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INVERSE LAX-WENDROFF METHOD FOR BOUNDARY CONDITIONS

OF BOLTZMANN TYPE MODELS

FRANCIS FILBET AND CHANG YANG

Abstract. In this paper we present a new algorithm based on a Cartesian mesh for the
numerical approximation of kinetic models on complex geometry boundary. Due to the high
dimensional property, numerical algorithms based on unstructured meshes for a complex
geometry are not appropriate. Here we propose to develop an inverse Lax-Wendroff pro-
cedure, which was recently introduced for conservation laws [21], to the kinetic equations.
Applications in 1D×3D and 2D×3D of this algorithm for Boltzmann type operators (BGK,
ES-BGK models) are then presented and numerical results illustrate the accuracy properties
of this algorithm.
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1. Introduction

We are interested in the numerical approximation of solutions to kinetic equations set
in a complex geometry with different type of boundary conditions. Unfortunately, classical
structured or unstructured meshes are not appropriate due to the high dimensional property
of kinetic problem. In contrast, the Cartesian mesh makes the numerical method efficient
and easy to implement. The difficulty is that obviously grid points are usually not located
on the physical boundary when using a Cartesian mesh, thus a suitable numerical method
to capture the boundary condition on the complex geometry is required. Several numerical
methods based on Cartesian mesh have been developed in computational fluid dynamics in
last decade. Among these methods, the immersed boundary method (IBM), first introduced
by Peskin [17] for the study of biological fluid mechanics problems, has attracted considerable
attention because of its use of regular Cartesian grid and great simplification of tedious
grid generation task. The basic idea of immersed boundary method is that the effect of
the immersed boundary on the surrounding fluid is represented through the introduction of
forcing terms in the momentum equations. In conservation laws, two major classes immersed
boundary like methods can be distinguished on different discretization types. The first class is
Cartesian cut-cell method [12], which is based on a finite volume method. This conceptually
simple approach “cuts” solid bodies out of a background Cartesian mesh. Thus we have
several polygons (cut-cells) along the boundary. Then the numerical flux at the boundary
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of these cut-cells are imposed by using the real boundary conditions. This method satisfies
well the conservation laws, however to determine the polygons is still a delicate issue. The
second class is based on finite difference method. To achieve a high order interior scheme,
several ghost points behind the boundary are added. For instance for solving hyperbolic
conservations laws, an inverse Lax-Wendroff type procedure is used to impose some artificial
values on the ghost points [21]. The idea of the inverse Lax-Wendroff procedure (ILW)
is to use successively the partial differential equation to write the normal derivatives at the
inflow boundary in terms of the tangential and time derivatives of given boundary conditions.
From these normal derivatives, we can obtain accurate values of ghost points using a Taylor
expansion of the solution from a point located on the boundary.

The goal of this paper is to extend the inverse Lax-Wendroff procedure to kinetic equations
together with an efficient time discretization technique [5, 6] for problems where boundary
conditions play a significant role in the long time asymptotic behavior of the solution. In
particular, for low speed and low Knudsen flows for which DSMC methods are unsuitable.
Therefore, the main issue relies on that the inflow is no longer a given function, while it
is determined by the outflow. For this, we proceed in three steps: we first compute the
outflow at the ghost points. To maintain high order accuracy and to prevent oscillations
caused by shocks, we use a weighted essentially non-oscillatory (WENO) type extrapolation
to approximate the ghost points by using the values of interior mesh points. In the same
time, we can extrapolate the outflow located at the boundary associated with ghost points.
Then, we compute the inflow at the boundary by using the outflow obtained in the first step
and Maxwell’s boundary conditions. Finally, we perform the inverse Lax-Wendroff procedure
to approximate the inflow on the ghost points, where the key point is to replace the normal
derivatives by a reformulation of the original kinetic equation.

For simplicity, we only consider simple collision operator as we adapt the ellipsoidal statis-
tics BGK or ES-BGK model introduced by Holway [9]. This model gives the correct transport
coefficients for Navier-Stokes approximation, so that Boltzmann or ES-BGK simulations are
expected to give the same results for dense gases. Let us emphasize that Direct Simulation
Monte-Carlo methods (DSMC) have been performed to the ES-BGK model in complex ge-
ometry. However DSMC approach is not computationally efficient for nonstationary or low
Mach number flows due to the requirement to perform large amounts of data simpling in
order to reduce the statistical noise. In contrast, F. Filbet & S. Jin recently proposed a
deterministic asymptotic preserving scheme for the ES-BGK model, where the entire equa-
tion can be solved explicitly and it can capture the macroscopic fluid dynamic limit even if
the small scale determined by the Knudsen number is not numerically resolved [7]. We will
use this scheme to solve ES-BGK model while on the boundary the inverse Lax-Wendroff
procedure will be applied.

The outline of the paper is as follows. In Section 2 we describe precisely the inverse Lax-
Wendroff procedure to Maxwell’s boundary condition in 1D and 2D space dimension. Then
in Section 3 we present the ES-BGK model and the application of inverse Lax-Wendroff
procedure to this model. In Section 4 a various numerical examples are provided in 1D × 3D
and 2D×3D to demonstrate the interest and the efficiency of our method in term of accuracy
and complexity. Finally a conclusion and some perspectives are given in Section 5.

2. Numerical method to Maxwell’s boundary conditions

The fundamental kinetic equation for rarefied gas is the Boltzmann equation

(2.1)
∂f

∂t
+ v ⋅ ∇xf = 1

ε
Q(f),

which governs the evolution of the density f(t,x,v) of monoatomic particles in the phase,
where x ∈ Ωx ⊂ Rd

x , v ∈ R3. The collision operator is either given by the full Boltzmann
operator
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(2.2) Q(f)(v) = ∫
R3
∫
S2
B(∣v − v⋆∣, cos θ) (f ′⋆f

′ − f⋆f) dσ dv⋆

or by a simplified model as the BGK or ES-BKG operator (see the next section). Boltzmann’s
type collision operator has the fundamental properties of conserving mass, momentum and
energy: at the formal level

∫
R3

Q(f) φ(v) dv = 0, φ(v) = 1, v, ∣v∣2.
Moreover, the equilibrium is the local Maxwellian distribution namely:

M[f](t,x,v) = ρ(t,x)
(2π T (t,x))3/2 exp(−

∣u(t,x) − v∣2
2T (t,x) ) ,

where ρ, u, T are the density, macroscopic velocity and the temperature of the gas, defined
by

(2.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(t,x) = ∫
R3

f(t,x,v)dv,
u(t,x) = 1

ρ(t,x) ∫R3

vf(t,x,v)dv,

T (t,x) = 1

3ρ(t,x) ∫R3

∣u(t,x) − v∣2f(t,x,v)dv.
In order to define completely the mathematical problem (2.1), suitable boundary conditions

on ∂Ωx should be appled. Here we consider wall type boundary conditions introduced by
Maxwell [15], which is assumed that the fraction (1 − α) of the emerging particles has been
reflected elastically at the wall, whereas the remaining fraction α is thermalized and leaves the
wall in a Maxwellian distribution. The parameter α is called accommodation coefficient [4].

More precisely, for x ∈ ∂Ωx the smooth boundary ∂Ωx is assumed to have a unit inward
normal n(x) and for v ⋅ n(x) ≥ 0, we assume that at the solid boundary a fraction α of
particles is absorbed by the wall and then re-emitted with the velocities corresponding to
those in a still gas at the temperature of the solid wall, while the remaining portion (1 − α)
is perfectly reflected. This is equivalent to impose for the ingoing velocities

(2.4) f(t,x,v) = (1 −α)R[f(t,x,v)] + αM[f(t,x,v)], x ∈ ∂Ωx, v ⋅ n(x) ≥ 0,
with 0 ≤ α ≤ 1 and

(2.5)

⎧⎪⎪⎨⎪⎪⎩
R[f(t,x,v)] = f(t,x,v − 2(v ⋅ n(x))n(x)),
M[f(t,x,v)] = µ(t,x)fw(v).

By denoting Tw the temperature of the solid boundary, fw is given by

(2.6) fw(v) ∶= exp(− v2

2Tw

) ,
and the value of µ(t,x) is determined by mass conservation at the surface of the wall for any
t ∈ R+ and x ∈ ∂Ωx

(2.7) µ(t,x)∫
v⋅n(x)≥0

fw(v)v ⋅ n(x)dv = −∫
v⋅n(x)<0

f(v)v ⋅ n(x)dv.
This boundary condition (2.4) guarantees the global conservation of mass [5].

In this paper we only apply a second order finite difference method to discretize the trans-
port term of (2.1) but higher order schemes [13] may be applied. Then to keep the order
of accuracy of the method, two ghost points should be added in each spatial direction. To
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impose f at the ghost points, we will apply the inverse Lax-Wendroff procedure proposed
in [21] for conservation laws.

Suppose that the distribution function f at time level tn for all interior points are already
known, we now construct f at the ghost points.

2.1. One-dimensional case in space. We start with spatially one-dimensional problem,
that is dx = 1. In this case the Boltzmann equation reads:

(2.8)
∂f

∂t
+ vx

∂f

∂x
= 1

ε
Q(f), (x,v) ∈ [xl, xr] ×R3,

where xl and xr are the left and right boundaries respectively, vx is the component of phase
space corresponding to x-direction. For the boundary condition in spatially one-dimensional
case, the inward normal on the boundary in (2.4) is

n(xl) = ⎛⎜⎝
1
0
0

⎞⎟⎠ , n(xr) = ⎛⎜⎝
−1
0
0

⎞⎟⎠ .
To implement the numerical method, we assume the computational domain is a limited
domain [xmin, xmax] × [−V,V ]3, where (xl, xr) ⊂ [xmin, xmax]. The computational domain is
covered by a uniform Cartesian mesh Xh ×Vh,

(2.9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xh = {xmin = x0 ≤ ⋯ ≤ xi ≤ ⋯ ≤ xnx = xmax} ,
Vh = {vj = j∆v, j = (j1, . . . , j3) ∈ Z3, ∣j∣ ≤ nv} .

with the mesh size ∆x and ∆v for space and velocity respectively. We only consider numerical
method of ghost points near the left hand side boundary, since the procedure for right hand
side boundary is the same. Figure 1 illustrates a portion of mesh near left boundary xl, which
is located between x0 and x1.

x−1 x0

xl

x1 x2 x3

◾ ◾ � ● ● ●

∣ ∣ ∣ ∣ ∣

◾ ◾ � ● ● ●

x

v

vj

vj⋆

Figure 1. A portion of mesh in spatially one dimensional case. ● is interior
point, ◾ is ghost point, � is the left hand side boundary.

We construct f at each ghost point in following three steps: we perform an extrapolation of
f to compute a high order approximation of the outflow. Then, we compute an approximation
of the distribution function at the boundary using Maxwell’s boundary conditions. Finally,
we apply the inverse Lax-Wendroff procedure for the inflow.
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2.1.1. First step: Extrapolation of f for the outflow. At time t = tn we consider the outflow
near the point xl, that is f(t, xl,vj) where vj1 < 0. We denote by fi,j an approximation of f
at (xi,vj)

A natural idea is to extrapolate f at the left boundary xl or the ghost points x0 and x−1
using the values of f on interior points. For example from the values f1,j, f2,j and f3,j, we
can construct a Lagrange polynomial p2(x) ∈ P2(R). Then by injecting xl, x0 or x−1 into
p2(x), we obtain the approximations of f at the ghost points and left boundary, i.e. fl,j, f0,j
and f−1,j. However, when a shock goes out of the boundary, the high order extrapolation
may lead to a severe oscillation near the shock. To prevent this, we would like have a lower
order accurate but more robust extrapolation. Therefore, a WENO type extrapolation [21]
will be applied and described below (see subsection 2.3) for this purpose.

2.1.2. Second step: Compute boundary conditions at the boundary. In the previous step, the
outflow at the boundary is obtained by extrapolation. To compute the vlaues of f at the
inflow boundary, we apply the Maxwell’s boundary condition (2.4), i.e.

(2.10) fl,j = (1 − α)R[fl,j] + αM[fl,j].
On the one hand the specular reflection portion is given straightly by the outflow at the left
boundary, which is

R[fl,j] = fl,j⋆, where j⋆ = (−j1, j2, . . . , j3).
On the other hand the diffuse one is computed by a half Maxwellian

M[fl,j] = µl exp(− ∣vj ∣2
2Tl

) ,
where Tl is the given temperature at the left wall and µl is given by

µl ∑
vj ⋅n(xl)≥0

vj ⋅ n(xl) exp(− ∣vj ∣2
2Tl

) = − ∑
vj ⋅n(xl)≤0

vj ⋅ n(xl)fl,j .
2.1.3. Third step: Approximation of f at the inflow boundary. Finally we compute the values
of f at the ghost points for the inflow boundary. Here we cannot approximate f by an
extrapolation, since the distribution function at interior points cannot predict the inflow.
Then we extend the inverse Lax-Wendroff type procedure recently proposed in [11, 21, 23]
for solving kinetic equations. At the left boundary xl, a first order Taylor expansion gives

fj(x) = fl,j + (x − xl) ∂f
∂x
∣
x=xl

+O(∆x2).
Hence a first order approximation of f at ghost points is

(2.11) fs,j = fl,j + (xs − xl) ∂f

∂x
∣
x=xl

, s = −1,0.
We already have fl,j in the second step, thus it remains to obtain an approximation of the
first derivative. By reformulating (2.8), we have

(2.12)
∂f

∂x
∣
x=xl

= 1

vx
(−∂f

∂t
+
1

ε
Q(f))∣

x=xl

.

Now instead of approximating the first derivative ∂xf ∣x=xl
, we compute the time derivative

∂tf ∣x=xl
and the collision operator Q(f)∣x=xl

. An approximation of the time derivative can be
computed by using several fi,j at previous time levels. Different approximation are obtained
either a first order approximation reads

∂f

∂t
∣
x=xl

= fn
l,j − f

n−1
l,j

∆t
,
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where ∆t is the time step, or one can use a WENO type extrapolation to approximate the
time derivative (see subsection 2.3 below).

The last term Q(f)∣x=xl
can be computed explicitly by using fl,j obtained in previous two

steps. Clearly this procedure is independent of the values of f at interior points.

Remark 2.1. Let us observe that when α = 0 we have a pure specular reflection boundary
condition. A mirror procedure can be used to approximate f at the ghost points. More
precisely, by considering the boundary as a mirror, we approximate the distribution at the
ghost points f(xs, vj) as

f(xs,vj) = f(2xl − xs,vj⋆), where j⋆ = (−j1, j2, . . . , j3)
where 2xl − xs is the mirror image point of xs. Since 2xl − xs is located in interior domain,
we can approximate f(2xl − xs,vj⋆) by an interpolation procedure.

2.2. Two-dimensional case in space. The previous approach can be generalized to spa-
tially two-dimensional problem. We assume dx = 2 in equation (2.1)

(2.13)
∂f

∂t
+ vx

∂f

∂x
+ vy

∂f

∂y
= 1

ε
Q(f),

where the distribution function f(t,x,v) is defined in (t,x,v) ∈ R+ ×Ω ×R3 with x = (x, y).
We consider a computational domain [xmin, xmax] × [ymin, ymax] × [−V,V ]3, such that Ω ⊂[xmin, xmax] × [ymin, ymax] and f(t,x,v) ≊ 0, for all ∥v∥ ≥ V .

The computational domain is covered by an uniform Cartesian mesh Xh ×Vh, where Xh,
Vh are defined similarly to (2.9). The mesh steps are respectively ∆x, ∆y and ∆v. In
Figure 2, we present a portion of spatial mesh near the boundary. From a ghost point xg, we
can find an inward normal n, which crosses the boundary at xp.

x

y n

θ

◾ ◾ ◾ ◾

◯◯ ◯

◾ ◾ ◾ ● ●

◯ ◯ ◯

xg

◾ ● ● ● ●◯ ◯ ◯

xp

● ● ● ● ●

● ● ● ● ●

�

ix − 2 ix − 1 ix ix + 1 ix + 2

iy − 2

iy − 1

iy

iy + 1

iy + 2

�

�

Figure 2. Spatially two-dimensional Cartesian mesh. ● is interior point, ◾ is
ghost point, � is the point at the boundary, ◯ is the point for extrapolation,
the dashed line is the boundary.

For the 2D case in space, the numerical approximation of the distribution function f at
ghost points is similar to the one dimensional case. However, there are two major differences.
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First to compute R[f] in the second step, the corresponding outflow may not locate on phase
space mesh. Secondly to approximate the normal derivative in the third step, besides the
time derivative and collision operator we need also the tangential derivative at xp. Once
again, we present the method in three steps:

2.2.1. First step: Extrapolation of f for outflow. Let us assume that the values of the distri-
bution function f on the grid points in Ω are given. To approximate f at a ghost point, for
instance xs, we first construct a stencil E composed of grid points of Ω for the extrapolation.
For instance as it is shown in Figure 2, the inward normal n intersects the grid lines y = yiy ,
yiy+1, yiy+2. Then we choose the three nearest point of the cross point in each line, i.e. marked

by a large circle. From these nine points, we can build a Lagrange polynomial q2(x) ∈ Q2(R2).
Therefore we evaluate the polynomial q2(x) at xs or xp, and obtain an approximation of f
at the boundary and at ghost points. As for the 1D case, a WENO type extrapolation can
be used to prevent spurious oscillations, which will be detailed in subsection 2.3.

2.2.2. Second step: Compute boundary conditions at the boundary. In the previous step, we
have obtained the outflow f(xp,v ⋅ n < 0) at the boundary xp. By using (2.4) as we did for
the 1D case, we can similarly compute the distribution function f for v ⋅n ≥ 0. However this
time to compute the distribution function for specular reflection

R[f(xp,v)] = f(xp,v − 2(v ⋅ n)n), ∀v ∈Vh,

the vector fields v − 2 (v ⋅n)n may not be located on a grid point. Therefore, we interpolate
f in phase space (xp,v−2(v ⋅n)n) using the values computed from the outflow f(xp,v) such
that v ⋅ n ≥ 0.
2.2.3. Third step: Approximation of f at the inflow boundary. We have obtained the values
of f at the boundary points xp for all v ∈Vh in previous two steps. Now we reconstruct the
values of f for the velocity grid points such that v ⋅ n ≤ 0 at the ghost point xg by a simple
Taylor expansion in the inward normal direction. To this end, we set up a local coordinate
system at xp by

x̂ = (x̂
ŷ
) = ( cos θ sin θ

− sin θ cos θ
)(x

y
) ,

where θ is the angle between the inward normal n and the x-axis illustrated in Figure 2.
Thus the first order approximation of f(xg,v) reads

f(xg,v) ≊ f̂(x̂p,v) + (x̂g − x̂p)∂f̂
∂x̂
(x̂p,v),

where f̂(x̂p,v) = f(xp,v) and ∂f̂
∂x̂
(x̂p,v) is the first order normal derivative at the boundary

xp. To approximate ∂f̂
∂x̂
(x̂p,v), we use inverse Lax-Wendroff procedure. Firstly, we rewrite

the equation (2.13) in the local coordinate system as

(2.14)
∂f̂

∂t
+ v̂x

∂f̂

∂x̂
+ v̂y

∂f̂

∂ŷ
= 1

ε
Q(f̂),

where v̂x = vx cos θ + vy sin θ, v̂y = −vx sin θ + vy cos θ. Then a reformulation of (2.14) yields

(2.15)
∂f̂

∂x̂
(x̂p,v) = − 1

v̂x
(∂f̂
∂t
+ v̂y

∂f̂

∂ŷ
−
1

ε
Q(f̂))∣

x̂=x̂p

.

Finally instead of approximating ∂f̂
∂x̂
(x̂p,v) directly, we approximate the time derivative ∂f̂

∂t
,

tangential derivative ∂f̂
∂ŷ

and collision operator Q(f̂). Similarly as in spatially 1D case, we

compute ∂f̂
∂t

and Q(f̂). It remains to approximate ∂f̂
∂ŷ
. For this, some neighbor points of
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xp at the boundary are required (See the empty squares in Figure 2). We then perform an
essentially non-oscillatory (ENO) procedure [10] for this numerical differentiation to avoid
the discontinuity.

2.3. WENO type extrapolation. A WENO type extrapolation [21] was developed to pre-
vent oscillations and maintain accuracy. The key point of WENO type extrapolation is to
define smoothness indicators, which is designed to help us choose automatically between the
high order accuracy and the low order but more robust extrapolation. Here we describe this
method in spatially 1D and 2D cases. Moreover we will give a slightly modified version of
the method such that the smoothness indicators are invariant with respect to the scaling of
f .

2.3.1. One-dimensional WENO type extrapolation. Assume that we have a stencil of three
points E = {x1, x2, x3} showed in Figure 1 and denote the corresponding distribution function
by f1, f2, f3. Instead of extrapolating f at ghost point xg by Lagrange polynomial, we use
following Taylor expansion

fg =
2∑

k=0

(xg − xl)2
k!

dkf

dxk
∣
x=xl

We aim to obtain a (3 − k)-th order approximation of dkf

dxk ∣
x=xl

denoted by f
(k)
l

, k = 0,1,2.
Three candidate substencils are given by

Sr = {x1, . . . , xr+1}, r = 0,1,2.
In each substencil Sr, we could construct a Lagrange polynomial pr(x) ∈ Pr(R)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0(x) = f1,

p1(x) = f1 +
f2 − f1
∆x

(x − x1),
p2(x) = f1 +

f2 − f1
∆x

(x − x1) + f3 − 2f2 + f1
2∆x2

(x − x1)(x − x2).
We now look for the WENO type extrapolation in the form

f
(k)
l
=

2∑
r=0

wr
dkpr(x)
dxk

(xl),

where wr are the nonlinear weights depending on fi. We expect that f
(k)
l

has (3 − k)-order
accurate in the case f(x) is smooth in S2. The nonlinear weights are given by

wr = αr

∑2
s=0αs

,

with

αr = dr(ε + βs)2 ,
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where ε = 10−6 and βr are the new smoothness indicators determined by

β0 = ∆x2,

β1 = 1

ε + f2
1 + f

2
2

2∑
l=1
∫

x1

x0

∆x2l−1 ( dl

dxl
p1(x))

2

dx

= (f2 − f1)2
ε + f2

1 + f
2
2

β2 = 1

ε + f2
1 + f

2
2 + f

2
3

2∑
l=1
∫

x1

x0

∆x2l−1 ( dl

dxl
p2(x))

2

dx

= 1

12(ε + f2
1 + f

2
2 + f

2
3 )(61f

2
1 + 160f

2
2 + 25f

2
3 + 74f1f3 − 192f1f2 − 124f2f3).

We remark that the smoothness indicators β1 and β2 have the factors 1

ε+∑r+1
m=1 f

2
m

, which

guarantee that the indicators are invariant of the scaling of fi.

2.3.2. Two-dimensional extrapolation. The two-dimensional extrapolation is a straightfor-
ward expansion of 1D case. The substencils Sr, r = 0,1,2 for extrapolation are chosen
around the inward normal n such that we can construct Lagrange polynomial of degree r.
For instance in Figure 2, the three substencils are respectively⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0 = {(xix , yiy)},
S1 = {(xix−1, yiy), (xix , yiy), (xix , yiy+1), (xix+1, yiy+1)},
S2 = {(xix−1, yiy), (xix , yiy), (xix+1, yiy), (xix−1, yiy+1),
(xix , yiy+1), (xix+1, yiy+1), (xix , yiy+2), (xix+1, yiy+2), (xix+2, yiy+2)}.

Once the substencils Sr are chosen, we could easily construct the Lagrange polynomials in
Qr(R2)

qr(x) = r∑
m=0

r∑
l=0

al,mxlym

satisfying
qr(x) = f(x), x ∈ Sr.

Then the WENO extrapolation has the form

(2.16) f(x) = 2∑
r=0

wrqr(x), x ∈ Sr,

where wr are the nonlinear weights, which are chosen to be

wr = αr

∑2
s=0αs

,

with

αr = dr(ε + βr)2 ,
where ε = 10−6, d0 = ∆x2 +∆y2, d1 =

√
∆x2 +∆y2, d2 = 1 − d0 − d1. βr are the smoothness

indicators determined by

β0 = ∆x2 +∆y2,

βr = 1

ε +∑x∈Sr
f(x)2 ∑

1≤∣α∣≤r
∫
K
∣K ∣∣α∣−1(Dαqr(x))2dx, r = 1,2,
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where α is a multi-index and K = [xp−∆x/2, xp+∆x/2]×[yp−∆y/2, yp+∆y/2], xp = (xp, yp).
3. Application to the ES-BGK model

The Boltzmann equation (2.1) governs well the evolution of density f in kinetic regime
and also in the continuum regime [7]. However the quadratic collision operator Q(f) has a
rather complex form such that it is very difficult to compute. Hence different simpler models
have been introduced. The simplest model is the so-called BGK model [3], which is mainly
a relaxation towards a Maxwellian equilibrium state

(3.1) Q(f) = τ

ε
(M[f] − f),

where τ depends on macroscopic quantities ρ and T .
Although it describes the right hydrodynamical limit, the BGK model does not give the

Navier-Stokes equation with correct transport coefficients in the Chapman-Enskog expansion.
Holway et al. [9] proposed the ES-BGK model, where the MaxwellianM[f] in the relaxation
term of (3.1) is replaced by an anisotropic Gaussian G[f]. This model has correct conservation
laws, yields the Navier-Stokes approximation via the Chapman-Enskog expansion with a
Prandtl number less than one, and yet is endowed with the entropy condition [1]. In order to
introduce the Gaussian model, we need further notations. Define the opposite of the stress
tensor

(3.2) Θ(t,x) = 1

ρ
∫
R3

(v − u)⊗ (v −u)f(t,x,v)dv.
Therefore the translational temperature is related to the T = tr(Θ)/3. We finally introduce
the corrected tensor

T (t,x) = [(1 − ν)T I + νΘ](t,x),
which can be viewed as a linear combination of the initial stress tensor Θ and of the isotropic
stress tensor T I developed by a Maxwellian distribution, where I is the identity matrix.

The ES-BGK model introduces a corrected BGK collision operator by replacing the local
equilibrium Maxwellian by the Gaussian G[f] defined by

G[f] = ρ√
det(2πT ) exp(−

(v −u)T −1(v −u)
2

) .
Thus, the corresponding collision operator is now

(3.3) Q(f) = τ

ε
(G[f] − f),

where τ depends on ρ and T , the parameter −1/2 ≤ ν < 1 is used to modify the value of the
Prandtl number through the formula

2

3
≤ Pr = 1

1 − ν
≤ +∞.

It follows from the above definitions that

(3.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
R3

f(v)dv = ∫
R3

G[f](v)dv = ρ,
∫
R3

v f(v)dv = ∫
R3

vG[f](v)dv = ρu,

∫
R3

∣v∣2
2

f(v)dv = ∫
R3

∣v∣2
2
G[f](v)dv = E
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and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∫
R3

(v − u)⊗ (v −u)f(v)dv = ρΘ,

∫
R3

(v − u)⊗ (v −u)G[f]dv = ρT .
This implies that this collision operator does indeed conserve mass, momentum and energy
as imposed.

In this section, we will first recall the implicit-explicit (IMEX) scheme to the ES-BGK
equation proposed in [3]. Then we apply our ILW procedure to treat the boundary condition
for ES-BGK model case.

3.1. An IMEX scheme to the ES-BGK equation. We now introduce the time dis-
cretization for the ES-BGK equation (2.1), (3.3)

(3.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂f

∂t
+ v ⋅ ∇xf = τ

ε
(G[f] − f), x ∈ Ω ⊂ Rdx , v ∈ R3,

f(0,x,v) = f0(x,v), x ∈ Ω, v ∈ R3,

where τ depends on ρ, u and T .
The time discretization is an IMEX scheme. Since the convection term in (3.5) is not stiff,

we will treat it explicitly. The source terms on the right hand side of (3.5) will be handled
using an implicit solver. We simply apply a first order IMEX scheme,

(3.6)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fn+1 − fn

∆t
+ v ⋅ ∇xf

n = τn+1

ε
(G[fn+1] − fn+1),

f0(x,v) = f0(x,v) .
This can be written as

fn+1 = ε

ε + τn+1∆t
[fn −∆tv ⋅ ∇xf

n] + τn+1∆t

ε + τn+1∆t
G[fn+1],(3.7)

where G(fn+1) is the anisotropic Maxwellian distribution computed from fn+1. Although
(3.7) appears nonlinearly implicit, since the computation of fn+1 requires the knowledge of
G[fn+1], it can be solved explicitly. Specifically, upon multiplying (3.7) by φ(v) defined by

φ(v) ∶= (1,v, ∣v∣2
2
)

and use the conservation properties of Q and the definition of G[f] in (2.3), we define the
macroscopic quantity U by U ∶= (ρ, ρu,E) computed from f and get

Un+1 = ε

ε + τn+1∆t
∫
R3

φ(v) (fn −∆tv ⋅ ∇xf
n)dv + τn+1∆t

ε + τn+1∆t
∫
R3

φ(v)G[fn+1](v)dv,
or simply

(3.8) Un+1 = ∫
R3

φ(v) (fn −∆tv ⋅ ∇xf
n)dv .

Thus Un+1 can be obtained explicitly. This gives ρn+1,un+1 and T n+1. Unfortunately, it is
not enough to define G[fn+1] for which we need ρn+1Θn+1. Therefore, we define the tensor
Σ by

(3.9) Σn+1 ∶= ∫
R3

v⊗ v fn+1 dv = ρn+1 (Θn+1 + un+1 ⊗un+1)
and multiply the scheme (3.7) by v⊗ v. Using the fact that

∫
R3

v ⊗ vG[f](v)dv = ρ (T + u⊗ u) ,
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and (3.9), we get that

Σn+1 = ε

ε + (1 − ν) τn+1∆t
(Σn − ∆t ∫

R3

v⊗ vv ⋅ ∇xf
ndv)(3.10)

+
(1 − ν) τn+1∆t

ε + (1 − ν) τn+1∆t
ρn+1 (T n+1 I + un+1 ⊗ un+1)

Now G[fn+1] can be obtained explicitly from Un+1 and Σn+1 and then fn+1 from (3.7).
Finally the scheme reads

(3.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un+1 = ∫
R3

φ(v) (fn −∆tv ⋅ ∇xf
n)dv,

Σn+1 = ε

ε + (1 − ν) τn+1∆t
(Σn − ∆t ∫

R3

v ⊗ vv ⋅ ∇xf
ndv)

+
(1 − ν) τn+1∆t

ε + (1 − ν) τn+1∆t
ρn+1 (T n+1 I + un+1 ⊗un+1) .

fn+1 = ε

ε + τn+1∆t
[fn −∆tv ⋅ ∇xf

n] + τn+1∆t

ε + τn+1∆t
G[fn+1],

The scheme (3.11) is an AP scheme for (3.6). On the one hand, although (3.6) is nonlinearly
implicit, is can be solved explicitly. On the other hand, the scheme (3.11) preserves the correct
asymptotic [7], which means when holding the mesh size and time step fixed and letting
the Knudsen number go to zero, the scheme becomes a suitable scheme for the limiting
hydrodynamic models.

3.2. Inverse Lax-Wendroff procedure for boundary conditions. We have described
the numerical method for boundary condition to general kinetic equations in spatially 1D
and 2D case. To implement this method, it remains to replace the collision operator Q(f)
in (2.12) or (2.15) by the ES-BGK operator (3.3).

Assume that the approximation to the distribution function at the boundary f(xp,v) is
known for all v ∈Vh. Then, the macroscopic quantities ρ, u and T at the boundary point xp

can be obtained using (2.3) and (3.4). Therefore, substituting these macroscopic quantities
in (3.2), we compute the stress tensor Θ at the boundary point xp, such that the corrected
tensor T (xp). Thus G[f] is computed for all points (xp,v), where v ∈Vh.

4. Numerical examples

In this section, we present a large variety of test cases in 1dx and 2dx in space and three
dimensional in velocity space showing the effectiveness of our method to get an accurate
solution of Boltzmann type equations set in a complex geometry with different boundary
conditions. We first give an example on a flow generated by gradients of temperature, which
has already been treated by DSMC or other various methods [5].

Finally, we present some numerical results in 2dx.

4.1. Smooth solutions. We consider the ES-BGK equation (2.1)-(3.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂f

∂t
+ vx

∂f

∂x
= Q(f), , x ∈ (−0.5, 0.5), v ∈ R3,

f(t = 0) = f0,
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with an initial datum f0 which is a perturbation of the constant state in space and a
Maxwellian distribution function in velocity, that is,

f0(x, v) = ρ0(x)(2π) exp(− ∣v∣2
2
) , x ∈ (−0.5, 0.5), v ∈ R3

with a density ρ0 = 1 + 0.1 cos(2π x). We consider purely diffusive boundary conditions with
a wall temperature Tw = 1. The solution is expected to be smooth for short time and then
may develop a discontinuity at the boundary, which may propagate in the physical domain.

We perform several numerical simulations on a time interval [0, tend] with tend = 1, a
computational domain in space I0 = [−π/6, π/6] such that (−1/2,1/2) ⊂ I0 and a domain in
velocity V = [−8,8]3. Then, we choose a grid in space for I0 constituted of nx = n points
and a grid Vh for the velocity space with nv = n points for each direction with respectively
n = 32, 64,..., n = 512. Let us emphasize that the boundary points x = −1/2 and x = 1/2 are
not exactly located on a grid point. Since we don’t know an exact solution of the problem,
we compute relative errors. More precisely, an estimation of the relative error in L1 norm at
time T is given by

e2h = ∥fh(T ) − f2h(T )∥L1 ,

where fh represents the approximation computed from a mesh of size h = (∆x,∆v). The
numerical scheme is said to be k-th order if e2h ≤ C∥h∥k, for all 0 < ∥h∥≪ 1.

In Table 1 we compute the order of convergence in L1 norm of our numerical methods. We
can clearly see the expected second order convergence. Moreover, we verify experimentally
that our scheme is also second-order accurate at the boundary since the discontinuity occuring
at vx = 0 is perfectly located.

nx × nv L1 error Order L1 error at the boundary Order
322 8.883310−4 X 3.90910−3 X

642 2.522110−4 1.94 5.83210−3 X
1282 6.551110−5 1.88 2.341 10−4 4.1
2562 1.782910−5 1.91 5.81110−5 2.01
5122 4.457110−6 2 1.57310−5 1.89

Table 1. Smooth solutions: Experimental order of convergence in L1 norm.
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Figure 3. Smooth solutions: Experimental order of convergence in L1 norm
(1) in the physical domain (2) at the boundary.
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4.2. Flow generated by a gradient of temperature. We consider the ES-BGK equation
(2.1)-(3.3), ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂f

∂t
+ vx

∂f

∂x
= 1

ε
Q(f), x ∈ (−1/2,1/2), v ∈ R3,

f(t = 0, x, v) = 1

2π T0

exp(− ∣v∣2
2T0

) ,
with T0(x) = 1 and we assume purely diffusive boundary conditions on x = −1/2 and x = 1/2,
which can be written as

f(t, x, v) = µ(t, x) fw(v), if (x, vx) ∈ {−1/2} ×R+ and (x, vx) ∈ {1/2} ×R−,
where µ is given by (2.7). This problem has already been studied in [24] using DSMC for
the Boltzmann equation or using deterministic approximation using a BGK model for the
Boltzmann equation in [16, 5].

Here we apply our numerical scheme with the ES-BGK operator (3.3) and choose a com-
putational domain in space I0 = [−π/6, π/6] such that (−1/2,1/2) ⊂ I0 and [−8,8]3 for the
velocity space with a number grid points n = 32 in each direction and the time step ∆t = 0.001.

The main issue here is to capture the correct steady state for which the pressure is a
perturbation of a constant state with a Knudsen layer at the boundary [16, 24].

In Figure 4, we represent the stationary solution (obtained approximately at time tend = 25
for ε = 0.1 up to tend = 75 for ε = 0.025) of the temperature and the pressure profile. The
results are in a qualitative good agreement with those already obtained in [24] with DSMC.
More precisely, the boundary layer (Knudsen layer) appears in the density and temperature as
well as the pressure, but it is small for all the quantities. The magnitude in the dimensionless
density, temperature, and pressure is of order of ε and the thickness of the layer is, say O(ε).
In the density and temperature profiles, we cannot observe it unless we magnify the profile in
the vicinity of the boundary (see the zoom in Figure 4). Instead, since the pressure is almost
constant in the bulk of the gas, we can observe perfectly the boundary layer by magnifying
the entire profile. Let us emphasize that, as it is shown in Figure 4 the Knudsen layer is a
kinetic effect, which disappears in the fluid limit (ε→ 0).

These results provide strong evidence that the present treatment of boundary conditions
using WENO extrapolation and inverse Lax-Wendroff method can be used to determine the
state of a gas under highly non-equilibrium conditions. Using deterministic methods, we can
investigate the behavior of gases for situations in which molecular diffusion is important e.g.,
thermal diffusion.

Also let us mention that a quantitative comparison between our results (3dv with ES-BGK
operator) and [24] (3dv Boltzmann with hard sphere potential) or [16] (3dv BGK) gives a
very good agreement on the values of the Knudsen layer and the values of the pressure inside
the domain.

4.3. High-speed flow through a trapezoidal channel. In this section we deal with spa-
tially two-dimensional ES-BGK model in a trapezoidal domain. We attempt to get some
steady state as

vx
∂f

∂x
+ vy

∂f

∂y
= 1

ε
Q(f),

where v ∈ Ωx and v ∈ R3. Here we will reproduce a numerical test performed in [19] but with
our ILW method. The computational domain is a trapezoid

Ωx = {x = (x, y), 0 < x < a, 0 < y < b + x tan(α)}
as shown in Figure 5 for the parameters

a = 2.0, b = 0.4, α = arctan(0.2).
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Figure 4. Flow generated by a gradient of temperature: (1) temperature (2)
pressure for various Knudsen numbers ε = 0.025, 0.05 and 0.1.

Boundary conditions are defined separately for each of the four straight pieces

∂Ωx = Γl ∪ Γb ∪ Γr ∪ Γt

denoting the left, bottom, right and top parts of the boundary respectively. The bottom part
represents the axis of symmetry, so we use specular reflection (2.5) there, i.e.

f(x,v) = (f(x,v − 2(v ⋅ n(x))n(x)), x ∈ Γb, vy > 0.
On the right part we are modeling outflow (particles are permanently absorbed), i.e.

(4.1) f(x,v) = 0, x ∈ Γr, vx < 0.



16 FRANCIS FILBET AND CHANG YANG
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Figure 5. Trapezoidal domain Ωx.

On the left part there is an incoming flux of particles, i.e.

(4.2) f(x,v) = fin(x,v) =Min(v), x ∈ Γl, vx > 0,
with an inflow Maxwellian

Min(v) = ρin(2πTin)3/2 exp(−
∣v − Vin∣2
2Tin

) .
On the top part of the boundary, we consider a diffuse reflection (2.5) of particles, with a
Maxwellian distribution function

MΓt(v) = exp(− ∣v∣22Tt

) .
In the numerical experiments we assume

ρin = 1, Tin = 1, Tt = 1.05
and consider the inflow velocity in the form

Vin =Machin

√
γTin

⎛⎜⎝
1
0
0

⎞⎟⎠ ,
where Machin = 5 and γ = 1.4.

To start the calculation we take an uniform initial solution equal to the values defined by
the left boundary condition:

f0(x,v) = ρin(2πTin)3/2 exp(−
∣v − Vin∣2
2Tin

) , x ∈ Ωx, v ∈ R3.

We define the Mach number from the macroscopic quantities, computing the moments of
the distribution function with respect to v ∈ R3, by

Mach = ∣u∣√
γT

,

where c ∶=√γT is the sound speed.
We apply our inverse Lax-Wendroff method to the boundary conditions at ∂Ωx. More

precisely, we extrapolate first the outflow at ghost points corresponding to the four straight
pieces. Then we impose directly the inflow at the boundaries Γl and Γr by (4.1), (4.2), since
they are independent of outflow. While the inflow of Γb and Γt is computed by specular and
diffuse reflection. Finally we use inverse Lax-Wendroff procedure to compute inflow at ghost
points.
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Figure 6. Density with ε = 5
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Figure 7. Temperature, ε = 5
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Figure 8. Mach with ε = 5

In following the sequel, numerical experiments are performed on a mesh of size 96 × 48 on
space domain Ωx. For velocity space we choose limit domain [−12,12]× [−8,8]× [−8,8] with
the grid point number as 64 × 48 × 12. Moreover for the ES-BGK operator (3.3) we choose
ν = −0.5. We first consider the weak collision case, i.e. Kn = 5. In Figures 6–8, we show on
the left hand side, the contour plots of the density, the temperature and the Mach number
while the right hand side plots show the absolute values of these quantities plotted along
the axis of symmetry y = 0. We observe that the flow changes when we consider different
Knudsen numbers Kn = 0.05 and Kn = 5. The corresponding results are shown in Figures 9–
11. The significant difference between these two case can be observed in Mach number. In
the case Kn = 5, the Mach number reaches its maximum at Γr while in the case Kn = 0.05 its
maximum is at Γl. We can observe also in the case Kn = 0.05 that there is a clear maximum
of the density in the middle of the domain. In the same region the temperature reaches its
maximum.

4.4. High-speed flow around an object. In this section, we desire to simulate high-speed
airflow around a half airfoil (see Figure 12). The boundary is separated by four parts

∂Ωx = Γl ∪ Γb ∪ Γr ∪ Γt.
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Figure 9. Density with ε = 0.05
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Figure 10. Temperature with ε = 0.05
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Figure 11. Mach with ε = 0.05

On the right and left hand sides Γr, Γl, we use the same incoming flux (4.1), (4.2). On the
top part Γt, the incoming flow is given by the initial value

f(x,v) = ρin(2πTin)3/2 exp(−
∣v − Vin∣2
2Tin

) , x ∈ Γt, v ∈ R3.

Finally at the bottom Γb, we use a purely specular reflection boundary condition. The
parameters ρin, Tin, Tt, γ, ν have the same values as in the previous test. We use again (4.3)
as the initial solution.

We note that on the profile of airfoil we cannot use the neighbor points to approximate the

tangential derivative ∂f̂
∂ŷ

in (2.15). It is because these neighbor points are not on the same

straight. Here we approximate the tangential derivative by using the distribution function of
interior domain.

In the following tests, we consider only the situations in hydrodynamic regime, i.e. ε = 0.05,
for comparing the ones in literature [8, 14]. A 150 × 100 mesh is used in domain Ωx. We use
a limit velocity domain [−8,8]3 with mesh size 48 × 48 × 12. Two different tests of transonic
airflow around this half airfoil are considered: Machin < 1 and Machin > 1.

We choose first Machin = 0.85. So we observe in Figures 13–15 that the flow field around
the object includes both sub- (Mach < 1) and supersonic (Mach > 1.2) parts. The transonic
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Figure 12. Domain including a half airfoil Ωx.
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Figure 13. Density with Machin = 0.85

(0.8 < Mach < 1.2) period begins when first zones of Mach > 1 flow appear around the
object. Supersonic flow can decelerate back to subsonic before the trailing edge. In the case
Machin = 1.2 (see in Figures 16–18), the zone of Mach > 1 flow increases towards both leading
and trailing edges. There is a normal shock created at trailing edge. The flow decelerates
over the shock, but remains supersonic. Moreover a normal shock is created ahead of the
object, and the only subsonic zone in the flow field is a small area around the object’s leading
edge.

5. Conclusion

In this paper we present an accurate method based on Cartesian mesh to deal with complex
geometry boundary for kinetic models set in a complex geometry. We desire to reconstruct
the distribution function f on some ghost points for computing transport operator. For this
we proceed in three steps: first we extrapolate the distribution function f on ghost points
for outflow. Then we use the boundary conditions to compute the inflow at the boundary.
Finally we implement an inverse Lax-Wendroff procedure to give an accurate approximation
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Figure 14. Temperature with Machin = 0.85
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Figure 15. Mach with Machin = 0.85

of f for inflow on the ghost points. A spatially one-dimensional example is given to show that
this method has second order accuracy in L1 norm. Moreover some 1D × 3D and 2D × 3D
illustrate that our method can reproduce the similar results as the ones in literature.
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