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Figure 1: Our framework enables visualization and processing of large medical images on modest computers. Here, a simple example of
lung segmentation is shown.

Abstract

We propose a web-accessible image visualization and processing
framework well-suited for medical applications. Exploiting
client-side HTML5 and WebGL technologies, our proposal
allows the end-user to efficiently browse and visualize volumic
images in an Out-Of-Core (OOC) manner, annotate and apply
server-side image processing algorithms and interactively visualize
3D medical models. Server-side implementation is driven by
a file-based, simple, robust and flexible Remote Procedure Call
(RPC) scheme well suited for heterogeneous applications. We
demonstrate the efficiency of our approach with both an interactive
medical image segmentation and a 3D rendering of segmented
anatomical structures. As a secondary contribution, we improve
the segmentation algorithm with the introduction of user-defined
anatomical priors.
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1 Introduction

Technological advances have had a great impact on medical
practice. Digital Computed Tomography (CT) Scanners, Magnetic
Resonance Imaging (MRI) Devices and Ultrasound Sensors (US)
have spread and are nowadays routinely used, which results in
an increased volume of images to store, retrieve and visualize.
Moreover, research in medical image processing is still ongoing,
for which tools are developed for segmentation, detection,
classification and visualization of such images.

The Body Browser [Blume et al. 2011] proved the concept of
medical visualization to be achievable with HTML5. Such an
approach can be extended to patient-specific medical data. Our
goal is to allow an interactive segmentation of medical images
i.e. extracting anatomical structures such as bones, lungs and
other organs. The resulting models can be further used in various
applications : orthopedics, simulations and statistic studies.

We focus on interactive techniques as automatic segmentation is
still an open problem. Allowing the user to provide information
and corrections to the segmentation algorithm improves success
rates regarding different types of medical images. In this paper,
we propose a framework aiming at bridging the gap between the
end-user applications and ongoing research works.

Our framework is exposed via an HTML5-based web interface,



being able to efficiently visualize 3D datasets (3D images and
polygonal meshes), and apply various processing applications on
these datasets. Several advantages arise from using web-interfaces
for medical image processing:

• with the increasing number of available medical data, the use
of centralized repositories makes a lot of sense, and accessing
the data via Internet comes as a natural extension, such as
proposed in [Jomier et al. 2010]

• with an efficient application framework, researchers can
instantly deploy their improvements on ongoing research,
without the need for testers and end-users to update local
programs.

• along with advances in image acquisition, medical datasets
have become more and more demanding regarding Random
Accessible Memory (RAM) requirements. Web interfaces
allow to efficiently process large datasets on remote High
Performance Computers (HPC) or Computing Grids [Glatard
et al. 2012], while using only a low-end device for user
interaction.

Based on these assumptions, we propose a framework streamlined
for medical image processing. In section 2 we describe the
core features of our proposal. Sections 3, 4 and 5 describe
several key framework components, respectively out-of-core
volume visualization, volume segmentation, surface meshing and
visualization. These components are further used in an interactive
segmentation application for which we present some results in
section 6.

2 Framework outline

In order to provide maximal scalability to our approach, our design
takes into account two key observations:

• On the client side, the performances of Web browsers
have been significantly improved, and HTML5 allows
powerful Graphical User Interfaces via the Canvas and
WebGL Application Programming Interface (API). We aim
at exploiting this processing power, to lighten the server side
load.

• On the server side, the use of processing power and RAM
should be reduced as much as possible, to allow a large
number of concurrent user connections. This can be alleviated
using an on-disk processing and content delivery strategy, in
spirit with the OOC paradigm.

Our framework is based on the direct use of the server file system as
a workspace for the end-user. The file system is exposed to the user
via Asynchronous Javascript and XML (AJAX) calls. Actions such
as file conversion, image segmentation, and mesh processing are
performed via RPC, which simply consists in our case in launching
executable programs on the server.

2.1 Graphical User Interface

Qooxdoo [1&1 Internet AG 2005-2012] is an Ajax application
framework created to implement Rich Internet Applications (RIAs)
without the need for additional client-side software installation. It
allows programmers to build complex cross-browser applications
using its class-based programming model. Qooxdoo was chosen
to build the application for our interface mainly as it comes with
several build-in graphic elements, clear and numerous application
examples and a well constructed API reference. Appearance of
graphic elements is set directly in the JavaScript code granting the
possibility to incorporate style settings with the implementation of
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Figure 2: Framework architecture : RPCs are performed via PHP
while most of the data is served via the file server

the functionalities of our interface. The graphic elements (such as
windows and controllers) apart, Qooxdoo allowed us to create the
classes controlling the mechanisms of the main modules such as the
file browser, the visualization window and the tools widget.

2.2 Client-server communication

In order to execute RPC on the server, each possible action is
registered in an xml file containing location of the executable and
input parameters. Table 1 shows the xml part corresponding to the
remeshing algorithm we use.

The JavaScript code for the interface and the built binaries it uses
for different actions are all in the server, their interactions are then
completely transparent to the user’s web browser (regarding the
cache and data transmission). In order to keep these interactions
very simple, the interface uses JSON-like parameters to accomplish
RPCs.

The interface launches server-side applications by executing simple
command lines in the server (meaning the interface can use any
application which can be launched on the server with a command
line execution, provided it is compatible with the file formats used
by the interface). For this, a POST request generated in the interface
is interpreted by a PHP script which executes the correct command
line on the server. The standard output resulting from the execution
of the command line is redirected to an action log. The used
parameters are saved into a text file in the server.

Using text files to manage RPCs is less powerful than the Python
scripts used in ParaViewWeb [Jourdain et al. 2010] but it is much
more simple regarding the launching of server-side applications.
Parameters are saved for each ”action” after execution and specify
the corresponding server-side application as well as the user’s
parameters (see Table 1). They are not only very simply defined
but also useful when the user wants to relaunch the action
keeping some of the previous parameters. Moreover, this indirect
transmission of parameters (passing through the disk of the server)
makes the modules constituting the whole processing chain fairly
independent. By doing so, the impact of the eventual modification
of a module (and even the replacement of the PHP system by
another) will be minor to the other elements.



Table 1: example of definition for a server-side action.

<action name="acvd" executable="/home/visu/src/vtkSurfaceBuild/bin/ACVD">

<description>generates a simplification of the input mesh</description>

<parameter name="input_mesh" type="file" required="true"/>

<parameter name="number_of_desired_vertices" type="int" min="0" required="true" />

<parameter name="gradation" type="float" required="true" min="0" max="30" default="0"/>

<parameter prefix="-m " name="force_manifold" type="int" min="0" max="1"/>

<parameter prefix="-r " name="vertex_reserve" type="int" min="0"/>

<anchor text="-d 0"/>

</action>

2.3 Data formats of medical data

Medical data, the main data input of our interface, is generally
stored using the DICOM standard [Medical Imaging & Technology
Alliance, NEMA 2000].

However, our interface achieves different actions thanks to
server-side build C++ software. And, among these programs, there
are the main image processing applications handling actions such
as volume slicing, segmentation and volume meshing which were
implemented using the open-source library VTK (Visualization
Toolkit by Kitware) [W. Shroeder et al. 2003]. Since the VTK
library is widely used in image processing for medical images, we
choose to use the MetaImage format (using a ”.mhd” header to
indicate necessary information to read the corresponding volume
data) for all the image processing applications of our interface.
Implemented applications are indeed more simple when they
process a single volume file (a volume presented in the DICOM
format consisting of several 2D slices of the volume). Thereby,
in order to import medical images but also to export segmented
volumes, conversions to and from the MetaImage format are
necessary. A DICOM to MetaImage conversion is accomplished
with the MRIConvert[Smith 2011] free of charge utility. For image
exportation, we use the GDCM [Creatis 2012] library to create
volumes slices using the DICOM standard; other image formats
are handled via the VTK library.

2.4 Applications

In order to achieve image processing for a given volume data, the
web interface offers different graphic widgets : a file browser,
action menus, volume viewers, mesh viewers, segmentation tools
and meshing tools which are described in the following sections.

3 Out-Of-Core volume visualization

The main function of our interface is the visualization of volume
data. This function is carried out by a 2D Multi-Planar Rendering
(MPR) display. It consists actually of orthogonal views provided
with 2D slices of the given volume which are extracted following
3 different directions : sagittal, coronal and axial which are
commonly used in medical imaging. However, since the orientation
information for a given volume is not necessarily available nor
correct, the interface allows the user to modify the orientation of
the displayed slices at will (the proper alignment of the patient
with the anatomical axis is assumed). Slices of the input volume
can be viewed in an interactive window bearing those 3 orthogonal
views (see Figure 3). This viewer is used to display volume data
throughout the processing chain e.g. clustering, segmentation,
filtering.

Figure 3: Volume viewer : MPR visualization of an MRI
acquisition of a knee. Upper-left : sagittal view; upper-right :
coronal view; bottom-right : axial view; bottom-left : options for
the different layered images.

3.1 Image handling using HTML5

The displays in our interface were implemented using the WebGL
library THREE.js [Cabello 2010]. Each oriented 2D view of the
volume display is a 3D scene where a flat surface having the current
slice as a texture is a placed in space parallel to the screen. In order
to obtain that texture, the image data from a JPEG or PNG image
file is loaded into a HTML image (meaning only the desired slice of
the volume is loaded in an OOC fashion). Using WebGL shaders,
the display provides two independent modes easing visualization
for either a grey-scale image or a labeled image. On one hand, the
intensity of the pixels is modified so the user can set the dynamic
range of the gray-scale image to segment. On the other hand, the
pixels of a slice of the segmented volume can be colored according
a defined look-up table (matching pixel intensities to attributed
labels).

When using JPEG images, the original grey levels are rescaled
to fit a 8 bit dynamic range, whereas PNG images allow lossless
encoding of grey levels by packing the data into red, green, blue
and alpha channels. This allow us to encode data up to 32 bits



Table 2: Volume slicing results : total slice generation time (on a 2.27GHz quad-core test server) and disk usage, for each image format
(JPEG and PNG) and for a total slicing according three orthogonal orientations. Disk space refers to the maximum image size and to the
total disk space of obtained slices.

Volume (format) Dimensions
MetaImage Lossy compression JPEG Lossless compression PNG
Disk Space Slicing time Disk space Slicing time Disk space

Original leg (short) 512x512x861 430.5 MB 32.1 s 51.1 kB - 57.5 MB 3.0 min 436.0 kB - 456.9 MB

Leg labeled (uchar) 512x512x861 4.5 MB 31.9 s 54.5 kB - 60.7 MB 29.4 s 14.0 kB - 15.5 MB

Original knee (ushort) 512x512x100 50.0 MB 5.2 s 62.3 kB - 18.7 MB 22.4 s 187.1 kB - 54.9 MB

Knee labeled (uchar) 512x512x100 706.2 k B 4.3 s 33.6 kB - 10.1 MB 3.6 s 9.1 kB - 2.7 MB

float precision. Using WebGL to implement the MPR display is
very practical regarding scaling of the 2D image as well as mouse
controls. The display is more responsive when it is implemented
with WebGL rather than HTML5 canvas displays. Besides, since
these JPEG or PNG images are loaded by the user’s web browser
only when asked, our system corresponds to an OOC volume
visualization. Data is indeed stored in the server and indexed as
in an on-line computation [Silva et al. 2002]. Our display system
contributes then to the responsiveness of the interface and is most
convenient as the segmentation process implies that the user has to
deal only with a few slices of the volume to segment.

3.2 Volume slicing

As previously said, volume visualization is accomplished by
creating 2D slices of the input volume. This task is carried
out by one of the server-side applications implemented using the
VTK library. This program takes the volume to visualize and
creates JPEG or PNG images from the volume data. 2D slices
of a given volume are saved to the server-side file system as well
as to the user’s web browser cache allowing a very fast image
loading for previously used volumes which makes our interface
cache-friendly. Similar tools such as ParaViewWeb [Jourdain et al.
2010] use a streaming mechanism for image delivery allowing
a server-side 3D rendering too. However, in order to maintain
simplicity, the MPR display of our interface does not involve a
3D rendering. Our cache-friendly method, visualizing volumes
through 2D compressed slices, results in a lighter server load during
volume visualization than the server load in the streaming method.
Which is why this OOC display is also well adapted to be used by
simultaneous multiple-clients.

Table 2 shows some timings and data measurements when
processing various volume data with our test server whith 4 CPUS
clocked at 2.27 GHz. Rows 1 and 3 correspond to original medical
images, while rows 2 and 4 correspond to segmented images
(see section 4). Slicing volumes to JPEG files results in a disk
occupation of around 10 percent of the original image size, while
slicing to PNG images results in an occupation similar to the
original image size. As a consequence, once the volume is sliced
into images, RAM usage is replaced by similar size disk usage,
which is much cheaper.

Measurements on our server showed that the slicing step is a CPU
bound operation, so slicing times could be significantly reduced by
adding more CPUs to the server.

4 Volume segmentation

Semi-automatic segmentation methods are usually resorted to in
order to resolve ambiguities inherent with fully-automatic methods
and to alleviate prohibitive time and effort requirements of manual
delineation. Interaction is carried out via the attribution of pixel
labels, “seeds”, inside targeted objects (anatomical structures),

one for each type of structure (Figure 4). This provides clues
on what the expert intends to segment which can be used to
collect appearance statistics of targeted objects and to constrain
the solution space of the algorithm. We use a graph-based
multi-object semi-automatic segmentation method applied to a
coarsened version of the 3D input image to improve runtime
performance [Kéchichian et al. 2011]. To ensure the consistency of
segmentation with respect to anatomical properties, we extend the
aforementioned approach by anatomical vicinity prior information
which we dene as a set of pairwise local constraints and integrate it
into the multi-label optimization framework.

4.1 Controllable image coarsening by centroidal

Voronoi diagram clustering

To coarsen a gray-level image I, we construct a centroidal Voronoi
diagram (CVD) on it by minimizing the following function:

ECV D =

n
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v∈Ci

ρ(v)‖v − ci‖
2 + α‖Iv − Ii‖

2

1

A (1)

where ci is the mass centroid of CVD cluster Ci, α a scalar, Iv and
Ii the intensity levels of voxel v ∈ I and cluster Ci respectively,
the latter being defined as the mean intensity of its voxels. ρ(v)
is a density function which we define to obtain a gradient-adaptive
clustering given ρ(v) = m|∇Iv|+b, where |∇Iv| is the magnitude
of the image gradient at voxel v. In practice, m = b = 1.
Density-function weighting encourages the formation of relatively
small clusters near intensity edges, allowing fine-grained control of
the segmentation boundary (see Figure 4.c).

Intuitively, minimizing function (1) corresponds to maximizing
cluster compactness in terms of both color and geometry. In our
construction, we use a multi-threaded version of the clustering
algorithm in [Valette and Chassery 2004] which approximates a
CVD in a computationally-efficient manner, involving only local
queries on pairs of clusters. It is substantially faster than clustering
algorithms having similar constraints, such as [Veksler et al. 2010],
particularly on 3D images.

4.2 Multi-object 3D segmentation via Graph Cut

Given a CVD-clustered image C(I) and a set of labels L, one for
each targeted object, the task is to find the optimal mapping f :
C(I) 7→ L; f(Ci) = li with respect to prior domain information
and evidence provided by data. If the former can be expressed as
a Markov random field (MRF) for label configurations on clusters
and image-derived likelihood densities can be defined for labels,
then, according to the Bayes’ rule, the optimal mapping is defined
as the maximum a posteriori probability estimate (MAP) of label
configurations [Li 1994].

The MAP estimate can be computed by minimizing an energy



(a) (b) (c) (d)

Figure 4: (a) CT-cross section of a thorax (b) “seed”-marked image (c) CVD clustering of image (d) segmented image

function of label configurations having the following form:

E(ℓ) = λ
X

Ci∈C(I)

Di(ℓi) +
X

{Ci,Cj}∈N

Vi,j(ℓi, ℓj) (2)

where N is the irregular neighborhood system reflecting cluster
adjacency, and λ ≥ 0 is the underlying Gibbs distribution
temperature parameter. In practice, 0 ≤ λ ≤ 0.5.

4.2.1 Likelihood estimation

In the energy function (2), the unary term Di(·) is a function
derived from observed data to measure the cost of assigning the
label ℓ to cluster Ci. Representing each user-identified object
in the image by a label, we estimate the conditional probability
distribution of object intensity levels Pr(I|L) from user-supplied
“seeds” as normalized intensity histograms and define Di(·) as
follows:

Di(ℓi) =
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where sk represents a “seed” of label type k, and Iv is the intensity
level of the voxel v.

In subsequent refinements of an initial segmentation, and in order
not to disrupt initial appearance statistics, we allow the user to
introduce additional “corrective seeds” to impose hard constraints
on the label preference of incorrectly segmented image regions.

4.2.2 Anatomical spatial prior

The binary term Vi,j(·, ·) in the energy function (2) stems from
the second-order clique potentials of the MRF prior energy. This
term encodes a priori information of interactions between labels
assigned to pairs of neighboring sites, and encourages spatial
consistency of the labeling. We use a discontinuity-preserving
piece-wise constant prior model [Geman and Geman 1984] and
extend it to enforce anatomical vicinity constraints.

We would like to penalize assignments of labels to pairs
of clusters which violate anatomical consistency. For
example, in a segmentation task of thoracic cage structures,
the attribution of labels “marrow” and “lung” to pairs of
neighboring clusters should be penalized while the attribution
of labels “marrow” and “bone” should be encouraged, therefore
∀i, j; Vi,j(“marrow”, “lung”) > Vi,j(“marrow”, “bone”).

Figure 5: Segmentation of the lungs in a CT volume. Left/Right :
without/with anatomical spatial priors respectively

Let L2′ = {L×L}\{(ℓi, ℓj)|i 6= j}, and let Π be the set of binary

predicates defined on L2′ representing possible label couplings,

such that ∀(li, lj) ∈ L2′, π(li, lj) = π(lj , li). We define the binary
energy term Vi,j(·, ·) as follows:

Vi,j(ℓi, ℓj) =

8

>

<

>

:

0 ℓi = ℓj

γsoft ∃π ∈ Π, π(ℓi, ℓj)

γhard otherwise

(4)

where γhard > γsoft.

In our applications, we weigh Vi,j(·, ·) by the area of the common
boundary of adjacent clusters |∂Ci ∩ ∂Cj | so that clusters sharing
longer boundaries tend to prefer similar labels, or label assignments
incurring smaller penalties. In some applications, to account
for intensity profile dissimilarities between such clusters in label
assignments, we also weigh the binary energy term by a contrast
function defined as follows:

ψi,j = e
−

(Ii−Ij)
2

2σ2 (5)

where Ii and Ij represent intensity levels of neighboring clusters
Ci and Cj respectively and σ can be estimated as noise in data.
Figure 5 shows the improvements obtained in the segmentation
thanks to anatomical spatial priors.

4.2.3 Multi-label optimization

Due to the large number of local minima, especially in
high-dimensional spaces, the minimization of non-convex energy
functions such as (2) is NP-hard [Boykov et al. 2001]. In certain
cases, namely when |L| = 2, the global minimum of the energy
function can be computed exactly in low-order polynomial time
[Boykov and Funka-Lea 2006]. In general, however, and in our
multi-object segmentation problem where |L| ≥ 3, approximation
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Figure 6: Block diagram of the segmentation application

algorithms have to be used. We use the “expansion move”
algorithm described in [Boykov et al. 2001], which is capable of
finding a solution within a known factor of the global minimum
and has been shown to outperform other popular multi-label
optimization algorithms on benchmarks in terms of both speed
and quality [Szeliski et al. 2008]. The expansion move algorithm
can be applied when the binary energy term is submodular
[Kolmogorov and Zabih 2004]. To respect this condition (the
triangular inequality), we define γhard = 2 γsoft so that all binary
energy terms are submodular.

4.3 Segmentation interface

Figure 6 represents the main modules of the segmentation
application and their interactions.

In addition to visualization, the OCC volume viewer is used in
conjunction with the segmentation widget during the segmentation
process. This widget sets up, among other elements, the drawing
tools which allow the user to create the colored seeds needed to
compute initialization data for the segmentation algorithm. This
is a crucial task where the ”seeds” provided by the user’s input
significantly impacts results. Moreover, the interface allows the
user to introduce pairwise relations on given labels reflecting
anatomical adjacency constraints as mentioned in section 4. Once
the segmentation process is complete, the resulting image is
automatically overlaid with the original grey-scale image easing the
input of corrective ”seeds”.

Regarding the implementation of the drawing tools, those
functionalities were implemented using a HTMLCanvasElement
object. From this canvas, the drawn seeds are saved into a PNG
image file. The lossless compression and the transparency support
of the PNG format is essential for the interpretation of the seeds
files by the segmentation program.

5 Surface Meshing and visualization

5.1 Meshing

Once the volume is segmented in different organs, we extract the
organs surface for 3D visualization. This can be helpful when
one want to visually inspect the quality of the segmentation, and
possibly to localize complex regions, which is not easy when one
has only access to 2D slices.

For each organ, we first extract its surface using the Marching
Cubes algorithm [Lorensen and Cline 1987]. The output mesh is
then simplified using the open-source ACVD program [Valette et al.
2008], which was recently extended to generate manifold meshes
[Audette et al. 2011]. This simplification has two goals : improve
the quality of the rendered surface, as meshes generated by the
Marching Cubes approach exhibit blocky artifacts, and to decrease
the number of vertices and triangles of the mesh, which decreases
the amount of data to be transmitted to the client interface.

5.2 Mesh rendering

Among already available approaches for static resolution mesh
rendering [Di Benedetto et al. 2010; Cabello 2010] and
progressive approaches [Maglo et al. 2010], we use the THREE.js
framework, as it natively handles meshes encoded in the openCTM
format [OpenCTM 2009]. When one wants to visualize a mesh
which file encoding is different from openCTM, we perform a
transparent conversion to the appropriate format. Similarly to what
we do for volume data, the conversion result is stored in the cache
section of the file browser, to accelerate access from several clients.

6 Results

The images shown in this section were obtained directly from our
web interface.

Figure 7 shows 3D meshes extracted from the segmentation on a
thoracic CT image [Vandemeulebroucke et al. 2007]. We have
segmented bones, the heart and both lungs. The sternum is not
connected to the ribs since they are connected by cartilage which
shows different gray levels than bones in CT.

One of the main contributors in the project of our framework
is a society which proposes patient-adapted products to help the
installation of knee replacement implants during surgery. To
manufacture such products, segmentation of anMRI of the patient’s
knee bones followed by 3D modeling is carried out. Currently,
they create a 3D model from a semi-manual segmentation of a
single bone at a time. This segmentation is done by drawing the
contour of the given bone every few slices of the volume and
then automatically creating the contours for the untreated slices.
The purpose of the contribution is to reduce the over-all time of
generation of the 3D models of the patient’s knee bones. Our
framework allows to reduce the over-all time of generation of the
3D models (reducing mainly segmentation time) from 4 hours (per
bone) to 1 hour roughly (for all the bones in an MRI of the knee
like the one described in table 2) while obtaining similar results to
those of the current solution (see Figure 10). Figure 8 shows the 3D
models of the leg bones of a CT volume segmented during the first
tests of our framework on knees. Figure 9 shows the 3D meshes of
the knee bones of an MRI volume, the models of the femur and the
tibia bones being used afterwards for production.

Regarding other proposals, there is the integration ParaViewWeb
into MIDAS by [Jomier et al. 2011] which can be extended to
implement image processing and Dicom support as in our interface.



Figure 7: 3D meshes extracted from the segmentation of a thoracic
CT image. Here, the lungs, the heart and the bones are extracted.

These options do not come as built-in though. Another example
is [Mahmoudi et al. 2010] which uses VRML (replaced by X3D
since Mahmoudi’s et al publication) to provide the 3D features.
However, we chose to implement 3D in our interface with WebGL
since the THREE.js library is very flexible and easy to use within
the Qooxdoo JavaScript framework.

7 Conclusion

In this paper, we proposed a web framework for efficient
medical image processing, which allows remote visualization and
processing on modest client hardware. Stress is put on scalability
and ease of implementing different processing tasks such as
segmentation, meshing, data conversion. There are many possible
improvements to our approach such as a scheduling paradigm to
regulate server load, security handling or progressive 3D mesh
transmission.
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