
HAL Id: hal-00732173
https://hal.science/hal-00732173v1

Submitted on 14 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CoBRA: A cooperative coevolutionary algorithm for
bi-level optimization

François Legillon, Arnaud Liefooghe, El-Ghazali Talbi

To cite this version:
François Legillon, Arnaud Liefooghe, El-Ghazali Talbi. CoBRA: A cooperative coevolutionary algo-
rithm for bi-level optimization. CEC 2012 - IEEE Congress on Evolutionary Computation, Jun 2012,
Brisbane, Australia. pp.1–8, �10.1109/CEC.2012.6256620�. �hal-00732173�

https://hal.science/hal-00732173v1
https://hal.archives-ouvertes.fr

CoBRA: A Cooperative Coevolutionary Algorithm
for Bi-level Optimization

François Legillon
Université Lille 1, LIFL – CNRS

INRIA Lille-Nord Europe
Villeneuve d’Ascq, France

Email: francois.legillon@inria.fr

Arnaud Liefooghe
Université Lille 1, LIFL – CNRS

INRIA Lille-Nord Europe
Villeneuve d’Ascq, France

Email: arnaud.liefooghe@univ-lille1.fr

El-Ghazali Talbi
Université Lille 1, LIFL – CNRS

INRIA Lille-Nord Europe
Villeneuve d’Ascq, France

Email: talbi@lifl.fr

Abstract—This article presents CoBRA, a new evolutionary
algorithm, based on a coevolutionary scheme, to solve bi-level
optimization problems. It handles population-based algorithms
on each level, each one cooperating with the other to provide
solutions for the overall problem. Moreover, in order to evaluate
the relevance of CoBRA against more classical approaches, a
new performance assessment methodology, based on rationality,
is introduced. An experimental analysis is conducted on a bi-level
distribution planning problem, where multiple manufacturing
plants deliver items to depots, and where a distribution company
controls several depots and distributes items from depots to re-
tailers. The experimental results reveal significant enhancements,
particularly over the lower level, with respect to a more classical
approach based on a hierarchical scheme.

Index Terms—Evolutionary computation, Algorithm design
and analysis, bi-level optimization, vehicle routing

I. INTRODUCTION

Bi-level optimization problems allow to model a large
number of real-life applications, with a hierarchical structure
between two decision makers. It includes companies which
have to face a legislator and security constraints [1], companies
trying to predict consumer reaction [2], or a supply chain
where a company has to predict its supplier reaction to
determine the real cost of its decision [3].

Evolutionary algorithms (EA) are a class of approximate
algorithms focusing on finding good-quality solutions for
large-size and complex problems, in a reasonable amount of
time [4]. While most of the existing literature about bi-level
optimization focuses on small-size linear problems (see for
example [5], [6]), many real-life applications involve large-size
instances and complex NP-hard problems, justifying the use of
EAs. Existing EAs for bi-level optimization can be divided into
two main classes. On the one hand, hierarchical algorithms
try to solve the two levels sequentially, improving solutions on
each level to get a good overall solution on both levels. Such
algorithms include the repairing algorithm [7], which considers
the lower-level problem as a constraint and solve it during the
evaluation step, or the constructing algorithm [8] which applies
two population-based algorithms on a population, one for
each level, sequentially until a stopping criterion is satisfied.
On the other hand, coevolutionary algorithms maintain two
populations, one for each level, and try to improve them
separately, while periodically exchanging information to keep

an overall view on the problem, like in [9]. In coopera-
tive coevolution, different sub-populations evolve a part of
the decision variables, and complete solutions are built by
means of a cooperative exchange of individuals from sub-
populations [10].

This article focuses on a coevolutionary approach. Sub-
problems involved in bi-level optimization can be tackled by
EAs. Finding a good way to combine two EAs in order to
solve a bi-level optimization problem as a whole would give
a general methodology for bi-level optimization. First, we
introduce a new algorithm, the Coevolutionary Bi-level method
using Repeated Algorithms (CoBRA). This coevolutionary al-
gorithm is able to face general bi-level optimization problems,
possibly involving complex large-size search spaces. Next,
we introduce a new measure for performance assessment, the
rationality, able to more fully grasp the bi-level aspect of the
problems than the Pareto efficiency. Rationality is based on the
proximity from the optimum of the lower-level variables while
keeping the corresponding upper-level variables fixed. At
last, to evaluate the performance of CoBRA against classical
hierarchical approaches, we give an experimental analysis on
a bi-level transportation problem involving a supply chain, the
bi-level multiple depot vehicle problem introduced in [3]. This
analysis includes the problem modeling, the instantiation of
CoBRA to solve it, and the study of the results with respect
to fitness values and rationality metrics.

The paper is organized as follows. Section II gives the
necessary background on bi-level optimization. Section III
presents the new coevolutionary algorithm proposed in the
paper for bi-level optimization, namely CoBRA. In Section IV,
we discuss the issue of assessing the performance of ap-
proximate algorithms in bi-level optimization. The bi-level
transportation problem under investigation in this paper is
presented in Section V. The experimental analysis of CoBRA
is given Section VI. At last, the final section concludes the
paper and gives directions for further research.

II. BI-LEVEL OPTIMIZATION

In this section we introduce a general bi-level optimization
problem, and give a quick overview of state-of-the-art EAs for
bi-level optimization.

francois.legillon@inria.fr
arnaud.liefooghe@univ-lille1.fr
talbi@lifl.fr

A. General Principles of Bi-level Optimization

Bi-level optimization problems may be defined by the tuple
(S, F, f) where S represents the set of feasible solutions (i.e.
the search space), F the objective function of the upper level,
and f the objective function of the lower level. For any x ∈
S we separate the upper-level variables and the lower-level
variables, respectively in xu and xl.

We define, for every xu fixed, the set of rational reactions
R(xu) as the set of xl optimal in f .

R(S, f, xu) =

{
minxl

f(x = (xu, xl))
s.t. x ∈ S

Solving the bi-level optimization problem consists in finding
the solution x ∈ S which is optimal with respect to f for
xu fixed and, respecting this constraint, optimal with respect
to F .

BP (S,F, f) =

minF(x)
x ∈ S

s.t.
{

x = (xu, xl)
xl ∈ R(S, f, xu)

Those problems induce a hierarchy between two decision
makers:

• The leader, who chooses the upper part of the decision
variables, xu, and tries to optimize F .

• The follower, who chooses the lower part of the decision
variables, xl, and tries to optimize f .

The leader decides first. Then, the follower, knowing the
leader decision, has to decide, in the view of optimizing its
own objective function f , without regarding the upper-level
objective function F . To optimize his choice, the leader then
has to predict the follower reaction. This hierarchy can conduct
to a higher complexity than both sub-problems. For instance,
a NP-hard bi-level optimization problem can be obtained from
two linear problems [11].

This definition of bi-level optimization corresponds to the
optimistic case, where the leader can “choose” the (xu, xl)
couple in the set of (xu, xl) ∈ S where xl ∈ R(xu): the
reaction has to be optimal, but if several reactions are optima
(i.e. |R(xu)| > 1) the leader has the last word. There exists a
pessimistic case [12] which is not treated in this paper, where
xl is chosen as the leader worst-case scenario in the set of
rational responses.

B. Evolutionary Approaches for Bi-level Optimization

EAs are approximate algorithms which allow to tackle large-
size problem instances by delivering satisfactory solutions
in reasonable time [4]. Due to their complexity, most bi-
level optimization problems are tackled by approaches which
involve a model reformulation masking the bi-level aspect of
the problem (see [5], [6], [13], [14]), or which are based on
heuristics.

EAs for bi-level optimization generally involve a hierarchi-
cal scheme, where a level is firstly treated with a heuristic,

giving good-quality solutions. Then, starting with those solu-
tion, the algorithm tries to solve the other problem. We can
distinguish two main families in this hierarchical scheme:
• Constructive algorithms, that search for good-quality so-

lutions for the lower level, and then try to improve the
upper-level fitness value, without degrading the lower
level [8].

• Repairing algorithms, that search for good upper-level
fitness value, and then try to improve the lower level in
order to obtain rational solutions [7].

In this paper, we focus on coevolutionary approaches, a sub-
group of meta-heuristics extending the evolutionary scheme.
Coevolutionary algorithms consists in associating several EAs
and applying variations operators, such as mutation and
crossover, to distinct populations. A coevolution operator is
then regularly applied between sub-populations to keep a
global view on the whole problem.

For instance, Oduguwa and Roy proposed BiGA [9], a co-
evolutionary algorithm for bi-level optimization. BiGA starts
by initializing two distinct sub-populations using a heuristic,
popu for the upper level and popl for the lower level. Then
the upper-level part of the solutions is copied from popu
to popl. During a given number of generations, a selection
process, based on the respective level fitness values, is ap-
plied to both sub-populations, followed by a variation step.
Then, sub-populations are evaluated, sorted, and coevolved,
by copying the upper (respectively lower) variables to the
lower (respectively upper) sub-population. At last, an archiving
process occurs to keep the overall best solution, before looping
again to the selection step.

III. COBRA, A COOPERATIVE COEVOLUTIONARY
ALGORITHM FOR BI-LEVEL OPTIMIZATION

In this section we introduce CoBRA, a new EA to tackle
bi-level optimization problems. We give here the general parts
and principles of CoBRA. The reader is referred to Section VI
for a specific implementation of CoBRA with all the problem-
specific algorithmic components included.

A. CoBRA Principles

Most of the literature focuses on linear bi-level optimization
problems (i.e. formed with two linear sub-problems) or lower-
level problems that can be solved to optimality in a reasonable
amount of time. They use this property to discard the bi-
level aspect of the problem. This article tries to define a more
general methodology to solve bi-level optimization problems,
with a hard lower-level problem. The problem complexity
leads us to consider the use of heuristics in order to obtain
good-quality solutions.

CoBRA is a coevolutionary bilevel method using repeated
algorithms. Extending Oduguwa and Roy’s BiGA [9], it is a
coevolutionary algorithm consisting in improving incremen-
tally two different sub-populations, each one corresponding to
one level, and periodically exchanging information with the
other.

Data: initial population pop
popu ←copie pop;
popl ←copie pop;
while Stopping criterion not met do

upper evolution (popu) and lower evolution (popl);
upper archiving (popu) and lower archiving (popl);
selection (popu) and selection (popl);
coevolution(popu, popl);
adding from upper archive (popu);
adding from lower archive (popl);

end
return lower archive

Algorithm 1: Pseudo-code of CoBRA

CoBRA uses coevolution to associate two distinct EAs.
Each of those algorithms are supposed to be, in the CoBRA
scheme, fast methods that offer good-quality solutions for one
of the two levels. Using an algorithm for each level, CoBRA
seeks to produce a good-quality solution in terms of bi-level
optimization.

B. CoBRA Components

In order to instantiate CoBRA for a particular bi-level
optimization problem, generic and problem-specific compo-
nents have to be defined. Generic components, which can
correspond to both sub-problems, consist in choosing the
following components:
• Two level-specific EAs, one for each level, that does not

change the other level part of the solution.
• A coevolution strategy to decide how populations should

exchange information.
• An archiving strategy to record the best solutions on every

level, and to prevent the coevolution to change the sub-
populations completely in a single generation.

• A stopping criterion to decide when the algorithm should
stop.

• Level-specific selection operators, which remove bad-
quality solutions from populations before the coevolution
step.

Problem-specific components still have to be designed in order
to use CoBRA:
• Initialization operators, generally heuristics, which create

a base population to begin the search process.
• Variation operators, which are level-specific, which are

used by the EAs.
• Evaluation operators, corresponding to the f and F

functions from the bi-level optimization model.
Figure 1 illustrates the outline of CoBRA.

C. General Algorithm

CoBRA is a coevolutionary algorithm using a different
population, and a different archive for each level (Algo. 1). At
each iteration, we apply the EAs, we archive the best solutions
obtained, then we apply a selection operator to keep a constant

Data: Populations upPop and lowPop of same size, op
coevolution operator

Shuffle upPop;
foreach i from 0 to size(upPop) do

op(upPop[i],lowPop[i]);

Algorithm 2: Pseudo-code of the coevolution step

Upper population

Lower population

Upper-level EA Selection
(upper criterion)

Upper archive
(sorted)

Lower archive
(sorted)

Elitist archiving
(upper criterion)

Selection
(lower criterion)

Lower-level EA

Elitist archiving
(lower criterion)

ElectionCombination

Fig. 1: CoBRA outline.

size to the archive and populations. The final iteration step
is then to coevolve both sub-populations. Once the stopping
criterion is met, CoBRA returns the lower-level archive.

CoBRA involves several differences with BiGA:
1) The main difference is that CoBRA applies a complete

algorithm, possibly iterating a certain number of gen-
erations, over each main algorithm iteration, instead of
just applying variation operators. The evaluation process
occurs during those improvement algorithms.

2) The coevolution process is not necessarily elitist: de-
fault coevolution strategy (Algo. 2) randomly coevolves
solutions with each other.

3) The selection and the archiving processes take place
right after the improvement.

The structure of CoBRA makes it easy to use for bi-level
optimization problems where both the lower-level and the
upper-level parts are hard to solve to optimality. Using those

F a b
d 0 1000
e 1 ∞
f 300 ∞

f a b
d 100 99
e 1001 ∞
f 99 ∞ d,a

f,a

e,a

d,b

F

f
0

Fig. 2: Example of lower-level and upper-level objective
functions whose optimal solution is dominated in terms of
Pareto dominance.

heuristics, it allows to tackle the bi-level aspect of the problem
as a whole, without much additional work.

IV. PERFORMANCE ASSESSMENT AND BI-LEVEL
OPTIMIZATION

In this section, we introduce two new metrics for assessing
the performance of heuristics on solving bi-level optimization
problems.

A. Motivations

Being a problem with two different objective functions,
a natural approach to tackle bi-level optimization problems
would be to use a Pareto-based multi-criteria approach. How-
ever, bi-level optimization problems have a different structure.
Indeed, A Pareto optimal solution could be of bad quality in
terms of bi-level optimization.

Bi-level optimization aims at identifying solutions in the
form (xu, xl) which give good upper-level objective values,
while being near the optimum regarding the lower-level objec-
tive for a xu fixed. This leads to the existence of good-quality
solutions not being on the Pareto frontier, and solutions on the
Pareto frontier not necessarily being good-quality solutions.
Fig. 2 gives an example of objective functions giving a bi-level
solution corresponding to a dominated solution in the Pareto
sense. F and f are respectively the upper and the lower-level
objective functions, to be minimized. The leader chooses in
{d,e,f} and the follower in {a,b}. The Pareto frontier would
be made of {(d,a),(f,a)} while the bi-level solution is (e,a).
In conclusion, following a classical Pareto approach in this
example would lead the decision maker to the wrong solution.
A good measure for the quality of a solution needs to take into
account the bi-level structure of the problem.

We introduce the notion of rationality which corresponds
to the difficulty to improve a solution (xu, xl), while keeping
xu fixed, according to the lower-level objective function. A
rational solution is a solution where the follower reaction
is rational, seeking for the optimality of its own objective
function. If a solution we consider can easily be improved
by the follower in terms of lower-level criteria, it is associated
with a bad rationality measure.

Data: AlgoLow, pop, ni number of iterations
counter ← 0;
foreach gen from 1 to ni do

neopop← pop;
found← false;
AlgoLow(neopop);
foreach x in neopop do

if (not found) and (x is better than an element
of pop) then

counter++;
found← false;

end
end

end
return counter/ni

Algorithm 3: Direct rationality test

B. Rationality

1) Direct Rationality: The direct rationality measure cor-
responds to the difficulty of improving a solution without
regarding the actual gap of improvement: we simply consider
the “improvability”. To evaluate it for a population, we apply
a “well-performing” lower-level algorithm for a given number
of times, and we count how many times the algorithm actually
improves the solution (Algo. 3).

2) Weighted Rationality: The weighted rationality is an-
other rationality measure working on the same principle as the
direct rationality with the difference that, instead of counting
how many times the algorithm was able to improve the
solution, we also consider by how much it was improved.
Being able to improve a fitness value by 0.001 or by 1000
does not give the same result in terms of rationality, whereas
the direct approach would consider both as the same (Algo. 4).

Data: AlgoLow, pop, ni number of iterations
ratio← 0;
foreach gen from 1 to ni do

neopop← pop;
AlgoLow(neopop);
ratio=ratio+(f(best(neopop))/f(best(pop))/ni;

end
return ratio

Algorithm 4: Weighted rationality test

Let us note that those methods are not absolute, in the
sense that we have to compare the algorithm using another
algorithm, thus introducing a bias. Those measures actually
compare the capacity of a heuristic to use their given level-
specific EAs, but do not actually compare the overall capacity
to tackle the problem. To this end, we have to ensure that none
of the tested algorithms is biased toward the algorithm used
by the rationality evaluation.

V. A BI-LEVEL MULTI-DEPOT VEHICLE ROUTING
PROBLEM

In this section we define a bi-level transportation problem,
involving two different companies in a supply chain. The
leader transports goods from depots to retailers, answering to
the retailers demand. The follower manages plants producing
goods for the leader. The leader starts by deciding which
depots should deliver goods, then the follower decides how to
manufacture the goods. Both decisions influencing the overall
cost of solutions.

This problem, introduced by Calvete and Galé [3], consists
of a bi-level optimization problem where the leader controls
a fleet of vehicles to deliver items from several depots to
retailers, on the same principle as the classical multi-depot
vehicle routing problem (MDVRP). The follower controls a
set of plants, and has to produce the items and deliver them
to the depots according to the demand of the retailers it
serves, thus corresponding to a flow problem. The leader tries
to minimize the total distance of his routes and the buying
cost of the resources (depending on the lower-level decision).
The follower minimizes the production cost and the distance
traveled by the produced goods. The follower has to directly
transport from plants to depots.

A. Problem Description

Let K, L, R and S denote the sets of plants, of depots,
of retailers and of vehicles, respectively. Let E be the edge
set between retailers and depots, br the demand of retailer
r, cai,j the cost of transporting goods from depots or retailers
i to j for the leader, cbk,l the cost to buy and unload a unit
produced in plant k into depot l for the leader, and cck,l the
operational cost for plant k to produce and deliver to depot l
for the follower.

The upper-level objective function is to minimize the sum of
deliver costs from depots to retailers and buying from plants.

F(x, y) =
∑
s∈S

∑
(i,j)∈E

cai,jx
s
i,j +

∑
k∈K

∑
l∈L

cbk,lyk,l

with x the leader variables representing the routes chosen to
deliver retailers, and y the follower variables representing the
affectation of plants to depots.

Then, the lower-level objective function is to minimize the
sum of costs of producing items in plants and delivering it to
depots.

f(x, y) =
∑
k∈K

∑
l∈L

cck,lyk,l

The leader and follower follow a hierarchical order, where
the leader choose routes, creating a demand for the depots
corresponding to the retailers to be delivered, and where the
follower has to respond to this new demand by associating a
part of his plant production to depots.∑

k∈K

yk,l ≥
∑
s∈Sl

∑
r∈Rs

br,∀l ∈ L

Several other VRP-related constraints are omitted to improve
readability. See [3] for more details about the problem.

TABLE I: Description of the S1 instances, R corresponding to
the number of routes by depot.

Instance Depot R Plants (S1) Retailer
bipr01 4 1 4 48
bipr02 4 2 4 96
bipr03 4 3 4 144
bipr04 4 4 4 192
bipr05 4 5 4 340
bipr06 4 6 4 288
bipr07 6 1 6 72
bipr08 6 2 6 144
bipr09 6 3 6 216
bipr10 6 4 6 288

B. Problem Instances

A set of instances1 was generated to experiment the CoBRA
efficiency. S1 consists of instances created from MDVRP
instances following the modus operandi described in [3]. We
add as many plants as there are depots randomly located on
the map. Then, we set their maximal production to ensure
that the instance is feasible. cb and cc follows the approach
described in [3]. Set S1 contains 10 instances created from
the 10 instances provided by Cordeau [15]. Those instance
parameters are described in Table I.

VI. EXPERIMENTAL ANALYSIS

In order to evaluate the relevance of CoBRA for bi-level
optimization, we conduct in this section an experimental
analysis against a classical repairing algorithm. The approach
considers the lower-level optimality condition as a constraint,
and simply tries to find the best upper-level variables while
“repairing” the lower level during the evaluation step. The goal
of this section is not to compare a number of coevolutionary
algorithms, but rather to show that such approaches are more
appropriate than a repairing algorithm for hard-to-solve bi-
level optimization problems.

A. Experimental Design

We conduct an experimental analysis by applying both
algorithms on the bi-level multi-depot vehicle routing problem
(BiMDVRP). Each algorithm is run 30 times with different
seed values.

Both algorithms use the same components (i.e. the lower-
level and upper-level EAs, the stopping criterion, the variation
and initialization operators). The repairing algorithm works
as follows. It does not use any archiving or coevolution
operator, and a different evaluation operator which applies
an lower-level based EA before evaluating the solution. Once
the stopping criterion is met, we evaluate the population with
respect to the following three criteria:
• The upper-level fitness value,
• The direct rationality,
• The weighted rationality.

We report average values over the 30 execution for all metrics.

1Benchmark files are publicly available on the paradiseo website in the
problems section at the following URL: http://paradiseo.gforge.inria.fr/index.
php?n=Problems.Problems.

http://paradiseo.gforge.inria.fr/index.php?n=Problems.Problems
http://paradiseo.gforge.inria.fr/index.php?n=Problems.Problems

B. CoBRA for the BiMDVRP

In order to fit CoBRA to the BiMDVRP, several problem-
specific components have to be chosen.

1) Solution Representation: With the aim of developing an
EA, a solution representation is necessary. Using a generic
bi-level representation, we had to decide a representation for
each level. For the upper level, we use a permutation: a
number is attributed to every retailer and every route (each
route being associated with a depot). The route numbers in
the permutation determine the routes start, and every retailer
between route numbers represent the actual route (Fig. 3). This
representation facilitates the solution integrity, and suppresses
the need to check the number of routes and the “one visit per
retailer” constraint. We use for the lower-level problem a more
classical matrix of real numbers M, Ma

b representing the ratio
of production sent from a to b. The quantity effectively sent is
scaled down at the evaluation step if the sum of a column are
over 1, and rounded down if it is not an integer. This indirect
representation permits to use of classical algorithms without
much adaptation work.

2) Upper-level Problem-related Components: For the MD-
VRP upper-level problem, we use a combination of three
variation operators:

RBX [16] is a crossover operator copying routes from a
parent, and then completing the offspring with routes
from the other parents by removing visited retailers.

SBX [16] is a crossover operator creating a new route, by
taking half of a route starting from a single depot in
each parent, keeping the order of each half, and then
completing the offspring with the other routes and
removing visited retailers.

Or-opt [17] is a mutation operator taking several retailers
from a route and putting it in another. This operator
changes the number of routes which neither of the
SBX and RBX can do.

Operators are applied to uniformly-chosen solutions from the
population.

3) Lower-level Problem-related Components: For the
lower-level problem, we use a combination of two operators:

Umut [18] is a mutation operator that adds a parametrized
real value rlmut ∈ [−0.5, 0.5] to each element of the
solution matrix with a plmut probability.

UXover [19] is a crossover operator choosing elements
uniformly for each parent solution matrix and putting
it in the offspring population.

4) Stopping Condition: The algorithm uses three stopping
criteria, one for each EA and one for the overall algorithm.
Both EAs use a generational stopping criterion which con-
tinues for a fixed number pg of generations. The overall
algorithm uses a lexicographic continuator which continues
until no better solution is found for a fixed parameter pl
of generations, by using a lexicographic comparator (i.e. by
comparing sequentially the objective values on each level
starting with the upper level).

a
5

2

4

1

3

7

6

b

Depot

Retailer

Fig. 3: Example of a VRP with 7 retailers, 2 de-
pots, and 2 routes per depot, from the permutation
[5, 4, 2, 9, 7, 6, 10, 1, 3, 8]. Squares are for depots {a,b}, circles
for retailers {1,2,3,4,5,6,7}.

5) Selection Operators: The algorithm uses three selection
operators to choose which solution to keep from a generation
to the next one, one for each EA, and one for the overall
algorithm. We use on both EAs a deterministic tournament,
which randomly selects two solutions from the population and
keeps the best one. For the overall algorithm we use a survive-
and-die replacement politic, which keeps a parametrized pro-
portion of the best solutions nsad from the last generation,
and apply a deterministic tournament on the remaining part of
the population in order to generate the population for the next
generation.

6) Archiving Strategy: The algorithm uses archives to keep
record of the best solutions found over all generations. We use
a straight-forward archive that keeps the n best-found solutions
according the the lower-level fitness value.

7) Numerical Parameters: Following preliminary experi-
ments, the remaining parameters have been set as follows.

• n: the populations size, set to 100,
• rlmut: the uniform mutation adding parameter, set to 0.5,
• plmut: the uniform mutation probability parameter, set to

0.1,
• pg: the number of generations each EA is performed, set

to 10,
• pl: the number of generations CoBRA continues without

improvement, set to 100,
• nsad the proportion of best solutions that are kept from

the previous generation, set to 0.8.

TABLE II: Average upper-level fitness value, direct rationality
value and weighted rationality value obtained by CoBRA
and the repairing algorithms (Repair) for BiMDVRP instances
from S1. A statistically better result is given in bold.

upper level lower level
fitness direct rationality weighted rationality

instance CoBRA Repair CoBRA Repair CoBRA Repair
bipr01 1830 1847 0.6 7.5 11.2 3326.8
bipr02 4475 3331 1.3 5.4 131.4 3917.7
bipr03 8723 5778 2.7 23.5 264.0 5293.3
bipr04 11024 7260 1.9 19.9 193.4 5435.4
bipr05 13069 8490 0.6 5.4 66.7 3131.8
bipr06 17229 11559 0.7 5.9 68.3 2160.3
bipr07 3320 2917 0.9 1.5 92.5 150.7
bipr08 8500 5344 2.2 22.9 212.8 233.1
bipr09 13435 8298 2.0 22.2 195.4 235.2
bipr10 18752 12366 0.6 13.5 65.9 133.2

C. Experimental Results

Table II shows numerical results for CoBRA and the repair-
ing algorithm on instances from S1. The average upper-level
fitness values as well as the direct and weighted rationality
metric values are reported. A Wilcoxon signed rank-sum test
was used to determine if there is a significant difference
between both algorithms in terms of fitness and rationality.
Clearly, CoBRA obtains a better score in terms of rationality
on all the instances. For both algorithms, rationality is not
related to the instance size. However, the repairing algorithm
is doing better for the upper-level fitness value.

CoBRA has a significant advantage in terms of rationality
for all the runs we performed, while having a worse upper-
level fitness value. Rationality indicates the quality of the
reaction predicted by the algorithm. A bad prediction is likely
to lead to a bad solution: once applied to a real-life situation,
the follower will have greater chances to chose a better
reaction for his own objective function, then degrading the
solution quality for the leader. Since CoBRA has a better
rationality, it allows to better predict the outcome of the
decisions. Thus, we can conclude that CoBRA is more adapted
to the bi-level aspect of the problem.

An explanation why the hierarchical algorithm does not
select the more rational response would be that, once an
irrational solution x = (xu, xl) is obtained, through a badly
done reparation, which gives a better upper-level fitness value
than the more rational response x′ = (xu, x

′
l), the overall

algorithm will have a tendency to discard x′ and keep x.
We can conclude that the repairing approach needs either
a very efficient lower-level heuristic, an exact lower-level
algorithm, or some properties over the problem (such as a
strong correlation between the two levels) in order to be
able to produce rational responses. This is the reason why
the coevolution scheme allows CoBRA to obtain a better
rationality. The number of evaluations required by CoBRA
stays stable whatever the instance size, while the repairing
algorithm requires a number of evaluations about 1000 times
higher than CoBRA, and which increases with the problem
size. We can conclude that the coevolutionary approach can

give a significant enhancement for this problem, without
significant loss in terms of computational time.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we described CoBRA, a new general method-
ology to solve bi-level optimization problems. We introduced
the concept of rationality for bi-level optimization problems
and new metrics to compare the performance of heuristics
for such purpose. We compared CoBRA against a classical
hierarchical approach on a bi-level optimization problem of
production/transportation. Experimental results showed a sig-
nificant advantage to CoBRA in tackling the bi-level multi-
depot vehicle routing problem against a classical hierarchical
approach.

A similar experimental analysis applied to other classes of
bi-level optimization problems would allow to better under-
stand the proposed algorithm pros and cons. As a future work,
it would be interesting to look up a possible integration of
diversification principles into CoBRA. This would give the
opportunity for the algorithm to escape from local optima
easier. Furthermore, the design of CoBRA is intrinsically
parallel, since two sub-populations evolve independently, so
that parallel computation would improve its performance in
terms of computational time.

REFERENCES

[1] E. Erkut and F. Gzara, “Solving the hazmat transport network design
problem,” Computers & Operations Research, vol. 35, pp. 2234–2247,
2008.

[2] M. Didi-Biha, P. Marcotte, and G. Savard, “Path-based formulations of a
bilevel toll setting problem,” Optimization with Multivalued Mappings,
pp. 29–50, 2006.

[3] H. Calvete and C. Galé, “A Multiobjective Bilevel Program for
Production-Distribution Planning in a Supply Chain,” Multiple Criteria
Decision Making for Sustainable Energy and Transportation Systems,
pp. 155–165, 2010.

[4] E.-G. Talbi, Metaheuristics: from design to implementation. Wiley,
2009.

[5] G. Anandalingam and D. White, “A solution method for the linear static
stackelberg problem using penalty functions,” IEEE Transactions on
Automatic Control, vol. 35, no. 10, pp. 1170 –1173, 1990.

[6] G. Eichfelder, “Multiobjective bilevel optimization,” Mathematical Pro-
gramming, vol. 123, no. 2, pp. 419–449, 2010.

[7] A. Koh, “Solving transportation bi-level programs with differential evo-
lution,” in 2007 IEEE Congress on Evolutionary Computation. IEEE,
2008, pp. 2243–2250.

[8] X. Li, P. Tian, and X. Min, “A hierarchical particle swarm optimization
for solving bilevel programming problems,” Artificial Intelligence and
Soft Computing–ICAISC 2006, pp. 1169–1178, 2006.

[9] V. Oduguwa and R. Roy, “Bi-level optimisation using genetic algorithm,”
in 2002 IEEE International Conference on Artificial Intelligence Systems
(ICAIS 2002), 2002, pp. 322 – 327.

[10] M. A. Potter and K. A. D. Jong, “Cooperative coevolution: An architec-
ture for evolving coadapted subcomponents,” Evolutionary Computation,
vol. 8, pp. 1–29, 2000.

[11] O. Ben-Ayed and C. Blair, “Computational difficulties of bilevel linear
programming,” Operations Research, vol. 38, no. 3, pp. 556–560, 1990.

[12] P. Loridan and J. Morgan, “Weak via strong stackelberg problem: New
results,” Journal of Global Optimization, vol. 8, pp. 263–287, 1996.

[13] J. Fliege and L. Vicente, “Multicriteria approach to bilevel optimization,”
Journal of optimization theory and applications, vol. 131, no. 2, pp.
209–225, 2006.

[14] Y. Lv, T. Hu, G. Wang, and Z. Wan, “A penalty function method based
on Kuhn-Tucker condition for solving linear bilevel programming,”
Applied Mathematics and Computation, vol. 188, no. 1, pp. 808–813,
2007.

[15] J. Cordeau, M. Gendreau, and G. Laporte, “A tabu search heuristic for
periodic and multi-depot vehicle routing problems,” Networks, vol. 30,
no. 2, pp. 105–119, 1997.

[16] J. Potvin and S. Bengio, “The vehicle routing problem with time
windows part II: genetic search,” INFORMS Journal on Computing,
vol. 8, no. 2, p. 165, 1996.

[17] I. Or, “Traveling salesman-type combinatorial problems and their rela-
tion to the logistics of regional blood banking,” Northwestern University,
Evanston, 1976.

[18] K. Deb and M. Goyal, “A combined genetic adaptive search (geneas)
for engineering design,” Computer Science and Informatics, vol. 26, pp.
30–45, 1996.

[19] K. Deb and R. Agrawal, “Simulated binary crossover for continuous
search space,” Complex systems, vol. 9, no. 2, pp. 115–148, 1995.

	Introduction
	Bi-level Optimization
	General Principles of Bi-level Optimization
	Evolutionary Approaches for Bi-level Optimization

	CoBRA, a cooperative Coevolutionary Algorithm for Bi-level Optimization
	CoBRA Principles
	CoBRA Components
	General Algorithm

	Performance Assessment and Bi-level Optimization
	Motivations
	Rationality
	Direct Rationality
	Weighted Rationality

	A Bi-level Multi-depot Vehicle Routing Problem
	Problem Description
	Problem Instances

	Experimental Analysis
	Experimental Design
	CoBRA for the BiMDVRP
	Solution Representation
	Upper-level Problem-related Components
	Lower-level Problem-related Components
	Stopping Condition
	Selection Operators
	Archiving Strategy
	Numerical Parameters

	Experimental Results

	Conclusions and Future Works
	References

