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Simulation of Mixture Flows :
Pollution Spreading and Avalanches

Caterina Calgaro ∗ Emmanuel Creusé ∗ Thierry Goudon †

September 13, 2012

Abstract

We are concerned with the numerical simulation of certain multi-fluids flows, which in
particular arises in the modeling of pollutant spreading and powder–snow avalanches. The
behavior of the mixture is described through a single mass density and a velocity field, with
an unusual constraint that relates the divergence of the velocity to derivatives of the density.
We propose a numerical scheme based on a hybrid Finite Volume/Finite Element method.
This approach is validated by comparison to analytical solutions and experimental data. The
scheme works on unstructured meshes and it can be advantageously coupled to mesh refine-
ments strategies in order to follow fronts of high density variation. We pay a specific attention
to the behavior with respect to the leading coefficients that characterize the flow: the Froude
and Reynolds numbers.

Keywords : Variable density flows. Mixture flows. Finite Volume method. Finite Element
method. Unstructured meshes. Particulate flows and hydrodynamic regimes.

Introduction

We are concerned with systems of PDEs describing the evolution of mixture flows. The fluid is
described by the density ρ(t, x), depending on time t ≥ 0 and space x ∈ Ω ⊂ RN , and the velocity
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field u(t, x) ∈ RN . These quantities obey mass and momentum conservation, respectively, which
read

∂tρ+∇x · (ρu) = 0, (1)

and
∂t(ρu) + Divx(ρ u⊗ u) +∇xp = ρg + Divx

(
µD(u)

)
(2)

with D(u) = (∇xu+∇xu
T ). In (2), g stands for the gravity acceleration (but it can include further

external forces), while µ represents the dynamic viscosity of the fluid. This positive quantity might
depend on the density ρ as we shall detail below. The originality of the modeling of mixtures relies
on the definition of the pressure p. It is associated to the non–standard constraint

∇x · u = −∇x ·
(
κ∇x ln(ρ)

)
(3)

where κ is a positive coefficient. Of course, when κ = 0 the system (1)–(3) is nothing but the usual
Incompressible Navier–Stokes system. In this specific case, ∇x ·u = 0, the density remains constant
along the characteristic curves (t, x) 7→ X(t, x) of the flow:

d

dt

[
ρ(t,X(t, x))

]
= 0,

d

dt
X(t, x) = u(t,X(t, x)), X(0, x) = x

(as long as the definition of X makes sense). Accordingly, when the fluid is initially homogeneous, it
remains homogeneous for ever. Dealing with non–homogeneous flows, the system (1)–(2) with ∇x ·
u = 0 couples equations of different types and it presents specific difficulties, both for mathematical
analysis and numerical simulation. For instance, a fine analysis of the well-posedness issues can
be found in [17, 19] and for further results and comments we refer to [40, Chapter 2]. Similarly,
the numerical treatment is by no way a mere adaptation of the homogeneous case, see [13, 14] and
the references therein. In this paper, we shall consider the case κ > 0 and we wish to construct
numerical methods able to handle this non–standard coupling.

The Fick law (3) relating the divergence of the velocity field to derivatives of the density has been
introduced in [34, 38] and it has been further developed in [10, 30, 37, 48] for modeling flows where
species (like salt or pollutant) are dissolved in a compressible or incompressible fluid. The mixture
is regarded as an averaged continuum, described by a single density and velocity. Therefore, the
density ρ is naturally highly non homogeneous, and the constitutive law (3) accounts for diffusion
effects between the constituents of the mixture. It is worth pointing out that the model has been
independently discussed as a correction to the standard fluid mechanics, even for single-phase
flows [8, 11] (and for analysis reasonings that bring out remarkable mathematical structures of the
corrected system, see [29]). In this work, we are particularly interested in the application of the
model to reproduce powder–snow avalanches, as it has been proposed in [21, 24, 25]. Questions
of existence and uniqueness of strong solutions are investigated in [6, 38, 50, 51], while the theory
of weak solutions has been studied in [5, Chapter 3, Section 4]. The analysis has been completed
recently in [12] by using energy estimates available when a specific relation holds between the
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viscosity µ and the coefficient κ (see below), and in [35] where the numerical analysis viewpoint
is developed from a Finite Element approximation. It is worth mentioning that (1)–(2) completed
with the constraint (3) shares many aspects with low Mach models which arise in combustion
theory. In low Mach models the logarithm in (3) is replaced by another function of the density. We
refer to [41, Section 8.8] for a sketch of analysis on weak solutions and to [1, 2] for further details.
We shall go back to these questions elsewhere; here we focus on the difficulties introduced by the
constraint (3).

In section 1 we review the basis of the derivation of the system (1)–(3) when describing mixture
flows. This discussion is completed by an Appendix where we detail how the constitutive law can
be derived from the Eulerian–Lagrangian modeling of particulate flows, in a certain hydrodynamic
regime. In Section 1.2 we clarify the fact that different formulations of the problem can be naturally
used and we present a hierarchy of models with gradual difficulties for numerics — and certainly for
mathematical analysis too. Section 2 is mainly devoted to the numerical simulation of avalanche
phenomena. First, we detail in Section 2.1 the principles of the numerical method we propose to
solve the system. An hybrid scheme is introduced, which combines a Finite Volume method for
solving the mass conservation equation to a Finite Element method for solving the momentum
conservation equation and the constraint. This strategy is directly inspired from our works [14, 13]
on incompressible flows. We point out that the scheme works on unstructured meshes and, thus it
is well adapted to incorporate mesh refinement procedures. In turn, the scheme is quite efficient in
capturing displacements of fronts, characterized by high variation of the density, a typical feature
of powder–snow avalanches and pollutant dispersion. In Section 2.2, we check through numerical
experiments and direct comparison with analytical solutions the accuracy properties of the scheme.
Section 2.3 is concerned with the simulation of realistic avalanche phenomena, and we can compare
the numerical tests to experimental data. It turns out that the Froude and the Reynolds numbers
are the key parameters that govern the flow, and grade the numerical difficulty. Hence, we pay a
specific attention to the investigation of the role of these parameters, based on numerical grounds.
Finally, in Section 2.4, we turn to the simulation of an avalanche bumping into a wall.

1 Modeling of Mixtures

In this Section, we review various aspects of the derivation of the system (1)–(3). To this end, let
us introduce a few notation. We assume that the mixture is made of a disperse phase interacting
with a dense phase, but we shall adopt an averaged description of the flow. The two fluids that
constitute the mixture are characterized by their reference mass density: we denote ρ̄f the density
of the dense phase and ρ̄d the density of the dilute phase. We also need the velocity field of each
constituent: uf (t, x) and ud(t, x), respectively. We define the volume fraction of the disperse phase
0 ≤ φ(t, x) ≤ 1:

φ(t, x) = lim
r→0

Volume occupied at time t by the disperse phase in B(x, r)

|B(x, r)|
.
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Therefore, assuming that each phase is incompressible and keeps a constant mass density, the
density of the mixture is defined by

ρ(t, x) = ρ̄f
(
1− φ(t, x)

)︸ ︷︷ ︸
:=ρf (t,x)

+ ρ̄dφ(t, x)︸ ︷︷ ︸
:=ρd(t,x)

= ρ̄f + (ρ̄d − ρ̄f )φ(t, x).

We can write the mass conservation for the two phases

∂tρf +∇x · (ρfuf ) = 0 = ∂tρd +∇x · (ρdud).

Accordingly we obtain
∂tρ+∇x · (ρu) = 0 (4)

where
ρu(t, x) = (ρfuf + ρdud)(t, x),

defines the mean mass velocity (or barycentric velocity) u(t, x). Note that, even if the two con-
stituents are incompressible, u is not divergence free, by contrast to the mean volume velocity

v(t, x) =
(
1− φ(t, x)

)
uf (t, x) + φ(t, x)ud(t, x).

Indeed, the velocity field v is solenoidal because

∂t

(ρf
ρ̄f

+
ρd
ρ̄d

)
= ∂t(1− φ+ φ) = 0

= −∇x ·
(ρfuf
ρ̄f

+
ρdud
ρ̄d

)
= −∇x · v = 0.

Next, we write the usual momentum equation for ρu, that is

∂t(ρu) + Divx(ρ u⊗ u) +∇xp = ρg + Divx(µD(u))

with D(u) = (∇xu + ∇xu
T ). The definition of the pressure p comes from a constitutive relation

which postulates a Fick law between u, v and ρ.

1.1 The Kazhigov–Smagulov Model

According to Kazhikov and Smagulov [38] we set

u = v − κ∇x ln(ρ),

for some constant κ > 0. This Fick’s law describes the diffusive fluxes of one fluid into the other
[37, 48]. Clearly, this relation yields (3). In [30], it is found convenient to derive the Kazhikov-
Smagulov relation from a similar relation for the fields associated to the dense phase, namely

uf = u− κ∇x ln(ρf/ρ).

Here, we point out another relation, involving the evolution of the volume fraction.
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Lemma 1 The following assertions are equivalent:

i) There exists κ > 0 and a solenoidal field v such that u = v − κ∇x ln(ρ),

ii) There exists κ̃ > 0 such that the volume fraction φ satisfies the convection–diffusion equation

∂tφ+∇x · (φu) = ∇x ·
(
κ̃∇x ln

(
ρ̄f + (ρ̄d − ρ̄f )φ

))
.

Proof. We rewrite the mass conservation (4) as follows

∂t
(
ρ̄f + (ρ̄d − ρ̄f )φ

)
+∇x ·

((
ρ̄f + (ρ̄d − ρ̄f )φ

)
u
)

= 0

= (ρ̄d − ρ̄f )
(
∂tφ+∇x · (φu)

)
+ ρ̄f∇x · u.

Let us assume that i) holds. Since v is divergence free, we obtain

∂tφ+∇x · (φu) =
ρ̄f

ρ̄d − ρ̄f
∇x ·

(
κ∇x ln

(
ρ̄f + (ρ̄d − ρ̄f )φ

))
=

ρ̄f
ρ̄d − ρ̄f

∇x ·
(
κ∇x ln(ρ)

)
.

Hence ii) holds with κ̃ = κ
ρ̄f

ρ̄d−ρ̄f
. Conversely, assuming ii), the mass conservation imposes

∇x · u = − ρ̄d − ρ̄f
ρ̄f

∇x ·
(
κ̃∇x ln

(
ρ̄f + (ρ̄d − ρ̄f )φ

))
= − ρ̄d − ρ̄f

ρ̄f
∇x ·

(
κ̃∇x ln(ρ)

)
.

We conclude that i) holds.
This statement is important because it implies that different choices of unknowns are equivalent

which, in turn, can motivate different numerical strategies. Indeed, instead of working with density
ρ and velocity u as numerical unknowns, it is equally relevant to solve the evolution PDEs for φ and
u, using ρ = ρ̄f + (ρ̄d− ρ̄f )φ. Then the mass conservation (4) appears as the constraint that defines
the pressure. We refer to [4, 24, 25] where this viewpoint is adopted. Beyond the description of
mixture flows, the interested reader can find in Brenner’s papers [8, 9, 10, 11] the elements on a
deep debate on the role of mean mass and mean volume velocity in fluid mechanics.

1.2 A hierarchy of models

Instead of working with (3), it can be convenient to consider instead a solenoidal velocity field.
From now on, we set

v = u+ κ∇x ln(ρ).

Then (1) becomes a convection–diffusion PDE

∂tρ+∇x · (vρ) = κ∆xρ. (5)

5



For the momentum equation (2), we start by writing it in non conservative form

ρ
(
∂tu+ (u · ∇x)u

)
+∇xp = ρg + Divx

(
µD(u)

)
.

Next, we observe that

ρ∂tu = ρ∂tv − κρ∂t∇x ln(ρ)

= ρ∂tv + κ
(
∇x(v · ∇xρ)− ∇xρ

ρ
v · ∇xρ

)
− κ2

(
∇x∆xρ−

∇xρ

ρ
∆xρ

)
,

while
Divx

(
µD(u)

)
= Divx

(
µD(v)

)
− κDivx

(
µD2

x ln(ρ)
)

where, for a scalar function h : (t, x) ∈ (0, T ) × RN 7→ h(t, x) ∈ R, we denote by D2
xh the hessian

matrix with components ∂xi∂xjh(t, x), and

ρ(u · ∇x)u = ρ(v · ∇x)v − κ
(

(∇xρ · ∇x)v + ρ(v · ∇x)
∇xρ

ρ

)
+ κ2(∇xρ · ∇x)

∇xρ

ρ
.

Furthermore, we remark that

∇x(v · ∇xρ)− ∇xρ

ρ
v · ∇xρ− ρ(v · ∇x)

∇xρ

ρ
= ∇xv

T∇xρ.

Therefore we arrive at

ρ
(
∂tv + (v · ∇x)v

)
+∇xp = ρg + Divx(µD(v))

+κ(∇xv −∇xv
T )∇xρ

+κ2
(
∇x∆xρ−Divx

(∇xρ⊗∇xρ

ρ

))
−κDivx

(
µD2

x ln(ρ)
)
.

(6)

The system (5)–(6) completed by the condition ∇x · v = 0 is equivalent to (1)–(3). The advantage
relies on the fact that we are dealing with a solenoidal velocity, but we have simplified the constraint
at the price of introducing high order terms in the mass and momentum balance laws. For physical
arguments favoring this formulation, we refer to [8, 9, 11].

Let us now detail various manipulations and simplifications that can be performed on the model.

a) When the viscosity µ is constant, the last term in (6) is a gradient: κDivx
(
µD2

x ln(ρ)
)

=
κµ∇x∆x ln(ρ) which can be incorporated in the pressure, like the term κ2∇x∆xρ. This is the
situation treated in [30].
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b) A more relevant case consists in assuming that µ is an affine function of ρ. It arises in
particular when using the formula proposed in [23] for the effective viscosity of suspensions.
According to [23], we have

µ = µ?

(
1 +

N + 2

2
φ
)

= µ?

(
1− N + 2

2

ρ̄f
ρ̄d − ρ̄f

+
N + 2

2(ρ̄d − ρ̄f )
ρ
)

= µ̄+ µ̃ρ (7)

with µ? the standard viscosity of the fluid, and N the space dimension. Like in a), the
contribution in the last term of (6) associated to µ̄ can be incorporated in the pressure. The
perturbation reads

µ̃Divx
(
ρD2 ln(ρ)

)
= µ̃

(
∇x∆xρ−Divx

(∇xρ⊗∇xρ

ρ

))
.

The first term in the right hand side can disappear in the pressure gradient. With this
assumption on µ, which appears in [21], (6) can be recast as

ρ
(
∂tv + (v · ∇x)v

)
+∇xp = ρg + Divx(µD(v))

+κ(∇xv −∇xv
T )∇xρ

+κ(κ− µ̃)Divx

(∇xρ⊗∇xρ

ρ

)
.

(8)

c) The Kazhikov-Smagulov model [38] is obtained by neglecting the last term in the right hand
side of (8), which contains the higher nonlinearities and derivatives with respect to ρ. This
can be motivated by assuming 0 < κ� 1 and 0 < µ̃� 1 (or µ̃ = 0 as in [30, 38]). The later
makes sense with Einstein’s formula (7) in the regime ρ̄d/ρ̄f � 1. The Kazhikov-Smagulov
system is analyzed in [5, Chap. 3, Sect. 4, sp. Theorem 4.1] for the case where µ is constant:
assuming κ < 2 µ

ρ+−ρ− , where 0 < ρ± <∞ stand for the extreme values of the initial density,

the global existence (and uniqueness in dimension 2) of a weak solution is established. The
local existence of smooth solutions is investigated in [6, 50, 51]. Ref. [21] gets rid of the
last term in (8) by postulating a ad hoc relation between the coefficient κ and µ̃, namely
assuming κ = µ̃. Not only this assumption simplifies the model, but it also leads to a
remarkable balance law for the energy of the system, see [21, Section 2.2]. The mathematical
analysis of this specific case is due to [12].

d) A further simplification arises by pushing forward the asymptotic regime in c). We get rid of
all O(κ) terms, but in the mass conservation. We obtain this way the Graffi model [34]

∂tρ+∇x · (ρv) = κ∆xρ,
ρ
(
∂t + (v · ∇x)v

)
+∇xp = ρg + µ̄Divx

(
D(v)

)
,

∇x · v = 0.
(9)

A derivation of (9) from (5) and (8), with the divergence free constraint, is proposed in [30]
in the regime of small Graffi number G = µ̄κ

gρ̄fL3 � 1, with L a certain length of reference.
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2 Numerical Simulations

This section is devoted to the numerical simulation of solutions arising from case c) above. It
is convenient to work with dimensionless quantities. To this end, we introduce time and length
scales of reference, denoted T and L, respectively. We set U = L/T as to be the velocity unit.
We also need reference values for the mass density and the dynamic viscosity, ρ̄ > 0 and µ̄ > 0
respectively. They define the kinematic viscosity ν̄ = µ̄/ρ̄. Accordingly, with the convention that
starred quantities are dimensionless, we set

t = t?T, x = x?L,
v(t, x) = Uv?(t?, x?), ρ(t, x) = ρ̄ ρ?(t?, x?),
µ(ρ) = µ̄ µ?(ρ?).

Then, the non-dimensional form of the system reads

(i) ∂t? ρ? +∇x? · (ρ?v?) =
1

Re Sc
∆x? ρ?,

(ii) ρ?
(
∂t? v? + (v? · ∇x?)v?

)
+∇x?p? =

1

Fr2ρ?g? +
1

Re
Divx?(µ?(ρ?)D?(v?))

+
1

Re Sc
(∇x?v? −∇x?v

T
? )∇x?ρ?,

(iii) ∇x? · v? = 0.

(10)

In (10), g? stands for the unit vector pointing in the direction of the gravity field. The physics is
embodied into three dimensionless parameters: the Reynolds number Re, the Froude number Fr
and the Schmidt number Sc:

Re =
U L

ν̄
, Fr =

U√
‖g‖L

, Sc =
ν̄

κ
.

The Reynolds number evaluates the strength of convection compared to viscous diffusion, the
Froude number compares the strength of inertial and gravity forces, and the Schmidt number is
the ratio of viscosity (velocity diffusivity) and mass diffusivity. Dealing with mixture flows, it is
also relevant to introduce the so–called densimetric Froude number, which is defined by:

Frd =
U√

‖g‖L ∆ρ

ρ−

,

where ∆ρ = ρ+ − ρ− is the difference between the extremal values of the density in the flow.
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Kazhikov-Smagulov equations have been introduced in order to model pollution spread in at-
mospheric flows or contaminant spread in groundwater, with further analysis on the instability of
certain layered configuration [30]. The model (10) has also been proposed to simulate the forma-
tion of powder-snow avalanches [21]. It also appeared in a slightly different form in [24, 25]. It
is noteworthy that (10) does not rely on any Boussinesq-type hypothesis that would restrict the
applicability to flows with small density ratio. For real avalanches, the Reynolds number Re can
be as large as 108 and the densimetric Froude number Frd is close to 1. However, for experimental
devices in laboratory, the values of the parameters are less extreme with Re ≈ 104 and Frd ≈ 1
(∆ρ/ρ− ≈ 0.2), see [43, 45]. These laboratory values are affordable for numerical experiments.
Clearly, there are uncertainties in the evaluation of the Schmidt number, because it highly relies
on modeling assumptions. In all what follows, we shall set

Sc = 1

(in [43], Sc = 0.7 is adopted for the simulation of avalanches). The goal of this section is to describe
the numerical scheme used to solve such a system, and to validate both the model and the scheme
by comparing our numerical results to analytical or experimental ones.

The equations are set on a bounded domain Ω? ⊂ RN (N = 2 in the numerical experiments
below). The definition of relevant boundary conditions that complete (10) is definitely a delicate
modeling question. All the simulations discussed below are performed by using the no-slip boundary
condition for the velocity field and the Neumann boundary condition for the density

v?
∣∣
∂Ω?

= 0, ∇x?ρ? · ~n
∣∣
∂Ω?

= 0 (11)

with ~n the outward normal unit vector on ∂Ω?. As a matter of fact, (11) ensures that there is no mass
influx, and the total mass is conserved by the system: d

dt?

∫
Ω?
ρ?(t?, x?) dx? = 0. These boundary

conditions are equally used for the mathematical investigation of the problem in [5, 12, 35]. They
also complete the system (10) for the simulations of avalanches in [21]. In [24, 25], the Neumann
boundary condition is maintained for the density, but the no-slip condition is imposed on the mean
mass velocity u? = v? − 1

ReSc
∇x? ln(ρ?). It also makes sense to impose a friction law, characterized

by a coefficient 0 < α < 1, on the velocity

v? · ~n
∣∣
∂Ω?

= 0,
[
(1− α)v? + αD?(v?)~n

]
· ~t
∣∣
∂Ω?

= 0,

with ~t the tangential vector at ∂Ω?, see [21], or its equivalent form on u?, see [24, 25]. To decide
whether the mean mass or the mean volume velocity enters into the no-slip boundary condition is
definitely a delicate modeling issue. In [9] it is argued that the boundary condition should be

u? · ~n
∣∣
∂Ω?

= 0, (I− ~n⊗ ~n)v?
∣∣
∂Ω?

= 0.
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2.1 Description of the scheme

Several numerical approaches are available for the numerical approximation of the solutions of (10).
The simulations in [21] are realized with the open–source code OpenFoam; as far as we know the
simulations are based on second order upwind finite volume scheme, performed on a fixed Cartesian
grid (but we are not aware of the technical details of the whole scheme). Simulations of [45] are
done with the commercial code Fluent, based on a Finite Element discretization with Cartesian
grids. A dedicated code has been developed in [24, 25]. It uses Finite Element discretizations,
coupled to a characteristic method to treat the convection terms. The scheme is coupled to mesh
refinement procedures, in order to follow the displacement of the avalanche front. Reference [35]
is concerned with numerical analysis purposes only; the proposed Finite Element scheme is not
implemented. Here, we propose a mixed finite volume/finite element strategy. Such an hybrid
scheme has been introduced in [14] for the resolution of the standard incompressible Navier-Stokes
system with variable density1. Briefly, the algorithm is based on a time splitting, which allows us
to discretize the density equation (10)-(i) by using a Finite Volume strategy and the momentum
equation coupled with the constraint (10)-(ii)-(iii) by using a Finite Element approximation, with
the classical choice of the Taylor-Hood finite element. This method has been improved in [13] with
the design of multislope flux limiters for transport equations, so that the maximum principle still
holds on the discrete system for fully unstructured meshes. This property is absolutely crucial to
consider flows with high density contrasts and to follow fronts by a mesh refinement method. We
also refer to [4] where a quite similar approach has been developed, with a different finite volume
approximation of the convection terms. We wish to adapt the scheme described in [13, 14] in order
to explore numerically the system (10).

Remark 1 Besides the design of the numerical method, the choice of the independent unknowns
and the discrete formulation of the problem is certainly far from harmless. Here, we decide to work
with the density ρ and the solenoidal velocity v, like in [21]. This is by contrast with [4, 24, 25]
which use instead the diffusion equation satisfied by the volume fraction φ, and the mean mass
velocity u, see Lemma 1, the mass conservation equation satisfied by ρ being seen as a constraint.

From now on, we restrict the discussion to the two-dimensional framework. We consider a mesh
of the computational domain made of triangles. We associate to this primal mesh the dual mesh
obtained by joining the barycenters of the triangles to the midpoints of the edges, see Figure 1.
The elements of this tessellation are the control volumes of the finite volume approximation: the
discrete density is intended to approximate the mean-value of the physical density over the control
volumes. Note that the discrete densities are stored at the vertices of the primal mesh (Vertex-Based
method).

As written above, the algorithm is based on a time splitting. At time tn? , we have at hand a
discrete evaluation of the density ρnh and of the velocity-pressure field (vnh , p

n
h). We start by updating

1An Open-Source version of the code dealing with 2D Incompressible Navier-Stokes equations with variable
density is available at the URL: http://math.univ-lille1.fr/~simpaf/SITE-NS2DDV/home.html
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C

∂C

~n

Figure 1: The finite volume control volume.

the density, thus defining ρn+1
h by using (10)-(i). We remind that the density is piecewise constant

on the control volumes. Compared to the case of pure transport, we have to compute in addition
the diffusive fluxes through the interfaces of the control volumes. In other words, given a volume
control C, we need to define a discrete version of the flux

1

ReSc

∫
∂C

∇x?ρ? · ~n dσ, (12)

where ~n stands for the outward normal unit vector on ∂C. To this end, we interpret the density as
a piecewise P1 function on each triangle of the primal mesh. It allows to properly define the value
of (12) on each component of ∂C. This idea is reminiscent of the so–called FVE method for the
discretization of convection-diffusion equations [18, 26, 28], and [27, Section 3.4.3]. The convection
term is treated according to the method described in [13, 14]. The construction of the transport
scheme relies on the MUSCL framework, but it involves a quite elaborate definition of limiters so
that the maximum principle is satisfied on 2D unstructured meshes, under a suitable convective
CFL condition, according to the analysis in [13]. Diffusion is treated implicitly so that we can
expect it does not deteriorate the stability condition. Note that the preservation of the discrete
maximum principle by such finite volume methods for convection-diffusion equation is a delicate
question. It might induce some restrictions on the meshes, or require a more refined definition,
possibly non-linear, of the diffusion fluxes. The use of such elaborate schemes is beyond the scope
of this work; a detailed exposition of the state of the art can be found in [20] and the references
therein. The time discretization is based on the Adam-Bashforth scheme for the transport term and
the Crank-Nicolson scheme for the diffusive term, which formally leads to second-order consistency.
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Once ρn+1
h is computed, the second step of the splitting updates the velocity field and the

pressure by using a Finite Element approximation of (10)-(ii)-(iii). The time discretization is
based on the BDF second order scheme. Compared to the classical variable density incompressible
Navier-Stokes system, see [14, 13], we have to compute in addition the term corresponding to

1

ReSc
(∇x?v? −∇x?v

T
? )∇x?ρ? (13)

arising in the right-hand-side of (10)-(ii). Again, we use the interpretation of the density as a
continuous and piecewise-P1 function on the primal mesh. Then, a classical assembly procedure
defines the finite element formulation of (13). In practice, a more sophisticated time–splitting can
be used in order to preserve the global second-order accuracy both in time and space (the so-called
Strang splitting, see [14]).

2.2 Validation of the Scheme: Comparison to an Exact Solution

First of all, we evaluate the ability of the scheme to recover an analytical solution and we check
the corresponding rates of convergence when dealing with smooth solutions. The computational
domain is the square Ω? = [−1, 1]2. The explicit solution we wish to capture is given by

ρex(x?, y?, t?) = 2 + cosx? sin y? sin t?,
vex(x?, y?, t?) = (−4y?(x

2
? − 1)2(y2

? − 1) , 4x?(y
2
? − 1)2(x2

? − 1))T ,
pex(x?, y?, t?) = sinx? sin y? sin t?.

(14)

We solve the set of equations (10) on the time interval 0 ≤ t? ≤ 0.2. The dimensionless parameters
are all set to unity: Re = Fr = Sc = 1. Like in [21], we suppose that the viscosity depends affinely

on the density: µ?(ρ?) = 1 + ρ?/2. The appropriate source terms f
(1)
? and f

(2)
? are added in the

right-hand side of the two first equations in (10), so that (14) is indeed a solution. We work with
unstructured meshes. The time step dt? is proportional to h?,min, the length of the smallest edge
in the mesh, so that the CFL stability criterion is always ensured.

Figure 2 displays the values of the maximal error recorded during the time interval given as a
function of h?,max, the length of the largest edge in the mesh. Errors are here evaluated with the
L2(Ω?)-norm, namely ‖ρex − ρh‖L2(Ω?), ‖vex − vh‖L2(Ω?) and ‖pex − ph‖L2(Ω?).
On this numerical experiment, the scheme is globally second-order accurate. More precisely, the
convergence rates with respect to h?,max between the two finest grids for the density, velocity and
pressure are respectively equal to 2.04, 2.44 and 2.30. It agrees with a similar result obtained
for the incompressible Navier-Stokes system with variable density, resolved with the same kind of
numerical scheme (see [13]). Hence, the treatment of (12) and (13) does not alter the accuracy of
the scheme.
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Figure 2: Convergence rates of the numerical scheme for the analytical solution.

2.3 Simulations of Avalanches: Parametric Study on the Froude and
Reynolds Numbers

In this Section, we wish to discuss the role of the Froude and Reynolds numbers (we remind that the
Schmidt number Sc is set to 1). To this end, we shall compare the simulations with experimental
data available in [43, 45]. Further experimental data can be found e. g. in [16]. We make use of the
system (10) where we assume a constant viscosity µ?(ρ?) ≡ 1. The boundary conditions (Dirichlet
for the velocity, Neumann for the density) are given by (11).

Let us describe the data, extracted from [43, 45], in physical units. The physical domain is the
rectangle Ω = [0, 2.0m] × [0, 0.5m]. The fluid is initially at rest, and the initial condition on the
density is given by:

ρ0(x, y) =

{
ρ+ for 0 ≤ x ≤ 0.15m and 0 ≤ y ≤ 0.09m,
ρ− otherwise,

with ρ+ = 1.2 kg m−3 and ρ− = 1 kg m−3. It yields ∆ρ/ρ− = 0.2. In order to define the Reynolds
and Froude coefficients we need length and time units. The length of reference is defined by the
initial height of the avalanche: L = 0.09m, and we define the characteristic velocity of the flow
as the average measured velocity of the avalanche front (see [43, 45]): U = 0.35ms−1. We have
‖g‖ = 9.8ms−2 and the slope of the ground is defined by g/‖g‖ = (sin 10◦,− cos 10◦)T . Due to
scale factors, the laboratory avalanches do not reproduce the physical characteristics of real flows.
Experiments reported in [43, 45] are performed using water flows with a complex kaolin-water
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suspension representing the heavy fluid. The viscosity of such a mixture is not known. To start
with we set ν̄ = 3.15× 10−5m2 s−1. This set of data leads to

Frd = 0.83, Fr = 0.3725, Re = 103.

It is likely that Re = 104 would be more realistic for laboratory avalanches, to be compared to
Re = 108 for real avalanches, where the density ratio can be as large as 10. Of course, increasing the
Reynolds number impacts the numerical cost. Note however that numerical comparison proposed
in [43, 45] with a commercial code are based on a k/ε model, where an enhanced effective viscosity is
fitted to the experimental data, so that the definition we adopt here can be considered as quite fair,
see also the comments below, when we make Re vary. Table 1 recaps the data and the dimensionless
coefficients used for the simulation. In order to compare our results to the experimental data, we use
three monitoring points A, B and C, with location given in Table 1. From [43, 45] we have records
at those points of the horizontal velocity. It will be compared to the corresponding numerical
quantity, defined at the monitoring point A (and similarly for B and C) by:

u?A = v?A −
1

ReSc
(∇x? ln(ρ?))A.

The computational time step is set to dt? = 10−2, and an adaptive mesh refinement strategy is used
in order to follow the avalanche front. The computational effort (immediately sensible through the
computational time) increases as the Reynolds number increases or the Froude number decreases.
For the simulations presented here, the minimum length of the edges in the mesh oscillates around
h?,min ≈ 0.002 and the maximum one is of the order h?,max ≈ 0.17. The number of triangles in the
mesh increases up to 40000 during the simulation. All convergence grid tests were previously per-
formed to ensure that the mesh as well as the time step are fine enough to reach the grid convergence.

First of all, we set Re = 1000 and we consider three Froude numbers, respectively Fr = 1.0,
0.6 and 0.3725. The isovalues of the density and the magnitude of the velocity field are displayed
during the simulation, respectively in Figure 3 for Fr = 1.0, Figure 4 for Fr = 0.6 and Figure 5
and 6 for Fr = 0.3725. These different Froude number values can be interpreted as the variation
of the gravity vector magnitude, what leaves the Reynolds number unchanged. When the Froude
number decreases, the strength of the external force increases and an acceleration of the avalanche
front is observed, according to the physical intuition. This can be seen in the evolution of the
speed magnitude in Figures 3, 4 and 5, and also in the amplitude of the horizontal velocity at
the monitoring points in Figure 7 (on which the horizontal scale is not the same according to the
Froude number involved). We point out that the results are displayed in the dimensional units,
and the physical time needed to carry out each of these three simulations is clearly not the same.
In particular, the avalanche hits the far right end boundary at t ≈ 27 s for Fr = 1.0 and only at
t ≈ 10 s for Fr = 0.3725. The numerical results obtained with Fr = 0.3725 should be compared to
the experimental data in [45, pages 53-54 and 58-59] (corresponding equivalently to Frd ≈ 0.8329).
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Physical values Dimensionless values
L = 0.09m L? = 1.00
U = 0.35ms−1 U? = 1.00
T = L/U = 0.2571 s T? = 1.00
g = 9.81(sin 10o,− cos 10o)T ms−2 g? = (sin 10◦,− cos 10◦)T

ρ+ = 1.2 kg m−3 ρ?+ = 1.2
ρ− = 1.0 kg m−3 ρ?− = 1.0
Ω = [0, 2.0m]× [0, 0.5m] Ω? = [0, 22]× [0, 5.5]
(xA, yA) = (112 cm, 2.7 cm) (x?A, y?A) = (12.44, 0.30)
(xB, yB) = (112 cm, 6.6 cm) (x?B, y?B) = (12.44, 0.74)
(xC , yC) = (158 cm, 2.7 cm) (x?C , y?C) = (17.55, 0.30)

Table 1: Physical values and dimensionless values.

In particular, we observe that the avalanche front moves forward at a very similar speed. Qualita-
tively, the mesh refinement strategy used in the simulation allows to capture the complex structures
of the physical Kelvin-Helmholtz and Rayleigh-Taylor instabilities occurring in the vicinity of the
front. Remark that the maximal speed is usually observed behind the front, and it can reach a
noticeably larger value than the front speed, see [21, 24, 25, 36, 43] for similar observations. We
also note on the velocity snapshots that a large domain is affected by the avalanche motion, a
significant part of the surrounding light fluid is dragged by the snow release.

Second of all, we set Fr = 1.0 and we make the Reynolds number vary. It corresponds to
variation of the kinematic viscosity ν̄, all the other physical parameters remaining the same. The
isovalues of the density and the magnitude of the velocity field are displayed during the simulation,
respectively in Figure 3 for Re = 1000, Figure 8 for Re = 3000 and Figure 9 for Re = 5000.
Figure 10 shows the amplitude of the horizontal velocity at the monitoring points. In this pic-
ture, the horizontal and vertical scales are the same for the three simulations. As for the classical
Navier-Stokes simulations, when the Reynolds number increases the velocity of the avalanche front
remains qualitatively the same, but the motion presents more vortices and turbulent structures
(which thus would need finer meshes to resolve the fine scales). This is confirmed in Figure 10:
locally at the monitoring points the structure of the velocity field is more complicated when the
Reynolds coefficient increases.
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Figure 3: Density (left column) and speed magnitude (right column) at times t=2.8 s, 10.7 s, 19 s
and 26.9 s (from top to bottom) with Fr = 1.0 and Re = 1000.
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Figure 4: Density (left column) and speed magnitude (right column) at times t=1.79 s, 6.42 s,
11.31 s and 16.19 s (from top to bottom) with Fr = 0.6 and Re = 1000.
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Figure 5: Density (left column) and speed magnitude (right column) at times t=1 s, 4 s, 7 s and
10 s (from top to bottom) with Fr = 0.3725 and Re = 1000.
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Figure 6: Local zooms in domain Ω? showing the meshes used for the calculation of density (left
column) and speed magnitude (right column) at times t=1 s, 4 s, 7 s and 10 s (from top to bottom)
with Fr = 0.3725 and Re = 1000. The color legends correspond to those used in Figure 5.
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Figure 7: Evolution in time (seconds) of the physical horizontal velocity at the monitoring points A
(blue), B (green), C (red), using Fr respectively equal to 1.0, 0.6 and 0.3725, from top to bottom.

20



Figure 8: Density (left column) and speed magnitude (right column) at times t=2.8 s, 10.7 s and
19 s (from top to bottom) with Fr = 1.0 and Re = 3000.
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Figure 9: Density (left column) and speed magnitude (right column) at times t=2.8 s, 10.7 s and
19 s (from top to bottom) with Fr = 1.0 and Re = 5000.
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Figure 10: Evolution in time (seconds) of the physical horizontal velocity at the monitoring points
A (blue), B (green), C (red), using Re respectively equal to 1000, 3000 and 5000, from top to
bottom.
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2.4 Simulation of Avalanches: Interaction with an Obstacle

We turn to the simulation of the interaction of an avalanche with an obstacle, a benchmark presented
in [21]. In order to have a direct comparison we go back to the physical quantities. Namely, we
consider the system

∂tρ+∇x · (vρ) = ∇x · (κ∇xρ),
ρ
(
∂tv + (v · ∇x)v

)
+∇xp = ρg + Divx(µD(v)) + κ(∇xv −∇xv

T )∇xρ,
∇x · v = 0,

completed by (11): homogeneous Dirichlet boundary condition on the velocity filed, and homoge-
neous Neumann boundary condition on the density field.

The physical framework is quite similar to the one dealt with in Section 2.3: a heavy fluid flows
under the effect of the gravity force along an inclined channel, but here the flow interacts with
an obstacle. This kind of simulation is motivated by the dimensioning of protection devices. We
refer to the schematic representation in Figure 11. The parameters are specified in Table 2. In
particular, it should be noted that initially, the heavy fluid (ρ = ρ+), located in the rectangle [2l0/3,
h0/3] is surrounded by a fluid with intermediate density ρ̃ = ρ−+ 0.4 (ρ+− ρ−). This configuration
is intended to roughly mimic the observed layers in actual avalanches, with dense snow on the
ground, topped by a fluidized bed that might degenerate to an aerosol flow.

h

l0
ds

l

hs

ls
h0

θ

~g

ρ+, ν+

ρ−, ν−

ρ̃, ν̃

Figure 11: Domain and initial data configurations.

We take :

κ = 2ν with ν =
ν+ρ+ − ν−ρ−
ρ+ − ρ−

, and µ = 2νρ.
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Gravity acceleration ‖g‖, ms−2 9.8
Slope of the inclined channel θ, ◦ 32
Heavy fluid density ρ+, kg m−3 20
Light fluid density ρ−, kg m−3 1
Heavy fluid kinematic viscosity ν+, m2 s−1 4, 8.10−4

Light fluid kinematic viscosity ν−, m2 s−1 1, 0.10−4

Domain height h, m 0.8
Domain length l, m 2.7
Initial avalanche height h0, m 0.3
Initial avalanche length l0, m 0.3
Obstacle height hs, m 0.06
Obstacle thickness ls, m 0.04
Obstacle distance ds, m 1.92

Table 2: Avalanche simulation : physical parameters.

Concerning the numerical parameters, the mesh is made of an unstructured tessellation of tri-
angles, and the smallest edge is about hmin ≈ 7× 10−4m. The mesh evolves dynamically in order
to follow the displacement of the front of the avalanche, with finer structures in the regions of
large density gradients. The number of triangles in the mesh increases up to 15000 at the end of
the simulation. The computational time step is set to dt = 10−3 s. We have performed a series
of simulation by making both the time step and the mesh size vary in oder to guaranty that the
convergence grid is reached. Results are reported in Figure 12 where the isovalues of the density
and the magnitude of the velocity are displayed.

We can observe a qualitatively satisfactory correspondence between the snapshots presented in
Figure 12 and Figures 5 to 7 of [21], corresponding to the same physical data (the time scale has
been erroneously reported in Fig- 5–7 of [21]; it needs to be corrected to fit with the data). The very
first times of the simulation, we recognize the emergence of a classical elliptic front. Then during
the sliding regime we can already observe the formation of Kelvin-Helmholtz instabilities, with a
large vortex that takes place behind the head of the flow, above a zone of light density where the
fluid is dragged by the avalanche. Finally, the interaction with the obstacle generates a jet directed
upward, with the formation of the mushroom shape corresponding to a classical Rayleigh-Taylor
instability. As it has been already pointed elsewhere, both from numerical or experimental studies
[21, 24, 25, 36, 43], the maximal velocity within the avalanche exceeds the front speed by 30% to
40%. On the quantitative viewpoint, the magnitude of the velocity at a given position of the front
seems significantly larger in our simulation than as reported in [21]. In [45], similar discrepancies
between (slightly too slow) numerical results and experimental data are attributed to the effect of
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numerical diffusion inherent to the used scheme.

Eventually, we perform the same simulation but working with the dimensionless system. To
this end, we use as characteristic units the height of the avalanche L = h0 = 0.3m, the mean value
of the velocity of the avalanche front, evaluated from Figure 12, U = 3.1ms−1, and the gravity
acceleration ‖g‖ = 9.8ms−2. Accordingly, we obtain for the Froude number Fr ≈ 1.8. Then, with
the kinematic viscosity ν̄ = 5× 10−4m2 s−1, the Reynolds number is given by Re ≈ 900. We point
out that these parameters are far less numerically demanding than the parameters used in Section
2.3, because the Reynolds number is smaller and the Froude number is larger. The system (10)
is solved on the dimensionless domain Ω? = [0, 9] × [0, 2.67], during the time interval 0 ≤ t? ≤ 15
with µ?(ρ?) = ρ?. Results are displayed in Figure 13. The correspondence between Figures 12 and
13 shows that the definition of the dimensionless parameters Fr and Re is clearly relevant. On the
other hand, the agreement of the simulations with the experimental data discussed in Section 2.3
makes us confident on the simulation of the interaction with an obstacle.

3 Conclusion

In this work we discuss a hierarchy of models, including connection to Eulerian-Lagrangian descrip-
tion, for mixtures flows, which applies to many environmental flows. These models are characterized
by diffusive fluxes between the different components of the mixture, which induce new constraints
in the PDEs system. We propose a specific numerical scheme to simulate the behavior of such sys-
tems. The method is based on a time-splitting approach and a hybrid Finite Volume-Finite Element
scheme which have shown their efficiency for non homogeneous incompressible flows. The numerical
approach we propose is reliable: the possibility of working on unstructured meshes, and thus of
coupling the resolution with mesh refinement strategies, make it well-adapted to follow complex
fronts typical of such flows. We apply the scheme to investigate avalanches phenomena; comparison
with experimental data and numerical simulations available in the literature demonstrates the skills
of the method.
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Figure 12: Density (left column) and speed magnitude (right column) at times t=0.10 s, 0.50 s,
0.80 s and 1.00 s (from top to bottom).
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Figure 13: Dimensionless density (left column) and speed magnitude (right column) at times t? =
1.03, 5.16, 8.26, 10.33 (corresponding to t=0.10 s, 0.50 s, 0.80 s and 1.00 s) (from top to bottom),
using the dimensionless form of the equations, with Fr = 1.8 and Re = 900.
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A A derivation from the Eulerian–Lagrangian modeling

We propose in this Appendix a possible derivation of the constraint (3) starting form a Eulerian–
Lagrangian description of the mixture.

A.1 Introduction to the model

In this Section the disperse phase is thought of as a large set of droplets (for instance it can be
applied to aerosols powder-snow avalanches). This description involves a coupling between the mass
and momentum conservation for the fields (ρf , uf ) characterizing the fluid and a kinetic equation
satisfied by the particle distribution function F (t, x, ξ) describing the dilute phase. In other words,
the dilute phase is seen as a set of disperse particles for which we adopt a statistical viewpoint:
F (t, x, ξ) dξ dx corresponds to the probability of finding particles of the disperse phase having at
time t their position and velocity in the infinitesimal domain centered at (x, ξ) with volume dξ dx.
(Up to a suitable rescaling it can be thought of equivalently as the number of particles occupying
the infinitesimal domain of the phase space.) This modeling applies for particles suspension where
a typical measure of the size of the particles is small compared to the interparticles distance.
From now on, we discuss the modeling issues considering the natural three-dimensional framework.
Assuming that particles are spherically shaped with radius a > 0,

φ(t, x) =
4

3
πa3

∫
R3

F (t, x, ξ) dξ

is interpreted as the volume fraction occupied by the particles. We define accordingly the mass
density and momentum of the disperse phase

ρd(t, x) = ρ̄dφ(t, x), ρdud(t, x) = ρ̄dφud(t, x) =
4

3
πa3ρ̄d

∫
R3

ξF (t, x, ξ) dξ.

The system of PDEs describing the behavior of the mixture reads as follows. First, we write the
mass and momentum conservation equation for the dense phase, namely

∂tρf +∇x · (ρfuf ) = 0,

∂t(ρfuf ) + Divx(ρfuf ⊗ uf ) +∇xp = ρfg + Divx
(
µD(uf )

)
+ Dragf

(15)

where the last term in the momentum equation accounts for the drag force exerted by the particles
on the fluid. The particle distribution function F (t, x, ξ) obeys

∂tF + ξ · ∇xF +
(

1− ρ̄f
ρ̄d

)
g · ∇ξF = ∇ξ ·

(
−Dragd F +D∇ξF

)
. (16)

In this equation we take into account gravity/buoyancy effects on the particles that gives rise to
the acceleration term (1 − ρ̄f/ρ̄d)g · ∇ξF , with g the gravitational acceleration. The right hand
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side in (16) describes both the drag force exerted by the fluid on the particles and the Brownian
motion of the particles. Brownian motion induces diffusion with respect to the velocity variable,
with a diffusion coefficient defined by the following Einstein formula [22]

D =
9µ

2ρ̄da2

3kθ

4πa3ρ̄d
,

where µ is the dynamic viscosity of the fluid, θ is the temperature of the flow, assumed a fixed
positive constant and k stands for the Boltzmann constant. The expression of the drag force can be
a quite intricate and non linear function, derived from phenomelogical considerations and depending
on the densities ρf , ρd, the viscosity µ, the radius a and the relative velocity ξ−u. Here we restrict
ourselves to the situation where it is given by the Stokes law, hence a linear function of the relative
velocity

−Dragd =
9µ

2a2ρ̄d
Z(φ) (ξ − uf )

with a certain (dimensionless) function Z : [0,∞)→ [0,∞). Note that the viscosity itself might be
a function of the volume fraction φ. The right hand side in (16) then becomes

9µ

2a2ρ̄d
∇ξ ·

(
Z(φ)(ξ − uf )F +

3kθ

4πa3ρ̄d
∇ξF

)
.

We refer for instance to [22] or more recently [31] for a thorough discussion on this Fokker–Planck
operator. The drag force exerted on the fluid by the particles is the back–reaction to the drag force
exerted by the fluid on the particles. Hence, taking into account all particles located at position x
it is defined by the velocity average

Dragf = −4

3
πa3ρ̄d

∫
R3

Dragd F dξ.

(Note that with our convention Dragd is homogeneous to Velocity
Time

, while Dragf is homogeneous to
Mass×Velocity
Volume×Time

.) As a matter of fact, we can write

Dragf = 6πµa Z(φ)

∫
R3

(ξ − uf )F dξ =
9µ

2a2ρ̄d
Z(φ) ρd(ud − uf ).

The model is closed by setting

ρf (t, x) = ρ̄f
(
1− φ(t, x)

)
.

In other words, we assume here that the fluid is incompressible in the sense that the mass density
remains constant in the domain occupied by the dense phase; nevertheless we account locally for
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the volume occupied by the particles in the mass and momentum balance. Observe that φ(t, x) ≥ 0
but there is no reason guaranteeing that φ remains bounded by 1 (except in the case where uf is
divergence–free: then the first equation in (15) can be rewritten equivalently in non–conservative
form, which implies the maximum principle for φ). It as to be considered as a modeling assumption:
the equations make sense as far as φ remains far below 1, which means that the particles are highly
dilute. Naturally, we can define the mass density of the mixture by

ρ(t, x) = ρf (t, x) + ρd(t, x) = ρ̄f
(
1− φ(t, x)

)
+ ρ̄dφ(t, x)

and the mean mass velocity is

ρu(t, x) = ρfuf (t, x) + ρdud(t, x) = ρ̄f
(
1− φ(t, x)

)
uf (t, x) +

4

3
πa3ρ̄d

∫
R3

ξF (t, x, ξ) dξ.

Integrating (16) over the velocity variable we obtain

4

3
πa3ρ̄d

(
∂t

∫
R3

F dξ +∇x ·
∫
R3

ξF dξ

)
= 0 = ∂tρd +∇x · (ρdud)

and, similarly, multiplying (16) by ξ and integrating over the velocity variable, we are led to

4

3
πa3ρ̄d

(
∂t

∫
R3

ξF dξ + Divx

∫
R3

ξ ⊗ ξF dξ −
(

1− ρ̄f
ρ̄d

)
g

∫
R3

F dξ

)
= −6πµa Z(φ)

∫
R3

(ξ − uf )F dξ = − 9µ

2a2ρ̄d
Z(φ) ρd(ud − uf )

= ∂t(ρdud) + Divx

(
4

3
πa3ρ̄d

∫
R3

ξ ⊗ ξF dξ

)
−
(

1− ρ̄f
ρ̄d

)
gρd.

As a matter of fact, combining these relations with (15), we deduce that

∂tρ+∇x · (ρu) = 0,

∂t(ρu) + Divx

(
ρfuf ⊗ uf +

4

3
πa3ρ̄d

∫
R3

ξ ⊗ ξF dξ
)

+∇xp = ρfg + (ρ̄d − ρ̄f )φg + Divx
(
µD(uf )

)
holds, that can be interpreted as the total mass conservation and the balance law for the total
momentum, respectively. Furthermore, we have

∂t

(ρf
ρ̄f

+
ρd
ρ̄d

)
= ∂t(1− φ+ φ) = 0 = −∇x ·

(ρf
ρ̄f
uf +

ρd
ρ̄d
ud

)
= −∇x ·

(
(1− φ)uf + φud

)
.

It recasts as a constraint on the velocity field

∇x ·
(
(1− φ)uf

)
= −4

3
πa3∇x ·

∫
R3

ξF dξ = −∇x · (φud).

We refer for further details on these Eulerian–Lagrangian models to [3, 47, 46, 52]; they are widely
used to describe natural or industrial flows like sedimenting and fluidized suspensions, hydraulic
fracturing of reservoirs, the dispersion of atmospheric pollutants and dusts...
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B Dimensionless equations and hydrodynamic regimes

We wish to derive a hydrodynamic model with the constraint (3) through asymptotic arguments.
To this end, we need to make dimensionless parameters appear:

• We introduce time and length scales of reference, say T and L, and we set U = L/T as the
velocity unit.

• We define the thermal velocity as to be Vth =
√

3kθ
4πa3ρ̄d

.

• We introduce a typical value 0 < φ̄ < 1 of the particle volume fraction (in practice the
quantity is quite small compared to 1), and a typical value of the viscosity µ̄.

• The driving parameters defined by means of the physical properties of the constituents are
the Stokes settling time 2ρ̄da

2

9µ̄
, and the ratio of the mass densities ρ̄d

ρ̄f
. We set

ε =
2ρ̄da

2

9µ̄T
, η =

Vth

U
, ḡ = g

T2

L

• We define dimensionless variables and unknowns as follows

t = Tt?, x = Lx?, v = Vthv?,

F (t, x, v) =
3

4πa3

1

V3
th

φ̄ F?(t?, x?, v?),

φ(t, x) = φ̄ φ?(t?, x?) = φ̄

∫
R3

F (t?, x?, v?) dv?,

ρf? = (1− φ̄φ?), uf (t, x) = U uf?(t?, x?),
µ = µ̄ µ?(φ?), Z = Z?(φ?).

Endowed with these definitions, we are led to

∂t?F? + ηξ? · ∇x?F? +
(

1− ρ̄f
ρ̄d

) ḡ
η
· ∇ξ?F? =

µ?(φ?)

ε
∇ξ? ·

(
Z?(φ?) (ξ? − uf?/η)F? +∇ξ?F?

)
,

∂t?ρf? +∇x? · (ρf?uf?) = 0,
∂t?(ρf?uf?) + Divx?(ρf?uf? ⊗ uf?) +∇x?p?

= Divx?
(
µ?D(uf?)

)
+ ρf?ḡ +

φ̄ρ̄d
ερ̄f

µ?(φ?)Z?(φ?)

∫
R3

(ηξ? − uf?)F? dξ?.

For the sake of simplicity, we have assumed that the units are such that the diffusion coefficient
scales as µ̄T

ρ̄fL2 = 1. We are interested in regimes where 0 < ε� 1. It leads to relaxation processes

since the particle distribution function is pushed to resemble a Maxwellian. This is reminiscent
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of hydrodynamic regimes in gas dynamics [49]. Indeed, the penalization of the Fokker–Planck
operator drives F? towards an element of the kernel of this operator:

F? 'M?, ∇ξ? ·
(
Z?(φ?) (ξ? − uf?/η)M? +∇ξ?M?

)
= 0,

which eventually means

F?(t?, x?, ξ?) ' M?(t?, x?, ξ?)

' φ?(t?, x?)
(Z?(φ?(t?, x?))

2π

)3/2

exp
(
− Z?((φ?)(t?, x?)) |ξ? − uf?(t?, x?)/η|2

2

)
.

However, the details of the asymptotics depends on the behavior of the other scaling parameters
with respect to ε, which will be discussed in a while. In order to investigate the asymptotic behavior
as ε tends to 0, it is convenient to introduce the following notation φ?

J?
P?

 =

∫
R3

 1
ηξ
ξ ⊗ ξ

F? dξ.

The moment equations now recast as follows

∂t?φ? +∇x? · J? = 0,

∂t?J? + η2Divx?P? −
(

1− ρ̄f
ρ̄d

)
ḡφ? = −µ?(φ?)Z?(φ?)

ε
(J? − φ?uf?).

(17)

Of course, these relations are nothing but the dimensionless version of the evolution equations
derived above for ρd and ρdud. Note that the system is not closed since the higher moment P?
cannot be expressed in general by means of φ? and J?. The equation for the fluid velocity becomes

∂t?(ρf?uf?)+Divx?(ρf?uf?⊗uf?)+∇x?p? = Divx?
(
µ?D(uf?)

)
+ρf?ḡ+

φ̄ρ̄d
ερ̄f

µ?(φ?)Z?(φ?) (J?−φ?uf?).

In rescaled form the mean density of the mixture reads

ρ? = ρf? + φ̄
ρ̄d
ρ̄f
φ?

while the velocity of the mixture is defined by

ρ?u? = ρf?uf? + φ̄
ρ̄d
ρ̄f
J?.

Therefore, we are led to

∂t?ρ? +∇x? · (ρ?u?) = 0,

∂t?(ρ?u?) + Divx?

(
ρf?uf? ⊗ uf? + φ̄

ρ̄d
ρ̄f
η2P? +∇xp?

)
= Divx?

(
µ?D(uf?)

)
+ ḡ
(
ρf? + φ̄

( ρ̄d
ρ̄f
− 1
)
φ?

)
.
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In order to make diffusion effects appear in the evolution of the particles volume fraction, it is
necessary to introduce the following scaling assumption

0 < ε� 1, φ̄
ρ̄d
ρ̄f

1

ε
= φ̄

ρ̄d
ρ̄f
η2 = 1

or, in other words

η =
1√
ε
� 1, φ̄

ρ̄d
ρ̄f

= ε� 1.

(In fact φ̄
ε
ρ̄d
ρ̄f

and φ̄ ρ̄d
ρ̄f
η2 can be assumed to tend to any positive constants, the important fact being

to impose the behavior with respect to ε.) Therefore, combining the relaxation effect induced by
making the Fokker–Planck operator stiff to the velocity scaling, we expect as ε goes to 0 that the
particles distribution function looks like a centered Maxwellian

F? '
φ?

(2π/Z?(φ?))3/2
e−Z?(φ?)|ξ?|2/2.

Accordingly the kinetic pressure becomes

P? =

∫
R3

ξ ⊗ ξF? dξ? '
φ?

Z?(φ?)
I.

Taking into account the scaling assumption, the evolution of the first order moment is governed by

ε∂t?J? + Divx?P? − εḡ
(

1− ρ̄f
ρ̄d

)
φ? = −µ?(φ?)Z?(φ?) (J? − φ?uf?).

Let us suppose that

ε
(

1− ρ̄f
ρ̄d

)
→ κ ∈ R.

The sign of κ determines whether particles are dominated by gravity (κ > 0) or buoyancy (κ < 0).
To describe the asymptotic behavior, we assume that the sequences of unknowns admit limit

φ?, J?, uf? → Φ`, J`, u`

in a strong enough sense so that we can pass to the limit in non linearities. We bear in mind that
φ̄ remains a free scaling parameter; we assume that φ̄→ φ̄`. Then, letting ε go to 0, we arrive at

∂t?Φ` +∇x? · J` = 0,

∇x?

(
Φ`

Z?(Φ`)

)
− κḡΦ` = −µ?(Φ`) Z?(Φ`) (J` − Φ`u`).
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Hence Φ` is solution of a nonlinear convection–diffusion equation

∂t?Φ` +∇x? ·
(

Φ`u` +
1

µ?(Φ`)Z?(Φ`)

(
κḡΦ` −∇x?

Φ`

Z?(Φ`)

))
= 0.

Now, the mean density reads ρ? = (1− φ̄φ?)+εφ? → ρ` = (1− φ̄`Φ`) and the mean velocity satisfies
ρ?u? = (1− φ̄φ?)uf? + εJ? → ρ`u`. Then, the momentum equation becomes

∂t?(ρ`u`) + Divx?(ρ`u` ⊗ u`) +∇x

(
p` +

Φ`

Z?(Φ`)

)
= Divx?

(
µ?D(u`)

)
+ ḡ(ρ` + κΦ`).

For the last term, we have used the equality ḡφ̄( ρ̄d
ρ̄f
− 1)φ? = ḡ φ̄ ρ̄d

ρ̄f

1
ε
ε(1− ρ̄f

ρ̄d
) φ? = ḡε(1− ρ̄f

ρ̄d
) φ? →

ḡκΦ`. The mass conservation reads

∂t?ρ` +∇x? · (ρ`u`) = 0
= −φ̄`

(
∂tΦ` +∇x? · (Φ`u`)

)
+∇x? · u` = 0.

Then, we distiguish two situations:

• Either φ̄` = 0, and thus ρ` = 1; in such a case the velocity is merely divergence free∇x? ·u` = 0,

• Or φ̄` > 0: in such a case the velocity field is required to satisfy the constraint

∇x? · u` = φ̄` ∇x? ·
(

1

µ?(Φ`)Z?(Φ`)

(
∇x?

Φ`

Z?(Φ`)
− κḡΦ`

))
.

Further mathematical analysis of the asymptotics is beyond the scope of the present paper. We
refer to [32, 33] for technical details on such questions.

Example 1 A relevant situation corresponds to the case where we use the Einstein definition of
the effective viscosity of the solution, see [23, 7]

µ(φ) = µ̄×
(

1 +
5

2
φ
)
.

Assuming Z = 1, ḡ = 0, it yields

∇x? · u` =
2

5
∆x? ln

(
1 +

5

2
φ̄Φ`

)
= −2

5
∆x? ln

(7

2
− 5

2
ρ`

)
.

A relevant generalization of this simple law for the effective viscosity is proposed e. g. in [15].

Using the Stokes law for the drag force makes sense when the particle Reynolds number
2ρf |uf−Vth|a

µ

is small. The simplest case with Z = 1 is used in many applications, see for instance [39, 42].
More complex examples have the form Z(φ) = (1− φ)−κ, see [47, κ = 2.8 in Eq. (7)], [3, κ = 2.65
in Eq. (5)] or [44].
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[14] C. Calgaro, E. Creusé, and T. Goudon. An hybrid finite volume-finite element method for
variable density incompressible flows. J. Comput. Phys., 227(9):4671–4696, 2008.

[15] N. S. Cheng and A. W. K. Law. Exponential formula for computing effective viscosity. Powder
Technology, 129(1-3):156–160, 2003.

[16] M. Clément-Rastello. Etude de la dynamique des avalanches de neige en aérosol. PhD thesis,
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