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Abstract

A new threshold is presented for better estimating a signal by sparse transform and soft

thresholding. This threshold derives from a non-parametric statistical approach dedicated to

the detection of a signal with unknown distribution and unknown probability of presence in

independent and additive white Gaussian noise. This threshold is called the detection threshold

and is particularly appropriate for selecting the few observations, provided by the sparse transform,

whose amplitudes are sufficiently large to consider that they contain information about the signal.

An upper bound for the risk of the soft thresholding estimation is computed when the detection

threshold is used. For a wide class of signals, it is shown that, when the number of observations is

large, this upper bound is from about twice to four times smaller than the standard upper bounds

given for the universal and the minimax thresholds. Many real-world signals belong to this class,

as illustrated by several experimental results.

Keywords: Non-parametric estimation, soft thresholding, sparse transform, wavelet transform,

non-parametric detection.

1 Introduction

This study concerns the non-parametric estimation of a signal in the sense of [7]. The aim of this

estimation is to recover the signal from a noisy observation when noise is independent, additive, white

and Gaussian.

The estimation is performed as follows. First, a linear orthonormal transform is applied to the

observation. The outcome of this transform is a sequence of coefficients. The transform is chosen so

that it represents the signal by a relatively small number of coefficients whose amplitudes are large in

comparison to those resulting from noise. The second step is a non-linear filtering of these coefficients.

The purpose of this filtering stage is to eliminate the noise components by forcing them to zero and,
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possibly, to denoise the signal components. This filtering stage can be performed by a thresholding

function δλ(·). This function depends on a threshold λ whose main role is to distinguish the noisy

signal components from those due to noise alone. A coefficient whose absolute value exceeds the

threshold is regarded as a component of the noisy signal; a coefficient with absolute value below the

threshold is considered as noise. The last step reconstructs the estimate of the signal on the basis of

the filtered coefficients. The performance of this method is evaluated through a cost or risk function

rλ(·, ·), which will be the Mean Square Error (MSE) of the estimate.

To achieve the estimation described above, we must choose the appropriate transform, the thresh-

olding function δλ(·) and the value of the threshold λ used by the thresholding function. For reasons

recalled below, the orthonormal Discrete Wavelet Transform (DWT) is appropriate. As far as the

thresholding function is concerned, we choose the so-called soft thresholding function because it has

the well-known and desirable properties of smoothness and adaptation (see [6]). The last parameter

to specify is the value of the threshold.

This paper thus addresses the choice of the threshold to use for the estimation of a signal when the

soft thresholding function is applied to the coefficients returned by the wavelet transform of a noisy

observation of this signal. The literature on the topic distinguishes between the universal and the

minimax thresholds introduced in Donoho and Johnstone’s seminal paper [7]. The universal threshold

is simply an estimate of the maximum of the amplitude that can be attained by the noise components.

The minimax threshold is the largest value attaining the minimax quantity given by Eq. (6) below.

The thresholding function δλ(·) basically forces to 0 any coefficient whose amplitude is less than

the threshold λ because such a coefficient is considered to contain no or too little information about

the signal. On the other hand, any coefficient with amplitude equal to or above λ is expected to

relate to the presence of significant information about the signal; such a coefficient is then processed

by the thresholding function to reduce the influence of noise. Therefore, in this paper, the choice

of the threshold is regarded as a statistical decision problem where it is to be decided whether a

given coefficient contains significant information about the signal or not. No assumption about the

probability distributions of the signal coefficients is made, nor do we assume that these coefficients

are identically distributed. Basically, our solution derives from [16], where a specific threshold is

recommended to detect any signal whose amplitude is larger than or equal to a given value, when this

signal is additively corrupted by independent White Gaussian Noise (WGN).

This paper is organized as follows. After recalling the main principles of the method introduced

in [7], the results of [16] and those of [7] are combined in section 3 to introduce a new threshold. The

performance of the resulting estimation by soft thresholding is then addressed in section 4. Section 5

concludes this paper.

2 Non-parametric soft thresholding estimation

Let y = {yi}16i6N stand for the sequence of the observed data yi = f(ti)+ei, i = 1, 2, . . . , N, where f

is an unknown function, the random variables {ei}16i6N are independent and identically distributed

(iid), Gaussian with null mean and variance σ2. For every i = 1, 2, . . . , N , we write, as usual, that
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ei ∼ N (0, σ2).

The problem addressed in this work concerns the non-parametric estimation of the signal {f(ti)}16i6N

according to the approach developed in [7]. In order to recover the function f(·), an orthonormal trans-

form, represented by an orthonormal matrix W, is applied to y. The outcome of this transform is the

sequence of coefficients

ci = θi + ǫi, i = 1, 2, . . . , N, (1)

where c = {ci}16i6N = Wy, θ = {θi}16i6N = Wf , f = {f(ti)}16i6N and ǫ = {ǫi}16i6N = We,

e = {ei}16i6N . The random variables {ǫi}16i6N are iid and ǫi ∼ N (0, σ2).

The transform W is assumed to achieve a sparse representation [10] of the signal in the sense

that, among the coefficients θi, i = 1, 2, . . . , N , only a few of these have large amplitudes and, as

such, characterize the signal. This heuristic notion of sparsity is sufficient, at this stage, to explain

the estimation procedure. The wavelet transform is sparse in the sense given above and, as such, is

recommended in [7] and [10].

When the thresholding function is applied to the coefficients {ci}16i6N , the coefficients with small

amplitudes are forced to 0 - because they are considered to derive from too small, or even null,

components of the signal - whereas, on the other hand, the noise contribution is reduced on those

coefficients whose amplitudes exceed the threshold because such coefficients are regarded as large

enough to pertain to the signal to estimate.

Denoting by θ̂ = {δλ(ci)}16i6N the outcome of the non-linear filtering of the coefficients {ci}16i6N

by the thresholding function δλ(·), the estimate of f is then f̂ = WTθ̂, where WT is the transpose,

and thus, the inverse, of W.

The thresholding function considered is the soft thresholding function defined by

δλ(x) =





x − sgn(x)λ if |x| > λ,

0 elsewhere,
(2)

where sgn(x) = 1 (resp. -1) if x > 0 (resp. x < 0).

The risk function or cost used to measure the accuracy of the estimate f̂ of f is the standard MSE.

Since the transform W is orthonormal, this cost is

rλ(θ, θ̂) =
1

N
E‖θ − θ̂‖2 =

1

N

N∑

i=1

E

(
θi − δλ(ci)

)2

.

To state the following results, it is convenient to use the standard oracle risk introduced in [7]:

r0(θ) =
1

N

N∑

i=1

min
(
θ2

i , σ2
)
. (3)

At this stage, it is time to recall the definition of the universal threshold and that of the minimax

threshold (see [7]). These thresholds can be used to achieve the estimation by sparse transform and

soft thresholding.

Consider Eq. (1). Since ǫi
iid
∼ N (0, σ2), it follows from [2, Eqs. (9.2.1), (9.2.2), Section 9.2, p. 187];

see also [13, p. 454], [19, Section 2.4.4, p. 91], that

lim
N→+∞

P

[
λu(N) − σ ln lnN

lnN
6 max

{
|ǫi|, 1 6 i 6 N

}
6 λu(N)

]
= 1, (4)
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where λu(N) = σ
√

2 ln N . Thus, the maximum amplitude of {ǫi}16i6N has a strong probability

of being close to λu(N) when N is large. The threshold λu(N) is the so-called universal threshold .

According to [7, Theorem 1], the risk rλu(N)(θ, θ̂) of the soft thresholding estimation of θ with universal

threshold λu(N) is such that

rλu(N)(θ, θ̂) 6 (1 + 2 lnN)
(
N−1σ2 + r0(θ)

)
. (5)

The minimax threshold λm(N) is defined as the largest value λ among the values attaining the

minimax risk bound

Λ(N) = inf
λ>0

sup
µ∈R

rλ(µ,µ̂)
N−1+r0(µ) . (6)

It follows from [7, Theorem 2] that the risk rλm
of the soft thresholding estimation of θ with minimax

threshold λm(N) satisfies the following inequality

rλm(N)(θ, θ̂) 6 Λ(N)
(
N−1σ2 + r0(θ)

)
, (7)

with Λ(N) 6 1 + 2 ln N and Λ(N)
N→∞

∼ 2 lnN.

Remark 1 According to the inequalities given in Eqs. (5) and (7), the upper bound on the risk rλ(θ, θ̂)

of the estimation by soft thresholding, whether λ is either the universal or the minimax threshold, is

of the same order as 2r0(θ) ln N when N tends to ∞.

Hereafter, a new threshold, obtained according to [16], will be introduced and its performance

will be analysed in comparison with the minimax and universal thresholds. In particular, we will

show that, for the soft thresholding estimation based on this threshold, the upper bound on the risk

behaves, for a certain class of signals, as r0(θ) ln N , or even r0(θ) ln N/2, when N is large. This class

is actually large enough to contain many real signals encountered in practice.

3 The detection threshold and its application to non-parametric

estimation

In this section, by taking into account the sparsity of the model described by Eq. (1) and following

the approach of [16, Theorem VII.1], we derive a threshold that improves the estimation by sparse

transform and soft thresholding. The notations introduced in the preceding section are used hereafter

with the same meaning as above.

For any real number λ, let Tλ(·) be the thesholding test with threshold height λ defined by

Tλ(x) =





1 if |x| > λ

0 otherwise
(8)

for every real value x. Then, given any coefficient ci, i = 1, 2, . . . , N , we have δλ(ci) = Tλ(ci)(ci −
sgn(ci)λ). This simple equation emphasizes that, in the estimation process by sparse transform and

thresholding function, the primary role of the threshold λ is to decide which coefficients must be

4



processed - because they can reasonably be expected to contain significant information about the

signal - and which coefficients must be forced to zero - because they are assumed to contain no or too

little information about this same signal.

Now, consider that the transform W satisfies the next two assumptions. These assumptions for-

malize, more specifically than above, that the coefficients pertaining to the signal are few and large.

(F) [Few:] Only a few coefficients of the sequence {ci}16i6N contain significant information about

the signal in the following sense: first, each coefficient ci, i = 1, 2, . . . , N , follows a binary

hypothesis model where the null hypothesis is that ci is noise only, so that ci = ǫi, and the

alternative hypothesis is that ci is the sum of signal and noise, so that ci = θi + ǫi with θi 6= 0;

second, the probability of occurrence of the alternative hypothesis is unknown but less than or

equal to one half.

(L) [Large:] When the alternative hypothesis described above is true for a given coefficient ci, the

amplitude of the corresponding coefficient θi is larger than or equal to the universal threshold

λu(N) = σ
√

2 ln N . We recall that, according to Eq. (4), the universal threshold can be regarded

as the maximum amplitude of the coefficients returned for noise when N is large enough.

Assumptions (F) and (L) are acceptable to model the statistical behaviour of the wavelet coef-

ficients for smooth or piecewise regular signals ([7, 10]). Summarizing these assumptions, we can

write that for every coefficient ci, i = 1, 2, . . . , N , the decision about the presence or the absence of

significant information about the signal amounts to testing the null hypothesis ci ∼ N (0, σ2) against

the alternative hypothesis ci ∼ N (θi, σ
2) where |θi| > λu(N). We hereafter assume that the noise

standard deviation σ is known.

If assumptions (F) and (L) did not bound our lack of prior knowledge about the coefficients of

the signal and the probabilities of occurrence of the alternative hypotheses, the use of Wald’s test

([20]) would be recommended since the coefficients θi, i = 1, 2, . . . , N , are unknown and the noise

standard deviation is known. Given some test level, any positive real value r, and any coefficient θi,

i = 1, 2, . . . , N , such that |θi| = r, Wald’s test has best constant power for accepting the alternative

hypothesis. We recall the following: the test level, or probability of error of the first type, is the

probability of accepting the alternative hypothesis when the null hypothesis is true; the power of the

test is the probability of rejecting the alternative hypothesis when this alternative hypothesis is true.

The power of the test is also the complementary probability of the so-called probability of error of the

second type, that is, the probability of accepting the alternative hypothesis when the latter is true.

Since we assume an upper-bound equal to one half for the probabilities of occurrence of the

alternative hypotheses and a lower-bound equal to λu(N) for the amplitudes of the coefficients θi, i =

1, 2, . . . , N , when the alternative hypotheses occur, we can use proposition 1 below. This proposition

derives from [16, Theorem VII.1]. In contrast with Wald’s test, the criterion for the quality of the

tests propounded in [16, Theorem VII.1] and the following statement is not the power of the test given

some level, but the probability of error, that is, the probability of accepting the wrong hypothesis and,

thus, the weighted average of the probabilities of the first and the second type. Therefore, the test

proposed below does not require any a priori test level to be chosen.
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In the following statement, V (ρ, p) stands for the function defined for every non-negative real

number ρ and every 0 6 p 6 1 by

V (ρ, p) = p [F(ρ + ξ(ρ, p)) − F(ρ − ξ(ρ, p))] + 2(1 − p) (1 − F(ξ(ρ, p))) , (9)

where F is the cumulative distribution function of the standard normal distribution N (0, 1) and

ξ(ρ, p) =
ρ

2
+

1

ρ

[
ln

1 − p

p
+ ln

(
1 +

√
1 − p2

(1 − p)2
e−ρ2

)]
. (10)

As usual, if a property P holds true almost surely, we write P (a-s).

Proposition 1 Consider the following binary hypothesis testing problem

{
H0 : U ∼ N (0, σ2)

H1 : U = S + X, S 6= 0 (a-s), |S| > a > 0 (a-s), X ∼ N (0, σ2),

where U , S, X are real random variables such that S and X are independent.

If the a priori probability of occurrence of hypothesis H1 is less than or equal to some value p∗ 6 1/2,

then V (a/σ,p∗) is a sharp upper bound for the probabilities of error of the Bayes test L with the least

probability of error among all possible tests and the thresholding test Tσξ(a/σ,p∗) with threshold height

σξ(a/σ,p∗). The bound V (a/σ,p∗) is sharp because attained by both L and Tσξ(a/σ,p∗) if |S| = a (a-s),

with P [S = a ] = P [S = −a ] = 1/2 and the probability of occurrence of hypothesis H1 is p∗.

Proof: [See appendix].

In the foregoing result, if random variables are replaced by n-dimensional real random vectors and

the absolute values by the standard Euclidean norm in R
n, the statement thus obtained still holds true,

turns out to be an extension of [16, Theorem VII.1] and can be established by mimicking the proof

of [16, Theorem VII.1]. Proposition 1 could therefore be considered as a straightforward corollary of

this extension. However, for self-completeness of the present paper, we prefer to prove proposition

1 without resorting to [16, Theorem VII.1] and the somewhat sophisticated material of its proof. In

fact, dealing with random variables instead of n-dimensional random vectors significantly eases the

task.

If the distribution of the signal to recover were known, which is rarely the case, L could be used

to decide whether observed data contain significant information or not, and this decision would be

optimal in the sense that L yields the least possible probability of error. In the non-parametric and

frequent practical case where the probability distribution of S is unknown or cannot be estimated

accurately enough, then L is not workable; but, according to the foregoing proposition, we can apply

Tσξ(ρ/σ,p∗), which guarantees the same sharp upper bound for the probability of error as L. Therefore,

when the transform W is sparse in the sense specified by assumptions (F) and (L), it follows from

proposition 1 and Eq. (10) with p = 1/2 that the thresholding test Tλd(N) with

λd(N) = σξ(λu(N)/σ)

= σ
√

lnN/2 + σln
(
1 +

√
1 − 1/N2

)
/
√

2 ln N,
(11)
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accepts or rejects the null hypothesis with a probability of error less than or equal to V (
√

2 ln N),

which is a decreasing function of N . Table 1 gives the values of V (
√

2 ln N) for some values of N .

Table 1: Upper bound V (
√

2 lnN) of the probability of error of the thresholding test Tλd(N).

N 2 4 8 16 32

V (
√

2 ln N) 0.3645 0.2743 0.2110 0.1648 0.1302

N 64 128 512 1024 2048

V (
√

2 ln N) 0.1036 0.0830 0.0540 0.0437 0.0356

N 4096 8192 16384 32768 65536

V (
√

2 ln N) 0.0290 0.0236 0.0193 0.0158 0.0130

The threshold λd(N) is henceforth called the detection threshold. It is easy to see that the detection

threshold λd(N) is close to λu(N)/2 when N is large enough. Table 2 gives the values of λd(N), λm(N),

and λu(N) for some values of N . It shows that for small values of N , the threshold λd(N) is close to

the minimax threshold, and for large values of N (above or equal to 2048), the value of the threshold

λd(N) is, as mentioned above, about λu(N)/2. The threshold λd(N) is smaller than the minimax

threshold and almost two times smaller than the universal threshold when N is large.

Table 2: Detection, minimax, and universal thresholds for different values of the sample size N .

N 128 256 512 1024 2048 4096 8192

λd(N) 1.78 1.87 1.96 2.05 2.13 2.21 2.29

λm(N) 1.67 1.86 2.05 2.23 2.40 2.58 2.74

λu(N) 3.12 3.33 3.53 3.72 3.91 4.08 4.25

Under assumptions (F) and (L), the detection threshold is appropriate for deciding whether a

coefficient returned by the sparse transform W pertains to the signal or not. However, assumptions

(F) and (L) may not be satisfied in practice, especially if the signal is not smooth enough or not

sufficiently regular. Hence, we now address the performance of the estimation by sparse transform

and soft thresholding when the detection threshold is used, without assuming that the transform is

sparse in the sense of assumptions (F) and (L). In this respect, proposition 2 below gives a bound on

the risk for the estimation of θ when the estimate is performed by using δλd(N)(·). In fact, proposition 2

below relies on the following result, which is an easy extension of [7, Theorem 1] (see also [13, Theorem

10.4]) about the risk of the soft thresholding estimation. The extension is that the subsequent result

holds true for any positive real value λ and not only for the universal threshold.

Lemma 1 Given the model described by Eq. (1), consider the estimation of θ by soft thresholding

where the threshold is any positive real value λ.

The risk rλ of this estimation is such that

rλ(θ, θ̂) 6 (1 + λ2/σ2)×
(
σ2e−λ2/2σ2

+ r0(θ)
)

. (12)
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Proof: [See appendix].

The foregoing result actually extends [7, Theorem 1] since, by putting λ = λu(N) in Eq. (12), we

obtain Eq. (5) again.

Proposition 2 With respect to the model described by Eq. (1), assume that N > 2 and consider the

estimation of θ by soft thresholding with threshold value λd(N). The risk rλd(N) of this estimation

satisfies the inequality

rλd(N)(θ, θ̂) 6 (lnN/2 + η(N))
(
σ2ζ(N) + r0(θ)

)
, (13)

with

η(N) = 1 + ln
(
1 +

√
1 − 1/N2

)
+ ln2

(
1 +

√
1 − 1/N2

)
/2 ln N, (14)

and

ζ(N) = N−1/4
(
1 +

√
1 − 1/N2

)−1/2

× e
− ln2

(
1+

√
1−1/N2

)
/4 ln N

(15)

Proof: It suffices to inject the value of the detection threshold given by Eq. (11) into Eq. (12) to

obtain Eqs. (13), (14) and (15).

Although the detection threshold derives from the binary hypothesis testing problem associated

with the sparsity model described by hypotheses (F) and (L), proposition 2 is established without

resorting whatsoever to these hypotheses or, more generally, to any sparsity model. Proposition 2 is,

thus, very general.

For a specific class of signals, the upper bound provided by proposition 2 is asymptotically smaller

than 2r0 lnN(θ). Consider the subset

ΘN =
{
θ = {θi}16i6N ∈ R

N : r0(θ) > σ2ζ(N)
}

of R
N . The elements of this subset are sequences of coefficients returned by transform W for a certain

class of signals. This is why, with some slight abuse of language, the subset ΘN will hereafter be

regarded as a class of signals.

Clearly, if θ belongs to this class, the upper bound given by equation (13) for the risk of the

soft thresholding estimation with detection threshold behaves as r0(θ) ln N when N tends to ∞. This

follows straightforwardly from the fact that limN→∞ η(N) = 1+ln 2 and that σ2ζ(N)+r0(θ) 6 2r0(θ)

when θ ∈ ΘN .

Moreover, for any element θ of ΘN such that r0(θ) ≫ σ2ζ(N), the order for the upper bound

on the risk rλd(N)(θ, θ̂) is now r0(θ) ln N/2 when N tends to ∞. Indeed, from limN→∞ ζ(N) = 0,

it follows that if r0(θ) is very large in comparison with σ2ζ(N), then σ2ζ(N) + r0(θ) ∼ r0(θ) for

sufficiently large values of N .

On the other hand, for every θ ∈ ΘN , the upper bound in Eq. (5) (resp. Eq. (7)) for the risk

of the soft thresholding estimation with universal threshold (resp. minimax threshold) behaves as

2r0(θ) ln N when N increases to ∞.
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Therefore, to estimate an element of ΘN by soft thresholding when N is large, the detection

threshold leads to an order for the upper bound of the estimation risk two to four times smaller than

the order obtained when either the universal or the minimax threshold is used.

These results do not contradict [7, Theorem 3], which states that 2r0(θ) ln N is the optimal order

for the upper bound of the estimation risk when diagonal estimators such as soft thresholding are

used. There is no contradiction because our discussion concerns the subset ΘN of R
N , whereas [7,

Theorem 3] holds true over R
N .

At this stage, it is worth wondering whether ΘN is not too small a class and what kind of signals

this class can be expected to contain. On the one hand, if α stands for the proportion of coefficients

whose amplitude is larger than or equal to σ, it follows from

N∑

i=1

min
(
θ2

i , σ2
)

= αNσ2 +
∑

|θi|<σ

θ2
i , (16)

that r0(θ) > ασ2. Therefore, any signal such that α > ζ(N) belongs to ΘN . In this respect, ΘN

must contain piecewise regular signals. In fact, a singularity creates approximately the same number

of large coefficients at each resolution level, whereas the number of wavelet coefficients at resolution

level j > 1 decreases when j increases [13, p. 460]. On the other hand, let us assume that the function

to recover belongs to some Besov class Bs
p,q, p, q ≥ 1, sp > 1. According to [5, 8, 11], the oracle risk

r0(θ) = O(N−2s/(2s+1)) whereas ζ(N) ∼ N−1/4 when N tends to infinity. This suggests that most

elements of ΘN belong to Besov classes Bs
p,q such that s < 1/6. The elements of these Besov classes

tend to be non-smooth functions since, roughly speaking, s indicates the ‘number’ of derivatives of

the elements of Bs
p,q. The condition r0(θ) > σ2ζ(N) is however not as restrictive as the foregoing

could suggest. Since real-world signals and images are often non-smooth and rather piecewise regular,

ΘN can in fact be expected to contain the wavelet representations of many of these signals. This is

confirmed by the experimental results of the next section: briefly, r0(θ) is actually much larger than

σ2ζ(N) for every natural image considered below; half of the synthetic signals given in the WaveLab

toolbox are elements of ΘN . Note also that the ’Blocks’ signal is an example of a piecewise regular

signal which is an element of ΘN for reasonable values of the noise standard deviation σ.

We can summarize the discussion above as follows. The minimax and universal thresholds are

suitable for recovering smooth signals, whereas the detection threshold is suitable for estimating less

smooth signals, including piecewise regular signals, which are known to be over-smoothed when using

the minimax or the universal threshold. For instance, smooth signals yield very sparse wavelet rep-

resentations in the sense given by [7]: for such signals, large coefficients are very few in number. In

contrast, wavelet representations of natural images, which are piecewise regular rather than smooth,

fail to be sparse enough since large coefficients are not very few. This justifies the introduction of

assumption (F), which makes it possible to derive thresholds adapted to less smooth signals.

However, note that the null signal does not belong to ΘN . To estimate θ = 0, the larger the

threshold, the smaller the risk. Therefore, the detection and minimax thresholds are less suitable for

estimating the null function than the universal threshold because the two former are smaller than the

latter. In fact, when θ = 0, the risk is zero when the threshold is infinitely large. This is coherent
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with proposition 1: if only the null hypothesis actually occurs, the probability of occurrence of the

alternative hypothesis is 0; it then suffices to set p = p∗ = 0 in equation Eq. (10) to derive that the

threshold to use in this case is actually ξ(a, 0) = ∞.

The foregoing discussion about class ΘN suggests that the universal and the minimax thresholds

are actually too large for many practical applications, as already reported by several authors (see

[3, 13] among others). It also suggests that, when the sample size N is large enough, the detection

threshold should perform better than the universal and minimax thresholds for the estimation by soft

thresholding of many signals and images of practical interest. This is what we experimentally verify

in the next section. In fact, the experimental results of the following section confirm that the wavelet

representations of many standard signals and images actually belong to class ΘN , that the detection

threshold performs better than the universal and the minimax thresholds for most of the signals and

images tested and that the detection threshold achieves better results than the universal and minimax

thresholds, even when the signal representation θ does not belong to ΘN .

4 Experimental results

The previous section suggests using the detection threshold instead of the universal and minimax

thresholds for the estimation by soft thresholding of many signals. We now verify experimentally that

for a large class of synthetic signals and standard images, the detection threshold makes it possible

to achieve smaller risks for the estimation by soft thresholding than the universal and the minimax

thresholds.

4.1 Risk evaluation on synthetic signals

In the experiments whose results are presented below, the transform represented by the orthonormal

matrix W is the DWT based on the Symlet wavelet of order 8 (‘sym8’ in the Matlab Wavelet toolbox).

The synthetic signals considered in this section are generated from the WaveLab toolbox 1. As

in [7], the sample size is N = 2048 for every signal tested. We choose σ = 1 and the signals are

rescaled for every Signal-to-Noise Ratio (SNR) tested. The SNRs tested are 1, 3, 5 and 7. Soft

thresholding is applied to the detail coefficients of the decomposition levels j = 1, 2, . . . , J where J is

either 6 or 10. The signals under consideration have different sparsity degree according to their wavelet

representations. This can be seen, for instance, in figure 1, which gives the DWT representations of

the ’Blocks’, ‘Doppler’, ‘Cusp’, and ’HypChirps’ signals.

For every signal tested, table 3 gives the average risk computed over 25 noise realizations, for

SNR = 1, 7 and when J = 6, 10. Experiments of the same type were carried out for SNR = 3, 5,

with the same signals and the same decomposition levels. The results thus obtained are very similar:

at a given SNR and for most of the signals tested, the smallest risk is achieved with the detection

threshold. As far as the four signals ’Blocks’, ‘Doppler’, ‘Cusp’, and ’HypChirps’ are concerned, this

holds true except for the ‘Cusp’ signal (see figure 2). In fact, depending on the SNR and the maximum

1available at http://www-stat.stanford.edu/∼wavelab/
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Figure 1: Examples of signals tested, with their DWT representations. The DWT concerns the

resolution levels j = 1, 2, . . . , J where J is either 6 or 10.
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decomposition level J , the minimax and universal thresholds outperform the detection threshold for

estimating this signal. This is not very surprising for the following reason.

For every given SNR = 1, 3, 5, 7, about half of the signals under consideration are in fact elements

of ΘN . For instance, in table 3, signals whose names are written in boldface belong to this class. In

particular, as far as the four signals considered in figure 1 are concerned, ‘Blocks’ belongs to this class

only for SNR = 5, 7, ‘Doppler’ and ‘Cusp’ are not elements of this class, and ‘HyChirps’ belongs to

this class for every SNR tested.

From the experimental results of this section, we can conclude that for every signal tested that

belongs to ΘN , the detection threshold performs better than the universal and the minimax thresholds.

In addition, the detection threshold generally performs better even when the signal is not an element

of ΘN . As mentioned above, an exception occurs for the ‘Cusp’ signal, for which the universal and

minimax thresholds lead to smaller risks.

4.2 Risk evaluation on standard images

We consider the standard images ‘House’ and ‘Peppers’ with size 256× 256 as well as the usual ‘Bar-

bara’, ‘Lena’, ‘Finger’, and ‘Boat’ images with size 512 × 512. These images are decomposed via the

standard two-dimensional DWT. As in section 4.1, we use the ‘sym8’ wavelet for the decomposition.

The decomposition levels are j = 1, 2, . . . , J where J is now chosen equal to 4. The DWT represen-

tations of the images under consideration are given in figure 3. These DWT representations are not

very sparse in the sense given in [7]. In fact, most real-world signals and images are non-smooth.

However, if θ represents the coefficients returned by the DWT for a given image, it turns out (see

table 4) that r0(θ) > σ2ζ(N) so that θ ∈ ΘN for every image mentioned above and every tested

standard deviation value σ = 9, 18, 27, 36. This is consistent with the discussion, in section 3, about

the signals pertaining to ΘN . Indeed, the images considered in the present section, as well as most

images encountered in practice, are non-smooth in the sense that they present many singularities due,

for instance, to contours and texture. Note that r0(θ) is generally much larger than σ2ζ(N).

Table 5 presents the risks obtained with detection, minimax and universal thresholds, when es-

timation by soft thresholding is applied to the detail coefficients obtained at decomposition levels

j = 1, 2, . . . , J so as to denoise the tested images additively corrupted by independent WGN. For

every tested σ = 9, 18, 27, and 36, and for every threshold, the risk given in table 5 is the average

value obtained over 10 trials. As can be seen in table 5, the risks obtained by using the detection

threshold are smaller than those achieved with the minimax and universal thresholds. This confirms

that the detection threshold performs better for elements of ΘN .

4.3 Denoising by using the stationary wavelet transform

The transform is now the Stationary Wavelet Transform (SWT). This transform is particularly suitable

for denoising because it is translation invariant and redundant [4, 13]. The ‘sym8’ wavelet was again

used to perform the SWT. Soft thresholding is applied to the detail coefficients at decomposition levels

j = 1, 2, . . . , J where J = 6 for signals and J = 4 for images.
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Table 3: Risks rλ for detection, minimax, and universal thresholds. Soft thresholding is applied to the

detail coefficients at decomposition levels j = 1, 2, . . . , J where J is either 6 or 10. Signals with names

in boldface are elements of ΘN for the SNRs tested. The value of ζ(N) is 0.1035 since N = 2048.

SNR= 1

J = 6 J = 10

Signal HeaviSine Bumps Blocks Doppler

rλd(N) 0.0270 0.1758 0.0988 0.0661

rλm(N) 0.0227 0.1950 0.1027 0.0677

rλu(N) 0.0196 0.3239 0.1386 0.0924

Signal Ramp Cusp Sing HiSine

rλd(N) 0.0383 0.0231 0.07 0.8421

rλm(N) 0.0357 0.0187 0.0743 0.8963

rλu(N) 0.0404 0.0157 0.1272 1.0090

Signal LoSine LinChirp Piece-PolyQuadChirp

rλd(N) 0.7009 0.7320 0.0727 0.5950

rλm(N) 0.7769 0.7877 0.0730 0.6483

rλu(N) 0.9941 0.9455 0.09 0.8296

Signal MishMash Werner Leopold Piece-Reg

rλd(N) 0.7462 0.7247 0.0594 0.0672

rλm(N) 0.7912 0.7670 0.0620 0.0672

rλu(N) 0.9128 0.8758 0.1024 0.0833

Signal Riemann HypChirps sineoverx Chirps

rλd(N) 0.2744 0.3535 0.0994 0.6976

rλm(N) 0.2883 0.3978 0.1077 0.7524

rλu(N) 0.3477 0.6320 0.1505 0.9290

Signal HeaviSine Bumps Blocks Doppler

rλd(N) 0.0423 0.2275 0.1408 0.0967

rλm(N) 0.0439 0.2575 0.1558 0.1065

rλu(N) 0.0801 0.4461 0.2624 0.1872

Signal Ramp Cusp Sing HiSine

rλd(N) 0.0506 0.0310 0.0794 0.8324

rλm(N) 0.0530 0.0301 0.0873 0.8875

rλu(N) 0.0917 0.0456 0.1645 1.0059

Signal LoSine LinChirp Piece-PolyQuadChirp

rλd(N) 0.6930 0.7273 0.1213 0.5977

rλm(N) 0.7692 0.7830 0.1332 0.6537

rλu(N) 0.9879 0.9472 0.2241 0.8530

Signal MishMash Werner Leopold Piece-Reg

rλd(N) 0.7465 0.7466 0.0567 0.1158

rλm(N) 0.7963 0.7950 0.06 0.1286

rλu(N) 0.9392 0.9310 0.1029 0.2262

Signal Riemann HypChirps sineoverx Chirps

rλd(N) 0.3274 0.3525 0.1252 0.6956

rλm(N) 0.3558 0.3978 0.1401 0.7546

rλu(N) 0.5048 0.6492 0.2291 0.9428

SNR= 7

J = 6 J = 10

Signal HeaviSine Bumps Blocks Doppler

rλd(N) 0.0693 0.4593 0.3644 0.1519

rλm(N) 0.0716 0.5390 0.4236 0.1716

rλu(N) 0.1032 1.0882 0.8331 0.3284

Signal Ramp Cusp Sing HiSine

rλd(N) 0.0726 0.0357 0.1185 2.8721

rλm(N) 0.0773 0.0334 0.1339 3.4361

rλu(N) 0.1353 0.0434 0.2659 7.4357

Signal LoSine LinChirp Piece-PolyQuadChirp

rλd(N) 2.2457 2.4482 0.3114 1.8587

rλm(N) 2.5826 2.9456 0.3592 2.2344

rλu(N) 4.5711 6.4238 0.6736 4.8663

Signal MishMash Werner Leopold Piece-Reg

rλd(N) 3.6411 3.7349 0.1092 0.2457

rλm(N) 4.3826 4.4775 0.1220 0.2803

rλu(N) 9.4769 9.4820 0.2326 0.5141

Signal Riemann HypChirps sineoverx Chirps

rλd(N) 2.6154 0.9497 0.3157 3.1823

rλm(N) 3.0237 1.1304 0.3756 3.7977

rλu(N) 5.1670 2.3892 0.8042 7.8705

Signal HeaviSine Bumps Blocks Doppler

rλd(N) 0.1140 0.5373 0.4420 0.1944

rλm(N) 0.1291 0.6354 0.5208 0.2268

rλu(N) 0.2475 1.3096 1.0692 0.4715

Signal Ramp Cusp Sing HiSine

rλd(N) 0.1084 0.0629 0.1435 2.8724

rλm(N) 0.1237 0.0685 0.1674 3.4382

rλu(N) 0.2539 0.1357 0.3567 7.4345

Signal LoSine LinChirp Piece-PolyQuadChirp

rλd(N) 2.2193 2.4580 0.3777 1.8845

rλm(N) 2.5575 2.9591 0.4446 2.2680

rλu(N) 4.5570 6.4559 0.9005 4.9504

Signal MishMash Werner Leopold Piece-Reg

rλd(N) 3.6485 3.7975 0.1243 0.3204

rλm(N) 4.3948 4.5593 0.1422 0.3739

rλu(N) 9.5406 9.6995 0.2892 0.7471

Signal Riemann HypChirps sineoverx Chirps

rλd(N) 2.6693 0.9525 0.3574 3.1960

rλm(N) 3.0936 1.1374 0.4289 3.8171

rλu(N) 5.3815 2.4288 0.9404 7.9318
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Figure 2: Average risk computed over 25 noise realisations versus the tested SNR = 1, 3, 5, 7, for the

estimation of the ’Block’, ’Doppler’, ’Cusp’ and ’HypChirps’ signals by using soft thresholding with

either detection, minimax or universal thresholds. Soft thresholding is applied to the detail coefficents

returned by the ’sym8’ DWT at decomposition levels j = 1, 2, . . . , 6.

We begin with the standard ‘Doppler’ signal, additively corrupted by independent WGN with

standard deviation σ = 1 and SNR = 7.

Figure 4 shows the noisy ‘Doppler’ signal in comparison to the three denoised ’Doppler’ signals

obtained by adjusting the soft thresholding estimation with either the detection, the minimax or the

universal threshold. The original ’Doppler’ is represented by a dotted line in each of the three figures

presenting the denoised signals. In addition, figure 5 zooms on the first 50 and the last 50 coefficients

of the several denoised versions of figure 4. These figures show that soft thresholding with the universal

threshold achieves a smoother estimate of the original signal than soft thresholding with the minimax
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Figure 3: Some standard images, and their ‘sym8’ DWT representations for J = 4.
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Table 4: Value of r0(θ) for every image tested. The vector θ is the ‘sym8’ DWT of a given image.

The DWT concerns decomposition levels j = 1, 2, 3, 4.

N 256 × 256 512 × 512

Images ‘House’ ‘Peppers’ ‘Barbara’ ‘Lena’ ‘Finger’ ‘Boat’

σ = 9

σ2ζ(N) 3.5412 3.5412 2.5070 2.5070 2.5070 2.5070

r0(θ) 17.2998 24.4012 25.0542 17.9539 36.0245 26.5791

σ = 18

σ2ζ(N) 14.1647 14.1647 10.0280 10.0280 10.0280 10.0280

r0(θ) 37.9459 56.1343 60.4723 36.4248 87.0434 55.7944

σ = 27

σ2ζ(N) 31.8705 31.8705 22.5630 22.5630 22.5630 22.5630

r0(θ) 58.3006 89.8592 98.1831 54.9842 139.9741 84.0878

σ = 36

σ2ζ(N) 56.6587 56.6587 40.1120 40.1120 40.1120 40.1120

r0(θ) 78.6185 124.2232 136.0478 73.5691 193.8070 111.5801

or detection thresholds; however, this smooth estimate generally fits the original signal less well than

the estimate obtained by using either the detection or the minimax threshold. This oversmoothing

obtained with the universal threshold explains why, as illustrated below, images denoised by soft

thresholding with the universal threshold are more blurred than images denoised by soft thresholding

with the minimax threshold or detection threshold.

Consider now the standard 512×512 ’Lena’ image additively corrupted by independent WGN. Table

6 presents the risks obtained with the detection, minimax and universal thresholds, when estimation

by soft thresholding is used to denoise this image. For every tested noise standard deviation σ and

every threshold, each risk given in table 6 is the average value obtained over 10 trials. This table also

displays the corresponding Peak Signal-to-Noise Ratio (PSNR), in dB, achieved by the denoising. For

a threshold height λ, this PSNR is

PSNR(λ) = 10 log10

(
2552/rλ

)
. (17)

By using the detection threshold, the gain in PSNR is about one to two dB with respect to the PSNRs

achieved with the minimax threshold.

An example of ’Lena’ image denoising is given in figure 6. The noise standard deviation is σ = 25.

As can be seen, the image denoised by soft thresholding with the detection threshold is sharper than

that obtained by soft thresholding with minimax or universal thresholds. Moreover, the contours of

the original image are better restored in the image returned by soft thresholding with the detection

threshold than in the other two.
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Table 5: Risks rλ obtained with detection, minimax, and universal thresholds for ’Lena’ with size

512 × 512. Soft thresholding is applied to the detail coefficients returnd by the ’sym8’ DWT at

decomposition levels j = 1, 2, . . . , 4.

N 256 × 256 512 × 512

Images ‘House’ ‘Peppers’ ‘Barbara’ ‘Lena’ ‘Finger’ ‘Boat’

σ = 9

rλd(N) 46.5527 71.4106 89.4982 45.8152 119.5679 74.5194

rλm(N) 60.7369 97.2327 130.4604 62.7722 173.3831 103.3656

rλu(N) 84.3010 141.5590 180.4511 82.9846 240.7068 137.0883

σ = 18

rλd(N) 89.3033 150.7902 189.6661 87.2403 255.6930 143.1684

rλm(N) 114.4277 199.3795 257.5655 116.3257 358.1196 189.5936

rλu(N) 153.6769 279.7856 325.7944 149.0234 481.0768 238.7614

σ = 27

rλd(N) 128.7033 225.4500 269.5180 124.0678 384.6643 200.0341

rλm(N) 160.9144 294.0141 343.2329 160.7170 529.2084 255.7203

rλu(N) 211.2654 403.9108 404.9466 199.0735 699.8262 311.7397

σ = 36

rλd(N) 164.7825 297.3454 328.7292 156.6675 507.7654 247.9232

rλm(N) 202.1105 380.8619 399.0873 197.1790 689.4484 308.4268

rλu(N) 262.7180 508.8113 452.3670 237.0470 898.5787 363.9042

Table 6: Risks rλ obtained with detection, minimax, and universal thresholds for ’Lena’ with size

512× 512. Soft thresholding is applied to the detail coefficients of decomposition levels j = 1, 2, . . . , 4.

σ 9 18 27 36

rλu(N) 76.0 141.6 192.1 231.3

rλm(N) 56.2 108.7 152.8 189.3

rλd(N) 40.0 79.4 115.1 146.5

PSNR [initial] 29.0 23.0 19.5 17.0

PSNR[λu(N)] 29.3 26.6 25.3 24.5

PSNR[λm(N)] 30.6 27.8 26.3 25.4

PSNR[λd(N)] 32.1 29.1 27.5 26.5

5 Conclusions and extensions

In this work, the thresholds proposed in [16] have been used for non-parametric estimation by soft

thresholding [6, 7]. We have proposed a new threshold, the so-called detection threshold, which is
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Figure 4: Noisy ’Doppler’ signal and denoising of the noisy ‘Doppler’ signal. The wavelet transform

used is a discrete stationary wavelet transform based on the ‘sym8’ wavelet. The thresholding is

applied to the detail coefficients at decomposition levels j = 1, 2, . . . , 6.

relevant to deciding which coefficients, returned by a sparse transform such as the wavelet transform,

will be used to estimate the signal. When the sample size N is large, the bound for the risk of the soft

thresholding estimation is smaller with the detection threshold than with the minimax or the universal

threshold, for a certain class of signals and images. Experiments on standard signals and images show

that most of these signals belong to this class and that smaller risks are generally obtained by using

the detection threshold instead of the minimax or the universal threshold, even for signals that are not

elements of this class. Therefore, for the non-parametric estimation of a signal by sparse transform and

soft thresholding, we recommend using the detection threshold instead of the universal and minimax

thresholds.
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(a) First 50 denoised coefficients.

0 5 10 15 20 25 30 35 40 45 50
−4

−3

−2

−1

0

1

2

3

4
Original
Detection
Minimax
Universal

(b) Last 50 denoised coefficients.
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Figure 5: Zooms on (a) the first 50 wavelet coefficients and (b) the last 50 coefficients of the original

’Doppler’ signal and its denoised versions via the detection, the minimax and the univeral thresholds.

From a general point of view, the results presented in this paper suggest some extensions in non-

parametric estimation, among which are the following.

To begin with, we are interested in studying to what extent the theoretical contents of this paper

can be connected with results - such as those stated in [8, 9], among others - about sparsity and Besov

spaces. In particular, and as an extension of the discussion following proposition 2 above, such a study
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Figure 6: Noisy ‘Lena’ image and denoised images by soft thresholding with detection, minimax and

universal thresholds. The noise standard deviation is σ = 25. The wavelet transform used is a discrete

stationary wavelet transform based on the ‘sym8’ wavelet. The thresholding is applied to the detail

coefficients at decomposition levels j = 1, 2, 3, 4.

could refine our knowledge about the class of those signals for which the detection threshold is actually

preferable than the minimax or the universal threshold. It is also expected that this study makes it

possible to derive detection thresholds that are adapted to the smoothness, in the Besov sense, of the

function to recover.

Another possible extension is the following one. The detection threshold of Eq. (11) is derived by

bounding our lack of prior knowledge about the signal since we assume that this signal is less present

than absent and that this signal is relatively large in the sense that its amplitude exceeds some reason-

able value. In fact, consider a dyadic wavelet decomposition based on convolution and downsampling.
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It is known that for smooth or piecewise regular signals, the proportion of significant coefficients, which

play a role similar to the probability of presence of the signal, increases with the decomposition level

[13, Section 10.2.4, p. 460]. Therefore if we can first give an upper-bound p∗
j < 1/2 for the probability

of presence of the signal at every given decomposition level j = 1, 2, . . . , J so that the sequence p∗
j

increases with j and, second, a lower-bound aj for the amplitudes of the wavelet coefficients of the

signal, Eq. (10) suggests using the detection threshold λd(aj ,p
∗
j ) = σξ(aj/σ,p∗

j ) for j = 1, 2, . . . , J .

By proceeding thus, the detection threshold will be adjusted according to each decomposition level j.

This approach will be investigated in further work. The use of detection thresholds adapted to the

decomposition levels is expected to yield performance measurements comparable to those obtained

with the BLS-GSM introduced in [18] - and considered so far as the best parametric method - and

the latest SURE (Stein Unbiased Risk of Estimation) approach, described in [12].

In forthcoming work, we also plan to address the case of an unknown standard deviation. This

is a topic of practical interest. According to [7, p. 446] (see also [13, p. 459]), a robust estimate

of the noise standard deviation can be computed on the basis of the Median Absolute Deviation

(MAD) of the detail wavelet coefficients at the first decomposition level. The robustness of the MAD

estimator is due to the fact that the median value is not very affected by a few large coefficients among

those used to perform the estimation. However, for non-regular signals or textured images, the detail

wavelet coefficients of the first decomposition level may still contain too many coefficients pertaining

to the signals and, in such a case, the MAD estimator can fail to achieve a good estimation of the noise

standard deviation. It is then interesting to study the behaviour of the estimation by sparse transform

and soft thresholding when the detection threshold is adjusted with an estimate of the noise standard

deviation derived from the results presented in [14] and [15]. In fact, these papers propose estimators

of the noise standard deviation that are computed given non signal-free observations where the signals

have unknown probability distributions and are less present than absent in the sense of assumption

(F). On the basis of [14] and [15], we expect to propose a new estimator for the estimation of the

noise standard deviation, an estimator that remains robust even when coefficients pertaining to the

signal are not necessarily few.
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Proof of proposition 1:

For the sake of simplicity, and without loss of generality, we can assume that σ = 1. We carry out the

proof in several steps.
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[Step 1]: For ρ > 0, V (ρ, p) is strictly concave for 0 < p < p̃(ρ) with p̃(ρ) = eρ2/2/(1 + eρ2/2).

Without resorting to general results such as those given in [17, Chapter II, section C], we can

proceed as follows to prove this assertion.

Let ρ > 0. For any p such that 0 < p < p̃(ρ), with p̃(ρ) = eρ2/2/(1 + eρ2/2), some algebra shows

that ξ(ρ, p) is, in fact, the unique solution in u to the equation

cosh(ρu) =
1 − p

p
eρ2/2. (18)

Therefore, for 0 < p < p̃(ρ),

∂V

∂p
(ρ, p) = R(ρ, ξ(ρ, p)) + R(0, ξ(ρ, p)) − 1, (19)

where R : R
+ × R

+ → R
+ is the map defined for every (u, v) ∈ R

+ × R
+ by

R(u, v) =

∫ u+v

u−v

Φ(x)dx = F(u + v) − F(u − v), (20)

with Φ(x) = (1/
√

2π)e−x2/2.

As a consequence, the sign of ∂2V
∂p2 (ρ, p) for 0 < p < p̃(ρ) is exactly that of ∂ξ(ρ,p)

∂p . By differentiating

Eq. (18) with respect to p > 0, we straightforwardly obtain ∂ξ(ρ,p)
∂p < 0. Hence, p 7−→ ξ(ρ, p) is

decreasing and p 7−→ V (ρ, p) is strictly concave for 0 < p < p̃(ρ).

[Step 2]: The least favourable prior is strictly above 1/2.

According to [Step 1], there exists only one value pL(a) such that 0 < pL(a) < p̃(a), the so-called

least favourable prior, that maximizes the function V (a, ·). We now establish a strict inequality on

the value of this least favourable prior by mimicking the reasoning followed to prove [16, Proposition

VI.2]. However, in the monodimensional case, the proof is easier.

Since pL(a) is the point where the strictly concave function p 7−→ V (a, p) attains its maximum for

0 < p < p̃(a) and since p̃(a) strictly exceeds 1
2 , a necessary and sufficient condition for pL(a) > 1

2 is

that
∂V

∂p
(a, 1/2) > 0. (21)

The latter inequality will be a consequence of the following two facts:

(i) lim
ρ→+∞

∂V

∂p
(ρ, 1/2) = 0,

(ii) ρ 7−→ ∂V

∂p
(ρ, 1/2) is a decreasing function for ρ > 0.

When ρ tends to ∞, the asymptotic behaviour of ρ 7−→ ξ(ρ) = ξ(ρ, 1/2) is easily seen to be ξ(ρ) =
ρ
2 + log 2

ρ (1 + δ(ρ)) with limρ→+∞ δ(ρ) = 0. Equality (i) above then follows from this asymptotic

behaviour, the expression of V (ρ, 1/2) and Eq. (20). To establish (ii), we prove that the derivative of
∂V

∂p
(·, 1/2) is negative. According to Eqs. (19) and (20), we have

∂V

∂p
(ρ, 1/2) =

∫ ξ(ρ)−ρ

−ξ(ρ)−ρ

Φ(t)dt +

∫ ξ(ρ)

−ξ(ρ)

Φ(t)dt − 1. (22)
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With some easy algebra and by taking into account Eq. (18), it follows from Eq. (22) that the sign

of the derivative of
∂V

∂p
(·, 1/2) is that of ρ 7−→ J (ρ) = 2ξ′(ρ) − tanh(ρξ(ρ)). By differentiating Eq.

(18) to obtain an equation satisfied by the derivative ξ′(·) of ξ(·), taking again Eq. (18) into account

and noting that Eq. (18) can be re-written in the form log (cosh(t)) = ρ2/2 when p = 1/2, we now

obtain that

J (ρ) =
2

tanh(ρξ(ρ))
− ρξ(ρ)

log (cosh(ρξ(ρ)))
− tanh(ρξ(ρ)).

To prove that
∂V

∂p
(·, 1/2) is decreasing, it thus suffices to show that the map

t ∈ [0,∞) 7→ 2

tanh(t)
− t

log (cosh(t))
− tanh(t)

is negative. Therefore, by setting, similarly to [16], g(t) = tanh(t) and G(t) = log (cosh(t)) /t, a

sufficient condition for (ii) to be true is that

Q(t) =
g(t)

G(t)(2 − g(t)2)
> 1 (23)

for t > 0. This will be established by showing that Q(t) > 1 for positive large (resp. small) values of

t and that any stationnary point t0 of Q is such that Q(t0) > 1.

It is easy to see that

Q(t) =
t sinh(2t)

(3 + cosh(2t)) log (cosh(t))
.

It then follows that Q(t) = 1+ t2

3 +O(t4) when t → 0 and that Q(t) = 1+ log 2
t +O( 1

t2 ) when t → +∞.

Therefore, for large (resp. small) values of t, 0 6 t < ∞, we have Q(t) > 1.

Consider now a stationary point t0 of Q, that is a positive real number t0 such that Q′(t0) = 0.

Since we have G′(t) = g(t)−G(t)
t , it follows from Eq. (23) that Q′(t0) = 0 implies that

G(t0) =
g(t0)

2(2 − g(t0)
2)

t0g′(t0)(2 − g(t0)2) + g(t0)(2 − g(t0)2) + 2g(t0)2g′(t0)t0
.

Injecting this expression of G(t0) back into Eq. (23) and taking into account that g′(t) = 1 − g(t)2,

we obtain that

Q(t0) =
t0(1 − g(t0)

2)(2 + g(t0)
2) + g(t0)(2 − g(t0)

2)

g(t0)(2 − g(t0)2)2
.

For any 0 6 y < 1, it follows from [1, Eq. 4.1.33, p. 68] that

1

2
log

1 + y

1 − y
=

1

2
log

(
1 +

2y

1 − y

)
>

y

y + 1
≥ y

2 − y2

2 + y2
. (24)

Since y 7→ 1
2 log 1+y

1−y is the inverse map of tanh, it suffices to apply inequality (24) to y0 = g(t0) =

tanh(t0) to obtain that t0(2 + g(t0)
2)− g(t0)(2− g(t0)

2) > 0, which proves that Q(t0) > 1. Statement

(ii) above is thus established. As mentioned above, (i) and (ii) are sufficient to guarantee that

inequality (21) holds true and, thus, that pL(a) > 1/2.

[Step 3]: The probability of error of the thresholding test with threshold height ξ(a,p∗)

does not exceed V (a,p∗).
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The probability of error Pe(Tλ) of any thresholding test Tλ, λ > 0, is given by

Pe [ Tλ ] = π0 P [ |X| ≥ λ ] + π1 P [ |S + X| ≤ λ ], (25)

where π0 (resp. π1) henceforth stands for the a priori probability of occurrence of hypothesis H0

(resp. hypothesis H1).

Because Φ is even, we have P [ |s + X| ≤ ξ ] = R(|s|, ξ) for every s ∈ R. Therefore,

P [ |S + X| ≤ λ ] =

∫
R(|s|, λ)PS(ds),

where PS denotes the probability distribution of S and R given by Eq. (20). We also have P [ |X| ≤
λ ] = R(0, λ), and, thus,

Pe [ Tλ ] = π0(1 −R(0, λ)) + π1

∫
R(|s|, λ)PS(ds). (26)

We now set

C(s, p, t) = pR(s, t) + (1 − p) (1 −R(0, t)) , (27)

with s, t > 0 and 0 6 p 6 1. We have

Pe [ Tλ ] =

∫
C(|s|, π1, λ)PS(ds). (28)

Given any non-negative real number v, R(·, v) is a non-decreasing function. Therefore, since |S| ≥ a

(a-s), the first integral on the right hand side (rhs) of Eq. (26) is less than or equal to R(a, λ) for any

0 6 λ < ∞. It then follows from Eq. (26) with λ = ξ(a,p∗) that

Pe [Tξ(a,p∗) ] 6 C(a, π1, ξ(a,p
∗)). (29)

Since π0 + π1 = 1, the rhs in the inequality above can now be written in the form

C(a, π1, ξ(a,p
∗)) = 1 −R(0, ξ(a,p∗)) + π1 (R(a, ξ(a,p∗)) + R(0, ξ(a,p∗) − 1) . (30)

Since p∗ ≤ 1/2, it follows from [Step 2] that p∗ ≤ pL(a). Now, according to [Step 1] and Eq.

(19), the coefficient of π1 on the rhs of Eq. (30) is positive. Taking into account that π1 is assumed

to be less than or equal to p∗, we derive from the foregoing and (30) that

C(a, π1, ξ(a,p
∗)) 6 1 −R(0, ξ(a,p∗)) + p∗ (R(a, ξ(a,p∗)) + R(0, ξ(a,p∗) − 1) .

According to Eq. (9), the rhs in the inequality above is V (a,p∗). Since the MPE test L yields the

smallest possible probability of error among all possible tests, we derive from Eq. (29) that

Pe [L ] ≤ Pe [ Tξ(a,p∗) ] ≤ V (a,p∗). (31)

[Step 4]: End of the proof. Consider the specific case where S ∈ {−a, a} with P [S = a ] = P [S =

−a ] = 1/2 and π1 = p∗. We must prove that the inequalities in Eq. (31) above become equalities.

Assume first that p∗ = 0. Clearly, the MPE test is then the thresholding test T∞ with infinite

threshold, that is, the thresholding test Tξ(a,∞) since ξ(a,∞) = ∞.
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If p∗ 6= 0, it now follows from the general form of the MPE test (see [17, 11, Sec. II.B], among

others), that the MPE test L is given by

L(u) =





1 if cosh(au) >
1−p∗

p∗
ea

2/2,

0 if cosh(au) < 1−p∗

p∗
ea

2/2.
(32)

Since p∗ ≤ 1/2 < pL(a), we derive from Eq. (18) that L coincides with the thresholding test Tξ(a,p∗),

which concludes the proof. Note that, if p∗ = 0, we again find from Eq. (32) that the MPE test is the

thresholding test with infinite threshold.

Proof of lemma 1:

The risk of the estimation by soft thresholding is rλ(θ, θ̂) = 1
N

∑N
i=1 E

(
θi − δλ(ci)

)2

. Since δλ(x) =

σδλ/σ(x/σ) for every x ∈ R, this risk can be written

rλ(θ, θ̂) =
σ2

N

N∑

i=1

E

(θi

σ
− δλ/σ(

ci

σ
)
)2

. (33)

An easy extension of [13, lemma 10.1, p. 452] shows that for all X ∼ N (µ, 1) and for all t > 0

E

(
µ − δt(X)

)2

6 2

∫ +∞

0

x2Φ(x + t)dx + min(µ2, 1 + t2) (34)

where, as above, Φ(x) = (1/
√

2π)e−x2/2. For every i = 1, 2, . . . , N , ci/σ ∼ N (θi/σ, 1). Thus, according

to Eq. (34), we have

E

( θ2
i

σ2
− δt(

ci

σ
)
)2

6 2

∫ +∞

0

x2Φ(x + t)dx + min(
θ2

i

σ2
, 1 + t2), (35)

with t = λ/σ. From Eq. (33) and Eq. (35), we obtain

rλ(θ, θ̂) ≤ 2σ2

∫ +∞

0

x2Φ(x + t)dx +
σ2

N

N∑

i=1

min(
θ2

i

σ2
, 1 + t2). (36)

In addition, we have

2

∫ +∞

0

x2Φ(x + t)dx 6 (1 + t2)e−t2/2. (37)

This inequality is derived as follows. For every 0 6 t < ∞, put

h(t) =
2et2/2

1 + t2

∫ +∞

0

x2Φ(x + t)dx.

Clearly, h(t) = 2√
2π(1+t2)

∫ +∞
0

x2e−x2/2e−xtdx and h is non-increasing. Therefore, h(t) 6 g(0). Since

h(0) = (2/
√

2π)

∫ +∞

0

x2e−x2/2dx = 1,

we obtain h(t) 6 1 for all 0 6 t < ∞, which proves inequality (37). From Eq. (36) and Eq. (37), we

derive that

rλ(θ, θ̂) ≤ σ2(1 + t2)e−t2/2 +
σ2

N

N∑

i=1

min
(
θ2

i /σ2, 1 + t2
)
. (38)
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In addition, min
(
θ2

i /σ2, 1 + t2
)
≤ (1+ t2)min

(
θ2

i /σ2, 1
)

and σ2 min
(
θ2

i /σ2, 1
)

= min
(
θ2

i , σ2
)
. There-

fore, it follows from Eq. (38) that rλ(θ, θ̂) 6 σ2(1 + t2)e−t2/2 + (1 + t2)
∑N

i=1 min(θ2
i , σ2)/N with

t = λ/σ, which completes the proof.
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