/5), and

τ(θ,λ) =
10

λ

sin2θ+2sinθcosθ

5cos2θ−1
. (32)
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