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Abstract

This work addresses the properties of a sub-class of sigmoid based shrinkage functions: the non zero-

forcing smooth sigmoid based shrinkage functions or SigShrink functions. It provides a SURE optimiza-

tion for the parameters of the SigShrink functions. The optimization is performed on an unbiased esti-

mation risk obtained by using the functions of this sub-class. The SURE SigShrink performance measure-

ments are compared to those of the SURELET (SURE linear expansion of thresholds) parameterization. It

is shown that the SURE SigShrink performs well in comparison to the SURELET parameterization. The

relevance of SigShrink is the physical meaning and the flexibility of its parameters. The SigShrink func-

tions perform weak attenuation of data with large amplitudes and stronger attenuation of data with small

amplitudes, the shrinkage process introducing little variability among data with close amplitudes. In the

wavelet domain, SigShrink is particularly suitable for reducing noise without impacting significantly the

signal to recover. A remarkable property for this class of sigmoid based functions is the invertibility of its

elements. This property makes it possible to smoothly tune contrast (enhancement - reduction).

Keywords: Shrinkage; Sigmoid; Wavelet.

1 Introduction

The Smooth Sigmoid-Based Shrinkage (SSBS) functions introduced in [8] constitute a wide class of Wave-

Shrink functions. The WaveShrink (Wavelet Shrinkage) estimation of a signal involves projecting the ob-

served noisy signal on a wavelet basis, estimating the signal coefficients with a thresholding or shrinkage

function and reconstructing an estimate of the signal by means of the inverse wavelet transform of the

shrunken wavelet coefficients. The SSBS functions derive from the sigmoid function and perform an adju-

stable wavelet shrinkage thanks to parameters that control the attenuation degree imposed to the wavelet

coefficients. As a consequence, these functions allow for a very flexible shrinkage.
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The present work addresses the properties of a sub-class of the SSBS functions, the non-zero-forcing

SSBS functions, hereafter called the SigShrink (Sigmoid Shrinkage) functions. First, we provide a discussion

on the optimization of the SigShrink parameters in the context of WaveShrink estimation. The optimization

exploits the new SURE (Stein Unbiased Risk of Estimation, [22]) proposed in [16]. SigShrink performance

measurements are compared to those obtained when using the parameterization of [16], which consists of

a sum of Derivatives Of Gaussian (DOGs). We then address the main features of the SigShrink functions:

artifact-free denoising and smooth contrast functions make SigShrink a worthy tool for various signal and

image processing applications.

The presentation of this work is as follows. Section 2 presents the SigShrink functions. Section 3 briefly

describes the non-parametric estimation by wavelet shrinkage and addresses the optimization of the Sig-

Shrink parameters with respect to the new SURE approach described in [16]. Section 4 discusses the main

properties of the SigShrink functions by providing experimental tests. These tests assess the quality of the

SigShrink functions for image processing: adjustable and artifact-free denoising, as well as contrast func-

tions. Finally, section 5 concludes this work.

2 Smooth sigmoid-based shrinkage

The family of real-valued functions defined by [8]:

δτ,λ(x) =
x

1+e−τ(|x|−λ)
. (1)

for x ∈R, (τ,λ) ∈R
∗
+×R+, are shrinkage functions satisfying the following properties.

(P1) Smoothness: of the shrinkage function so as to induce small variability among data with close values;

(P2) Penalized shrinkage: a strong (resp. a weak) attenuation is imposed for small (resp. large) data.

(P3) Vanishing attenuation at infinity: the attenuation decreases to zero when the amplitude of the coef-

ficient tends to infinity.

Each δτ,λ is the product of the identity function with a sigmoid-like function. A function δτ,λ will here-

after be called a SigShrink (Sigmoid Shrinkage) function.

Note that δτ,λ(x) tends to δ∞,λ(x), which is a hard-thresholding function defined by:

δ∞,λ(x) =
{

x1l{|x|>λ} if x ∈R\ {−λ,λ},

±λ/2 if x =±λ,
(2)

where 1l∆ is the indicator function of a given set ∆⊂R: 1l∆(x) = 1 if x ∈∆; 1l∆(x) = 0 if x ∈R\∆. It follows that

λ acts as a threshold. Note that δ∞,λ sets a coefficient with amplitude λ to half of its value and so, minimizes

the local variation (second derivative) around λ, since limx→λ+ δ∞,λ(x)−2δ∞,λ(λ)+ limx→λ− δ∞,λ(x) = 0.

In addition, it is easy to check that, in Cartesian-coordinates, the points A = (λ,λ/2), O = (0,0) and

A′ = (−λ,−λ/2) belong to the curve of the function δτ,λ for every τ > 0. Indeed, according to Eq. (1), we

have δτ,λ(±λ) = ±λ/2 and δτ,λ(0) = 0 for any τ > 0. It follows that τ parameterizes the curvature of the arc

�A′OA, that is, the arc of the SigShrink function in the interval ]−λ,λ[. This curvature directly relates to
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the attenuation degree we want to apply to the wavelet coefficients. Consider the graph of figure 1, where a

SigShrink function is plotted in the positive half plan. Due to the antisymmetry of the SigShrink function, we

only focus on the curvature of arc �OA. Let C be the intersection between the abscissa axis and the tangent at

O 

θ 

C
 

B 

A 

Figure 1: Graph of δτ,λ in the positive half plan. The points A,B and C represented on this graph are such

that A = (λ,λ/2), B = (λ,0) and C is the intersection between the abscissa axis and the tangent to δτ,λ at

point A.

point A to the curve of the SigShrink function. The equation of this tangent is y = 0.25(2+τλ)(x −λ)+0.5λ.

The coordinates of point C are C = (τλ2/(2+τλ),0). We can easily control the arc �OA curvature via the angle,

denoted by θ, between vector
−−→
OA, which is fixed, and vector

−−→
C A, which is carried by the tangent to the curve

of δτ,λ at point A. The larger θ, the stronger the attenuation of the coefficients with amplitudes less than or

equal to λ. For a fixed λ, the relation between angle θ and parameter τ is

cosθ =
−−→
OA.

−−→
C A

||−−→OA||.||−−→C A||
=

10+τλ
√

5(20+4τλ+τ2λ2)
. (3)

It easily follows from Eq. (3) that 0 < θ < arccos(
p

5/5); when θ = arccos(
p

5/5), then τ=+∞ and δτ,λ is the

hard-thresholding function of Eq. (2). From Eq. (3), we derive that τ= τ(θ,λ) can be written as a function of

θ and λ as follows:

τ(θ,λ) =
10

λ

sin2
θ+2sinθcosθ

5cos2θ−1
. (4)

In practice, when λ is fixed, the foregoing makes it possible to control the attenuation degree we want to

impose to the data in ]0,λ[ by choosing θ, which is rather natural, and calculating τ according to Eq. (4).

Since we can control the shrinkage by choosing θ, δθ,λ = δτ(θ,λ),λ henceforth denotes the SigShrink function

where τ(θ,λ) is given by Eq. (4). This interpretation of the SigShrink parameters makes it easier to find “nice”

parameters for practical applications. Summarizing, the SigShrink computation is performed in three steps:

1. Fix threshold λ and angle θ of the SigShrink function, with λ > 0 and 0 < θ < arccos(
p

5/5). Keep in

mind that the larger θ, the stronger the attenuation.

2. Compute the corresponding value of τ from Eq. (4).
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3. Shrink the data according to the SigShrink function δτ,λ defined by Eq. (1).

Hereafter, the terms “attenuation degree” and “threshold” designate θ and λ, respectively. In addition,

the notation δτ,λ will be preferred for calculations and statements. The notation δθ,λ, introduced just above,

will be used for practical and experimental purposes since the attenuation degree θ is far more natural in

practice that parameter τ. Some SigShrink graphs are plotted in figure 2 for different values of the attenua-

tion degree θ (fixed threshold λ).

Figure 2: Shapes of SigShrink functions for different values of the attenuation degree θ: θ = π/6 for the

continuous (blue) curve, θ =π/4 for the dotted (red) curve, and θ =π/3 for the dashed (magenta) curve.

3 Sigmoid shrinkage in the wavelet domain

3.1 Estimation via shrinkage in the wavelet domain

Let us recall the main principles of the non-parametric estimation by wavelet shrinkage (the so-called

WaveShrink estimation) in the sense of [13]. Let y = {yi }16i6N stand for the sequence of noisy data yi =
f (ti )+ ei , i = 1,2, . . . , N , where f is an unknown deterministic function, the random variables {ei }16i6N

are independent and identically distributed (iid), Gaussian with null mean and variance σ
2, in short, ei ∼

N (0,σ2) for every i = 1,2, . . . , N .

In order to estimate { f (ti )}16i6N , we assume that an orthonormal transform, represented by an or-

thonormal matrix W , is applied to y . The outcome of this transform is the sequence of coefficients

ci = di +ǫi , i = 1,2, . . . , N , (5)

where c = {ci }16i6N = W y , d = {di }16i6N = W f , f = { f (ti )}16i6N and ǫ= {ǫi }16i6N = W e, e = {ei }16i6N .

The random variables {ǫi }16i6N are iid and ǫi ∼ N (0,σ2). The transform W is assumed to achieve a sparse

representation of the signal in the sense that, among the coefficients di , i = 1,2, . . . , N , only a few of them

have large amplitudes and, as such, characterize the signal. In this respect, simple estimators such as “keep

or kill” and “shrink or kill” rules are proved to be nearly optimal, in the Mean Square Error (MSE) sense, in

comparison with oracles (see [13] for further details). The wavelet transform is sparse in the sense given
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above for smooth and piecewise regular signals [13]. Hereafter, the matrix W represents an orthonormal

wavelet transform. Let d̂ = {δ(ci )}16i6N be the sequence resulting from the shrinkage of {ci }16i6N by using

a function δ(·). We obtain an estimate of f by setting f̂ = W
Td̂ where W

T is the transpose, and thus, the

inverse orthonormal wavelet transform.

In [13], the hard and soft-thresholding functions are proposed for wavelet coefficient estimation of a sig-

nal corrupted by Additive, White and Gaussian Noise (AWGN). Using these thresholding functions adjusted

with suitable thresholds, [13] shows that, in AWGN, the wavelet-based estimators thus obtained achieve

within a factor of 2log N of the performance achieved with the aid of an oracle. Despite the asymptotic

near-optimality of these standard thresholding functions, we have the following limitations. The hard-

thresholding function is not everywhere continuous and its discontinuities generate a high variance of the

estimate; on the other hand, the soft-thresholding function is continuous, but creates an attenuation on

large coefficients, which results in an over-smoothing and an important bias for the estimate [9]. In prac-

tice, these thresholding functions (and their alternatives “non-negative garrote” function [14], “smoothly

clipped absolute deviation” function [4]) yield musical noise in speech denoising and visual artifacts or

over-smoothing of the estimate in image processing (see for instance the experimental results given in Sec-

tion 4.1). Moreover, although thresholding rules are proved to be relevant strategies for estimating sparse

signals [13], wavelet representations of many signals encountered in practical applications such as speech

and image processing fail to be sparse enough (see illustrations given in [7, Figure 3]). For a signal whose

wavelet representation fails to be sparse enough, it is more convenient to impose the penalized shrinkage

condition (P2) instead of zero-forcing since small coefficients may contain significant information about

the signal. Condition (P1) guarantees the regularity of the shrinkage process and the role of condition (P3)

is to avoid over-smoothing of the estimate (noise mainly affect small wavelet coefficients). SigShrink func-

tions are thus suitable functions for such an estimation since they satisfy (P1), (P2) and (P3) conditions.

The following addresses the optimization of the SigShrink parameters.

3.2 SURE-based optimization of SigShrink parameters

Consider the WaveShrink estimation described in section 3.1. The risk function or cost used to measure the

accuracy of a WaveShrink estimator f̂ of f is the standard MSE. Since the transform W is orthonormal, this

cost is

rδ(d , d̂ ) =
1

N
E‖d − d̂‖2 =

1

N

N∑

i=1

E

(
di −δ(ci )

)2
(6)

for a shrinkage function δ. The SURE approach [22] involves estimating unbiasedly the risk rδ(d , d̂ ). The

SURE optimization then consists in finding the set of parameters that minimizes this unbiased estimate.

The following result is a consequence of [16, Theorem 1].

Proposition 1 The quantity ϑ+||d ||2
ℓ2

/N , where || · ||ℓ2
denotes ℓ2-norm and

ϑ(τ,λ) =
1

N

N∑

i=1

2σ2 − c2
i
+2(σ2 +σ

2
τ|ci |− c2

i
)e−τ(|ci |−λ)

(1+e−τ(|ci |−λ))2
, (7)

is an unbiased estimator of the risk rδτ,λ
(d , d̂ ), where δτ,λ is a SigShrink function.
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Proof: From [16, Theorem 1], we have that

rδ(d , d̂ ) =
1

N

(
||d ||2

ℓ2
+

N∑

i=1

E
(
δ

2(ci )−2ciδ(ci )+2σ2
δ
′(ci )

)
)

, (8)

where δ can be any differentiable shrinkage function that does not explode at infinity (see [16] for details).

A SigShrink function is such a shrinkage function. Taking into account that the derivate of the SigShrink

function δτ,λ is

δ
′
τ,λ(x) =

1+ (1+τ|x|)e−τ(|x|−λ)

(1+e−τ(|x|−λ))2
, (9)

the result derives from Eq. (1), Eq. (8) and Eq. (9).

As a consequence of proposition 1, we get that minimizing rδτ,λ
(d , d̂ ) of Eq. (6) amounts to minimizing

the unbiased (SURE) estimator ϑ given by Eq. (7). The next section presents experimental tests for illustrat-

ing the SURE SigShrink denoising of some natural images corrupted by AWGN. For every tested image and

every noise standard deviation considered, the optimal SURE SigShrink parameters are those minimizing

ϑ, the vector c representing the wavelet coefficients of the noisy image.

3.3 Experimental results

The SURE optimization approach for SigShrink is now given for some standard test images corrupted by

AWGN. We consider the standard 2-dimensional Discrete Wavelet Transform (DWT) by using the Symlet

wavelet of order 8 (‘sym8’ in the Matlab Wavelet toolbox).

The SigShrink estimation is compared with that of the SURELET “sum of DOGs” (Derivatives Of Gaus-

sian). SURELET (free MatLab software1) is a SURE-based method that moreover includes an inter-scale

predictor with a priori information about the position of significant wavelet coefficients. For the compari-

son with SigShrink, we only use the “sum of DOGs” parameterization, that is the SURELET method without

inter-scale predictor and Gaussian smoothing. By so proceeding, we thus compare two shrinkage functions:

SigShrink and “sum of DOGs”.

In the sequel, the SURE SigShrink parameters (attenuation degree and threshold) are those obtained by

performing the SURE optimization on the whole set of the detail DWT coefficients. The attenuation degree

and threshold thus computed are then applied at every decomposition level to the detail DWT coefficients.

We also introduce the SURE Level-Dependent SigShrink (SURE LD-SigShrink) parameters. These parame-

ters are obtained by applying a SURE optimization at every detail (horizontal, vertical, diagonal) sub-image

located at the different resolution levels concerned (4 resolution levels in our experiments).

The tests are carried out with the following values for the noise standard deviation: σ = 5,15,25,35.

For every value σ, 25 tests have been performed based on different noise realizations. Every test involves:

performing a DWT for the tested image corrupted by AWGN, computing the optimal SURE parameters

(SigShrink and LD-SigShrink), applying the SigShrink function with these parameters to denoise the wavelet

coefficients and building an estimate of the corresponding image by applying the inverse DWT to the shrun-

ken coefficients. For every test, the PSNR is calculated for the original image and the denoised image. The

1avalaible at http://bigwww.epfl.ch/demo/suredenoising/
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PSNR (in deciBel unit, dB), often used to assess the quality of a compressed image, is given by

PSNR = 10log10

(
ν

2/MSE
)

, (10)

where ν stands for the dynamics of the signal, ν= 255 in the case of 8 bit-coded images.

Table 1 gives the following statistics for the 25 PSNRs obtained by the SURE SigShrink, SURE LD-SigShrink

and “sum of DOGs” method: average value, variance, minimum and maximum. Average values and vari-

ances for the SURE SigShrink and SURE LD-SigShrink parameters are given in tables 2 - 3 - 4 - 5.

We use the Matlab routine fmincon to compute the optimal SURE SigShrink parameters. This function

computes the minimum of a constrained multivariable function by using nonlinear programming methods

(see Matlab help for the details). Note the following. First, one can use a test set and average the optimal

parameter values on this set for application to images other than those used in the test set. By so proceeding,

we avoid the systematic use of optimization algorithms such as fmincon on images that do not pertain to

the test class. The low variability that holds among the optimal parameters given in tables 2 - 3 - 4 - 5 ensures

the robustness of the average values. Second, instead of using optimal parameters, one can use heuristic

ones (calculated by taking into account the physical meaning of these parameters and the noise statistical

properties) such as the standard minimax or universal thresholds, which are shown to perform well with

SigShrink (see Section 4 above).

From table 1, it follows that the 3 methods yield PSNRs of the same order. The level dependent strategy

for SigShrink (LD-SigShrink) tends to achieve better results than the SigShrink and the “sum of DOGs”. For

every method, the difference (over the 25 noise realizations) between the minimum and maximum PSNR is

less than 0.2 dB.

From tables 2 - 3 - 4 - 5, we observe (concerning the optimal SURE SigShrink parameters) that

• the threshold height, as well as the attenuation degree tend to be increasing functions of the noise

standard deviation σ.

• for every testedσ, the SURE level-dependent attenuation degree and threshold tend to decrease when

the resolution level increase (see table 4).

• for every fixed σ, the variance of the optimal SURE parameters over the 25 noise realizations is small:

optimal parameters are not very disturbed for different noise realizations.

• as far as the level dependent strategy is concerned, the attenuation degree as well as the threshold

tend to decrease when the resolution level increase for a fixed σ.

4 Smooth adaptation

In this section, we highlight specific features of SigShrink functions with respect to several issues in image

processing.

Besides its simplicity (function with explicit close form, in contrast to parametric methods such as

Bayesian shrinkages [21, 12, 11, 19, 15, 23]), the main features of the SigShrink functions in image processing

are
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Table 1: Means, variances, minima and maxima of the PSNRs computed over 25 noise realizations, when de-
noising test images by the SURE SigShrink, SURE LD-SigShrink and “sum of DOGs” methods. The tested im-
ages are corrupted by AWGN with standard deviation σ. The DWT is computed by using the ‘sym8’ wavelet.
Some statistics are given in tables 2 - 3 - 4 - 5 for the SigShrink and LD-SigShrink optimal SURE parameters.

Image ‘House’ ‘Peppers’ ‘Barbara’ ‘Lena’ ‘Flin’ ‘Finger’ ‘Boat’ ‘Barco’

σ= 5 (=⇒ Input PSNR = 34.1514).

SigShrink 37.1570 36.4765 36.2587 37.3046 35.2207 35.3831 36.1187 36.6890
Mean(PSNR) LD-SigShrink 37.4880 36.6827 36.3980 37.5518 35.3128 35.8805 36.3608 36.9928

SURELET 37.3752 36.6708 36.3767 37.5023 35.3102 35.9472 36.3489 35.9698
SigShrink 0.4269 0.3635 0.0746 0.0696 0.0702 0.0630 0.0533 0.5338

Var(PSNR) ×103 LD-SigShrink 0.8786 0.3081 0.0879 0.0643 0.0262 0.0571 0.0937 0.5613
SURELET 0.5154 0.4434 0.0994 0.1241 0.0413 0.0453 0.0479 0.3132
SigShrink 37.1067 36.4479 36.2409 37.2837 35.2021 35.3681 36.1060 36.6384

Min(PSNR) LD-SigShrink 37.4427 36.6502 36.3764 37.5377 35.3043 35.8695 36.3409 36.9220
SURELET 37.3196 36.6280 36.3502 37.4799 35.2986 35.9355 36.3353 35.9190
SigShrink 37.2101 36.5211 36.2753 37.3202 35.2385 35.4043 36.1309 36.7345

Max(PSNR) LD-SigShrink 37.5405 36.7100 36.4175 37.5750 35.3244 35.8985 36.3790 37.0374
SURELET 37.4218 36.7061 36.3967 37.5198 35.3255 35.9614 36.3636 35.9960

σ= 15 (=⇒ Input PSNR = 24.6090).

SigShrink 31.0833 29.5395 28.9750 31.3434 27.9386 28.1546 29.6099 29.9200
Mean(PSNR) LD-SigShrink 31.6472 30.0930 29.3972 32.0571 28.3815 29.4191 30.2895 30.4545

SURELET 31.2834 29.9621 29.2817 31.9059 28.3502 29.4365 30.2706 27.4525
SigShrink 0.0016 0.0010 0.0003 0.0003 0.0001 0.0002 0.0003 0.0019

Var(PSNR) LD-SigShrink 0.0030 0.0009 0.0003 0.0008 0.0002 0.0002 0.0003 0.0015
SURELET 0.0014 0.0008 0.0003 0.0004 0.0001 0.0002 0.0003 0.0005
SigShrink 31.0022 29.4883 28.9490 31.3068 27.9221 28.1188 29.5829 29.8443

Min(PSNR) LD-SigShrink 31.5005 30.0315 29.3741 31.9621 28.3647 29.3908 30.2563 30.3773
SURELET 31.2056 29.9124 29.2378 31.8653 28.3339 29.3967 30.2468 27.4074
SigShrink 31.1630 29.6216 29.0129 31.3777 27.9555 28.1724 29.6416 30.0088

Max(PSNR) LD-SigShrink 31.7552 30.1848 29.4313 32.0952 28.4164 29.4604 30.3272 30.5144
SURELET 31.3555 30.0225 29.3075 31.9350 28.3616 29.4571 30.3093 27.4843

σ= 25 (=⇒ Input PSNR = 20.1720).

SigShrink 28.5549 26.5452 25.9539 28.7835 24.8761 25.1774 26.9844 27.2684
Mean(PSNR) LD-SigShrink 29.2948 27.3111 26.5146 29.7435 25.6407 26.6262 27.8216 27.9599

SURELET 28.8085 26.9941 26.4404 29.5937 25.5953 26.7659 27.8227 23.6221
SigShrink 0.0015 0.0009 0.0004 0.0007 0.0002 0.0002 0.0002 0.0017

Var(PSNR) LD-SigShrink 0.0028 0.0022 0.0006 0.0013 0.0002 0.0003 0.0007 0.0024
SURELET 0.0015 0.0024 0.0004 0.0004 0.0003 0.0003 0.0004 0.0006
SigShrink 28.4563 26.4906 25.9164 28.7256 24.8499 25.1474 26.9606 27.1534

Min(PSNR) LD-SigShrink 29.1894 27.2160 26.4642 29.6501 25.6143 26.5912 27.7927 27.8702
SURELET 28.7439 26.8867 26.4128 29.5424 25.5599 26.7256 27.7803 23.5541
SigShrink 28.6309 26.5974 25.9921 28.8215 24.8962 25.1962 27.0133 27.3490

Max(PSNR) LD-SigShrink 29.4082 27.3887 26.5684 29.8135 25.6715 26.6726 27.8970 28.0518
SURELET 28.8828 27.0884 26.4771 29.6331 25.6259 26.8062 27.8615 23.6703

σ= 35 (=⇒ Input PSNR = 17.2494).

SigShrink 26.9799 24.6863 24.2771 27.1918 22.9274 23.3429 25.4271 25.7142
Mean(PSNR) LD-SigShrink 27.7840 25.5818 24.8910 28.2782 23.9326 24.9625 26.3764 26.5068

SURELET 27.2768 25.1307 24.8383 28.1462 23.8954 25.0756 26.3880 21.3570
SigShrink 0.0018 0.0014 0.0005 0.0011 0.0002 0.0002 0.0006 0.0020

Var(PSNR) LD-SigShrink 0.0071 0.0035 0.0006 0.0022 0.0007 0.0003 0.0011 0.0035
SURELET 0.0021 0.0012 0.0004 0.0008 0.0003 0.0003 0.0006 0.0007
SigShrink 26.8957 24.6337 24.2299 27.1388 22.9031 23.3139 25.3856 25.6094

Min(PSNR) LD-SigShrink 27.6242 25.4966 24.8499 28.1395 23.8746 24.9369 26.3102 26.3964
SURELET 27.1928 25.0577 24.7906 28.0753 23.8608 25.0446 26.3167 21.3180
SigShrink 27.0502 24.7740 24.3079 27.2623 22.9493 23.3813 25.4782 25.7942

Max(PSNR) LD-SigShrink 27.9473 25.7515 24.9507 28.3628 23.9717 24.9984 26.4346 26.5985
SURELET 27.3627 25.2000 24.8701 28.1867 23.9375 25.1146 26.4311 21.4116
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Table 2: Mean values (based on 25 noise realizations) for optimal DWT ‘sym8’ SURE SigShrink parameters,
when denoising the ‘Lena’ image corrupted by AWGN. The SURE SigShrink parameters are the SigShrink
parameters θ and λ obtained by performing the SURE optimization on the whole set of the detail DWT
coefficients. It follows from these results that the threshold height, as well as the attenuation degree tend to
be increasing functions of the noise standard deviation σ.

Image: ’House’ ’Peppers’ ’Barbara’ ’Lena’ ’Flinstones’ ’Fingerprint’ Boat ’Barco’

σ= 5
Mean θ : 0.3183 0.2615 0.2655 0.3054 0.1309 0.1309 0.1913 0.3122
Mean λ/σ : 2.3420 1.9289 1.9156 2.3861 1.1145 1.1375 1.6885 2.1334

σ= 15
Mean θ : 0.5113 0.4407 0.4256 0.5158 0.3429 0.3491 0.4264 0.4584
Mean λ/σ : 3.0439 2.6016 2.6259 3.1045 2.3897 2.4181 2.8454 2.8954

σ= 25
Mean θ : 0.5640 0.4931 0.4638 0.5764 0.4305 0.4310 0.4997 0.5185
Mean λ/σ : 3.2612 2.7893 2.9397 3.3283 2.7167 2.7670 3.1414 3.2043

σ= 35
Mean θ : 0.5925 0.5151 0.4900 0.6066 0.4761 0.4802 0.5389 0.5505
Mean λ/σ : 3.3885 2.9240 3.2249 3.4733 2.8835 2.9493 3.3459 3.4142

Table 3: Variances (based on 25 noise realizations) for the optimal SURE SigShrink parameters whose means
are given in table 2.

Image: ’House’ ’Peppers’ ’Barbara’ ’Lena’ ’Flinstones’ ’Fingerprint’ Boat ’Barco’

σ= 5

Var θ : 10−04× 0.1550 0.2625 0.0877 0.0592 0.0002 0.0004 0.0642 0.2138

Var λ/σ : 10−03× 0.0932 0.2204 0.0591 0.0209 0.0015 0.0017 0.1454 0.1500

σ= 15

Var θ : 10−04× 0.4569 0.2777 0.0468 0.1946 0.0722 0.0297 0.0478 0.5645
Var λ/σ : 0.0002 0.0001 0.0003 0.0011 0.0003 0.0003 0.0018 0.0001

σ= 25

Var θ : 10−04× 0.4858 0.3753 0.0968 0.1594 0.0433 0.0586 0.1100 0.6510

Var λ/σ : 10−03× 0.6270 0.1439 0.0504 0.1215 0.0184 0.0227 0.0452 0.3095

σ= 35

Var θ : 10−04× 0.7011 0.3639 0.1123 0.2463 0.0662 0.1041 0.0982 0.8360

Var λ/σ : 10−03× 0.9610 0.4325 0.1219 0.1720 0.2287 0.0445 0.1570 0.7928
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Table 4: Mean values of the optimal SURE LD-SigShrink parameters, for the denoising of the ‘Lena’ image
corrupted by AWGN. The DWT with the ‘sym8’ wavelet is used. The SURE LD-SigShrink parameters are
obtained by applying a SURE optimization at every detail (Hori. for Horizontal, Vert. for Vertical, Diag. for
Diagonal) sub-image located at the different resolution levels concerned. We remark first that the threshold
height, as well as the attenuation degree, tend to be increasing functions of the noise standard deviation σ.
In addition, for every σ considered, the attenuation degree as well as the threshold tend to decrease when
the resolution level increase.

σ= 5
θ λ/σ

Hori. Vert. Diag. Hori. Vert. Diag.
J = 1 0.2864 0.2738 0.3172 3.1072 2.3829 4.2136
J = 2 0.2298 0.1722 0.3057 1.8747 1.4181 2.1687
J = 3 0.0863 0.0657 0.1868 0.7361 0.4852 1.3251
J = 4 0.1154 0.1558 0.4071 0.4957 0.4867 1.4383

σ= 15
θ λ/σ

Hori. Vert. Diag. Hori. Vert. Diag.
J = 1 0.5397 0.4517 0.9361 4.9893 4.0930 4.6560
J = 2 0.4209 0.3767 0.4641 2.9436 2.4534 3.1053
J = 3 0.2622 0.1794 0.3481 1.9541 1.3087 2.2195
J = 4 0.2128 0.3161 0.4528 1.0539 1.0125 1.8657

σ= 25
θ λ/σ

Hori. Vert. Diag. Hori. Vert. Diag.
J = 1 0.8934 0.5412 0.9712 4.5129 5.0167 4.4367
J = 2 0.4633 0.4217 0.5209 3.5723 2.8134 3.8653
J = 3 0.3294 0.2642 0.4135 2.4032 1.7920 2.5764
J = 4 0.2644 0.3264 0.4655 1.5004 1.3231 2.0720

σ= 35
θ λ/σ

Hori. Vert. Diag. Hori. Vert. Diag.
J = 1 0.8772 0.8785 0.9575 4.6843 4.5268 4.6499
J = 2 0.4963 0.4389 0.5746 4.2031 3.2062 4.5700
J = 3 0.3643 0.2745 0.4424 2.6642 1.9881 2.8343
J = 4 0.2700 0.3119 0.4743 1.6543 1.3744 2.2185
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Table 5: Variances (based on 25 noise realizations) for optimal SURE SigShrink parameters whose means
are given in table 4.

σ= 5
θ λ/σ

Hori. Vert. Diag. Hori. Vert. Diag.

J = 1 4.0132×10−05 2.3941×10−05 7.8842×10−05 3.2225×10−04 1.2107×10−04 1.2801×10−02

J = 2 7.1936×10−05 9.1042×10−05 8.2755×10−05 8.9961×10−04 2.1122×10−02 3.3873×10−04

J = 3 3.9358×10−04 1.9894×10−06 4.9047×10−04 1.7802×10−02 9.4616×10−05 8.1475×10−03

J = 4 3.8724×10−02 7.2803×10−02 1.0830×10−02 2.6745×10−02 4.4741×10−02 9.0581×10−03

σ= 15
θ λ/σ

Hori. Vert. Diag. Hori. Vert. Diag.

J = 1 1.1386×10−05 8.5503×10−05 2.9411×10−02 9.1445×10−04 5.2059×10−03 1.7085×10−01

J = 2 1.2669×10−04 1.0311×10−04 1.8030×10−04 3.1178×10−04 3.7783×10−04 1.3153×10−03

J = 3 7.0001×10−04 9.6295×10−04 4.0143×10−03 5.8012×10−03 1.7847×10−02 1.1231×10−03

J = 4 3.5209×10−02 8.4438×10−02 4.7492×10−03 6.0936×10−02 1.2701×10−01 5.4097×10−03

σ= 25
θ λ/σ

Hori. Vert. Diag. Hori. Vert. Diag.

J = 1 3.6502×10−03 6.7723×10−05 1.3148×10−02 3.2220×10−01 3.0924×10−03 3.718×10−01

J = 2 2.2414×10−04 1.5173×10−04 4.5237×10−04 3.7254×10−03 4.2258×10−04 1.5425×10−02

J = 3 5.9582×10−04 2.5486×10−05 4.3791×10−04 2.6453×10−02 8.5859×10−04 8.3580×10−04

J = 4 1.0268×10−04 1.8425×10−02 3.0014×10−02 2.9073×10−02 7.6271×10−03 3.6192×10−03

σ= 35
θ λ/σ

Hori. Vert. Diag. Hori. Vert. Diag.

J = 1 2.2438×10−02 3.7058×10−02 1.1533×10−02 2.7270×10−01 2.6113×10−01 2.8441×10−01

J = 2 4.7551×10−04 2.7514×10−04 9.0224×10−04 4.2308×10−02 2.0487×10−03 9.8234×10−02

J = 3 9.0951×10−04 2.1239×10−04 8.5623×10−04 3.2461×10−03 1.2198×10−03 3.4412×10−03

J = 4 5.9373×10−04 9.1487×10−03 2.8074×10−03 4.2265×10−03 5.6180×10−03 4.9168×10−03
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Adjustable denoising: the flexibility of the SigShrink parameters allows to choose the denoising level.

From hard denoising (degenerated SigShrink) to smooth denoising, there exists a wide class of regu-

larities that can be attained for the denoised signal by adjusting the attenuation degree and threshold.

Artifact-free denoising: the smoothness of the non-degenerated SigShrink functions allows for re-

ducing noise without impacting significantly the signal: a better preservation of the signal character-

istics (visual perception) and its statistical properties is guaranteed due to the fact that the shrinkage

is performed with less variability among coefficients with close values.

Contrast function: the SigShrink function and its inverse, the SigStretch function, can be seen as con-

trast functions. The SigShrink function enhances contrast, whereas the SigStretch function reduces

contrast).

Below, we detail these characteristics. The following proposition characterizes the SigStretch function.

Proposition 2 The SigStretch function, denoted rτ,λ, is defined as the inverse of the SigShrink function δτ,λ

and is given by

rτ,λ(z) = z + sgn(z)L
(
τ|z|e−τ(|z|−λ)

)
/τ (11)

for any real value z, with L being the Lambert function defined as the inverse of the function: t > 0 7−→ te t .

Proof: [See appendix].

In the rest of the paper, the wavelet transform used is the Stationary (also call shift-invariant or re-

dundant) Wavelet Transform (SWT) [10]. This transform has appreciable properties in denoising. Its re-

dundancy makes it possible to reduce residual noise due to the translation sensitivity of the orthonormal

wavelet transform.

4.1 Adjustable and artifact-free denoising

The shrinkage performed by the SigShrink method is adjustable via the attenuation degree θ and the thresh-

old λ.

Figures 4 and 5 give denoising examples for different values of θ and λ. The denoising concerns the

‘Lena’ image corrupted by AWGN with standard deviation σ= 35 (figure 3). The ‘Haar’ wavelet and 4 decom-

position levels are used for the wavelet representation (SWT). The classical minimax and universal thresh-

olds [13] are used. In these figures, SigShrinkθ,λ stands for the SigShrink function which parameters are θ

and λ.

For a fixed attenuation degree, we observe that the smoother denoising is obtained with the larger

threshold (universal threshold). Small value for the threshold (minimax threshold) leads to better preser-

vation of the textural information contained in the image (compare in figure 4, image (a) versus image (d);

image (b) versus image (e); image (c) versus image (f); or equivalently, compare the zooms of these images

shown in figure 5).

Now, for a fixed threshold λ, the SigShrink shape is controllable via θ (see figure 2). The attenuation

degree θ, 0 < θ < arccos(
p

5/5), reflects the regularity of the shrinkage and the attenuation imposed to data
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with small amplitudes (mainly noise coefficients). The larger θ, the more the noise reduction. However,

SigShrink functions are more regular for small values of θ, and thus, small values for θ lead to less artifacts

(in figure 5, compare images (d), (e) and (f).

It follows that SigShrink denoising is flexible thanks to parameters λ and θ, preserves the image features

and leads to artifact-free denoising. It is thus possible to reduce noise without impacting the signal char-

acteristics significantly. Artifact free denoising is relevant in many applications, in particular for medical

imagery where visual artifacts must be avoided. In this respect, we henceforth consider small values for the

attenuation degree.

Note that the SURELET “sum of DOGs” parameterization does not allow for such an heuristically ad-

justable denoising because the physical interpretation of its parameters is not explicit, whereas the SigShrink

and the standard hard, soft, NNG and SCAD thresholding functions mentioned in Section 3.1 depend on

parameters with more intuitive physical meaning (threshold height and an additional attenuation degree

parameter for SigSghink). Denoising examples achieved by using the hard, soft, NNG and SCAD threshold-

ing functions are given in figure 6, for a comparison with the SigShrink denoising. The minimax threshold

is used for the denoising (the results are even worse with the universal threshold). As can be seen in this

figure, artifacts are visible in the image denoised by using hard-thresholding, whereas images denoised by

using soft, NNG and SCAD thresholding functions tend to be over-smoothed. Numerical comparison of the

denoising PSNRs performed by SigShrink and these standard thresholding functions can be found in [8].

Figure 3: Noisy ‘Lena’ image, noise is AWGN with standard deviation σ= 35, which corresponds to an input

PSNR=17.2494 dB.

Remark 1 At this stage, it is worth mentioning the following. Some parametric shrinkages using a priori dis-

tributions for modeling the signal wavelet coefficients can sometimes be described by non-parametric func-

tions with explicit formulas (for instance, a Laplacian assumption leads to a soft-thresholding shrinkage).

In this respect, one can wonder about possible links between SigShrink and the Bayesian Sigmoid Shrinkage

(BSS) of [23]. BSS is a one-parameter family of shrinkage functions, whereas SigShrink functions depend on

two parameters. Fixing one of these two parameters yields a sub-class of SigShrink functions. It is then reason-

able to think that, depending on the distribution of the signal and noise wavelet coefficients, these functions

should somehow relate to BSS. Actually, such a possible link has not yet been established.
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(a) SigShrinkπ/6,λu

PSNR=27.3019 dB

(b) SigShrinkπ/4,λu

PSNR=27.0110 dB

(c) SigShrinkπ/3,λu

PSNR=26.8441 dB

(d) SigShrinkπ/6,λm

PSNR=27.2852 dB

(e) SigShrinkπ/4,λm

PSNR=28.1485 dB

(f) SigShrinkπ/3,λm

PSNR=27.9440 dB

Figure 4: SWT SigShrink denoising of ‘Lena’ image corrupted by AWGN with standard deviation σ = 35.

The universal threshold λu and the minimax threshold λm are used. The universal threshold (the larger

threshold) yields a smoother denoising, whereas the minimax threshold leads to better preservation of the

textural information contained in the image.
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(a) SigShrinkπ/6,λu

PSNR=27.3019 dB

(b) SigShrinkπ/4,λu

PSNR=27.0110 dB

(c) SigShrinkπ/3,λu

PSNR=26.8441 dB

(d) SigShrinkπ/6,λm

PSNR=27.2852 dB

(e) SigShrinkπ/4,λm

PSNR=28.1485 dB

(f) SigShrinkπ/3,λm

PSNR=27.9440 dB

Figure 5: Zoom of the SigShrink denoising of ‘Lena’ images of figure 4.
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Hardλm

PSNR=27.8706 dB

Softλm

PSNR=25.2785 dB

NNGλm

PSNR=26.4129 dB

SCADλm

PSNR=25.7867 dB

Figure 6: Denoising examples by using standard thresholding functions. The ‘Haar’ wavelet and 4 decom-

position levels are used for the wavelet representation (SWT). The denoising concerns the image of figure

3.

To conclude this section, note that shrinkages and regularization procedures are linked in the sense that

a shrinkage function solves to a regularization problem constrained by a specific penalty function [3]. Since

SigShrink functions satisfy assumptions of [3, Proposition 3.2], the shrinkage obtained by using a function

δτ,λ can be seen as a regularization approximation [4] by seeking the vector d that minimizes the penalized

least squares

||d −c ||2
ℓ2
+2

N∑

i=1

qτ,λ(|di |), (12)

where qλ = qτ,λ(·) is the penalty function associated with δτ,λ, qτ,λ is defined for every x > 0 by

qτ,λ(x) =
∫x

0
(rτ,λ(z)− z)dz, (13)

with rτ,λ the SigStretch function (inverse of the SigShrink function δτ,λ, see Eq. (11)). Thus, SigShrink have

several interpretations depending on the model used.

4.2 Speckle denoising

In SAR, oceanography and medical ultrasonic imagery, sensors record many gigabits of data per day. These

images are mainly corrupted by speckle noise. If post-processing such as segmentation or change detection
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have to be performed on these databases, it is essential to be able to reduce speckle noise without impacting

the signal characteristics significantly. The following illustrates that SigShrink makes it possible to achieve

this because of its flexibility (see the shapes of SigShrink functions given in figure 2) and the artifact-free

denoising they perform (see figures 4 - 5). In addition, since SigShrink is invertible, it is not essential to store

a copy of the original database (thousands and thousands of gigabits recorded every year): one can retrieve

an original image by simply applying the inverse SigShrink denoising procedure (SigStrech functions). More

precisely, the following illustrates that SigShrink performs well for denoising speckle noise in the wavelet

domain.

Speckle noise is a multiplicative type noise inherent to signal acquisition systems using coherent radi-

ation. This multiplicative noise is usually modeled as a correlated stationary random process independent

of the signal reflectance.

Two different additive representations are often used for speckle noise. The first model is a “signal-

dependent” stationary noise model: noise, assumed to be stationary, depends on the signal reflectance.

This model is simply obtained by noting that ǫz = z + z(ǫ−1), z being the signal reflectance and ǫ being a

stationary random process independent of z. The second model is a “signal-independent” model obtained

by applying a logarithmic transform to the noisy image.

We begin with the speckle signal-dependent model. The denoising procedure then involves applying an

SWT to the noisy image, estimating the noise standard deviation in each SWT subband by the robust MAD

(Median of the Absolute Deviation, normalized by the constant 0.6745) estimator [13], shrinking the wavelet

coefficients by using a SigShrink function adjusted with the minimax threshold [13], and reconstructing an

estimate of the signal by means of the inverse SWT. The results obtained for the ‘Lena’ image corrupted by

speckle noise (figure 7 (a)) are shown in figure 7 (b) - (c).

In addition, we consider the speckle signal-independent model. We use the estimation procedure de-

scribed above for denoising the logarithmic transformed noisy image. The results are given in figure 7 (d) -

(e).

By comparing the results of figure 7, we observe that the PSNRs achieved are of the same order whatever

the model. However, the denoising obtained with the additive independent noise model (logarithmic trans-

form) has a better visual quality than that obtained with the additive signal-dependent speckle model. In

fact, one can note, from this figure, the ability of SigShrink functions to reduce speckle noise without impact-

ing structural features and textural information of the image. Note also the gain in PSNR larger than 10 dBs,

performance of the same order as that of the best up-to-date speckle denoising techniques ([24, 5, 2, 6, 1, 20]

among others).

4.3 Contrast function

To conclude this section, we now present the SigShrink and SigStretch functions as contrast functions. Con-

trast functions are very useful in medical image processing. As a matter of fact, medical monitoring for

arthroplasty (replacement of certain bone surfaces by implants due to lesions of the articular surfaces) re-

quires 2D-3D registration of the implant, and thus, requires knowing exactly the position of the implant

contour. Precise edge detection is no easy task [18] because edge detection methods are sensitive to con-

trast (global contrast for the image and local contrast around a contour). The following briefly describes
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(a) Noisy image

PSNR = 18.8301 dB

Denoising without logarithmic transform

(b) SigShrinkπ/6,λm

PSNR = 29.0078 dB

(c) SigShrinkπ/4,λm

PSNR = 29.4059 dB

Denoising with logarithmic transform

(d) SigShrinkπ/6,λm

PSNR = 29.0567 dB

(e) SigShrinkπ/4,λm

PSNR = 29.2328 dB

Figure 7: SigShrink denoising of the ‘Lena’ image corrupted by speckle noise. The SWT with four resolution

levels and the Haar filters are used. The noise standard deviation is estimated by the MAD normalized by

the constant 0.6745 (see [13]).
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how to use SigShrink - SigStretch functions as contrast functions.

The SigShrink function applies a penalized shrinkage to data with small amplitudes. The smaller the

data amplitude, the higher the attenuation imposed by the SigShrink function. Thus, a SigShrink function

is a contrast enhancing function: this function increases the gap between large and small values for the

pixels of an image. As a consequence, a SigStretch function reduces the contrast by lowering the variation

between large and small pixel values in the image. Figure 8 gives the original ‘Lena’ image, as well as the

SigShrink δπ/6,100 and SigStretch rπ/6,100 shrunken images. This figure highlights that the contrast of the

image can be smoothly adjusted (enhancement, reduction) by applying SigShrink and SigStretch functions

without introducing artifacts. Note that, as for denoising, SigShrink allows for choosing the attenuation

degree imposed to the data, when the threshold height is fixed. Figure 9 illustrates the variability that can

be attained by varying the SigShrink attenuation degree for enhancing the contrast of a fluoroscopic image.

To conclude this section, we now illustrate the combination of SigShrink denoising and contrast en-

hancement for an ultrasonic image of breast cancer. The combination involves denoising the image by

using the SigShrink method in the wavelet domain. A SigShrink function is then applied to the denoised

image to enhance its contrast. The results are presented in figure 10. It is shown that SigShrink denoises the

image and preserves feature information without introducing artifacts. The parameter θ = π/6 is chosen

so as to avoid visual artifacts. Different thresholds are experimented to highlight how we can progressively

reduce noise without affecting the image textural information. The threshold λd is the detection threshold

of [7]. This threshold is smaller than the minimax threshold. It is close to λu/2 when the sample size is large.

(a) SigStretchπ/6,100 (b) Original image (c) SigShrinkπ/6,100

Figure 8: SigStretch and SigShrink applied on the ‘Lena’ image.

5 Conclusion

This work proposes the use of SigShrink - SigStretch functions for practical engineering problems such as

image denoising, image restoration and image enhancement. These functions perform adjustable adapta-

tion of data in the sense that they can enhance or reduce the variability among data, the adaptation process

being regular and invertible. Because of the smoothness of the function used (infinitely differentiable in

]0,+∞[), the data adaptation is performed with little variability so that the signal characteristics are better
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(a) Original image (b) SigShrinkπ/6,255 (c) SigShrinkπ/4,255

Figure 9: SigStretch and SigShrink applied on a fluoroscopic image.

preserved. The SigShrink and SigStretch methods are simple and flexible in the sense that the parameters of

these classes of functions allow for a fine tuning of the data adaptation. This adaptation is non-parametric

because no prior information about the signal is taken into account. A SURE based optimization of the

parameters is possible.

The denoising achieved by a SigShrink function is almost artifact-free due to the little variability intro-

duced among data with close amplitudes. This artifact-free denoising is relevant for many applications,

in particular for medical imagery where visual artifacts must be avoided. In addition, a fine calibration of

SigShrink parameters allows noise reduction without impacting the signal characteristics. This is important

when some post-processing (such as a segmentation) must be performed on the signal estimate.

As far as perspectives are concerned, we can reasonably expect to improve SigShrink denoising perfor-

mance by introducing inter-scale or/and intra-scale predictor, which could provide information about the

position of significant wavelet coefficients. It could also be relevant to undertake a complete theoretical and

experimental comparison between SigShrink and Bayesian sigmoid shrinkage [23].

In addition, application of SigShrink to speech processing could also be considered. Since SigShrink

yields denoised images that are almost artifact-free, would it be possible that such an approach denoises

speech signals corrupted by AWGN without returning musical noise, in contrast to classical shrinkages using

thresholding rules?

Another perspective is the SigShrink - SigStretch calibration of contrast in order to improve edge de-

tection in medical imagery. Exact edge detection is necessary for 2D-3D registration of images. Sub-pixel

measurement of edge is possible by using for example the moment-based method of [17]. However, the

method is very sensible to contrast. Low contrast varying images result in multiple contours, whereas high

varying contrast in image leads to good precision for certain contour points, but induces lack of detection

for points in lower contrast zones. The idea is the use of the SigShrink - SigStretch functions for improv-

ing image contrast so as to alleviate edge detection in medical imagery. For instance, we can expect that

combining SigShrink - SigStretch with edge detection methods such as [17] can lead to good sub-pixel mea-

surement of the contour in an image.
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(a) Ultrasonic image

SigShrink denoising without contrast enhancement

(b) SigShrinkπ/6,λd
(c) SigShrinkπ/6,λm

(d) SigShrinkπ/6,λu

SigShrink denoising combined with SigShrinkπ/6,100 contrast enhancement

(e) SigShrinkπ/6,λd
(f) SigShrinkπ/6,λm

(g) SigShrinkπ/6,λu

Figure 10: SigShrink denoising for an ultrasonic image of breast cancer. The SWT with four resolution lev-

els and the biorthogonal spline wavelet with order 3 for decomposition and with order 1 for reconstruction

(‘bior1.3’ in Matlab Wavelet toolbox) are used. The noise standard deviation is estimated by the MAD nor-

malized by the constant 0.6745 (see [13]).
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Proof of Proposition 2

Because δτ,λ is antisymmetric, rτ,λ has the form

rτ,λ(z) = zG(z), (14)

for every real value z and where G is such that

G(z) = 1+e−τ(|z|G(z)−λ).

Therefore, G(z) > 1 for any real value z. We thus have

(G(z)−1)eτ(|z|(G(z)−1) = e−τ(|z|−λ),

which is also equivalent to

τ|z| (G(z)−1)eτ(|z|(G(z)−1) = τ|z|e−τ(|z|−λ).
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It follows that

τ|z| (G(z)−1) =L

(
τ|z|e−τ(|z|−λ)

)
,

which leads to

G(z) = 1+L

(
τ|z|e−τ(|z|−λ)

)
/(τ|z|) (15)

for z 6= 0. The result then follows from (14), (15) and the fact that rτ,λ(0) = 0 since δτ,λ(0) = 0.
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