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ON NON-REGULAR g-MEASURES

SANDRO GALLO AND FRÉDÉRIC PACCAUT

Abstract. We prove that g-functions whose set of discontinuity points has
strictly negative topological pressure and which satisfy an assumption that is

weaker than non-nullness, have at least one stationary g-measure. We also
obtain uniqueness by adding conditions on the set of continuity points.

1. Introduction

The g-measures on AZ (A discrete) are the measures for which the conditional
probability of one state at any time, given the past, is specified by a function g,
called g-function. In this paper, g-measures will always refer to stationary measures.
The main question we answer in the present paper is the following: what conditions
on g-functions g will ensure the existence of a (stationary) g-measure?

It is well-known that the continuity of g implies existence if the alphabet A
is finite. Here we extend this result to discontinuous g-functions by proving that
existence holds whenever the topological pressure of the set of discontinuities of g
is strictly negative, even when g is not necessarily non-null.

The name g-measure was introduced by Keane (1972) in Ergodic Theory to refer
to an extension of the Markov measures, in the sense that the function g may depend
on a unbounded part of the past. In the literature of stochastic processes, these
objects already existed under the names “Châınes à liaison complète” or “chains of
infinite order”, respectively coined by Doeblin & Fortet (1937) and Harris (1955).
The function g is also called set of transition probabilities, or probability kernel.
Given a function g (or probability kernel), the most basic questions are the fol-
lowing: does it specify a g-measure (or stationary stochastic process)? If yes, is it
unique? To answer these questions, the literature mainly focussed on the continuity
assumption for g (see Onicescu & Mihoc (1935), Doeblin & Fortet (1937), Harris

(1955), Keane (1972), Ledrappier (1974), Johansson & Öberg (2003), Fernández &
Maillard (2005) and many other). This assumption gives “for free” the existence
of the g-measure. For this reason, uniqueness and the study of the statistical prop-
erties of the resulting unique measure have been the centre of the attention from
the beginning of the literature. Only recently, Gallo (2011), Cénac et al. (2012),
De Santis & Piccioni (2012) studied g-measures with functions g that were not
necessarily continuous. However, no general criteria has been given regarding the
existence issue, either because these works are example-based, or because the ob-
tained conditions are restrictive, implying both existence and uniqueness. This rises
a natural motivation for finding a general criteria for the existence of g-measures.
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A second motivation is the analogy with one-dimensional Gibbs measures. In
statistical mechanics, the function specifying the conditional probabilities with re-
spect to both past and future is called a specification. The theorem of Kozlov
(1974) states that Gibbs measures have continuous and strictly positive specifica-
tions. Stationary measures having support on the set of points where the spec-
ification is continuous are called almost-Gibbsian (Maes et al. (1999)). Clearly,
Gibbsian measures are almost-Gibbsian. Fernández et al. (2011) proved that reg-
ular g-measures (associated to continuous and strictly positive function g) might
not be Gibbs measures, still they are always almost-Gibbsian. Thus, although the
nomenclature of Gibbsianity cannot be imported directly to the case of g-measures,
it is tempting to try to find “almost-regular” g-measures.

Going further in the analogy between g-measures and (almost-)Gibbs measures,
a natural idea is to look for a g-measure having support inside the set of continuity
points of g. Of course, it is not an easy task to control the support of a measure
before knowing its existence. An idea is then to put a topological assumption on
the set of discontinuity points of g, ensuring that this set will have µ-measure 0,
whenever the g-measure µ exists. In the vein of Buzzi et al. (2001), this is done
in the present paper by using the topological pressure of the set of discontinuity
points of g. Theorem 1 states that there exist g-measures when the function g
has a set of discontinuity points with negative topological pressure, even without
assuming non-nullness. As a corollary (Corollary 1), a simple condition on the set
of discontinuity points of a function g is given, which may appear more intuitive
to the reader not familiar with the concept of topological pressure. The set of
discontinuity points of g can be seen as a tree where each branch is A−N. The
new condition is that the upper exponential growth rate of this tree is smaller than
a constant that depends on infX g (or, if non-nullness is not assumed, on some
parameter explicitly computable on g). Our last result (Theorem 2), based on the

work of Johansson & Öberg (2003), gives explicit sufficient conditions on the set of
continuity points of discontinuous kernels g (satisfying our conditions of existence)
ensuring uniqueness.

2. Notations, definitions and main results

Let (A,A) be a measurable space, where A is a finite set (the alphabet) and A is
the associated discrete σ-algebra. We will denote by |A| the cardinal of A. Define
X = A−N (we use the convention that N = {0, 1, 2, . . .}), endowed with the product
of discrete topologies and with the σ-algebra F generated by the coordinate appli-
cations. For any x ∈ X, we will use the notation x = (x−i)i∈N = x0

−∞ = . . . x−1x0.
For any x ∈ X and z ∈ X, we denote, for any k ≥ 0, zx0

−k = . . . z−2z−1z0x−k . . . x0,

the concatenation between x0
−k and z. In other words, zx0

−k denotes a new sequence
y ∈ X defined by yi = zi+k+1 for any i ≤ −k − 1 and yi = xi for any −k ≤ i ≤ 0.
Finally, the length of any finite string v of elements of A, that is, the number of
letters composing the string v, will be written |v|.

Define the shift mapping T as follows :

T : X → X
(xn)n60 7→ (xn−1)n60.
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The mapping T is continuous and has |A| continuous branches called T−1
a , a ∈ A.

Denote byM the set of Borelian probability measures onX, by B the set of bounded
functions and by C the set of continuous functions. The characteristic functions will
be written 11.

A g-function is a F-measurable function g : X → [0, 1] such that

(2.1) ∀x ∈ X,
∑

y:T (y)=x

g(y) =
∑

a∈A

g(xa) = 1.

Example 1. Matrix transitions of k-steps Markov chains, k ≥ 1, are the simplest
example of g-functions. They satisfy g(xa) = g(ya) whenever x0

−k+1 = y0−k+1, ∀a.

Example 2. Let us introduce one of the simplest examples of non-Markovian
g-function on A = {0, 1}. Let (qn)n∈N∪{∞} be a sequence of [0, 1]-valued real

numbers. Set g̃(x1) = qℓ(x) where ℓ(x) := inf{k > 0 : x−k = 1} for any x ∈ A−N

(with the convention that ℓ(x) = ∞ whenever x−i = 0 for all i 6 0). Notice
that the value of g̃(x) depends on the distance to occurrence of a symbol 1 in the
sequence . . . x−1x0. Therefore, for any k > 1 the property that g(xa) = g(ya)
whenever x0

−k+1 = y0−k+1 = 00−k+1 does not hold. This is not the transition matrix
of a Markov chain. We will come back to this motivating example several times
throughout this paper.

Definition 1. An A-valued stochastic processes (ξn) defined on a probability space
(Ω,G,P) is specified by a given g-function g if

P(ξ0 = a|(ξk)k<0) = g(. . . ξ−2ξ−1a) P almost surely.

The distribution of a stationary process (ξn) of this form is called a g-measure.

Here is a more ergodic oriented, equivalent definition:

Definition 2. Let g be a g-function. A probability measure µ ∈ M is called a
g-measure if µ is T -invariant and for µ almost every x ∈ X and for every a ∈ A:

Eµ(11{x0=a}|F1)(x) = g(T (x)a).

with F1 = T−1F .

Given a g-function, the existence of a corresponding g-measure is not always
guaranteed. For instance, coming back to example 2, Cénac et al. (2012) proved

that if
∏

k≥1

∑k−1
i=0 (1 − qi) = ∞ and q∞ > 0, then there does not exist any g-

measures for g̃. Another simple example is given by Keane (1972) on the torus.
In general, a sufficient condition for the existence of a g-measure corresponding to
some fixed g-function is to assume that g is continuous in every point (see Keane
(1972) for instance). Continuity here is understood with respect to the discrete
topology, that is, g is continuous at the point x if for any z, we have

g(zx0
−k)

k→∞
−→ g(x).

Continuity is nevertheless not necessary for existence, as shown, one more time,
by the g-function g̃ of example 2. For instance, let qi = ǫ < 1/2 when i is odd
and qi = 1 − ǫ when i is even, and put q∞ > 0. Observe that in this case g̃ has
a discontinuity at 00−∞, since g̃(10−∞00−k) oscillates between ǫ and 1 − ǫ when k
increases. But it is well-known that g̃ has a g-measure (see Cénac et al. (2012) or
Gallo (2011) for instance).
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The preceding observations yield to our first issue, which is to give a general con-
dition on the set of discontinuities of g, under which there still exists a g-measure.
This is the content of Theorem 1 which we will state after introducing some further
definitions.

The cylinders are defined in the usual way by

Cn(x) = {w ∈ X,w0
−n+1 = x0

−n+1} , ∀x ∈ X,

and the set of n-cylinders is

Cn = {Cn(x), x ∈ X}.

Define, for x ∈ X and n ∈ N, n ≥ 1

gn(x) =
n−1
∏

i=0

g(T i(x)).

The topological pressure of a measurable set S ⊂ X is defined by

Pg(S) = lim sup
n→+∞

1

n
log

∑

B∈Cn
B∩S 6=∅

sup
B

gn.

Let D be the set of discontinuity points of g. Let Cn(D) be the union of n-cylinders
that intersect D :

Cn(D) =
⋃

x∈D

Cn(x).

For n ∈ N, set En = T−1TCn+1(D) (notice that E0 = X and En+1 ⊂ En). En is the
set of points that write yx−1

−na, with a ∈ A, x0
−∞ ∈ D and y ∈ X.

Theorem 1. Let g be a g-function with discontinuity set D. Assume

(H1) ∃N ∈ N, ∃ε > 0, infEN
g = ε,

(H2) Pg(D) < 0,

then there exists at least a g-measure and its support is contained in X \ D.

Remark 1. Hypothesis (H1) is strictly weaker than the “strong non-nullness”
assumption infX g > 0, since the later corresponds to (H1) being satisfied for N = 0
and Example 4 below satisfies (H1) and is not strongly non-null.

Remark 2. Notice that (H2) is fulfilled for instance when D is a finite set and
infX g > 0 (i.e. (H1) is fulfilled with N = 0). This is, in particular, the case of our
simplest Example 2 when the qi’s are oscillating between ε and 1 − ε. Notice also
that (H2) is fulfilled as well as soon as D is finite, (H1) is fulfilled with N > 1
and TD ⊂ D. This will be an easy consequence of Corollary 1.

Remark 3. Notice also that (H2) implies that g cannot be everywhere discontin-
uous. Namely, the property 2.1 of a g-function entails :

∀n ∈ N
∗, ∀y ∈ X,

∑

x0
−n+1

∈An

gn(yx
0
−n+1) = 1

therefore
∑

B∈Cn
supB gn > 1 which in turn implies that Pg(X) > 0.
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Example 3. This example was presented in De Santis & Piccioni (2012) (see
Example 2 therein) on {−1,+1}. Here we adapt it on the alphabet A = {0, 1}. As
g̃, the g-function we introduce here has a unique discontinuity point along 00−∞,
but the dependence on the past does not stop at the last occurrence of a 1. Recall
that ℓ(x) := inf{k > 0 : x−k = 1}. Let g(00−∞1) = ǫ > 0, and for any x 6= 00−∞ and
any a ∈ {0, 1} let

g(xa) = ǫ+ (1− 2ǫ)
∑

n>1

1{x−ℓ(x)−n = a}qℓ(x)n ,

where, for any l > 0, (qln)n>1 is a probability distribution on the integers. This
kernel has a discontinuity at 00−∞ since for each k ∈ N,

g(. . . 11100−k1) = ǫ+ (1− 2ǫ)
∑

n>1

qk+1
n = 1− ǫ 6= ǫ,

but it is continuous at any other point, since for any x such that ℓ(x) = l < +∞,
for any z and k > l

g(. . . z−1z0x
0
−k1) = ǫ+ (1− 2ǫ)





k−l
∑

j=1

1{x−l−j = 1}qlj +
∑

j>k−l+1

1{zk−l+1−j = 1}qlj





which converges to g(x1) = ǫ + (1 − 2ǫ)
∑

j>1 1{1 = x−l−j}q
l
j . Under some as-

sumptions on the set of distributions ((qln)n>1)l>0, De Santis & Piccioni (2012)
proved existence, uniqueness and perfect simulation while our Theorem 1 guaran-
tees existence of a g-measure, without any further assumptions on this sequence of
distributions.

Theorem 1 involves the notion of topological pressure, which is not always easy
to extract from the set of discontinuities. We now introduce two simple criteria on
the set D of a g-function, that will imply existence.

Definition 3. For any n > 0, let us denote Dn := {x0
−n+1}x∈D. The upper

exponential growth rate of D is

(2.2) ḡr(D) := lim sup
n

|Dn|1/n.

Although this nomenclature is generally reserved for trees, we use it here as there
exists a natural way to represent the set D as a rooted tree (a subtree of A−N) with
the property that each branch, representing an element of D, is infinite, and each
node has between 1 and |A| sons. For instance, in the particular case of g̃ (Example
2), the tree is the single branch 00−∞ and Dn = 00−n+1.

Corollary 1. Let g be a g-function with discontinuity set D. Assume either,

(H1′) ∃ε > 0, infX g = ε,
(H2′) ḡr(D) < [1− (|A| − 1)ε]−1,

or
(H1) ∃N ∈ N, ∃ǫ > 0, infEN

g = ǫ,
(H2′) ḡr(D) < [1− (|A| − 1)ε]−1,
(H3) TD ⊂ D,

then there exists at least a g-measure and its support is contained in X \ D.
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Intuitively, Corollary 1 states that if ε (which plays the role of a “non-nullness
parameter” for g) is sufficiently large, it may compensate the set of discontinuities of
g, allowing g-measures to exist, with support on the continuity points. Notice that
this assumption allows D to be uncountable, as shown in the following example.

Example 4. Let A = {0, 1, 2}, and consider the function ℓ defined as in Examples
3 and 2. Let also N0, N1 and N2 be three disjoint finite subsets of N. The g-function
is defined as follows: for x ∈ {0, 2}−N, put g(x1) = g(x0) = 0.3, for x such that
ℓ(x) ∈ N0 ∪N1 ∪N2, put

(2.3)
g(x1) = g(x2) = 1/2 if ℓ(x) ∈ N0

g(x0) = g(x2) = 1/2 if ℓ(x) ∈ N1

g(x0) = g(x1) = 1/2 if ℓ(x) ∈ N2,

and for any x such that ℓ(x) ∈ N \ {N0 ∪N1 ∪N2}, put

g(x1) = g(x0) = 0.26 +
∑

k>1

θkx−ℓ(x)−k,

where (θi)i>1 satisfies θi > 0 and
∑

i>1 θi < 0.03. Observe that, for any x ∈

{0, 2}−N, g(. . . 111x0
−k1) < 0.29 for any sufficiently large k, and therefore does not

converge to 0.3. So {0, 2}−N ⊂ D. On the other hand, any point x satisfying
ℓ(x) ∈ N0 ∪ N1 ∪ N2 is trivially continuous, and any point x satisfying ℓ(x) ∈
N \ {N0 ∪N1 ∪N2} is continuous since for any k > l and any y ∈ {0, 1, 2}−N,

g(. . . y−2y−1y0x
0
−k1) = 0.26 +

k−l
∑

i=1

θix−l−i +
∑

i>k−l+1

θiyi−k+l−1

which converges to 0.26 +
∑

i>1 θix−l−i. So D = {0, 2}−N (which is uncountable),

|Dn| = 2n and consequently ḡr(D) = 2. Observe on the other hand that infX g = 0,
but there exists N such that infEN

g > 0.26 (any N > max(N0 ∪N1 ∪N2) will do
the job). Thus, the hypothesis of Corollary 1 are fulfilled since 1 − (|A| − 1)ε =
0.48 < 1/2, and existence holds.

So far, we have focussed on the existence issue. However, Bramson & Ka-
likow (1993) proved that even regular g-measures (continuous g-measures satisfying
(H1’)) might have several g-measures. In view of a result on uniqueness for non-
regular g-measures, we now give a condition on the set of continuous pasts X \ D.
To do so, we use the notion of context tree defined below.

Definition 4. A context tree τ on A is a subset of ∪k≥0A
{−k,...,0} ∪X such that

for any x ∈ X, there exists a unique element v ∈ τ satisfying a0−|v|+1 = v0−|v|+1.

For any g-function g, we denote by τg the smallest context tree containing D,
called the skeleton of g. For instance, coming back to example 2, τ g̃ = ∪i≥0{10

i}∪
{00−∞} and is represented on Figure 1. It is also the skeleton of any g-function hav-
ing only 00−∞ as discontinuity point, such as the g-function introduced in Example
3. Pictorially, any g-function can be represented as a set of transition probabilities
associated to each leaf of the complete tree A−N and τg is the smallest subtree of
A−N which contains D, such that every node has either |A| or 0 sons. On Figure
2 is drawn the (upper part of) the complete tree corresponding to some function g
having complicated sets D and τg.
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Figure 1. The skeleton of the function g̃.

|D4| = 6

Figure 2. An example of set D (bold black line) for some g-
function g. The black lines represent the context tree τ corre-
sponding to D (skeleton of g), and the grey lines represent the
remaining complete tree. The branches that are not bold black
are continuous points for g. We can see that |D1| = 2, |D2| = 3,
|D3| = 4, |D4| = 6, |D5| = 7, |D6| = 8, ...

Let us introduce the n-variation of a point x ∈ X that quantifies the rate of
continuity of g as

varn(x) := sup
y0
−n

=x0
−n

|g(y)− g(x)|.

Notice that varn(x) converges to 0 if and only if x is a continuity point for g. As
varn(x) actually only depends on x0

−n, the notation varn(x
0
−n) will sometimes be

used. Now, observe that the set of continuous pasts of a given g-function g is the
set of pasts x0

−∞ such that there exists v ∈ τg, |v| < +∞ with x0
−|v|+1 = v0−|v|+1.

In particular, for any v ∈ τg with |v| < +∞,

varvn := sup
x,x0

−|v|+1
=v

varn(x)
n→+∞
−→ 0.

For any v ∈ τg, |v| < +∞, let Rv :=
∑

n≥|v|[var
v
n]

2. Our assumption on the set of

continuous pasts X \ D is

(H4)
∑

v∈τg,|v|<∞

µ(v)Rv < +∞.

Observe that (H4) implies that Rv < +∞ for any v ∈ τ .
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Theorem 2. Suppose that we are given a g-function g satisfying (H1), (H2) and
(H4), then there exists a unique g-measure for g.

Remark 4. In this theorem, hypothesis (H1) and (H2) are mainly used to get the
existence of a g-measure. Therefore, thanks to Corollary 1, the same conclusion
holds either assuming (H1’), (H2’) and (H4) or (H1), (H2’), (H3) and (H4).

This result is to be compared to the results of Johansson & Öberg (2003), which
state, in particular, that uniqueness holds when varn := supx0

−n
varn(x

0
−n+1) is in

ℓ2. In fact, this is mainly what is assumed here, but only on the set of continuous
pasts, which has full µ-measure. This is formalised through the more complex
hypothesis (H4). We now come back to Examples 3 and 4 in order to illustrate
Theorem 2.

Example 3 (Continued). In this example, we have as skeleton τg = 00−∞ ∪i>0

{10i}, so that any v ∈ τg with |v| = k < ∞ writes v = 10k−1 and simple calculations
yield, for any n > k

varvn = (1− 2ǫ)
∑

i>n−k+1

qki .

Hypothesis (H4) is satisfied as soon as

∑

k>1

(1− ǫ)k
∑

n>k+1





∑

i>n−k+1

qki





2

< +∞.

For instance, if for any k > 1, (qki )i≥1 is the geometric distribution with parameter
αk, where 1− ǫ < α < 1, then

∑

k>1

(1− ǫ)k
∑

n>1





∑

i>n+1

qki





2

≤
∑

k>1

[(1− ǫ)α−1]k,

which is summable. So we have uniqueness for this kernel.

Example 4 (Continued). The skeleton of g is

τg = {0, 2}−N ∪ {1} ∪
⋃

i>0

⋃

x0
−i

∈{0,2}i+1

{1x0
−i}

and for any v ∈ τg, |v| < ∞,

varvn ≤ 2
∑

i>n−|v|

θi , ∀n > |v|.

Since this upper bound does not depend on the length of the string |v|, it follows

that Hypothesis (H4) is satisfied if
∑

n>1

[

∑

i>n θi

]2

< +∞.

3. Proof of Theorem 1

Let us define the Perron Frobenius operator L acting on measurable functions f
as follows:

Lf(x) =
∑

a∈A

g(xa)f(xa) =
∑

x=T (y)

g(y)f(y)
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For µ ∈ M, let L∗ denote the dual operator, that is

L∗µ(f) = µ(Lf)

for any f ∈ B. The relation between L∗ and the g-measures is enlightened by the
following result.

Proposition 1. (Ledrappier (1974)) µ is a g-measure if and only if µ is a proba-
bility measure and L∗µ = µ

In view of Proposition 1, the strategy of the proof will be to find a fixed point
for L∗. When g is a continuous function, the operator L acts on C and L∗ acts
on M, the existence of a g-measure µ is then a straightforward consequence of the
Schauder-Tychonoff theorem.

If g is not continuous, L does not preserve the set of continuous functions. More
precisely, if D is the set of discontinuities of g and f is continuous, then the set
of discontinuities of Lf is TD. Still, as g is bounded, L acts on the space B of
bounded functions. More precisely ‖Lf‖ 6 ‖f‖, where ‖ . ‖ is the uniform norm.
Therefore L∗ acts on B′, the topological dual space of B i.e.

L∗α(f) = α(Lf)

for all α ∈ B′ and f ∈ B.
Firstly, the existence of a fixed point Λ ∈ B′ for L∗ will be proved. Then the

hypothesis (H1) and (H2) will be shown to imply µ(D) = 0 and µ(TD) = 0, where
µ is the restriction of Λ to the continuous functions. Finally, we will use these two
equalities to prove that µ is indeed a g-measure.

Proposition 2. There exists a positive functional Λ ∈ B′ with Λ(11) = 1 such that
L∗Λ = Λ.

Proof. Consider the following subset C of B′

C = {α ∈ B′, α(11) = 1 and α(f) > 0 for all f > 0}.

We consider the weak star topology on B′ and C. In order to apply Schauder-
Tychonoff theorem (Dunford & Schwartz (1988) V.10.5), it is needed that L∗ is
well defined and continuous for the weak star topology, that C is compact for this
topology, non empty and convex (the two last properties are straightforward). The
continuity of L∗ is given by a simplification of the proof in Buzzi et al. (2001).
The compactness of C follows from Banach-Alaoglu theorem (Dunford & Schwartz
(1988) V.4.2), as C is a closed subset of the unit ball of B′. �

Since Λ|C is a positive linear form on C, the Riesz representation theorem implies
that there exists µ, a positive Borel measure, such that:

∀f ∈ C : Λ(f) = µ(f).

In particular, µ(11) = Λ(11) = 1 so that µ is a probability measure.
For all f ∈ C, Λ(Lf) = Λ(f) = µ(f). But Lf is not necessarily continuous at

points of TD. Notice though that if f ∈ C and Lf ∈ C then µ(f) = µ(Lf). What
remains to prove is that this is true for any f ∈ C.

Two more lemmas are needed to go on further in the proof.

Lemma 1.

Pg(TD) 6 Pg(D)
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Proof. By definition:

Pg(TD) = lim sup
n→∞

1

n
log

∑

B∈Cn
B∩TD6=∅

sup
B

gn.

Let B ∈ Cn such that B ∩ TD 6= ∅, there exists C ∈ Cn+1 such that C ∩ D 6= ∅.
More precisely, there exists a ∈ A such that C = C1(a) ∩ T−1

a (B). Moreover, let
x ∈ B, then T−1

a (x) ∈ En and

gn(x) 6
gn+1(T

−1
a (x))

g(T−1
a (x))

6
1

infEn
g
sup
C

gn+1.

Since En+1 ⊂ En, supB gn 6 1
infEN

g supC gn+1 for n > N . Recall that infEN
g > 0

by hypothesis (H1). It comes, for n > N :
∑

B∈Cn
B∩TD6=∅

sup
B

gn 6
1

infEN
g

∑

C∈Cn+1

C∩D6=∅

sup
C

gn+1

and thus:

lim sup
n→∞

1

n
log

∑

B∈Cn
B∩TD6=∅

sup
B

gn 6 lim
n→∞

1

n
log

1

infEN
g
+ lim sup

n→∞

1

n+ 1
log

∑

C∈Cn+1

C∩D6=∅

sup
C

gn+1.

�

Lemma 2. For all borel sets B,

µ(B) 6 inf{Λ(O), O open, O ⊃ B}

Proof. Since µ is a regular measure (as a Borel measure on a compact set):

µ(B) = inf{µ(O), O open, O ⊃ B}.

Let us fix an open set O and show that: µ(O) 6 Λ(O), this will prove the lemma.
Take ε > 0. Using again the regularity of µ, there exists Kε, a compact subset of
O, such that:

µ(O) < µ(Kǫ) + ε.

Let fε : X → [0, 1] be continuous and such that:






fε = 1 in Kε

fε = 0 in Oc

fε 6 1 in O \Kε.

On one hand, fε 6 11O so that

µ(fε) = Λ(fε) 6 Λ(O) and sup
ε>0

µ(fε) 6 Λ(O).

On the other hand, µ(fε) > µ(Kε) > µ(O)− ε so that:

µ(O) < µ(Kε) + ε ≤ µ(fε) + ε

and µ(O) ≤ supε>0 µ(fε) ≤ Λ(O). �

Now, we claim the following:

Lemma 3.

µ(D) = 0 and µ(TD) = 0.
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Proof. The claim will follow from Lemma 2 if we can find open neighborhoods V
of D and W of TD with Λ(V ) and Λ(W ) arbitrarily small. Let us write the proof
for D. The same scheme will work for TD.

Recall that Cn(D) = ∪{C ∈ Cn, C ∩ D 6= ∅}. Using the fixed point property
of Λ and the definition of pressure, we get, for any δ > 0, N(δ) such that, for all
n > N(δ):

Λ(Cn(D)) = Λ(Ln
11Cn(D)) 6

∑

C∈Cn(D)

sup
C

gn 6 (ePg(D)+δ)n.

Taking δ = −Pg(D)/2, which is positive by the main hypothesis (H2), we get
limn→∞ Λ(Cn(D)) = 0 and for every n, Cn(D) is an open neighbourhood of D. �

Finally, the proof of the main theorem writes as follows :

Proof. Fix f ∈ C(X) non-negative.
Since µ is regular (as a Borel measure on a compact set) and as µ(D) = µ(TD) =

0 (lemma 3), for each ε > 0, there exist Uε open neighbourhood of D and Vε open
neighbourhood of TD such that µ(Uε) < ε and µ(Vε) < ε. Let Wε = Uε ∩ T−1Vε.
This is also a neighbourhood of D such that µ(Wε) < ε. Moreover, as TWε ⊂ Vε,
it comes µ(TWε) < ε.

Consider now fε with compact support in X \ D such that:
{

fε = f in X \Wε

fε 6 f in Wε.

First, Lfε is continuous on X. Namely, fε is continuous on X so Lfε is on X \TD.
Now, if x ∈ TD, it may be easily checked that the potentially discontinuous part
of Lfε actually vanishes. This continuity implies µ(Lfε) = µ(fε) and

|µ(Lf)− µ(f)| = |µ(Lfε) + µ(L(f − fε))− µ(f)|

= |µ(fε − f) + µ(L(f − fε))|

6 |2‖f‖µ(Wε) + µ(L(f − fε))|.

We need to show that µ(L(f − fε)) is small. By definition of fε,

L(f − fε)(x) =
∑

a∈A

(f − fε)(ax)g(ax)11Wε
(ax)

therefore

µ(L(f − fε)) 6 ‖g‖ ‖f − fε‖
∑

a∈A

µ(11Wε
◦ T−1

a )

6 2‖g‖ ‖f‖
∑

a∈A

µ(Ta(Wε))

6 (2‖g‖ ‖f‖|A|)µ(TWε).

Letting ε go to zero gives µ(Lf) = µ(f). �

4. Proofs of Corollary 1 and Theorem 2

Proof of Corollary 1 using {(H1′), (H2′)}. In view of Theorem 1, it is enough to
show that hypothesis (H1’) and (H2’) imply (H2). Under hypothesis (H1’)

(4.1) gn(x) ≤ (1− (|A| − 1)ε)n for any x.
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It follows that

Pg(D) ≤ lim sup
n→+∞

1

n
log |Dn|(1− (|A| − 1)ε)n.

Now, under (H2’), there exists α ∈ (0, 1) such that |Dn| ≤ ( 1
1−(|A|−1)ε )

n(1−α) for

any sufficiently large n. Thus,

Pg(D) ≤ lim sup
n→+∞

1

n
log(1− (|A| − 1)ε)−n(1−α)(1− (|A| − 1)ε)n

= lim sup
n→+∞

1

n
log(1− (|A| − 1)ε)nα

= α log(1− (|A| − 1)ε) < 0.

�

Proof of Corollary 1 using {(H1), (H2′), (H3)}. In view of Theorem 1, it is enough
to show that hypothesis (H1), (H2’) and (H3) imply (H2). Under (H1)

∀n > N + 1, ∀x ∈ En, g(x) 6 1− (|A| − 1)ε.

Take B ∈ Cn(D) and x ∈ B. Hypothesis(H3) implies that T ix ∈ En−1−i ⊂ EN
for all i ∈ {1, . . . , n−N − 1}. Therefore the identity gn(x) = gn−N (x)gN (Tn−Nx)
entails for n > N + 1

(4.2) ∀B ∈ Cn(D), ∀x ∈ B, gn(x) ≤ (1− (|A| − 1)ε)n−N .

It follows that

Pg(D) ≤ lim sup
n→+∞

1

n
log |Dn|(1− (|A| − 1)ε)n−N .

The rest of the proof runs as before, using hypothesis (H2′). �

Proof of Theorem 2. We already now that existence holds, thanks to hypothesis
(H1) and (H2). Remark 2 in Johansson & Öberg (2003) states that, if for some
stationary µ we have

∫

X

µ(dx)
∑

n

[varn(x)]
2 < +∞,

then µ is unique. Notice that although Johansson & Öberg (2003) deal with con-
tinuous g-functions throughout the paper, their uniqueness result only requires
existence of a g-measure, which is what we have here.

For any point x ∈ X, the sequence (
∑N

n=0[varn(x)]
2)N≥0 is monotonically in-

creasing and positive, therefore

∫

X

µ(dx)
∑

n

[varn(x)]
2 = lim

N

∫

X

µ(dx)
N
∑

n=0

[varn(x)]
2

= lim
N

N
∑

n=0

∫

X

µ(dx)[varn(x)]
2

=
∑

n

∫

X

µ(dx)[varn(x)]
2

=
∑

n

∑

x0
−n

∈An+1

µ(x0
−n)[varn(x

0
−n)]

2 ,
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where we used the Beppo-Levi Theorem in the first line, and the fact that varn(x)
only depends on x0

−n in the last line. We now divide into two parts as follows:

∫

X

µ(dx)
∑

n

[varn(x)]
2 =

∑

n





∑

x0
−n

∈Dn+1

µ(x0
−n)[varn(x

0
−n)]

2

+
∑

x0
−n

∈An+1\Dn+1

µ(x0
−n)[varn(x

0
−n)]

2





For the first term of the right-hand side of the equality, we majorate varn(x
0
−n) by

1 and we use the fixed point property of the g-measure µ to obtain, for any δ > 0,
the existence of N(δ) such that for all n > N(δ):

∑

x0
−n

∈Dn+1

µ(x0
−n) = µ(Cn+1(D)) = µ(Ln+1

11Cn+1(D))

6
∑

C∈Cn+1(D)

sup
C

gn+1 6 (ePg(D)+δ)n+1.

Taking δ = −Pg(D)/2 (which is strictly positive by hypothesis (H2)) proves
∑

n

∑

x0
−n

∈Dn+1

µ(x0
−n) < ∞.

It remains to consider the second term. Recall that if x0
−n ∈ An+1 \ Dn+1 then

there exists v ∈ τg with |v| 6 n such that v is a prefix of x−1
−n (denoted by x−1

−n > v).
It comes, using (H4),
∑

n

∑

x0
−n

∈An+1\Dn+1

µ(x0
−n)[varn(x

0
−n)]

2 =
∑

n

∑

v∈τg :|v|6n+1

∑

x0
−n

>v

µ(x0
−n)[varn(x

0
−n)]

2

=
∑

n

∑

v∈τg :|v|6n+1

µ(v)(varvn)
2

=
∑

n

∑

v:|v|=n

µ(v)Rv

=
∑

v∈τg :|v|<+∞

µ(v)Rv < +∞.

�

5. Questions and perspectives

Notice that existence is ensured by an assumption on the set of discontinuous
pasts, whereas uniqueness involves a condition on the set of continuous pasts. For
continuous chains, Johansson & Öberg (2003) obtained conditions on the continu-
ity rate of the kernel, ensuring uniqueness. Making the necessary changes in the
hypothesis, Theorem 2 states that for discontinuous kernel, the same kind of con-
ditions can be used but restricted to the set of continuous pasts, when the measure
does not charge the discontinuous pasts.

Concerning mixing properties, it is known (using the results of Comets et al.
(2002) for example) that chains having summable continuity rate enjoy summable
φ-mixing rate. It is natural to expect that, like for the problem of uniqueness, the
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chains we consider will enjoy the same mixing properties under the same assump-
tion, restricted to the set of continuous pasts.

Finally, it is worth mentioning an interesting parallel with the literature of non-
Gibbs state. In this literature, there are examples of stationary measures that are
not almost-Gibbs, meaning that there exists stationary measures that give positive
weight to the set of discontinuities with respect to both past and future. We do not
enter into details and refer to Maes et al. (1999) for the definition of this notion. As
far as we know, no such example exist in the world of g-measures. More precisely,
an interesting question is whether there exist examples of stationary g-measures
that are not almost-regular, or if, on the contrary, µ(D) = 0 is valid for every sta-
tionary g-measure.

Ackowledgement We gratefully acknowledge X. Bressaud for interesting discus-
sions during the Workshop Jorma’s Razor II.
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