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On the number of numerical semigroups 〈a, b〉
of prime power genus

Shalom Eliahou∗ and Jorge Ramı́rez Alfonśın†

September 14, 2012

Abstract

Given g ≥ 1, the number n(g) of numerical semigroups S ⊂ N of
genus |N \ S| equal to g is the subject of challenging conjectures of
Bras-Amorós. In this paper, we focus on the counting function n(g, 2)
of two-generator numerical semigroups of genus g, which is known to
also count certain special factorizations of 2g. Further focusing on the
case g = pk for any odd prime p and k ≥ 1, we show that n(pk, 2) only
depends on the class of p modulo a certain explicit modulus M(k).
The main ingredient is a reduction of gcd(pα+1, 2pβ +1) to a simpler
form, using the continued fraction of α/β. We treat the case k = 9 in
detail and show explicitly how n(p9, 2) depends on the class of p mod
M(9) = 3 · 5 · 11 · 17 · 43 · 257.

Keywords. Gap number; Sylvester’s theorem; Special factorizations;
Euclidean algorithm; Continued fractions; RSA.

1 Introduction

A numerical semigroup is a subset S ⊂ N containing 0, stable under addition
and with finite complement in N. The cardinality of N \ S is then called the
gap number or the genus of S. It is well known that, given g ∈ N, there
are only finitely many numerical semigroups of genus g. Yet the question
of counting them seems to be a very hard problem, analogous to the one of
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†jramirez@math.univ-montp2.fr
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counting numerical semigroups by Frobenius number. See [1, 2] for some nice
conjectures about it. The problem becomes more tractable when restricted
to semigroups S = 〈a, b〉 = Na + Nb with two generators. So, let us denote
by n(g, 2) the number of numerical semigroups S = 〈a, b〉 of genus g. On the
one hand, determining n(g, 2) is linked to hard factorization problems, like
factoring Fermat and Mersenne numbers [3]. On the other hand, the value
of n(g, 2) is known for all g = 2k with k ≥ 1, and for all g = pk with p an
odd prime and k ≤ 8. Indeed, exact formulas are provided in [3], showing in
particular that n(pk, 2) for k = 1, 2, 3, 4, 5, 6, 7 and 8 only depends on the
class of p modulo 3, 1, 15, 7, 255, 31, 36465 and 27559, respectively. See also
Section 7, where these formulas are given in a new form.

Our purpose in this paper is to extend our understanding of n(pk, 2) to
arbitrary exponents k ∈ N. Giving exact formulas in all cases is out of reach
since, for instance, a formula for n(p4097, 2) would require the still unknown
factorization of the 12th Fermat number 22

12
+ 1. However, what can and

will be done here is to show that, for all k ≥ 1, the value of n(pk, 2) only

depends on the class of p modulo some explicit modulus M(k).
This result is formally stated and proved in Section 4. Here is how M(k)

is defined:

M(k) = rad(

k
∏

i=1

(

2i/ gcd(i,k) − (−1)k/ gcd(i,k)
)

),

where rad(n) denotes the product of the distinct prime factors of n, i.e. the
largest square-free divisor of n. We start by recalling in Section 2 that n(g, 2)
can be identified with the counting function of certain special factorizations
of 2g. In Section 3, we reduce gcd(pα+1, 2pβ+1) for α, β ∈ N to the simpler
form

gcd(pgcd(α,β) ± 2ρ, c)

where ρ, c ∈ Z only depend on α, β and not on p. This reduction uses the
continued fraction of α/β and directly leads to our main result in Section 4.
In Section 5, we introduce basic binary functions Xa,q which will serve as
building blocks in our formulas. The case k = 9 is treated in detail in
Section 6, where we give an explicit formula for n(p9, 2) depending on the
class of p mod M(9) = 3 · 5 · 11 · 17 · 43 · 257. We also provide a formula in
the case k = 10 with somewhat less details. Finally, in the last section we
give and prove new formulas for n(pk, 2) with k ≤ 8 in terms of the Xa,q.

Background information on numerical semigroups can be found in the
books [4, 5].
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2 Special factorizations of 2g

We first recall from [3] that n(g, 2) can be identified with the counting number

of factorizations uv of 2g in N satisfying gcd(u+ 1, v + 1) = 1. In formula:

n(g, 2) = #{{u, v} ⊂ N | uv = 2g, gcd(u+ 1, v + 1) = 1}. (1)

This follows from the classical theorem of Sylvester [6] stating that whenever
gcd(a, b) = 1, the genus g of the numerical semigroup S = 〈a, b〉 is given by

g =
(a− 1)(b− 1)

2
.

For g = pk with p an odd prime, an immediate consequence of (1) is the
following formula.

Proposition 2.1 For any odd prime p and exponent k ≥ 1, we have

n(pk, 2) = #{0 ≤ i ≤ k | gcd(pi + 1, 2pk−i + 1) = 1}.

Thus, in order to understand the behavior of n(pk, 2), we need to gain
some control on

gcd(pα + 1, 2pβ + 1)

for α, β ∈ N, and hopefully find ways to determine when this greatest com-
mon divisor equals 1. This is addressed in the next section.

3 On gcd(pα + 1, 2pβ + 1)

Here is the key technical tool which will lead to our main result in Section 4.
Given α, β ∈ N, we shall reduce the greatest common divisor

gcd(pα + 1, 2pβ + 1)

to the simpler form
gcd(pδ ± 2ρ, c),

where δ = gcd(α, β) and where ρ, c ∈ Z only depend on α, β and not on p.
For this purpose, it is more convenient to work in the ring Z[2−1] where 2 is
made invertible. Moreover, one may effortlessly replace Z[2−1] by any unique
factorization domain A, and 2 by any invertible element u in A. Of course
then, the gcd is only defined up to invertible elements of A. The proof in
this more general context remains practically the same.
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Proposition 3.1 Let A be a unique factorization domain and let x, u ∈ A
with u invertible. Let α, β ∈ N and set δ = gcd(α, β). Then there exists

ρ ∈ Z such that

gcd(xα + 1, uxβ + 1) = gcd(xδ ± uρ, uα/δ − (−1)(α−β)/δ).

The proof is based on a careful study of the successive steps in the Eu-
clidean algorithm for computing gcd’s.

Proof. First note that, since u is invertible, we have

gcd(xα + 1, uxβ + 1) = gcd(xα + 1, xβ + u−1).

Set r0 = α, r1 = β. Consider the Euclidean algorithm to compute gcd(r0, r1):

ri = airi+1 + ri+2 (2)

for all 0 ≤ i ≤ n − 1, where 0 ≤ ri+1 < ri for all 1 ≤ i ≤ n − 1, rn+1 = 0,
rn = gcd(r0, r1). Of course, the ai’s are the partial quotients of the continued
fraction [a0, a1, . . . , an] of α/β. We have

(

ri
ri+1

)

=

(

ai 1
1 0

)(

ri+1

ri+2

)

(3)

for all 0 ≤ i ≤ n − 1. Set (s0, s1) = (1, 1) and (t0, t1) = (0,−1). Then we
have

xr0 + 1 = xr0 − (−1)s0ut0 ,
xr1 + u−1 = xr1 − (−1)s1ut1 .

For i = 0, . . . , n− 1, recursively define

si+2 = si − aisi+1,

ti+2 = ti − aiti+1.

Then as in (3), we have

(

si
si+1

)

=

(

ai 1
1 0

)(

si+1

si+2

)

, (4)

(

ti
ti+1

)

=

(

ai 1
1 0

)(

ti+1

ti+2

)

(5)
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for all 0 ≤ i ≤ n− 1. Finally, for all 0 ≤ j ≤ n+ 1, set

fj = xrj − (−1)sjutj .

Note that f0 = xr0 + 1, f1 = xr1 + u−1, and

fn+1 = 1− (−1)sn+1utn+1 (6)

since rn+1 = 0.

Claim. For all 0 ≤ i ≤ n− 1, we have

gcd(fi, fi+1) = gcd(fi+1, fi+2). (7)

Indeed, it follows from (2) that

fi = xri − (−1)siuti

= (xri+1)aixri+2 − (−1)siuti.

Now, since
xri+1 ≡ (−1)si+1uti+1 mod fi+1,

we find

fi ≡ ((−1)si+1uti+1)aixri+2 − (−1)siuti mod fi+1

≡ (−1)aisi+1uaiti+1xri+2 − (−1)siuti mod fi+1.

Thus,

(−1)−aisi+1u−aiti+1fi ≡ xri+2 − (−1)si−aisi+1uti−aiti+1 mod fi+1

≡ xri+2 − (−1)si+2uti+2 mod fi+1

≡ fi+2 mod fi+1.

Consequently, we have fi ≡ (−1)aisi+1uaiti+1fi+2 mod fi+1. Using the equality

gcd(f, g) = gcd(g, h)

whenever f ≡ h mod g for elements in A, we conclude that

gcd(fi, fi+1) = gcd(fi+1, (−1)aisi+1uaiti+1fi+2)

= gcd(fi+1, fi+2)
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since (−1)aisi+1uaiti+1 is a unit in A. This proves the claim.

As a first consequence, we get

gcd(f0, f1) = gcd(fn, fn+1). (8)

Denote now

A =
n−1
∏

i=0

(

ai 1
1 0

)

=

(

α11 α12

α21 α22

)

.

We have detA = (−1)n, and it follows from repeatedly applying (3) that
(

r0
r1

)

= A

(

rn
0

)

.

This implies, in particular, that α11 = r0/rn and α21 = r1/rn. Similarly,
using (5) repeatedly, we have

A−1

(

t0
t1

)

=

(

tn
tn+1

)

.

Since A−1 = (−1)n
(

α22 −α12

−α21 α11

)

and

(

t0
t1

)

=

(

0
−1

)

, this implies that

tn+1 = (−1)n+1α11 = (−1)n+1r0/rn.

Finally, using (4) repeatedly, we have

A−1

(

s0
s1

)

=

(

sn
sn+1

)

.

As above, and since

(

s0
s1

)

=

(

1
1

)

, we find that

sn+1 = (−1)n(−α21 + α11) = (−1)n(r0 − r1)/rn.

Summarizing, it follows from the equality (8), the expression (6) for fn+1,
and the above values of sn+1, tn+1, that

gcd(xα + 1, uxβ + 1) = gcd(fn, fn+1)

= gcd(xrn − (−1)snutn , 1− (−1)sn+1utn+1)

= gcd(xδ − (−1)snutn, uα/δ − (−1)(α−β)/δ).
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The special case of interest to us, namely where A = Z[2−1] and u = 2,
reduces to the following statement.

Corollary 3.2 Let 1 ≤ i ≤ k be given integers, and set δ = gcd(i, k). Then

there exists ρ ∈ Z such that for any odd prime p, we have

gcd(pi + 1, 2pk−i + 1) = gcd(pδ ± 2ρ, 2i/δ − (−1)k/δ).

Proof. First observe that gcd(pi + 1, 2pk−i + 1) is odd since the second
argument is, so we may as well work in Z[2−1] when computing this gcd.
Set α = i, β = k − i. Since gcd(i, k − i) = gcd(i, k), the values of δ in
Proposition 3.1 and here are the same. Now (α− β)/δ = (2i− k)/δ, and so

(−1)(α−β)/δ = (−1)k/δ.

The claimed formula for gcd(pi +1, 2pk−i+1) now follows directly from that
in Proposition 3.1.

Consequently, given 1 ≤ i ≤ k, an odd prime p satisfies the condition

gcd(pi + 1, 2pk−i) + 1 = 1

if and only if p belongs to a certain union of classes mod (2i/δ − (−1)k/δ),
where as above δ = gcd(i, k). This is the key to our main result below.

4 The main result

For a positive integer n, let rad(n) denote the radical of n, i.e. the product
of the distinct primes factors of n. For instance, rad(4) = 2 and rad(6) =
rad(12) = rad(18) = 6. Given k ≥ 1, let us define

M(k) = rad(

k
∏

i=1

(

2i/ gcd(i,k) − (−1)k/ gcd(i,k)
)

).

Note that if k is odd, the formula becomes

M(k) = rad(

k
∏

i=1

(

2i/ gcd(i,k) + 1
)

),

whereas if k is even there is no such reduction in general, since the exponent
k/ gcd(i, k) may assume both parities. Here is our main result.
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Theorem 4.1 For any odd prime p and k ≥ 1, the value of n(pk, 2) only

depends on the class of p modulo M(k).

Proof. Recall the formula given by Proposition 2.1:

n(pk, 2) = #{0 ≤ i ≤ k | gcd(pi + 1, 2pk−i + 1) = 1}. (9)

If i = 0, then gcd(2, 2pk + 1) = 1 always, since p is odd. Assume now
1 ≤ i ≤ k, and set

mk(i) = 2i/ gcd(i,k) − (−1)k/ gcd(i,k).

By Corollary 3.2, the value of gcd(pi+1, 2pk−i+1) only depends on the class

of p mod mk(i). Therefore, it follows from (9) and this property of mi(k)
that if we set

M(k) = rad(

k
∏

i=1

mk(i)),

the value of n(pk, 2) only depends on the class of p mod M(k).

For concreteness, Table 1 gives the value ofM(k) for 1 ≤ k ≤ 10. We have
seen that n(pk, 2) only depends on the class of p modulo M(k). But M(k) is
not necessarily the smallest modulus with this property, only a multiple of
it. For instance, we have M(4) = 21, but the value of n(p4, 2) only depends
on the class of p mod 7, as stated in the Introduction. However, for all odd k
in the range 1 ≤ k ≤ 9, the modulus M(k) actually turns out to be optimal
for the desired property. (See [3] and Section 7.)

k 1 2 3 4 5 6 7 8 9 10

M(k) 3 3 15 21 255 465 36465 82677 30998055 16548735

Table 1: First 10 values of M(k).

5 The basic functions Xa,q

We now introduce numerical functions Xa,q, with values in {0, 1}, which will
subsequently serve as building blocks in our explicit formulas for n(pk, 2)
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with k ≤ 10. Given integers a, q with q ≥ 2, the definition of

Xa,q : Z → {0, 1}

depends on the distinct prime factors of q, as follows.

• If q is prime, then Xa,q is the indicator function of the complement of
the subset a+ qZ in Z, i.e.

Xa,q(n) =

{

1 if n 6≡ a mod q,
0 if n ≡ a mod q.

• If q1, . . . , qt are the distinct prime factors of q, then we set

Xa,q =
t

∏

i=1

Xa,qi.

In particular, since Xa,q only depends on the prime factors of q, we have

Xa,q = Xa,rad(q).

Note that Xa,q only depends on the class of a mod q. It is also plain that
Xa,q(n) only depends on the class of n mod q.

We now establish a few more properties of these functions. The first one
links Xa,q(n) with gcd(n− a, q), and so will be useful to capture occurrences
of the equality gcd(pi + 1, 2pk−i + 1) = 1.

Proposition 5.1 Let a, q be integers with q ≥ 2. For all n ∈ Z, we have

Xa,q(n) =

{

1 if gcd(n− a, q) = 1,
0 if not.

Proof. Let q1, . . . , qt be the distinct prime factors of q. Then we have

Xa,q(n) = 1 ⇐⇒ Xa,qi(n) = 1 ∀i

⇐⇒ n 6≡ a mod qi ∀i

⇐⇒ gcd(n− a, qi) = 1 ∀i

⇐⇒ gcd(n− a, q) = 1.
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Since Xa,q(n) only takes values in {0, 1}, this implies that Xa,q(n) = 0 if and
only if gcd(n− a, q) 6= 1.

Next, for determining n(pk, 2), we often need to evaluate Xa,q(p
s) with

s ≥ 2. The next two properties help remove that exponent s. The first one
reduces the task to the case where s divides q− 1. It suffices to consider the
case where q is prime.

Proposition 5.2 Let q be a prime number, and let a, s be integers with

s ≥ 2. Write s = te with t = gcd(s, q − 1), so that gcd(e, q − 1) = 1. Let

d ∈ N satisfy de ≡ 1 mod q − 1. Then

Xa,q(n
s) = Xad,q(n

t)

for all integers n.

Proof. This is the heart of the RSA cryptographic protocol, which relies
on the fact that exponentiation to the power e in Z/qZ is a bijection, whose
inverse is exponentiation to the power d. We have

Xa,q(n
s) = 0 ⇐⇒ ns ≡ a mod q

⇐⇒ (nt)e ≡ a mod q

⇐⇒ (nt)de ≡ ad mod q

⇐⇒ nt ≡ ad mod q

⇐⇒ Xad,q(n
t) = 0.

Thus, we may now assume that the exponent s divides q − 1.

Proposition 5.3 Let q be a prime number, and let a, s be integers with s
dividing q − 1. Let g ∈ N be an integer whose class mod q generates the

multiplicative group of non-zero elements in Z/qZ. We have:

• If a is not an s-power mod q, then Xa,q(n
s) = 1 for all n.

• If a in an s-power mod q, then a ≡ gsi mod q for some integer i such
that 0 ≤ i ≤ (q − 1)/s− 1, and

Xa,q(n
s) =

s−1
∏

j=0

Xgi+j(q−1)/s,q(n)

for all integers n.
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Proof. In the group (Z/qZ)∗ of nonzero classes mod q, the set of s-powers
is of cardinality (q − 1)/s and coincides with

{gsi mod q | 0 ≤ i ≤ (q − 1)/s− 1}.

First, if a is not an s-power mod q, then ns 6≡ a mod q for all n, implying
Xa,q(n

s) = 1 for all n. Assume now a is an s-power mod q. By the above
remark, there exists 0 ≤ i ≤ (q− 1)/s− 1 such that a ≡ gsi mod q. We have

Xa,q(n
s) = 0 ⇐⇒ ns ≡ a mod q

⇐⇒ ns ≡ gsi mod q

⇐⇒

(

n

gi

)s

≡ 1 mod q.

This means that n/gi is of order dividing s in the group (Z/qZ)∗. Now, the
elements of order dividing s in this group constitute a subgroup of order s
generated by g(q−1)/s. Thus, there exists an integer j such that 0 ≤ j ≤ s−1
and satisfying

n

gi
≡ gj(q−1)/s mod q,

yielding
Xa,q(n

s) = 0 ⇐⇒ n ≡ gi+j(q−1)/s mod q.

Summarizing, for a ≡ gsi mod q, we have established the equivalence

Xa,q(n
s) = 0 ⇐⇒

s−1
∏

j=0

Xgi+j(q−1)/s,q(n) = 0,

whence the claimed equality Xa,q(n
s) =

∏s−1
j=0Xgi+j(q−1)/s,q(n).

Example 5.4 In order to establish our formula for n(p10, 2) in Section 6,

the term X8,17(p
2) turns out to be involved. Now 8 is a square mod 17, namely

8 ≡ 52 ≡ 122 mod 17. Thus, the above result yields

X8,17(p
2) = X5,17(p)X12,17(p).
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6 The cases k = 9, 10

Explicit formulas for n(pk, 2) with p an odd prime and k ≤ 6 or k = 8 are
given in [3]. Here we go further and treat the case k = 9 in detail. This
will show how Corollary 3.2 can be applied, and will also give a sense of
the increasing complexity of these formulas. We also briefly address the case
k = 10. The main ingredients are the basic functions Xa,q defined in the
preceding section.

Here comes our formula for n(p9, 2). The fact that it depends on the class
of p mod M(9) follows from this prime decomposition:

M(9) = 30998055 = 5 · 17 · 257 · 3 · 11 · 43.

Theorem 6.1 Let p be an odd prime. Then we have

n(p9, 2) = 1+2X3,5(p)+X9,17(p)+X128,257(p)+X2,3(p)·(3+X2,11(p)+X8,43(p)).

Proof. By Proposition 2.1, in order to determine n(p9, 2), it suffices to count
those exponents i between 0 and 9 satisfying gcd(pi+1, 2p9−i+1) = 1. Using
Corollary 3.2 and the calculations leading to it, these gcd’s may be reduced
as follows:

gcd(p0 + 1, 2p9 + 1) = 1

gcd(p1 + 1, 2p8 + 1) = gcd(p+ 1, 3)

gcd(p2 + 1, 2p7 + 1) = gcd(2p− 1, 5)

gcd(p3 + 1, 2p6 + 1) = gcd(p3 + 1, 3) = gcd(p+ 1, 3)

gcd(p4 + 1, 2p5 + 1) = gcd(2p− 1, 17)

gcd(p5 + 1, 2p4 + 1) = gcd(p− 2, 33)

gcd(p6 + 1, 2p3 + 1) = gcd(2p3 + 1, 5)

gcd(p7 + 1, 2p2 + 1) = gcd(p− 8, 129)

gcd(p8 + 1, 2p1 + 1) = gcd(2p+ 1, 257)

gcd(p9 + 1, 2p0 + 1) = gcd(p9 + 1, 3) = gcd(p+ 1, 3).

Now, by Proposition 5.1 and the properties of the functions Xa,q, these equal-

12



ities imply the following equivalences:

gcd(p0 + 1, 2p9 + 1) = 1 always

gcd(p1 + 1, 2p8 + 1) = 1 ⇐⇒ X2,3(p) = 1

gcd(p2 + 1, 2p7 + 1) = 1 ⇐⇒ X3,5(p) = 1

gcd(p3 + 1, 2p6 + 1) = 1 ⇐⇒ X2,3(p) = 1

gcd(p4 + 1, 2p5 + 1) = 1 ⇐⇒ X9,17(p) = 1

gcd(p5 + 1, 2p4 + 1) = 1 ⇐⇒ X2,33(p) = 1

gcd(p6 + 1, 2p3 + 1) = 1 ⇐⇒ X3,5(p) = 1

gcd(p7 + 1, 2p2 + 1) = 1 ⇐⇒ X8,129(p) = 1

gcd(p8 + 1, 2p1 + 1) = 1 ⇐⇒ X128,257(p) = 1

gcd(p9 + 1, 2p0 + 1) = 1 ⇐⇒ X2,3(p) = 1.

Read sequentially, this table directly yields the following first formula for
n(p9, 2), with 10 summands, in terms of the functions Xa,q:

n(p9, 2) = 1 +X2,3(p) +X3,5(p) +X2,3(p) +X9,17(p) +X2,33(p)

+X3,5(p) +X8,129(p) +X128,257(p) +X2,3(p)

= 1 + 3X2,3(p) + 2X3,5(p) +X9,17(p) +X2,33(p) +X8,129(p)

+X128,257(p).

Among the moduli involved above, the only non-prime ones are 33 = 3 · 11
and 129 = 3 · 43. By definition of Xa,q for non-prime q, we have

X2,33 = X2,3X2,11

X8,129 = X8,3X8,43.

Moreover, since Xa,q only depends on the class of a mod q, we have

X8,3 = X2,3.

Substituting these equalities in the above formula for n(p9, 2), we get

n(p9, 2) = 1+2X3,5(p)+X9,17(p)+X128,257(p)+X2,3(p)·(3+X2,11(p)+X8,43(p)),

as claimed.
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We now derive another version of our formula for n(p9, 2), from which its
values are easier to read. Given positive integers q1, . . . , qt, we denote by

ρq1,...,qt : Z → Z/q1Z× · · · × Z/qtZ

the canonical reduction morphism ρq1,...,qt(n) = (n mod q1, . . . , n mod qt).
Moreover, we write n ≡ ¬a mod q instead of n 6≡ a mod q. For example,
the condition

ρ5,17,257(p) = (3,¬9,¬128)

means p ≡ 3 mod 5, p 6≡ 9 mod 17 and p 6≡ 128 mod 257.

Corollary 6.2 Let p be an odd prime. Consider the following functions of

p depending on its classes mod 5, 17, 257 and 11, 43, respectively:

λ(p) =























1 if ρ5,17,257(p) = (3, 9, 128)
2 if ρ5,17,257(p) ∈ {(3, 9,¬128), (3,¬9, 128)}
3 if ρ5,17,257(p) ∈ {(3,¬9,¬128), (¬3, 9, 128)}
4 if ρ5,17,257(p) ∈ {(¬3, 9,¬128), (¬3,¬9, 128)}
5 if ρ5,17,257(p) = (¬3,¬9,¬128),

µ(p) =







3 if ρ11,43(p) = (2, 8)
4 if ρ11,43(p) ∈ {(2,¬8), (¬2, 8)}
5 if ρ11,43(p) = (¬2,¬8).

Then we have

n(p9, 2) =

{

λ(p) if p ≡ 2 mod 3,
λ(p) + µ(p) if p 6≡ 2 mod 3.

Proof. This directly follows from the preceding result and the easy to prove
equalities

λ(p) = 1 + 2X3,5(p) +X9,17(p) +X128,257(p),

µ(p) = 3 +X2,11(p) +X8,43(p).

It is still clearer now that n(p9, 2) is determined by the class of p mod
M(9) = 3 · 5 · 17 · 257 · 11 · 43, and that M(9) is the smallest modulus with
this property.
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We close this section by briefly treating the case k = 10. The formula
obtained shows that n(p10, 2), for p an odd prime, is determined by the class
of p modulo M(10)/15 = 7 · 17 · 73 · 127.

Theorem 6.3 Let p be an odd prime. Then we have

n(p10, 2) = 7 +X3,7(p)(1 +X36,73(p)) +X5,17(p)X12,17(p) +X123,127(p).

Proof. After reducing gcd(pi+1, 2p10−i+1) for 0 ≤ i ≤ 10 as in Corollary 3.2,
and using Proposition 5.1 involving the functions Xa,q, we obtain this first
raw formula:

n(p10, 2) = 2 +X−1,3(p
2) +X3,7(p) +X−2,5(p

2) + 1 +X2,9(p
2) +X123,127(p)

+X8,17(p
2) +X255,511(p) +X−1,3(p

10).

We now invoke Proposition 5.3 several times. Since −1 is not a square mod
3, we have X−1,3(p

2) = 1. The same reason yields X2,9(p
2) = X−1,3(p

10) = 1.
Similarly, we have X−2,5(p

2) = 1 as −2 is not a square mod 5. As already
explained in Example 5.4, we have X8,17(p

2) = X5,17(p)X12,17(p). Finally,
since 511 = 7 · 73, and since 255 is congruent to 3 mod 7 and to 36 mod 73,
we have

X255,511(p) = X3,7(p)X36,73(p).

Inserting these reductions into the raw formula gives the stated one, where
now the only argument of the various basic functionsXa,q is p and all involved
q’s are primes.

7 The cases k ≤ 8 revisited

While explicit formulas for n(pk, 2) with k ≤ 6 and k = 8 are given in [3],
we provide here new, shorter formulas in terms of the basic functions Xa,q

for k ≤ 8, including k = 7. The construction method is similar to the cases
k = 9, 10 and relies on the reduction of gcd(pi + 1, 2pk−i + 1) provided by
Corollary 3.2.
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Theorem 7.1 Let p be an odd prime. Then we have

n(p1, 2) = 1 +X2,3(p)

n(p2, 2) = 3

n(p3, 2) = 1 + 2X2,3(p) +X2,5(p)

n(p4, 2) = 4 +X3,7(p)

n(p5, 2) = 1 + 3X2,3(p) +X3,5(p) +X8,17(p)

n(p6, 2) = 6 +X15,31(p)

n(p7, 2) = 1 +X2,3(p)(3 +X7,11(p)) +X2,5(p)(1 +X6,13(p)) +X2,17(p)

n(p8, 2) = 6 +X5,7(p) +X23,31(p) +X63,127(p).

Proof. Corollary 3.2 and its proof method yield the following reductions
of gcd(pi + 1, 2pk−i + 1) for i = 1, . . . , k. The case i = 0 is omitted, as
gcd(p0 +1, 2pk +1) = 1 always. A few more arithmetical reductions are also
applied. For instance, the equality gcd(p2+1, 3) = 1 below follows from the
fact that −1 is not a square mod 3. This is one easy case of Proposition 5.3.

k = 1 :

gcd(p1 + 1, 2p0 + 1) = gcd(p+ 1, 3)

k = 2 :

gcd(p1 + 1, 2p1 + 1) = gcd(2p + 1, 1) = 1

gcd(p2 + 1, 2p0 + 1) = gcd(p2 + 1, 3) = 1

k = 3 :

gcd(p1 + 1, 2p2 + 1) = gcd(p+ 1, 3)

gcd(p2 + 1, 2p1 + 1) = gcd(2p + 1, 5)

gcd(p3 + 1, 2p0 + 1) = gcd(p3 + 1, 3) = gcd(p+ 1, 3)

k = 4 :

gcd(p1 + 1, 2p3 + 1) = gcd(p+ 1, 1) = 1

gcd(p2 + 1, 2p2 + 1) = gcd(2p2 + 1, 1) = 1

gcd(p3 + 1, 2p1 + 1) = gcd(2p + 1, 7)

gcd(p4 + 1, 2p0 + 1) = gcd(p4 + 1, 3) = 1
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k = 5 :

gcd(p1 + 1, 2p4 + 1) = gcd(p+ 1, 3)

gcd(p2 + 1, 2p3 + 1) = gcd(2p − 1, 5)

gcd(p3 + 1, 2p2 + 1) = gcd(p− 2, 9)

gcd(p4 + 1, 2p1 + 1) = gcd(2p + 1, 17)

gcd(p5 + 1, 2p0 + 1) = gcd(p5 + 1, 3) = gcd(p+ 1, 3)

k = 6 :

gcd(p1 + 1, 2p5 + 1) = gcd(p+ 1, 1) = 1

gcd(p2 + 1, 2p4 + 1) = gcd(p2 + 1, 3) = 1

gcd(p3 + 1, 2p3 + 1) = gcd(2p3 + 1, 1) = 1

gcd(p4 + 1, 2p2 + 1) = gcd(2p2 + 1, 5) = 1

gcd(p5 + 1, 2p1 + 1) = gcd(2p + 1, 31)

gcd(p6 + 1, 2p0 + 1) = gcd(p6 + 1, 3) = 1

k = 7 :

gcd(p1 + 1, 2p6 + 1) = gcd(p+ 1, 3)

gcd(p2 + 1, 2p5 + 1) = gcd(2p + 1, 5)

gcd(p3 + 1, 2p4 + 1) = gcd(2p − 1, 9)

gcd(p4 + 1, 2p3 + 1) = gcd(p− 2, 17)

gcd(p5 + 1, 2p2 + 1) = gcd(p+ 4, 33)

gcd(p6 + 1, 2p1 + 1) = gcd(2p + 1, 65)

gcd(p7 + 1, 2p0 + 1) = gcd(p7 + 1, 3) = gcd(p+ 1, 3)

k = 8 :

gcd(p1 + 1, 2p7 + 1) = gcd(p+ 1, 1) = 1

gcd(p2 + 1, 2p6 + 1) = gcd(p2 + 1, 1) = 1

gcd(p3 + 1, 2p5 + 1) = gcd(p+ 2, 7)

gcd(p4 + 1, 2p4 + 1) = gcd(2p4 + 1, 1) = 1

gcd(p5 + 1, 2p3 + 1) = gcd(4p + 1, 31)

gcd(p6 + 1, 2p2 + 1) = gcd(2p2 + 1, 7) = 1

gcd(p7 + 1, 2p1 + 1) = gcd(2p + 1, 127)

gcd(p8 + 1, 2p0 + 1) = gcd(p8 + 1, 3) = 1.
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As in the case k = 9, the claimed formulas follow by reading these tables
sequentially and using properties of the functions Xa,q from Section 5.

In particular, these formulas confirm that for k = 1, . . . , 8, the value of
n(pk, 2) at an odd prime p is determined by the class of p modulo 3, 1, 3 · 5,
7, 3 · 5 · 17, 31, 3 · 5 · 11 · 13 · 17 and 7 · 31 · 127, respectively.

8 A question

We shall conclude this paper with an open question. On the one hand, we
have obtained explicit formulas for n(pk, 2) in all cases k ≤ 10. On the other
hand, we know from [3] that no such formula can be expected in the case
k = 4097, at least as long as the prime factors of the 12th Fermat number
22

12
+1 remain unknown. Well then, what happens in the intermediate range

11 ≤ k ≤ 4096? Are there fundamental obstacles which would prevent us to
obtain exact formulas for n(pk, 2) all the way up to k = 4096?
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[4] J.L. Raḿırez Alfonśın, The Diophantine Frobenius problem. Oxford
Lecture Series in Mathematics and its Applications 30, Oxford Univer-
sity Press, Oxford, 2005.
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