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Given g ≥ 1, the number n(g) of numerical semigroups S ⊂ N of genus |N \ S| equal to g is the subject of challenging conjectures of Bras-Amorós. In this paper, we focus on the counting function n(g, 2) of two-generator numerical semigroups of genus g, which is known to also count certain special factorizations of 2g. Further focusing on the case g = p k for any odd prime p and k ≥ 1, we show that n(p k , 2) only depends on the class of p modulo a certain explicit modulus M (k). The main ingredient is a reduction of gcd(p α + 1, 2p β + 1) to a simpler form, using the continued fraction of α/β. We treat the case k = 9 in detail and show explicitly how n(p 9 , 2) depends on the class of p mod M (9) = 3 • 5 • 11 • 17 • 43 • 257.

Introduction

A numerical semigroup is a subset S ⊂ N containing 0, stable under addition and with finite complement in N. The cardinality of N \ S is then called the gap number or the genus of S. It is well known that, given g ∈ N, there are only finitely many numerical semigroups of genus g. Yet the question of counting them seems to be a very hard problem, analogous to the one of counting numerical semigroups by Frobenius number. See [START_REF] Bras-Amorós | Fibonacci-like behavior of the number of numerical semigroups of a given genus[END_REF][START_REF] Bras-Amorós | Bounds on the number of numerical semigroups of a given genus[END_REF] for some nice conjectures about it. The problem becomes more tractable when restricted to semigroups S = a, b = Na + Nb with two generators. So, let us denote by n(g, 2) the number of numerical semigroups S = a, b of genus g. On the one hand, determining n(g, 2) is linked to hard factorization problems, like factoring Fermat and Mersenne numbers [START_REF] Eliahou | Two-generator numerical semigroups and Fermat and Mersenne numbers[END_REF]. On the other hand, the value of n(g, 2) is known for all g = 2 k with k ≥ 1, and for all g = p k with p an odd prime and k ≤ 8. Indeed, exact formulas are provided in [START_REF] Eliahou | Two-generator numerical semigroups and Fermat and Mersenne numbers[END_REF], showing in particular that n(p k , 2) for k = 1, 2, 3, 4, 5, 6, 7 and 8 only depends on the class of p modulo 3, 1, 15, 7, 255, 31, 36465 and 27559, respectively. See also Section 7, where these formulas are given in a new form.

Our purpose in this paper is to extend our understanding of n(p k , 2) to arbitrary exponents k ∈ N. Giving exact formulas in all cases is out of reach since, for instance, a formula for n(p 4097 , 2) would require the still unknown factorization of the 12th Fermat number 2 2 12 + 1. However, what can and will be done here is to show that, for all k ≥ 1, the value of n(p k , 2) only depends on the class of p modulo some explicit modulus M(k).

This result is formally stated and proved in Section 4. Here is how M(k) is defined:

M(k) = rad( k i=1 2 i/ gcd(i,k) -(-1) k/ gcd(i,k) ),
where rad(n) denotes the product of the distinct prime factors of n, i.e. the largest square-free divisor of n. We start by recalling in Section 2 that n(g, 2) can be identified with the counting function of certain special factorizations of 2g. In Section 3, we reduce gcd(p α + 1, 2p β + 1) for α, β ∈ N to the simpler form gcd(p gcd(α,β) ± 2 ρ , c)

where ρ, c ∈ Z only depend on α, β and not on p. This reduction uses the continued fraction of α/β and directly leads to our main result in Section 4.

In Section 5, we introduce basic binary functions X a,q which will serve as building blocks in our formulas. The case k = 9 is treated in detail in Section 6, where we give an explicit formula for n(p 9 , 2) depending on the class of p mod M(9

) = 3 • 5 • 11 • 17 • 43 • 257.
We also provide a formula in the case k = 10 with somewhat less details. Finally, in the last section we give and prove new formulas for n(p k , 2) with k ≤ 8 in terms of the X a,q . Background information on numerical semigroups can be found in the books [START_REF] Ramírez Alfonsín | The Diophantine Frobenius problem[END_REF][START_REF] Rosales | Numerical semigroups[END_REF].

Special factorizations of 2g

We first recall from [START_REF] Eliahou | Two-generator numerical semigroups and Fermat and Mersenne numbers[END_REF] that n(g, 2) can be identified with the counting number of factorizations uv of 2g in N satisfying gcd(u + 1, v + 1) = 1. In formula:

n(g, 2) = #{{u, v} ⊂ N | uv = 2g, gcd(u + 1, v + 1) = 1}. ( 1 
)
This follows from the classical theorem of Sylvester [START_REF] Sylvester | On subinvariants, i.e. semi-invariants to binary quantities of an unlimited order[END_REF] stating that whenever gcd(a, b) = 1, the genus g of the numerical semigroup S = a, b is given by

g = (a -1)(b -1) 2 .
For g = p k with p an odd prime, an immediate consequence of (1) is the following formula.

Proposition 2.1 For any odd prime p and exponent k ≥ 1, we have

n(p k , 2) = #{0 ≤ i ≤ k | gcd(p i + 1, 2p k-i + 1) = 1}.
Thus, in order to understand the behavior of n(p k , 2), we need to gain some control on gcd(p α + 1, 2p β + 1) for α, β ∈ N, and hopefully find ways to determine when this greatest common divisor equals 1. This is addressed in the next section.

3 On gcd(p α + 1, 2p β + 1)

Here is the key technical tool which will lead to our main result in Section 4. Given α, β ∈ N, we shall reduce the greatest common divisor gcd(p α + 1, 2p 

(x α + 1, ux β + 1) = gcd(x δ ± u ρ , u α/δ -(-1) (α-β)/δ ).
The proof is based on a careful study of the successive steps in the Euclidean algorithm for computing gcd's.

Proof. First note that, since u is invertible, we have gcd(x α + 1, ux β + 1) = gcd(x α + 1, x β + u -1 ).

Set r 0 = α, r 1 = β. Consider the Euclidean algorithm to compute gcd(r 0 , r 1 ):

r i = a i r i+1 + r i+2 (2) 
for all 0 ≤ i ≤ n -1, where 0 ≤ r i+1 < r i for all 1 ≤ i ≤ n -1, r n+1 = 0, r n = gcd(r 0 , r 1 ). Of course, the a i 's are the partial quotients of the continued fraction [a 0 , a 1 , . . . , a n ] of α/β. We have

r i r i+1 = a i 1 1 0 r i+1 r i+2 (3) 
for all 0 ≤ i ≤ n -1. Set (s 0 , s 1 ) = (1, 1) and (t 0 , t 1 ) = (0, -1). Then we have

x r 0 + 1 = x r 0 -(-1) s 0 u t 0 , x r 1 + u -1 = x r 1 -(-1) s 1 u t 1 .
For i = 0, . . . , n -1, recursively define

s i+2 = s i -a i s i+1 , t i+2 = t i -a i t i+1 .
Then as in (3), we have

s i s i+1 = a i 1 1 0 s i+1 s i+2 , (4) 
t i t i+1 = a i 1 1 0 t i+1 t i+2 (5) 
for all 0 ≤ i ≤ n -1. Finally, for all 0 ≤ j ≤ n + 1, set

f j = x r j -(-1) s j u t j . Note that f 0 = x r 0 + 1, f 1 = x r 1 + u -1
, and

f n+1 = 1 -(-1) s n+1 u t n+1 (6) 
since r n+1 = 0.

Claim. For all 0 ≤ i ≤ n -1, we have

gcd(f i , f i+1 ) = gcd(f i+1 , f i+2 ). (7) 
Indeed, it follows from (2) that

f i = x r i -(-1) s i u t i = (x r i+1 ) a i x r i+2 -(-1) s i u t i . Now, since x r i+1 ≡ (-1) s i+1 u t i+1 mod f i+1 ,
we find

f i ≡ ((-1) s i+1 u t i+1 ) a i x r i+2 -(-1) s i u t i mod f i+1 ≡ (-1) a i s i+1 u a i t i+1 x r i+2 -(-1) s i u t i mod f i+1 .
Thus,

(-1) -a i s i+1 u -a i t i+1 f i ≡ x r i+2 -(-1) s i -a i s i+1 u t i -a i t i+1 mod f i+1 ≡ x r i+2 -(-1) s i+2 u t i+2 mod f i+1 ≡ f i+2 mod f i+1 .
Consequently, we have

f i ≡ (-1) a i s i+1 u a i t i+1 f i+2 mod f i+1 . Using the equality gcd(f, g) = gcd(g, h) whenever f ≡ h mod g for elements in A, we conclude that gcd(f i , f i+1 ) = gcd(f i+1 , (-1) a i s i+1 u a i t i+1 f i+2 ) = gcd(f i+1 , f i+2 )
since (-1) a i s i+1 u a i t i+1 is a unit in A. This proves the claim.

As a first consequence, we get

gcd(f 0 , f 1 ) = gcd(f n , f n+1 ). ( 8 
)
Denote now

A = n-1 i=0 a i 1 1 0 = α 11 α 12 α 21 α 22 .
We have det A = (-1) n , and it follows from repeatedly applying (3) that

r 0 r 1 = A r n 0 .
This implies, in particular, that α 11 = r 0 /r n and α 21 = r 1 /r n . Similarly, using ( 5) repeatedly, we have

A -1 t 0 t 1 = t n t n+1 . Since A -1 = (-1) n α 22 -α 12 -α 21 α 11 and t 0 t 1 = 0 -1
, this implies that t n+1 = (-1) n+1 α 11 = (-1) n+1 r 0 /r n .

Finally, using (4) repeatedly, we have

A -1 s 0 s 1 = s n s n+1 .
As above, and since

s 0 s 1 = 1 1
, we find that

s n+1 = (-1) n (-α 21 + α 11 ) = (-1) n (r 0 -r 1 )/r n .
Summarizing, it follows from the equality (8), the expression (6) for f n+1 , and the above values of s n+1 , t n+1 , that

gcd(x α + 1, ux β + 1) = gcd(f n , f n+1 ) = gcd(x rn -(-1) sn u tn , 1 -(-1) s n+1 u t n+1 ) = gcd(x δ -(-1) sn u tn , u α/δ -(-1) (α-β)/δ ).
The special case of interest to us, namely where A = Z[2 -1 ] and u = 2, reduces to the following statement. Corollary 3.2 Let 1 ≤ i ≤ k be given integers, and set δ = gcd(i, k). Then there exists ρ ∈ Z such that for any odd prime p, we have

gcd(p i + 1, 2p k-i + 1) = gcd(p δ ± 2 ρ , 2 i/δ -(-1) k/δ ).
Proof. First observe that gcd(p i + 1, 2p k-i + 1) is odd since the second argument is, so we may as well work in Z[2 -1 ] when computing this gcd. Set α = i, β = k -i. Since gcd(i, k -i) = gcd(i, k), the values of δ in Proposition 3.1 and here are the same. Now (α -β)/δ = (2i -k)/δ, and so

(-1) (α-β)/δ = (-1) k/δ .
The claimed formula for gcd(p i + 1, 2p k-i + 1) now follows directly from that in Proposition 3.1. Consequently, given 1 ≤ i ≤ k, an odd prime p satisfies the condition gcd(p i + 1, 2p k-i ) + 1 = 1 if and only if p belongs to a certain union of classes mod (2 i/δ -(-1) k/δ ), where as above δ = gcd(i, k). This is the key to our main result below.

The main result

For a positive integer n, let rad(n) denote the radical of n, i.e. the product of the distinct primes factors of n. For instance, rad(4) = 2 and rad(6) = rad(12) = rad(18) = 6. Given k ≥ 1, let us define

M(k) = rad( k i=1 2 i/ gcd(i,k) -(-1) k/ gcd(i,k) ).
Note that if k is odd, the formula becomes

M(k) = rad( k i=1 2 i/ gcd(i,k) + 1 ),
whereas if k is even there is no such reduction in general, since the exponent k/ gcd(i, k) may assume both parities. Here is our main result. Proof. Recall the formula given by Proposition 2.1:

n(p k , 2) = #{0 ≤ i ≤ k | gcd(p i + 1, 2p k-i + 1) = 1}. ( 9 
)
If i = 0, then gcd(2, 2p k + 1) = 1 always, since p is odd. Assume now 1 ≤ i ≤ k, and set

m k (i) = 2 i/ gcd(i,k) -(-1) k/ gcd(i,k) .
By Corollary 3.2, the value of gcd(p i + 1, 2p k-i + 1) only depends on the class of p mod m k (i). Therefore, it follows from (9) and this property of m i (k) that if we set

M(k) = rad( k i=1 m k (i)),
the value of n(p k , 2) only depends on the class of p mod M(k).

For concreteness, Table 1 gives the value of M(k) for 1 ≤ k ≤ 10. We have seen that n(p k , 2) only depends on the class of p modulo M(k). But M(k) is not necessarily the smallest modulus with this property, only a multiple of it. For instance, we have M(4) = 21, but the value of n(p 4 , 2) only depends on the class of p mod 7, as stated in the Introduction. However, for all odd k in the range 1 ≤ k ≤ 9, the modulus M(k) actually turns out to be optimal for the desired property. (See [START_REF] Eliahou | Two-generator numerical semigroups and Fermat and Mersenne numbers[END_REF] 

The basic functions X a,q

We now introduce numerical functions X a,q , with values in {0, 1}, which will subsequently serve as building blocks in our explicit formulas for n(p k , 2) Since X a,q (n) only takes values in {0, 1}, this implies that X a,q (n) = 0 if and only if gcd(n -a, q) = 1.

Next, for determining n(p k , 2), we often need to evaluate X a,q (p s ) with s ≥ 2. The next two properties help remove that exponent s. The first one reduces the task to the case where s divides q -1. It suffices to consider the case where q is prime. Proposition 5.2 Let q be a prime number, and let a, s be integers with s ≥ 2. Write s = te with t = gcd(s, q -1), so that gcd(e, q -1) = 1. Let d ∈ N satisfy de ≡ 1 mod q -1. Then X a,q (n s ) = X a d ,q (n t ) for all integers n.

Proof. This is the heart of the RSA cryptographic protocol, which relies on the fact that exponentiation to the power e in Z/qZ is a bijection, whose inverse is exponentiation to the power d. We have X a,q (n s ) = 0 ⇐⇒ n s ≡ a mod q ⇐⇒ (n t ) e ≡ a mod q ⇐⇒ (n t ) de ≡ a d mod q ⇐⇒ n t ≡ a d mod q ⇐⇒ X a d ,q (n t ) = 0.

Thus, we may now assume that the exponent s divides q -1.

Proposition 5.3 Let q be a prime number, and let a, s be integers with s dividing q -1. Let g ∈ N be an integer whose class mod q generates the multiplicative group of non-zero elements in Z/qZ. We have:

• If a is not an s-power mod q, then X a,q (n s ) = 1 for all n.

• If a in an s-power mod q, then a ≡ g si mod q for some integer i such that 0 ≤ i ≤ (q -1)/s -1, and

X a,q (n s ) = s-1 j=0
X g i+j(q-1)/s ,q (n) for all integers n.

6 The cases k = 9, 10

Explicit formulas for n(p k , 2) with p an odd prime and k ≤ 6 or k = 8 are given in [START_REF] Eliahou | Two-generator numerical semigroups and Fermat and Mersenne numbers[END_REF]. Here we go further and treat the case k = 9 in detail. This will show how Corollary 3.2 can be applied, and will also give a sense of the increasing complexity of these formulas. We also briefly address the case k = 10. The main ingredients are the basic functions X a,q defined in the preceding section.

Here comes our formula for n(p 9 , 2). The fact that it depends on the class of p mod M(9) follows from this prime decomposition: Proof. By Proposition 2.1, in order to determine n(p 9 , 2), it suffices to count those exponents i between 0 and 9 satisfying gcd(p i + 1, 2p 9-i + 1) = 1. Using Corollary 3.2 and the calculations leading to it, these gcd's may be reduced as follows: gcd(p 0 + 1, 2p 9 + 1) = 1 gcd(p 1 + 1, 2p 8 + 1) = gcd(p + 1, 3) gcd(p 2 + 1, 2p 7 + 1) = gcd(2p -1, 5) gcd(p 3 + 1, 2p 6 + 1) = gcd(p 3 + 1, 3) = gcd(p + 1, 3) gcd(p 4 + 1, 2p 5 + 1) = gcd(2p -1, 17) gcd(p 5 + 1, 2p 4 + 1) = gcd(p -2, 33) gcd(p 6 + 1, 2p 3 + 1) = gcd(2p 3 + 1, 5) gcd(p 7 + 1, 2p 2 + 1) = gcd(p -8, 129) gcd(p 8 + 1, 2p 1 + 1) = gcd(2p + 1, 257) gcd(p 9 + 1, 2p 0 + 1) = gcd(p 9 + 1, 3) = gcd(p + 1, 3). Now, by Proposition 5.1 and the properties of the functions X a,q , these equal-ities imply the following equivalences:

M(9) = 30998055 = 5 • 17 • 257 • 3 • 11 • 43.
gcd(p 0 + 1, 2p 9 + 1) = 1 always gcd(p 1 + 1, 2p 8 + 1) = 1 ⇐⇒ X 2,3 (p) = 1 gcd(p 2 + 1, 2p 7 + 1) = 1 ⇐⇒ X 3,5 (p) = 1 gcd(p 3 + 1, 2p 6 + 1) = 1 ⇐⇒ X 2,3 (p) = 1 gcd(p 4 + 1, 2p 5 + 1) = 1 ⇐⇒ X 9,17 (p) = 1 gcd(p 5 + 1, 2p 4 + 1) = 1 ⇐⇒ X 2,33 (p) = 1 gcd(p 6 + 1, 2p 3 + 1) = 1 ⇐⇒ X 3,5 (p) = 1 gcd(p 7 + 1, 2p 2 + 1) = 1 ⇐⇒ X 8,129 (p) = 1 gcd(p 8 + 1, 2p 1 + 1) = 1 ⇐⇒ X 128,257 (p) = 1 gcd(p 9 + 1, 2p 0 + 1) = 1 ⇐⇒ X 2,3 (p) = 1.
Read sequentially, this table directly yields the following first formula for n(p 9 , 2), with 10 summands, in terms of the functions X a,q :

n(p 9 , 2) = 1 + X 2,3 (p) + X 3,5 (p) + X 2,3 (p) + X 9,17 (p) + X 2,33 (p) +X 3,5 (p) + X 8,129 (p) + X 128,257 (p) + X 2,3 (p) = 1 + 3X 2,3 (p) + 2X 3,5 (p) + X 9,17 (p) + X 2,33 (p) + X 8,129 (p)
+X 128,257 (p).

Among the moduli involved above, the only non-prime ones are 33 = 3 • 11 and 129 = 3 • 43. By definition of X a,q for non-prime q, we have

X 2,33 = X 2,3 X 2,11 X 8,129 = X 8,3 X 8,43 .
Moreover, since X a,q only depends on the class of a mod q, we have

X 8,3 = X 2,3 .
Substituting these equalities in the above formula for n(p 9 , 2), we get n(p 9 , 2) = 1+2X We close this section by briefly treating the case k = 10. The formula obtained shows that n(p 10 , 2), for p an odd prime, is determined by the class of p modulo M(10)/15 = 7 • 17 • 73 • 127. Proof. After reducing gcd(p i +1, 2p 10-i +1) for 0 ≤ i ≤ 10 as in Corollary 3.2, and using Proposition 5.1 involving the functions X a,q , we obtain this first raw formula: Inserting these reductions into the raw formula gives the stated one, where now the only argument of the various basic functions X a,q is p and all involved q's are primes.

n(p 10 , 2) = 2 + X -1,3 (p 2 ) + X 3,7 (p) + X -2,5 (p 2 ) + 1 + X 2,
7 The cases k ≤ 8 revisited While explicit formulas for n(p k , 2) with k ≤ 6 and k = 8 are given in [START_REF] Eliahou | Two-generator numerical semigroups and Fermat and Mersenne numbers[END_REF], we provide here new, shorter formulas in terms of the basic functions X a,q for k ≤ 8, including k = 7. The construction method is similar to the cases k = 9, 10 and relies on the reduction of gcd(p i + 1, 2p k-i + 1) provided by Corollary 3.2.

Theorem 7.1 Let p be an odd prime. Then we have Proof. Corollary 3.2 and its proof method yield the following reductions of gcd(p i + 1, 2p k-i + 1) for i = 1, . . . , k. The case i = 0 is omitted, as gcd(p 0 + 1, 2p k + 1) = 1 always. A few more arithmetical reductions are also applied. For instance, the equality gcd(p 2 + 1, 3) = 1 below follows from the fact that -1 is not a square mod 3. This is one easy case of Proposition 5.3. As in the case k = 9, the claimed formulas follow by reading these tables sequentially and using properties of the functions X a,q from Section 5.

n(p 1 , 2) = 1 + X 2,3 (p) n(p 2 , 2) = 3 n(p 3 , 2) = 1 + 2X 2,3 (p) + X 2,5 (p) n(p 4 , 2) = 4 + X 3,7 (p) n(p 5 , 2) = 1 + 3X
In particular, these formulas confirm that for k = 1, . . . , 8, the value of n(p k , 2) at an odd prime p is determined by the class of p modulo 3, 1, 3 

A question

We shall conclude this paper with an open question. On the one hand, we have obtained explicit formulas for n(p k , 2) in all cases k ≤ 10. On the other hand, we know from [START_REF] Eliahou | Two-generator numerical semigroups and Fermat and Mersenne numbers[END_REF] that no such formula can be expected in the case k = 4097, at least as long as the prime factors of the 12th Fermat number 2 2 12 + 1 remain unknown. Well then, what happens in the intermediate range 11 ≤ k ≤ 4096? Are there fundamental obstacles which would prevent us to obtain exact formulas for n(p k , 2) all the way up to k = 4096?

Theorem 4 . 1

 41 For any odd prime p and k ≥ 1, the value of n(p k , 2) only depends on the class of p modulo M(k).

Theorem 6 . 1

 61 Let p be an odd prime. Then we have n(p 9 , 2) = 1+2X 3,5 (p)+X 9,17 (p)+X 128,257 (p)+X 2,3 (p)•(3+X 2,11 (p)+X 8,43 (p)).

Theorem 6 . 3

 63 Let p be an odd prime. Then we have n(p 10 , 2) = 7 + X 3,7 (p)(1 + X 36,73 (p)) + X 5,17 (p)X 12,17 (p) + X 123,127 (p).

k = 1 : 1 k = 3 : 1 k = 5 :

 11315 gcd(p 1 + 1, 2p 0 + 1) = gcd(p + 1, 3) k = 2 : gcd(p 1 + 1, 2p 1 + 1) = gcd(2p + 1, 1) = 1 gcd(p 2 + 1, 2p 0 + 1) = gcd(p 2 + 1, 3) =gcd(p 1 + 1, 2p 2 + 1) = gcd(p + 1, 3) gcd(p 2 + 1, 2p 1 + 1) = gcd(2p + 1, 5) gcd(p 3 + 1, 2p 0 + 1) = gcd(p 3 + 1, 3) = gcd(p + 1, 3) k = 4 : gcd(p 1 + 1, 2p 3 + 1) = gcd(p + 1, 1) = 1 gcd(p 2 + 1, 2p 2 + 1) = gcd(2p 2 + 1, 1) = 1 gcd(p 3 + 1, 2p 1 + 1) = gcd(2p + 1, 7) gcd(p 4 + 1, 2p 0 + 1) = gcd(p 4 + 1, 3) = gcd(p 1 + 1, 2p 4 + 1) = gcd(p + 1, 3) gcd(p 2 + 1, 2p 3 + 1) = gcd(2p -1, 5) gcd(p 3 + 1, 2p 2 + 1) = gcd(p -2, 9) gcd(p 4 + 1, 2p 1 + 1) = gcd(2p + 1, 17) gcd(p 5 + 1, 2p 0 + 1) = gcd(p 5 + 1, 3) = gcd(p + 1, 3) k = 6 : gcd(p 1 + 1, 2p 5 + 1) = gcd(p + 1, 1) = 1 gcd(p 2 + 1, 2p 4 + 1) = gcd(p 2 + 1, 3) = 1 gcd(p 3 + 1, 2p 3 + 1) = gcd(2p 3 + 1, 1) = 1 gcd(p 4 + 1, 2p 2 + 1) = gcd(2p 2 + 1, 5) = 1 gcd(p 5 + 1, 2p 1 + 1) = gcd(2p + 1, 31) gcd(p 6 + 1, 2p 0 + 1) = gcd(p 6 + 1, 3) = 1 k = 7 : gcd(p 1 + 1, 2p 6 + 1) = gcd(p + 1, 3) gcd(p 2 + 1, 2p 5 + 1) = gcd(2p + 1,5) gcd(p 3 + 1, 2p 4 + 1) = gcd(2p -1, 9) gcd(p 4 + 1, 2p 3 + 1) = gcd(p -2, 17) gcd(p 5 + 1, 2p 2 + 1) = gcd(p + 4, 33) gcd(p 6 + 1, 2p 1 + 1) = gcd(2p + 1, 65) gcd(p 7 + 1, 2p 0 + 1) = gcd(p 7 + 1, 3) = gcd(p + 1, 3) k = 8 : gcd(p 1 + 1, 2p 7 + 1) = gcd(p + 1, 1) = 1 gcd(p 2 + 1, 2p 6 + 1) = gcd(p 2 + 1, 1) = 1 gcd(p 3 + 1, 2p 5 + 1) = gcd(p + 2, 7) gcd(p 4 + 1, 2p 4 + 1) = gcd(2p 4 + 1, 1) = 1 gcd(p 5 + 1, 2p 3 + 1) = gcd(4p + 1, 31) gcd(p 6 + 1, 2p 2 + 1) = gcd(2p 2 + 1, 7) = 1 gcd(p 7 + 1, 2p 1 + 1) = gcd(2p + 1, 127) gcd(p 8 + 1, 2p 0 + 1) = gcd(p 8 + 1, 3) = 1.

  • 5, 7, 3 • 5 • 17, 31, 3 • 5 • 11 • 13 • 17 and 7 • 31 • 127, respectively.

Table 1 :

 1 First 10 values of M(k).

	and Section 7.)

  9 (p 2 ) + X 123,127 (p) + X 8,17 (p 2 ) + X 255,511 (p) + X -1,3 (p 10 ).We now invoke Proposition 5.3 several times. Since -1 is not a square mod 3, we haveX -1,3 (p 2 ) = 1. The same reason yields X 2,9 (p 2 ) = X -1,3 (p 10 ) = 1.Similarly, we have X -2,5 (p 2 ) = 1 as -2 is not a square mod 5. As already explained in Example 5.4, we have X 8,17 (p 2 ) = X 5,17 (p)X 12,17 (p). Finally, since 511 = 7 • 73, and since 255 is congruent to 3 mod 7 and to 36 mod 73, we have X 255,511 (p) = X 3,7 (p)X 36,73 (p).

  2,3 (p) + X 3,5 (p) + X 8,17 (p) n(p 6 , 2) = 6 + X 15,31 (p) n(p 7 , 2) = 1 + X 2,3 (p)(3 + X 7,11 (p)) + X 2,5 (p)(1 + X 6,13 (p)) + X 2,17 (p) n(p 8 , 2) = 6 + X 5,7 (p) + X 23,31 (p) + X 63,127 (p).

with k ≤ 10. Given integers a, q with q ≥ 2, the definition of X a,q : Z → {0, 1} depends on the distinct prime factors of q, as follows.

• If q is prime, then X a,q is the indicator function of the complement of the subset a + qZ in Z, i.e.

X a,q (n) = 1 if n ≡ a mod q, 0 if n ≡ a mod q.

• If q 1 , . . . , q t are the distinct prime factors of q, then we set

In particular, since X a,q only depends on the prime factors of q, we have

Note that X a,q only depends on the class of a mod q. It is also plain that X a,q (n) only depends on the class of n mod q.

We now establish a few more properties of these functions. The first one links X a,q (n) with gcd(n -a, q), and so will be useful to capture occurrences of the equality gcd(p i + 1, 2p k-i + 1) = 1.

Proposition 5.1 Let a, q be integers with q ≥ 2. For all n ∈ Z, we have

Proof. Let q 1 , . . . , q t be the distinct prime factors of q. Then we have

Proof. In the group (Z/qZ) * of nonzero classes mod q, the set of s-powers is of cardinality (q -1)/s and coincides with

First, if a is not an s-power mod q, then n s ≡ a mod q for all n, implying X a,q (n s ) = 1 for all n. Assume now a is an s-power mod q. By the above remark, there exists 0 ≤ i ≤ (q -1)/s -1 such that a ≡ g si mod q. We have

This means that n/g i is of order dividing s in the group (Z/qZ) * . Now, the elements of order dividing s in this group constitute a subgroup of order s generated by g (q-1)/s . Thus, there exists an integer j such that 0 ≤ j ≤ s -1 and satisfying n g i ≡ g j(q-1)/s mod q, yielding X a,q (n s ) = 0 ⇐⇒ n ≡ g i+j(q-1)/s mod q.

Summarizing, for a ≡ g si mod q, we have established the equivalence

X g i+j(q-1)/s ,q (n) = 0, whence the claimed equality X a,q (n s ) = s-1 j=0 X g i+j(q-1)/s ,q (n).

Example 5.4 In order to establish our formula for n(p 10 , 2) in Section 6, the term X 8,17 (p 2 ) turns out to be involved. Now 8 is a square mod 17, namely 8 ≡ 5 2 ≡ 12 2 mod 17. Thus, the above result yields

We now derive another version of our formula for n(p 9 , 2), from which its values are easier to read. Given positive integers q 1 , . . . , q t , we denote by ρ q 1 ,...,qt : Z → Z/q 1 Z × • • • × Z/q t Z the canonical reduction morphism ρ q 1 ,...,qt (n) = (n mod q 1 , . . . , n mod q t ). Moreover, we write n ≡ ¬a mod q instead of n ≡ a mod q. For example, the condition ρ 5,17,257 (p) = (3, ¬9, ¬128) means p ≡ 3 mod 5, p ≡ 9 mod 17 and p ≡ 128 mod 257.

Corollary 6.2 Let p be an odd prime. Consider the following functions of p depending on its classes mod 5, 17, 257 and 11, 43, respectively: Proof. This directly follows from the preceding result and the easy to prove equalities λ(p) = 1 + 2X