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The one-dimensional Coulomb lattice fluid in a capacitor configuration is studied. The model is for-
mally exactly soluble via a transfer operator method within a field theoretic representation of the
model. The only interactions present in the model are the one-dimensional Coulomb interaction be-
tween cations and anions and the steric interaction imposed by restricting the maximal occupancy at
any lattice site to one particle. Despite the simplicity of the model, a wide range of intriguing physical
phenomena arise, some of which are strongly reminiscent of those seen in experiments and numerical
simulations of three-dimensional ionic liquid based capacitors. Notably, we find regimes where over-
screening and density oscillations are seen near the capacitor plates. The capacitance is also shown
to exhibit strong oscillations as a function of applied voltage. It is also shown that the correspond-
ing mean-field theory misses most of these effects. The analytical results are confirmed by extensive
numerical simulations. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4740233]

I. INTRODUCTION

The physics of interacting Coulomb systems has been ex-
tensively studied for decades.1–3 Most of this study has been
concentrated on the statistical mechanics of electrolytes such
as salt solutions. While there still exists a number of outstand-
ing questions concerning the bulk thermodynamics of elec-
trolytes, there has been just as intense an effort to understand
how the presence of electrolytes modifies the interaction be-
tween charged surfaces, colloids, and macromolecules. The
underlying statistical mechanics problem being to date un-
solved, the study of these systems relies on the use of ap-
proximations. The simplest models of electrolytes are called
primitive models, where the ions are taken to be point-like
charges and the only interactions are electrostatic.

For these simple electrolyte models with charged inter-
faces, two regimes are now reasonably well understood and
their results have been validated numerically. The first is
the so called weak coupling regime where the mean-field or
Poisson-Boltzmann (PB) theory4 correctly describes the sys-
tem, ignoring fluctuations about the mean-field. These can
be taken into account to refine the accuracy of the results.
The PB theory is valid when the distance over which the
ions interact with each other (the Bjerrum length) is smaller
than the distance at which they interact with the charged sur-
face (the Gouy-Chapman length). From another mathematical
point of view the field theory describing interacting charged
particles can be analyzed in the saddle point approximation,5

and in the regime of its validity the fluctuations renormalize
the mean-field results improving its accuracy. The other lim-
iting regime is the so called strong coupling regime where
the problem can be treated within an effectively virial-like

expansion based upon the interaction of single particles with
the charged surface.6 This regime occurs when the Bjerrum
length is much larger than the Gouy-Chapman length, which
becomes the case as the valency of the ions increases. The
underlying instability in a point-like charge model due to the
pairing of anions and cations means that the strong coupling
approximation has only been applied to the counterion only
case in the presence of charged surfaces. The region between
these two limiting regimes is less well understood and a the-
ory extrapolating between the two is still lacking.

Results of calculations in these two limiting regimes do
not have to be made finite by invoking a finite size of the ions.
This is because (i) point charges are smeared out by the PB
approximation and (ii) as stated above, the strong coupling
approximation pertaining to the counterion only case, is ef-
fectively a one particle theory. However, it is clear that in cer-
tain circumstances steric effects due to the finite size of ions
will come into play, not only especially near highly charged
bounding surfaces but also in the bulk for systems composed
of large charged molecules such as room temperature ionic
liquids (RTILs). The presence of a new length scale given
by the molecular size now complicates the above discussion
of strong and weak coupling regimes, rendering the study of
RTILs much more complex than simple electrolyte models.

RTILs are fluids with large, asymmetric ions where steric
effects cannot be neglected. These liquids have a number of
practical technological applications;7 for instance, they are
used as electrolytes in fuel and solar cells as well as super-
capacitors. The study of bulk properties of ionic liquids was
stimulated by attempts to understand critical behavior of elec-
trolytes. Here, the effect of finite size ions needs to be taken
into account in order to regularize the model. The restricted
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primitive model incorporates hardcore effects in a continuum
context and can be studied via approximate methods from liq-
uid theory, for instance integral equations as well as field the-
oretic approaches.8–10 Another way to take into account the
finite size of ions is to restrict ions to points on a regular lat-
tice (for a historical sketch of lattice Coulomb fluids (LCF)
see11, 18) and forbid that there will be more than one parti-
cle at any given site.12–16 This is clearly a rather idealized
model since it assumes an underlying lattice structure which
will influence the thermodynamics of the system and also it
treats the effective molecular sizes of cations and anions as
the same.

The study of LCFs in the capacitor configuration is a
more recent subject of study. It is physically clear17 that the
size of the ionic species will restrict the maximal local charge
density that can be locally attained in a RTIL, for instance, the
counterion charge density near a highly charged surface will
have a maximal value at closest packing. In certain regimes,
therefore, we should expect a fundamentally different behav-
ior of ionic liquids at charged interfaces compared with aque-
ous electrolytes. Not withstanding this proviso, aspects of the
behavior of RTIL capacitors can be captured by a mean-field
treatment of the lattice Coulomb fluid model.17, 18 Qualita-
tively, the mean-field treatment of the LCF predicts that steric
constraints cause the capacitance of ionic liquids to decay at
large applied voltages (owing to the saturation of counterions
at the capacitor plates). At the point of zero charge (PZC) the
capacitance can exhibit a maximum and then decay mono-
tonically, however, in certain cases it can also be a local mini-
mum, increasing to a maximum value at finite charge and then
decaying (and is thus a non-monotonic function of applied
voltage). Which of these two capacitance behaviors is pre-
dicted by the mean-field theory depends on the lattice pack-
ing fraction.19 For dilute electrolytes the capacitance at PZC
is always a minimum,17 steric effects which reduce the capac-
itance only becoming important at higher voltages. The basic
LCF model also uses a rather simple description of the capac-
itor plates, neglecting dispersion interactions that will come
into play for ions near metallic electrodes and will influence
the behavior of ions even at zero applied voltage.20, 21 Taking
into account these dispersion effects, which essentially lead to
binding of discrete ions to their image charges in the metal-
lic plate, leads to significantly different predictions for ionic
distributions at the capacitor plates and consequently leads to
significantly enhanced capacitances. The effects of these in-
teractions improve the quantitative agreement between theory
and experiment.

At an experimental level, x-ray reflectivity,22 surface
force apparatus (SFA),23 and atomic force microscopy (AFM)
(Ref. 24) studies at charged interfaces show an alternating
charge distribution starting with an over-screening cationic
layer, at the negatively charged substrate, which decays
roughly exponentially into the bulk liquid with a periodicity
comparable with the size of ionic species.25 Similar results
are found in numerical simulations.19

The charge layering seen in experiments and simulations
is expected to be a generic feature of RTILs at sufficiently
strongly charged interfaces resulting from an interplay
between steric effects and strong electrostatic coupling.

While the phenomenology of the differential capacity is
described by the mean-field solution of the LCF model,19 the
over-screening and alternate charge layering at a capacitor
plate are not.

In order to explain overcharging and charge oscil-
lations, but staying within the mean-field approximation,
Bazant et al.26 proposed a phenomenological theory based
on a Landau-Ginzburg-like functional containing the stan-
dard LCF free energy27 but with an additional higher order
potential-gradient term, similar to what is found in Cahn-
Hilliard models. The origin of this higher order gradient term
can be justified28 via a decomposition of the Coulomb inter-
action into a long-distance mean-field-like component and a
non-mean-field strong coupling component.29 This alternative
interpretation of the origin of this phenomenological term as
a result of strong coupling or correlation effects leads to the
natural question as to whether it is the model or the approxi-
mation that needs to be modified to understand the physics of
these systems. The latter possibility suggests that a more de-
tailed non-mean-field analysis of the original Kornyshev LCF
model is appropriate. Therefore, in this paper, we study the
exact solution of the one-dimensional (1D) Coulomb fluid or
gas where all the physics of the basic LCF model can be ana-
lyzed. While the physics of this system will be different from
the 3D system, it is of interest because we can assess the va-
lidity of mean-field theory in this case by comparing it with an
exact solution. In addition, the 1D LCF corresponds to sheets
of charge (at discrete lattice sites), and as experimental results
and simulations suggest that a layering phenomena is present,
one might hope that this model does contain and possibly
explain some of the phenomena of the original 3D system.
Indeed we shall see that the phenomena of over-screening,
charge oscillations, and some of the more exotic behavior of
the capacitance of these systems are predicted by our exact so-
lution. The conclusion of the paper is that it is quite possible
that some of the physics of RTIL capacitors can be explained
by the LCF model if the model is properly treated at the math-
ematical level.

We thus propose an exact analysis, albeit in 1D, that
demonstrates the full physical phenomenology of the LCF
model, and in particular show that charge density oscillations,
over-screening, and oscillations in the capacitance emerge
naturally from this model without the introduction of any new
physical interactions. A short version of this work can be
found in Ref. 30, the version here fully details the calcula-
tions as well as presents a new mathematical analysis of the
exact solution, in particular to explain the surface charging
through a fixed applied voltage for large capacitor plates. The
physical properties of this system are discussed in greater de-
tail as well as the relationship between the exact result and
the corresponding mean-field theory. Finally, given the rather
rich and exotic behavior found in our analytical approach, we
have confirmed our analytic results by comparing them with
extensive Monte Carlo simulations of the 1D LCF.

II. ONE-DIMENSIONAL LATTICE COULOMB
FLUID MODEL

Here, we describe the one-dimensional LCF and show
how it can be formally solved exactly. The first exact
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solutions of the one-dimensional Coulomb fluid or gas are
due to Lenard and Edwards31 where the bulk properties of
a point-like model of ions was studied. The problem was then
analyzed in a more mathematical context,32 and the peculiar
dependence of the bulk free energy on the electric field ap-
plied to such a system was elucidated. Later the effective in-
teractions between charged surfaces in this model was studied
in the presence of counterions and co-ions,33 and with coun-
terions only.34 These studies were also used to benchmark
the range of validity of the various approximation schemes
(strong and weak coupling) discussed in the Introduction.
Here we present a formally exact solution to the LCF in one-
dimension based on a functional transfer matrix formalism
which can be used to extract all thermodynamical observables
to any required numerical precision.

A. Without external charges

We consider a one-dimensional system where sheets of
density σ * (cations) or −σ * (anions) can sit at points on a
lattice of size M and lattice spacing a. If we assume that
the system has an effective surface area A, the effective one-
dimensional Coulomb Hamiltonian can be written as

H = −Aσ 2
∗ a

4ε

M−1∑
i,j=0

|i − j |SiSj , (1)

where ε is the dielectric constant within the bulk of the ionic
liquid.

In the above, Si is a classical spin taking the value Si = 1
if there is a cation at lattice site i, Si = −1 if there is an anion,
and Si = 0 if it is empty. The basic 1D model is shown in
Fig. 1. We impose overall electroneutrality on the system
which means that

∑
iSi = 0 using the discrete Fourier rep-

resentation

δ∑
i Si ,0 = 1

2π

∫ π

−π

dψ exp

(
iψ

M−1∑
i=0

Si

)
. (2)

We work in the grand canonical ensemble where the grand
partition function can be written as

� = TrSi

⎡⎣μ
∑M−1

i=0 |Si |
∫ π

−π

exp

⎛⎝γ

2

M−1∑
i,j=0

|i − j |SiSj

+ iψ

M−1∑
i=0

Si

)
dψ

2π

]
, (3)

where μ is the fugacity of both types of ions (as the liquid is
symmetric between anions and cations). We have also intro-
duced the dimensionless parameter

γ = Aβσ 2
∗ a

2ε
, (4)

FIG. 1. Lattice Coulomb fluid model. Dark balls stand for cations and light
balls for anions. Boundary charges are at sites −1 and M.

which is the ratio of the electrostatic energy between two
ions at neighboring sites to the typical thermal energy
kBT = 1/β. Note that the overall charge of an ion in this nota-
tion is q = Aσ * and in this notation

γ = βq2a

2Aε
. (5)

In what follows, as the model is one-dimensional, we choose
units where A = 1 and refer to q as the charge of the cations
and anions. Above, the trace is over the spin values Si at each
site and the integral over the field ψ enforces the electroneu-
trality constraint. We notice that the integral over ψ may be
translated, it just has to run over an interval of length 2π . Car-
rying out a Hubbard-Stratonovitch transformation gives

exp

⎛⎝γ

2

M−1∑
i,j=0

|i − j |SiSj

⎞⎠
= N

∫
[dφ] exp

(
− 1

2γ

∫ [
dφ(x)

dx

]2

dx + i
∑

i

Sjφ(j )

)
,

(6)

where N is a normalization constant which can be determined
at the end of the computation imposing that the grand parti-
tion function without ions (μ = 0) should be equal to one.
The field φ is related to the electrostatic potential of the prob-
lem. The energy of a point charge qi in an electrostatic po-
tential V (x) is simply given by EES = qV (x) which for this
system gives a factor in the exponential Botlzmann weight
−βEES = −β

∑
i V (i)qi . Comparing with Eq. (6) now allows

us to identify the electrostatic potential up to an overall con-
stant C as

V (i) = i

βq
(φ(i) + C). (7)

Notably the potential drop across the system is given by

�V = V (−1) − V (M), (8)

where we include the sites −1 and M which represent the ca-
pacitor plates.

With electroneutrality, the integrand is invariant by a
translation of the field φ(x) → φ(x) + φ0. To keep the ex-
pression finite we must set φ0 by enforcing, say, φ(0) = 0.
Inserting this expression in the grand partition function, we
can easily perform the sum over the Sj which is no longer
coupled:

� =
∫ 2π

0

dψ

2π

∫
[dφ] exp

(
− 1

2γ

∫ [
dφ(x)

dx

]2

dx

)

×
∏
j

(1 + 2μ cos(φ(j ) + ψ)). (9)
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For this path integral, where the field φ propagates freely
between the integers, the propagator is known exactly∫ φ(j+1)

φ(j )
[dφ] exp

(
− 1

2γ

∫ j+1

j

[
dφ(x)

dx

]2

dx

)

= 1√
2πγ

exp

(
− (φ(j + 1) − φ(j ))2

2γ

)
. (10)

This now gives

� =
∫ 2π

0

dψ

2π

∫ ∏
j

dφ(j )√
2πγ

exp

⎛⎝−
∑

j

(φ(j + 1) − φ(j ))2

2γ

+
∑

j

log(1 + 2μ cos(φ(j ) + ψ))

⎞⎠ . (11)

Finally we can rescale the variables φ(i) + ψ → φ(i) in the
above integral to give

� = 1

2π

∫ ∏
j

dφ(j )√
2πγ

exp

⎛⎝−
∑

j

(φ(j + 1) − φ(j ))2

2γ

+
∑

j

log(1 + 2μ cos(φ(j )))

⎞⎠ . (12)

All integrals here are for φ(i) for i ≥ 1 over the interval
(−∞, ∞) but the integral over φ(0) is over (− π , π ).

B. With charges on the boundaries or constant
applied voltage

Charges can be put directly on the boundaries of our sys-
tem by inserting a charge qQ on the site −1 and −qQ on the
site M. To obtain the partition function with these charges, we
just have to add iQ(φ(− 1) − φ(M)) in the exponential in (12)
and extend the integration to over φ(− 1) and φ(M), where
we again restrain the integral over the field φ(− 1) at the first
site, which is now at i = −1, to be over (− π , π ) . This gives
the grand partition function at fixed external charges

�Q = 1

2π

∫ ∏
j

dφ(j )√
2πγ

exp

⎛⎝−
∑

j

(φ(j + 1) − φ(j ))2

2γ

+
∑

j

log(1 + 2μ cos(φ(j ))) + iQ(φ(−1) − φ(M))

⎞⎠ .

(13)

The grand potential is defined as

�Q = −β−1 log(�Q) = β−1ωQ, (14)

with ωQ being the dimensionless grand potential.
In this capacitor setup we study the differential capaci-

tance

C = q
∂Q

∂�V
, (15)

and for simplicity we work with dimensionless quantities: the
reduced potential

v = βqV = −iφ, (16)

and the reduced capacitance

c = ∂Q

∂�v
. (17)

We can also impose a potential drop and look at its effect
on the charges on the boundaries. To obtain the correspond-
ing partition function, we have to restrict the integration in
Eq. (12) only to be over fields satisfying

�V = i(φ(M) − φ(−1))

βq
, (18)

or in terms of the dimensionless quantities

φ(−1) − φ(M) = i�v. (19)

We now note that this constraint can be imposed via a delta
function written as a Fourier integral

δ(φ(−1) − φ(M) − i�v)

= 1

2π

∫
dQ exp(iQ(φ(−1) − φ(M) − i�v). (20)

The partition function and the grand potential at fixed poten-
tial difference can then be written, up to an unimportant factor
of 2π , as

��v = exp(−ω�v) =
∫

dQ exp(Q�v − ωQ). (21)

The interpretation of this equation is clear: the system is now
free to accumulate charge at the plates in order to hold the
potential constant. This result is in accordance with standard
thermodynamic relations and is exploited in numerical simu-
lations of systems with fixed voltage drops across them.35

There is a clear difference between the two ensembles. In
the constant charge ensemble the potential drop �v is a fluc-
tuating quantity and from Eq. (19) its average value is given
as

〈�v〉Q = 〈−i(φ(−1) − φ(M))〉 = ∂ωQ

∂Q
. (22)

However, in the constant potential ensemble the surface
charge Q is a fluctuating quantity whose average value is
given by

〈Q〉�v = −∂ω�v

∂�v
. (23)

For each ensemble we have a corresponding differential ca-
pacitance. At fixed Q we have

cQ = ∂Q

∂〈�v〉Q , (24)

and at fixed �v we have

c�v = ∂〈Q〉�v

∂�v
. (25)

In the latter, constant potential, ensemble we have a sim-
ple fluctuation dissipation relation relating the capacitance at
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constant voltage to the fluctuations of the charge on the ca-
pacitor plates:

c�v = 〈Q2〉�v − 〈Q〉2
�v ≥ 0. (26)

We should note here that one of the first explanations of
double layer capacitance is due to von Helmholtz38 who as-
sumed that the surface charge could be neutralized exactly by
a layer of ions at a distance r from the surface, where r is the
effective ionic radius of the ions (assumed to be the same for
both cations and anions). Applying this to our model (note
that complete neutralization will not always be possible) we
find a dimensionless Helmholtz capacitance

cH = 1

4γ
, (27)

where in this non-fluctuating case cQ and c�v are the same.
This Helmholtz capacitance sets an intrinsic scale of capaci-
tance in the model studied here.

A reminder of the symbols used in the mathematical de-
velopment is given in Appendix.

III. MEAN-FIELD APPROXIMATION

In the mean-field approximation, we compute the par-
tition function by the saddle-point approximation, minimiz-
ing the argument of the exponential function. In Eq. (12),
this gives the following equation for the potential (we write
vj = v(j )):

2vj − vj+1 − vj−1

γ
+ 2μ sinh(vj )

1 + 2μ cosh(vj )
= 0. (28)

The reduced grand potential (measured in units of kBT) is then
given as

ω = − ln[�] =
∑

j

(vj+1 − vj )2

2γ

−
∑

j

log(1 + 2μ cosh(vj )). (29)

When the boundaries carry no charge or the applied potential
�v = 0, the solution to this equation is obvious: vj = 0. Then
the pressure is easily obtained to be

p = βP = −δωM

δM
= log(1 + 2μ), (30)

where the above is a discrete derivative and the formula is
valid in both the constant Q and constant �v ensembles. In
this expression, we note that the charge carried by the particles
does not enter in the pressure which is, of course, due to the
mean-field approximation in the bulk.

In the case of a constant applied potential the boundary
condition is simply given by v−1 − vM = �v. In the presence
of charges on the boundary the fact that the system is globally
electroneutral means that the electric field is zero outside the
system giving v0 − v−1 = vM − vM−1 = γQ.

Within the mean-field approximation the local the charge
density is given by

〈Sj 〉 = − 2μ sinh(vj )

1 + 2μ cosh(vj )
. (31)

There is a slight difference between this mean-field ap-
proximation and that found in Refs. 17, 19, and 27, where the
continuous limit a → 0 with the maximal density q/a = ρ0

kept constant is taken. In this continuum approximation, in
dimensionful quantities the mean-field equation becomes

ε
d2V (x)

dx2
= ρ0

2μ sinh(βqV (x))

1 + 2μ cosh(βqV (x))
. (32)

This limit is legitimate if the potential varies slowly compared
to the length a, but is not correct in the general case.27 In or-
der to compare the mean-field theory with the full underlying
model, we numerically solve the finite difference equations
to make as thorough a comparison as possible between the
mean-field theory and our exact solution.

IV. EXACT COMPUTATION

In what follows, in order to lighten the notation, we de-
note yi = φ(i). We define the operator

p(y, y ′) = 1√
2πγ

exp

(
− (y − y ′)2

2γ

)
, (33)

and also its operator square root

p1/2(y, y ′) = 1√
πγ

exp

(
− (y − y ′)2

γ

)
, (34)

which obeys∫
dy ′p1/2(y, y ′)p1/2(y ′, y ′′) = p(y, y ′′). (35)

With these definitions the grand partition function in the con-
stant Q ensemble can be written as

�Q =
∫

dy−1(1 + 2μ cos(y0))
M∏

j=0

dyjp(yj−1, yj )

× (1 + 2μ cos(yj )) exp(iQ(y−1 − yM )), (36)

where the integral over y−1 is over (− π , π ) and the other
integrals are over (− ∞, ∞). Mathematically, it is now con-
venient to introduce the symmetric operator

K(y, y ′) =
∫

p1/2(y, z)(1 + 2μ cos(z))p1/2(z, y ′)dz, (37)

using which we may write

�Q = 1

2π

∫ π

−π

dx exp(iQx)[p1/2KMp1/2] exp(−iQx),

(38)

where we have used operator notation of the form

Of (y) ≡
∫ ∞

−∞
O(y, y ′)f (y ′)dy ′, (39)
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for the operators O which are K and p1/2 in the above. Now, if
we define the function

�Q(x) = 1√
2π

p1/2 exp(−iQx), (40)

we can write

�Q =
∫ π

−π

dx �
†
Q(x)[KM�Q](x) ≡ 〈�Q|KM |�Q〉. (41)

The computation of the local dimensionless charge at the
site i is carried out as follows. Carrying out the trace of the
spins, once decoupled, we have∑

Si=±1

Si exp(iφiSi) = 2i sin(φi), (42)

and we thus find that

〈Si〉 = 〈�Q|KiLKM−i−1|�Q〉
〈�Q|KM |�Q〉 , (43)

where

L(y, y ′) = 2iμ

∫
dz p1/2(y, z) sin(z)p1/2(z, y ′). (44)

For practical computations it is best to analyze the action
of the various operators K and L on functions decomposed
in term of Fourier modes. We define a Q-dependent class of
functions as the vector space of functions having the Fourier
representation

f (x) =
∑

k∈Z−Q

f̃k exp(ikx). (45)

We see that the classes where Q has the same non-integer part
are the same. The function �Q is of Q class as

p1/2 exp(−iQx) = exp

(
−γQ2

4

)
exp(−iQx), (46)

and thus

�̃Q,k = 1√
2π

exp

(
−γQ2

4

)
δk,−Q. (47)

In this representation we then have

Kf (x) =
∑

k

K̃f k exp(ikx), (48)

with

K̃f k = exp(−γ k2/4)
(
exp(−γ k2/4)f̃k

+μ

[
exp

(
−γ (k − 1)2

4

)
f̃k−1

+ exp

(
−γ (k + 1)2

4

)
f̃k+1

])
. (49)

Similarly in the same representation we have for the charge
density operator L

L̃f k = μ exp

(
−γ k2

4

) (
exp

(
−γ (k − 1)2

4

)
f̃k−1

− exp

(
−γ (k + 1)2

4

)
f̃k+1

)
. (50)

In terms of matrix elements we can then write

K̃k,l = exp

(
−γ [k2 + l2]

4

)
(δk,l + μ[δk,l−1 + δk,l+1]), (51)

L̃k,l = μ exp

(
−γ [k2 + l2]

4

)
(δk,l+1 − δk,l−1). (52)

The grand partition function now reads

�Q = exp

(
−γQ2

2

)
〈cQ|K̃M |cQ〉, (53)

where the surface charge vector |cQ〉 has components c̃Q,k

= δQ,−k . The local charge density at site i is then given by

〈Si〉 = 〈cQ|K̃iL̃K̃M−i−1|cQ〉
〈cQ|K̃M |cQ〉 . (54)

The above expressions are formally exact and are given in
terms of infinite dimensional matrices. In practice, we now
need to numerically evaluate the expressions in order to obtain
the exact thermodynamics of the model. In practice, we see
that modes with large n are exponentially suppressed and thus
we can truncate the matrices involved at sufficiently large n.

A. Other formulation and limit of highly
charged boundaries

From another point of view, the representation above
presents a way of examining the problem in the strong cou-
pling limit as a discrete path integral. The matrix products in-
volved can be expressed over a discrete path integral of a dis-
crete random walker Xn which at each step changes by �Xn

= ±1 or �Xn = 0. This corresponds, respectively, to the pres-
ence of cations, anions, or holes. The grand potential at fixed
charge Q can be written as

�Q =
∑

X−1=0,XM=0

exp

(
−

∑
n

γ

2
(Xn − Q)2

+ ln(μ)
∑

n

(Xn − Xn+1)2

)
, (55)

where the initial and final points of the process Xn are fixed at
zero. This representation is essentially a 1D Coulomb lattice
gas version of the Villain representation for the 2D Coulomb
gases36, 37 and is also related to the electric field representation
of the Coulomb gas used by Aizenman and Fröhlich.32 In the
limit of large γ it is clear that the process Xn will be dominated
by paths which start at zero and then stay as close as possible
to the value Q. If we define by θ the maximal distance that
Q is from an integer we can write Q = nQ + θ , where by
definition θ ∈ [−1/2, 1/2] and nQ is integer. For large γ the
process Xn will increase from X−1 = 0 to XnQ−1 = nQ and
similarly descend from this value when it is at distance nQ

from the end of the path m = N. These initial and final parts
of these paths have an interface contribution to the action S of
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�Q (where we have defined �Q = exp (S))

Sinit = −γ

nQ∑
n=0

(Q − n)2 + 2 ln(μ)nQ

= −γ

nQ∑
n=0

(n + |θ |)2 + 2 ln(μ)nQ. (56)

This first term is independent of M and is not extensive in the
system size, it can thus be identified with a surface term in
the free energy. Now, in the bulk there are two possibilities:
the first is where γ � ln (μ) − 1 and in this case it is not
energetically favorable to depart from the optimal value nQ,
the effective bulk action thus being

Sbulk = −γ

2
(M − 2nQ)θ2. (57)

We thus see that in this limit the bulk free energy depends
strongly on the surface charge. In the limit of large γ but
where ln(μ) � γ

2 θ2, the system reduces its action by permit-
ting charge oscillations about the optimal value nQ, giving a
bulk action of

Sbulk ≈ −γ

4
(M − 2nQ)(θ2 + (1 − |θ |)2] + (M − 2nQ) ln(μ).

(58)

This unusual dependence of the bulk thermodynamics on sur-
face terms can be seen in an alternative manner. In the limit
of large M the thermodynamics in the constant Q ensemble is
dominated by the eigenvector |λ0(Q)〉 of maximal eigenvalue
λ0(Q) of the operator K̃ (thus K̃|λ0(Q)〉 = λ0(Q)|λ0(Q)〉).
The partition function in the constant Q ensemble obeys in
this limit

ln(�Q) = −γQ2

2
+ M ln(λ0(Q)) + ln(〈λ0(Q)|cQ〉2). (59)

The subtle point in Eq. (59) is that the largest eigenvalue and
eigenvector actually depend on Q. This phenomenon occurs in
the ordinary continuum one-dimensional Coulomb fluid with-
out hardcore interactions, the thermodynamic limit thus de-
pends on the boundary term. Physically this is related to the
long range nature of the one-dimensional Coulomb interac-
tion and in terms of field theory the ground states or θ -vacua
depend on the boundary terms.32 The system is thus sensitive
to the ability of the counterions to completely screen the sur-
face charges and from our discussion above the eigenvectors
and eigenvalues of K̃ depend on the non-integer part of Q.
If one is in the strong coupling regime one may truncate the
transfer matrix K̃ by keeping just the site nQ and its neigh-
bors. This gives the truncated matrix

K̃t = exp
(
−γ

2
θ2

) ⎛⎜⎝ exp
(− γ

2 (1 + 2|θ |)) μ exp
(− γ

4 (1 + 2|θ |)) 0

μ exp
(− γ

4 (1 + 2|θ |)) 1 μ exp
(− γ

4 (1 − 2|θ |))
0 μ exp

(− γ

4 (1 − 2|θ |)) exp
(− γ

2 (1 − 2|θ |))
⎞⎟⎠. (60)

In the limit of finite μ but large γ , and when θ �= 0 (more precisely when ln (μ) − 1 � γ θ ), we see that the matrix K̃ can be
approximated as

K̃t ≈ exp
(
−γ

2
θ2

) ⎛⎜⎝ 0 0 0

0 1 0

0 0 0

⎞⎟⎠, (61)

and, in agreement with our argument above about dominant paths, we see that in this regime we have

ln(λ0(Q)) ≈ −γ

2
θ2. (62)

This means that at relatively small values of μ integer values of the surface charge are thermodynamically preferred and thus
in the constant potential ensemble we should see plateaus of roughly constant integer charge in the average surface charge as
a function of applied voltage. However, still in the strong coupling limit of large γ but close to fulfilling where μexp (− γ /2)
� 1, we have

K̃t ≈ exp
(
−γ

2
θ2

) ⎛⎜⎝ 0 μ exp
(− γ

4 (1 + 2|θ |)) 0

μ exp
(− γ

4 (1 + 2|θ |)) 0 μ exp
(− γ

4 (1 − 2|θ |))
0 μ exp

(− γ

4 (1 − 2|θ |)) 0

⎞⎟⎠, (63)

and for non-zero θ we thus obtain

ln(λ0(Q)) ≈ −γ

2

[(
|θ | − 1

2

)2

+ 1

4

]
+ ln(μ), (64)

again in agreement with our discussion about dominant paths.
Furthermore, this shows that for large μ and thus high filling
or density, half integer values of the surface charge are ther-
modynamically selected, and consequently the applied volt-
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age vs. the average surface charge as a function of applied
voltage should exhibit plateaus at half integer values of Q.

Building on these arguments, we can evaluate the value
of μ where the transition occurs. Let us compare the cases
θ = 0 and θ = 0.5, choosing only the paths of maximal
weight. When θ = 0, the path of maximal weight stays at
Xn = 0 and gives λ0(θ = 0) � 1. When θ = 0.5, the path of
maximal weight oscillates freely between Xn = 1/2 and Xn =
−1/2, leading to the eigenvalue λ0(θ = 0.5) � exp (− γ /8)(μ
+ 1). The half-integer value is preferred when λ0(θ = 0.5) >

λ0(θ = 0), i.e., when

μ > exp(γ /8) − 1. (65)

This approximate result is compared with numerical compu-
tations later.

In the fixed Q ensemble our approximate results and
Eq. (22) yield the following results for the voltage drop in
the strong coupling and thermodynamic limit:

〈�v〉Q = Mγθ for γ θ2 � ln(μ) (66)

= Mγ

(
θ − 1

2
sign(θ )

)
for γ θ2 � ln(μ). (67)

Note that when θ is small and M is finite, the boundary terms
coming from Sinit will dominate and the potential drop will
only be weakly dependent on the system size. Interestingly,
we see that this extensive contribution to the free energy os-
cillates. In the limit where there are few ions (thus small μ)
we see that the potential drop has the same sign as θ . How-
ever, when there are many ions (large μ) the potential drop
has a sign opposite to that of θ .

We emphasize that these results depend on the assump-
tion that γ is large, for instance at low temperature. The oscil-
latory effects seen here should weaken as the temperature is
increased, however, their underlying presence should remain
visible. We also note that they should vanish when θ is zero
(i.e., for integer Q) but should be maximal when θ = ±1/2.

In the constant voltage ensemble the system can mini-
mize its bulk electrostatic energy by tuning the surface charge
to be integer of half integer, depending on the filling. This
observation thus predicts the appearance of a plateau like be-
havior in the charge as a function of the applied potential drop
�v. If we assume that the voltage is very large and thus the
surface charge is large, effective action in the constant V en-
semble is dominated by the interface term Eq. (56), and we
find

S = −γ
∑

n=0,Q

n2 + 2 ln(μ)Q + Q�v

= −γ

6
(2Q + 1)(Q + 1)Q + 2 ln(μ)Q + Q�v. (68)

In the limit of large �v, minimization of the above action then
leads to the scaling law

Q�v ∼ |�v/γ | 1
2 . (69)

To see when this result is valid, that is to say when we can
ignore the bulk term, we compare the order of magnitude
of the derivative of the action Eq. (68) with respect to Q at

Q = |�v/γ | 1
2 with the derivative with respect to Q (or θ ) of

the θ dependent part of the bulk term. The derivative of the
interfacial term scales as �v where as that of the bulk term
scales as γ M. We thus see that in order to attain this regime,
one must go to very large voltages for large system sizes, or
alternatively very weak coupling constant γ .

However, we cannot apply the same reasoning for the
capacitance. Naively, differentiating the asymptotic result
Eq. (69) gives

c�v ∼ 1/2γ |�v| 1
2 , (70)

in accordance with mean-field theory Kornyshev limiting
law.17 However, the term coming from the bulk is of order M
and is oscillating. Thus the bulk term oscillations will persist
for large �v. This is a somewhat subtle point, however, we
note that the total capacitance defined via cT

�v = Q/�v does
obey the Kornyshev limiting law. We come back to this point
while discussing the results of the numerical computations.

V. NUMERICAL COMPUTATION

We have, in principle, a formal solution to the thermody-
namics of the LCF capacitor and explicit analytic results can
be obtained in certain regimes. In general, however, the parti-
tion function needs to be computed numerically. This is quite
straightforward as matrix elements K̃k,l decay exponentially
when k and l are large. It is, nevertheless, important to keep
matrix elements around k, l = −Q , as these are necessary in
order to interact with the boundary term. We must thus keep
modes k ∈ [ − (N − 1)/2 − Q, (N + 1)/2 − Q], where the trun-
cation value N is an odd integer. The criteria that the matrix
elements neglected by this truncation are small means that we
must choose exp (−γ k2/4) to be small when k = ±(N − 1)/2
− Q. Practically, the numerical evaluation is extremely fast
and the dependence on N can be eliminated by increasing N
until no difference in the numerical results is seen.

In the following numerical results, almost all the parame-
ters are set to 1, except if the effect of their variation is studied.
We thus have a = 1, A = 1 q = 1, β = 1, ε = 1, μ = 1. With
this choice of parameters, taking μ = 1 corresponds roughly
to half-filling).

A. Free energy for charged boundaries

In Fig. 2, we plot the reduced grand potential ωQ as a
function of the size of the system for two values of the charge
fixed at the boundaries, for the exact solution and the mean-
field approximation. The dimensionless pressure is defined as
pM+ 1

2
= ωM − ωM+1. We observe that

� The free energy quickly turns linear. This asymptotic
regime is reached for M ∼ 2Q, implying that the struc-
tures of the surface layers do not significantly change
once the system contains enough charge to screen the
two charged boundary plates. In this regime of large
plate separations, the pressure converges to a constant,
which is the bulk pressure, pb = limM→∞ pM+1/2. We
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FIG. 2. Dimensionless grand potential as a function of the system size for
γ = 1 and μ = 100.

can then define the free enthalpy,

g = ω + Mpb, (71)

which is presented in Fig. 3; its derivative with re-
spect to plate separation gives the disjoining pressure,
pd = p − pb.

� The bulk pressure depends on the boundary charge
with periodicity one (in accordance with our analy-
sis above). However, the dependence is rather weak
and can only be seen in systems containing more than
104 sites.

� The interaction between the boundary plates is attrac-
tive when the separation is small, becoming repulsive
when the size becomes larger than ∼2Q. This is phys-
ically easy to explain: at large separations, the charges
are completely screened by the ions. However, as in
dilute electrolyte systems, there is a slight excess os-
motic pressure due to the screening layers that are
drawn into the system which gives a (weak) positive
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FIG. 3. Dimensionless free enthalpy as a function of the system size for
γ = 1 and μ = 100.

pressure at large plate separations. On the other hand,
when the plates are close to each other, there is not
enough space for ions to enter and screen them, they
thus attract each other simply because of their opposite
charge. The disjoining pressure goes to zero at large
distances.

� We find that having an even number of sites is thermo-
dynamically favorable compared with an odd number
of sites. This behavior is smoothed out as the size in-
creases and is not seen in the mean-field approxima-
tion. The physical interpretation is very simple: sys-
tems with an odd number of sites cannot be completely
filled, because of the electroneutrality condition, that
induces a high free energy cost when μ is large
(μ = 100 in these plots). When the system becomes
large, this effect is not important, because full config-
urations do not dominate the partition function.

� On the mean-field level, the general shape of the grand
potential remains unchanged, but the oscillations be-
tween even and odd numbers of sites disappear. The
bulk pressure is also different: it is slightly higher in
the mean-field approximation.

We note here that the bulk pressure is a fundamental
quantity that can be computed directly from the largest eigen-
value of the transfer matrix K,

pb = log(λ0). (72)

B. Average potential drop for fixed surface charges

Here, we compute numerically 〈�v〉 for fixed charge
Q for a large system (M = 104). Our results are shown in
Fig. 4.

The exact result can be split into two parts: a monotonic
part almost equal to the mean-field result, and an oscillating
part. As predicted by our analytical treatment the oscillating
part is extensive. The mean-field result and the monotonic part
of the exact result do not depend on the size of the system if
it is large enough.

The mean-field result is again simple to explain: the sur-
face charges are screened by a layer of cations and anions lo-
calized near the electrodes, in which the voltage drop takes

0 2 4 6 8
Q

−40

0

40

80

120

Δ
v

FIG. 4. Average potential drop as a function of the imposed charge for
γ = 1 and μ = 1 and system size 104.

Downloaded 12 Sep 2012 to 147.210.24.83. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



064901-10 Démery et al. J. Chem. Phys. 137, 064901 (2012)

0 20 40 60 80 100
Δv

0

2

4

6

8

10

Q

0 20 40 60 80 100
Δv

0

2

4

6

8

10

Q

FIG. 5. Left: Average surface charge as a function of the imposed voltage, for γ = 1 and μ = 1 with system size 104. Right: Average surface charge as a
function of the imposed voltage, for γ = 1 and μ = 0.5 with system size 104.

place. These layers screen the surface charges so that the
charge due to each plate seen by the bulk is zero, and thus
the bulk electric field vanishes. This explains the absence of
an extensive part in the potential drop. The oscillating, ex-
tensive part in the exact result means that the charges are not
perfectly screened. As Q varies, the effective charge Qeff(Q),
corresponding to the imperfect screening, oscillates with pe-
riod 1, as predicted by our analytical results above.

C. Average charge for fixed potential difference

The average boundary charge is shown as a function of
the applied voltage in Fig. 5. The exact result increases in
the same way as the mean-field result, but when the voltage
becomes large, plateaus are observed in the average charge,
located at half-integer or integer values (Fig. 5) depending on
the parameters γ and μ. The plateaus show up only for large
systems and they are smoothed out for small systems.

The change in the plateau locations is due to the fact that
integer surface charges are more stable at low μ, whereas half-
integer charges are favored at high μ as we have shown in the
large γ limit in Eqs. (62) and (64), which show explicitly that
the largest eigenvalue of the transfer matrix, and thus the bulk
pressure, depends on Q. We have shown the difference of the
bulk pressure between Q = 0 and Q = 0.5 in Fig. 6, and com-
pared it to the approximate transition line (65). The surface
charge Q = 0 is favored for small values of μ (dilute regime)
and the surface charge Q = 0.5 is favored for large values of
μ (dense regime). This change in the plateau positions has
an interesting effect on the capacitance near the point of zero
charge and is addressed in Sec. V D.

D. Capacitance

We computed the capacitance as a function of the voltage
for a large system (M = 104) and for different values of the
parameters μ and γ . Two phenomena appear in the behavior
of the capacitance:

� The capacitance can show multiple oscillations which
increase in number as the coupling γ is increased and
as the applied voltage �v is increased.

� These oscillations seem to be superimposed upon a
trend predicted by mean-field theory with underlying
bell and camel-like shapes, the former with a maxi-
mum at zero applied voltage and the latter exhibiting a
minimum.

Examples are shown in Fig. 7. We see that the peaks ap-
pear at low temperatures (high γ ), and the camel-like peak ap-
pears at low densities (low μ) in accordance with mean-field
theory.17 The peaks are related to the plateaus in the average
charge, so they are reduced when the system gets smaller.

The exact results are compared to the mean-field re-
sults for the bell and camel (Fig. 8) shaped capacitance. The
mean-field capacitance exhibits the same behavior, without
the peaks, which is consistent with the absence of plateaus.
They also strongly resemble the capacitance appearing in
Ref. 17. We also plot the capacitance curve when μ increases,
for γ = 1, in Fig. 9 which shows the transition between the
camel shape and the bell shape.

The peaks in the capacitance seem in contraction with the
scaling law, Eq. (70). However, we have noted that in large

µ
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FIG. 6. Difference of the bulk pressure as a function of the parameters γ and
μ. Contour line where λ0(Q = 0) = λ0(Q = 0.5) (blue solid line) compared
with the approximate transition line (65) (red dashed line).
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FIG. 7. Left: Capacitance as a function of the voltage drop for μ = 1: appearance of the peaks as γ increases for a bell shaped capacitance. Right: Capacitance
as a function of the voltage drop for μ = 0.03: appearance of the peaks as γ increases for a camel shaped capacitance. The system size is 104.

systems, because of the fluctuations, this law may not hold
and should be replaced by the charge scaling law, Eq. (69).

We now discuss the implication of the change in the
plateau positions. When they are located at integer charges,
the PZC, Q = 0, corresponds to a plateau; the surface charge
will thus respond very slowly to changes in the imposed volt-
age and the capacitance is expected to be small. On the other
hand, when the plateaus are located at half integer charges,
the PZC lies between two plateaus and the capacitance is ex-
pected to be large. In the thermodynamic limit, when the sys-
tem size goes to infinity, we thus may even expect a sharp
phase transition. We plot the capacitance at the PZC as a func-
tion of μ in Fig. 10; we indeed see a phase transition, which
becomes sharper as temperature decreases.

A final point that should be mentioned is that the capac-
itance in the exact solution can exceed the Helmholtz capaci-
tance cH.

E. Charge density

The charge density versus the position is plotted on
Fig. 11; we show only the charge density close to the left
boundary, the same profile with opposite charge is found close
to the right boundary. It shows a counterion layer with a size
corresponding to the charge Q.

If we increase the density (μ > 1) for a non-integer
charge Q, the charge density shows oscillations, as is seen on

Fig. 12, corresponding to the ion layers as observed in Ref.
22. The phenomenology exhibited is:

� The amplitude of the oscillations varies continuously
with the charge: it is maximal for half-integer charges
and zero for integer charges, which is physical be-
cause an integer charge can be screened perfectly, cf.
Fig. 13.

� The mean-field result does not show oscillations (as
can be seen in Refs. 17 and 27): they are thus a basic
outcome of the exact result.

� We show these oscillations on a larger length scale in
Fig. 12. The oscillations are damped with a character-
istic length ξ , which increases with μ, and we notice
that ξ ∼ μ. Actually, the two highest eigenvalues of
the transfer matrix K, λ0, and λ1, define a correlation
length via ξ = (ln |λ0/λ1|)−1. An analytic computation
for three Fourier modes, for one mode Q = 0 and for
two modes Q = 0.5, indeed gives ξ ∼ μ.

� The physical idea is that each boundary (left and right)
creates such oscillations. On the plots described above,
these oscillations sum up, because there is an even
number of sites in the system. If there is an odd num-
ber of sites, the sum of the oscillations coming from
the left and right boundary is destructive, as shown in
Fig. 14. This effect is obviously irrelevant for large
(experimental) systems where M � ξ .
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FIG. 8. Left: Capacitance as a function of the voltage drop for μ = 1 and γ = 1. Right: Capacitance as a function of the voltage drop for μ = 0.03 and
γ = 0.3. The system size is 104.
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FIG. 9. Capacitance as a function of the voltage drop for γ = 1 and different
values of the fugacity. The system size is 104.

We also note that if the charge on the boundary is small,
the ionic densities do not saturate, which is not in agreement
with what is found in Ref. 27 on the continuous mean-field
level.

It can also be seen in the exact result that the surface
charges are not necessarily perfectly screened (on average)
by the ions. This can be established by integrating the aver-
age charge in the fluid over the first half of the space (which
contains the left layer) which does not always give −Q. The
average screening is perfect only when Q is integer or half-
integer.

The phenomenon of over-screening can be seen in
Fig. 15. In the exact treatment, and for high densities, the
charge of the first layer may be higher than the boundary
charge, and thus over-screens it. However, no over-screening
can be seen in the mean-field approximation. We should also
emphasize that over-screening is not a necessary condition
to observe charge oscillations, e.g., oscillations exist for γ

= 1 and μ = 3 (cf. Fig. 12), a case where there is no over-
screening.

VI. NUMERICAL SIMULATIONS

Because of the intricacies observed in the behavior of this
system we deem it advisable to check the theoretical results
against simulation. In this section, we present a selection of
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=
0)

γ = 1

γ = 2

γ = 3

FIG. 10. PZC capacitance as a function of μ for different values of γ , for an
infinite system.

simulation results which cover the different aspects of the
1D LCF. The simulation is performed directly with the spin
formulation and so the comparison serves also as a check of
the Hubbard-Stratonovich transformation to the formulation
in terms of the field potential φ. In all cases agreement be-
tween theory and experiment is absolutely excellent.

We can consider both the canonical and grand-canonical
ensembles but concentrate here on the grand-canonical en-
semble which is appropriate to the scalar field reformulation.
We simulate both for the constant Q and constant �v ensem-
bles which are related by the usual Legendre transformation.
From earlier, on a lattice with M sites, we have

βH0 = −γ

4

M−1∑
i,j=0

|i − j |SiSj

βH = βH0 + γ uQ + 1

2
γQ2(M + 1), (73)

where u = ∑M−1
i=0 iSi . For the fixed Q grand ensemble with

chemical potential μ the partition function is

�Q =
∑
{Sp}

exp

(
−βH − log μ

∑
i

|Si |2
)

, (74)
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FIG. 11. Left: Charge density close to the left electrode (located at x = −1) as a function of the position for γ = 1, μ = 1, and Q = 1. Right: Charge density
close to the left electrode (located at x = −1) as a function of the position for γ = 1, μ = 1, and Q = 4.25. The system size is 80.
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FIG. 12. Left: Exact result for the mean charge density close to the left electrode (located at x = −1) as a function of the position for γ = 1, μ = 1, and
Q = 0.5, for different values of the fugacity. Right: Exact result for the mean charge density as a function of the position for γ = 1, μ = 1, and Q = 0.5, for
different values of the fugacity. The system size is 80.
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FIG. 13. Exact result for the mean charge density as a function of the position
for γ = 1 and μ = 100, for different values of the boundary charge. The
system size is 80.
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FIG. 14. Exact result for the mean charge density as a function of the position
for μ = 1000 and Q = 0.5, for an odd number of sites (M = 81).

and for the fixed �v grand ensemble the partition function is

��v =
∫

dQ �Q exp(Q�v)

=
∑
{Sp}

exp

(
−βH0 + 1

2

(�v + u)2

γ (M + 1)

)
, (75)

where �v is the fixed potential difference between the plates
in the appropriate units.

The update is done using the Metropolis algorithm. We
select a pair of neighboring spins Si, Si + 1 at random. If |Si

+ Si + 1| = 2 then no update is possible because of charge
conservation and we select a new pair. In the case |Si + Si + 1|
< 2, we suggest an update of the pair which respects charge
conservation but is otherwise chosen with equal probability;
this preserves detailed balance. We choose this probability
to obtain an efficient acceptance rate. The suggested update
is accepted/rejected using the standard Metropolis procedure.

0.0 0.2 0.4 0.6 0.8 1.0
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−
ρ
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FIG. 15. Mean charge density ρ0 of the first layer as a function of the surface
charge Q for γ = 1 and μ ∈ {3, 10, 100} (the two big arrows indicate the
change when μ increases). The system size is 500.
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FIG. 16. Left: Theory and simulation for mean charge 〈Q〉 versus �v for γ = 1, μ = 1 on a lattice with M = 128. Right: Theory and simulation for mean
voltage difference 〈�v〉 versus Q for γ = 1, μ = 1 on a lattice with M = 1024.

One lattice update consists of M pair updates. We typically
perform of order 105–106 lattice updates to establish equilib-
rium and then measure the operator under consideration every
subsequent lattice update and compute the average at the end
of the run. We typically use 105–106 measurement lattice up-
dates. All calculations were performed on multiple processor
machines, each processor of which was used to carry out an
independent simulation of the kind described here. The grand
average over the independent simulations was taken and the
error computed from the variance of the distribution of the
individual processor averages. We used both a 12 core In-
tel desktop computer and also an NVIDIA Tesla GPU with
512 cores. Results from both these computers agree very well
indeed.

In Fig. 16, we show 〈Q〉 versus �v in the �v ensemble
for γ = 1, μ = 1, M = 128. We have

〈Q〉 = ∂

∂(�v)
log ��v = �v + γ 〈u〉

γ (M + 1)
. (76)

The graph in the figure shows that theory and simulation agree
very well. On the same figure we also show 〈�v〉 versus Q in
the Q ensemble for γ = 1, μ = 1, M = 1024. Here we have

〈�v〉 = − ∂

∂Q
log �Q = γ ((M + 1)Q − 〈u〉) . (77)

Again the agreement of simulation with theory is extremely
good.

In Fig. 17, we show the mean charge density ρ versus x
the distance in lattice units, a, from the left-hand plate which
carries charge Q = 0.5 and is located at x = −1. This is in the
Q ensemble for γ = 1, μ = 1, M = 1024. In this case

ρ = 〈Sx〉, x = 0, 1, 2, . . . . (78)

The layering of charge is clearly seen and the simulation faith-
fully reproduces the theory. Mild over-screening at x = 0 can
also be seen where ρ = −0.53 which over-screens the charge
of Q = 0.5 on the plate at x = −1.

In Fig. 18, we show the capacitance c�v versus applied
voltage �v in the fixed �v ensemble for M = 128 and the
respective cases γ = 1, μ = 1, and γ = 0.3, μ = 0.03. c�v is
time-consuming to calculate since it is given in terms of the

connected two point function 〈u2〉c:

c�v = ∂2

∂(�v)2
log ��v = 1

γ (M + 1)
+ 〈u2〉c

(M + 1)2
. (79)

Connected two point functions are generally hard to calcu-
late since they are a small difference between two large quan-
tities for which we have separate statistical estimates. The
cancellation gives an estimate which is a small number but
with an error commensurate with that of each term separately.
Our simulation results took well over 24 h to complete which
is why we were limited to the relatively small lattice size
M = 128. The results again agree well with the theory curves.
We note that, since the system size is small, the oscillations
of the capacitance are smaller that those for systems sizes of
M = 104 as the oscillatory bulk part of the free energy carries
less weight with respect to the interface term.

We conclude by stating that we can successfully simu-
late the model formulated in terms of lattice spins and that the
results agree very well with the formulation in terms of the
potential field which is given by the Hubbard-Stratonovich
transformation. The agreement between theory and simula-
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FIG. 17. Theory and simulation in the fixed Q ensemble for the mean charge
density ρ versus distance x from the left-hand plate located at x = −1 for
γ = 1, μ = 10, Q = −0.5 on a lattice with M = 1024. Note that there is mild
over-screening at x = 0.
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FIG. 18. Left: Theory and simulation for capacitance c�v versus �v in the fixed �v ensemble for γ = 1, μ = 1 on lattice with M = 128. Right: Theory and
simulation for capacitance c�v versus �v in the fixed �v ensemble for γ = 0.3, μ = 0.03 on lattice with M = 128.

tion also verifies the Fourier method used in the exact theoret-
ical analysis.

VII. CONCLUSION

We have studied a 1D lattice Coulomb fluid model in a
capacitor configuration. The model can be solved exactly, al-
lowing us to compute all the relevant quantities, notably the
pressure, the capacitance, and the charge distribution. Even
though the system is one-dimensional and it would thus be
difficult to make quantitative comparison with experimental
systems, we believe the results are pertinent to the field of
ionic liquid capacitors for two main reasons. First, it allows
a comparison of an exact result with the much used mean-
field theory. It thus reveals which characteristics of the exact
solution can be captured by the mean-field theory. It seems
that while the mean-field theory successfully predicts overall
trends and orders of magnitude, it fails to pick up on oscilla-
tory behavior in charge distributions and some rather exotic
behavior in the charge-voltage capacitor characteristics of the
model.

The study suggests that the simple LCF model can lead
to a variety of phenomena which are somehow washed out
by the mean-field approach, charge distribution oscillations,
over-screening, and very exotic behavior of the capacitance.
Because the behavior predicted by our exact solution was so
unexpected, we have verified our analytical predictions by
comparing them with numerical simulations of the 1D model
and have shown them to be accurate. Another point which
should be made is that in contrast to Refs. 17 and 27 we de-
veloped a discrete mean-field theory on the lattice rather than
taking a continuum limit. This is an important point as we
show that even the discrete mean-field theory does not re-
produce the various oscillatory phenomena mentioned above,
which are thus not a simple consequence of a discrete lattice
and the charge oscillations that we see are, therefore, due to
correlations rather than being an artifact due to the introduc-
tion of a lattice.

In conclusion, we should also emphasize that the 1D
model has certain pathologies that are not present in a three-

dimensional system, notably the lack of screening of the sur-
face charges in systems with large plate separations. If we
would like to make a link with experimental systems it is
clear that the simple picture of charged sheets would need
to be modified. The state space of the charge on the sheets
here is rather cartoon-like with just three values and just two
bare weights for the presence of the charges ±1 or 0 (given
by the fugacity μ). An extension of this model would be to
introduce a larger set of dynamical values for the charges on
the sheets and it may even be possible to find an effective one-
dimensional lattice model from a complete three-dimensional
model by exploiting the layering parallel to the plates that
should be induced by an applied voltage, perhaps via renor-
malization group type arguments.

We finally note that the results of numerical simulations
agree with those of the theoretical calculations and, therefore,
confirm the equivalence of the spin and scalar field formula-
tions as well as the use of the Fourier method to carry out the
exact theoretical calculation.
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APPENDIX: SYMBOLS USED

We include here a reminder of the symbols used in the
mathematical development, first the basic physical parame-
ters:

� β—inverse temperature in units of Boltzmann’s con-
stant kB.

� ε—background dielectric constant.
� q—charge on cations and–charge on anions.
� Q—surface charge measured in units of q.
� a—lattice spacing between sites.
� M—number of lattice sites.
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� μ—fugacity of cations and anions.
� γ —electrostatic coupling parameter = βq2a/2ε.

Second, the observable investigated quantities:

� �v—dimensionless voltage drop �v = �V/βq

where �V is the dimensionful voltage drop.
� c�v—dimensionless capacitance at constant applied

voltage.
� cQ—dimensionless capacitance at constant applied

voltage.
� nQ—integer closest to surface charge Q.
� θ—non-integer part of Q, = Q − nQ ∈ [ − 1/2, 1/2].
� �Q—grand canonical partition function at constant

surface charge Q.
� ��v—grand canonical partition function at constant

voltage drop �v.
� ω—grand potential, in units of kBT, = −ln (�) (for

both constant Q and �v ensembles).
� ρ i—average dimensionless charge at site i (measured

in units of q).

In this paper, we have followed the notation of Ref. 30
where γ is used as the electrostatic coupling parameter. How-
ever, readers should be aware that in the classic paper on
the mean-field ionic liquid capacitor,17 γ denotes the ratio of
the bulk ion density to the maximum possible density, i.e.,
the filling fraction.
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