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SMOOTHNESS OF THE DENSITY FOR SOLUTIONS TO GAUSSIAN ROUGH

DIFFERENTIAL EQUATIONS

THOMAS CASS, MARTIN HAIRER, CHRISTIAN LITTERER, AND SAMY TINDEL

Abstract. We consider stochastic differential equations of the form dYt = V (Yt) dXt+V0 (Yt) dt
driven by a multi-dimensional Gaussian process. Under the assumption that the vector fields V0

and V = (V1, . . . , Vd) satisfy Hörmander’s bracket condition, we demonstrate that Yt admits a
smooth density for any t ∈ (0, T ], provided the driving noise satisfies certain non-degeneracy
assumptions. Our analysis relies on an interplay of rough path theory, Malliavin calculus, and
the theory of Gaussian processes. Our result applies to a broad range of examples including

fractional Brownian motion with Hurst parameter H > 1/4, the Ornstein-Uhlenbeck process and
the Brownian bridge returning after time T .

1. Introduction

Over the past decade our understanding of stochastic differential equations (SDEs) driven by
Gaussian processes has evolved considerably. As a natural counterpart to this development, there
is now much interest in investigating the probabilistic properties of solutions to these equations.
Consider an SDE of the form

dYt = V (Yt)dXt + V0 (Yt) dt, Y (0) = y0 ∈ R
e, (1.1)

driven by anR
d-valued continuous Gaussian processX alongC∞b -vector fields V0 and V = (V1, . . . , Vd)

on R
e. Once the existence and uniqueness of Y has been settled, it is natural to ask about the

existence of a smooth density of Yt for t > 0. In the context of diffusion processes, the theory
is classical and goes back to Hörmander [22] for an analytical approach, and Malliavin [27] for a
probabilistic one.

For the case where X is fractional Brownian motion, this question was first addressed by Nualart
and Hu [23], where the authors show the existence and smoothness of the density when the vector
fields are elliptic, and the driving Gaussian noise is fractional Brownian motion (fBM) for H >
1/2. Further progress was achieved in [1] where, again for the regime H > 1/2, the density was
shown to be smooth under Hörmander’s celebrated bracket condition. Rougher noises are not
directly amenable to the analysis put forward in these two papers. Additional ingredients have
since gradually become available with the development of a broader theory of (Gaussian) rough
paths (see [25], [8], [12]). The papers [7] and [6] used this technology to establish the existence of a
density under fairly general assumptions on the Gaussian driving noises. These papers however fall
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short of proving the smoothness of the density, because the proof demands far more quantitative
estimates than were available at the time.

More recently, decisive progress was made on two aspects which obstructed the extension of
this earlier work. First, the paper [5] established sharp tail estimates on the Jacobian of the flow
JX

t←0(y0) driven by a wide class of (rough) Gaussian processes. The tail turns out to decay quickly
enough to allow to conclude the finiteness of all moments for JX

t←0(y0). Second, [21] obtained
a general, deterministic version of the key Norris lemma (see also [24] for some recent work in
the context of fractional Brownian motion). The lemma of Norris first appeared in [29] and has
been interpreted as a quantitative version of the Doob-Meyer decomposition. Roughly speaking,
it ensures that there cannot be too many cancellations between martingale and bounded variation
parts of the decomposition. The work [21] however shows that the same phenomenon arises in a
purely deterministic setting, provided that the one-dimensional projections of the driving process
are sufficiently and uniformly rough. This intuition is made precise through the notion of the
“modulus of Hölder roughness”. Together with an analysis of the higher order Malliavin derivatives
of the flow of (1.1), also carried out in [21], these two results yield a Hörmander-type theorem for
fractional Brownian motion if H > 1/3.

In this paper we aim to realise the broader potential of these developments by generalising the
analysis to a wide class of Gaussian processes. This class includes fractional Brownian motion with
Hurst parameter H ∈ (14 ,

1
2 ], the Ornstein-Uhlenbeck process, and the Brownian bridge. Instead

of focusing on particular examples of processes, our approach aims to develop a general set of
conditions on X under which Malliavin-Hörmander theory still works.

The probabilistic proof of Hörmander’s theorem is intricate, and hard to summarise in a few
lines, see [18] for a relatively short exposition. However, let us highlight some basic features of the
method in order to see where our main contributions lie:

(i) At the centre of the proof of Hörmander’s theorem is a quantitative estimate on the non-
degeneracy of the Malliavin covariance matrix CT (ω). Our effort in this direction consists
in a direct and instructive approach, which reveals an additional structure of the problem.
In particular, the conditional variance of the process plays an important role, which does not
appear to have been noticed so far. More specifically, following [7] we study the Malliavin
covariance matrix as a 2D Young integral against the covariance function R (s, t). This
provides the convenient representation:

vTCt (ω) v =

∫

[0,t]×[0,t]

fs (v;ω) fr (v;ω) dR (s, r) ,

for some γ-Hölder continuous f (v;ω), which avoids any detours via the fractional calculus
that are specific to fBM. Compared to the setting of [6] we have to impose some additional
assumptions on R (s, t), but our more quantitative approach allows us in return to relax
the zero-one law condition required in this paper.

(ii) An essential step in the proof is achieved when one obtains some lower bounds on vTCtv
in terms of |f |∞;[0,t]. Towards this aim we prove a novel interpolation inequality, which lies
at the heart of this paper. It is explicit and also sharp in the sense that it collapses to a
well-known inequality for the space L2([0, T ]) in the case of Brownian motion. Furthermore,
this result should be important in other applications in the area, for example in establishing
bounds on the density function (see [2] for a first step in this direction) or studying small-
time asymptotics.
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(iii) Hörmander’s theorem also relies on an accurate analysis and control of the higher order
Malliavin derivatives of the flow JX

t←0(y0). This turns out the be notationally cumbersome,
but structurally quite similar to the technology already developed for fBm. For this step
we therefore rely as much as possible on the analysis performed in [21]. The integrability
results in [5] then play the first of two important roles in showing that the flow belongs to
the Shigekawa-Sobolev space D

∞(Re).
(iv) Finally, an induction argument that allows to transfer the bounds from the interpolation

inequality to the higher order Lie brackets of the vector fields has to be set up. This
induction requires another integrability estimate for JX

t←0(y0), plus a Norris type lemma
allowing to bound a generic integrand A in terms of the resulting noisy integral

∫

AdX in
the rough path context. This is the content of our second main contribution, which can be
seen as a generalisation of the Norris Lemma from [21] to a much wider range of regularities
and Gaussian structures for the driving process X . Namely, we extend the result of [21]
from p-rough paths with p < 3 to general p under the same “modulus of Hölder roughness”
assumption. It is interesting to note that the argument still only requires information about
the roughness of the path itself and not its lift.

Let us further comment on the Gaussian assumptions allowing the derivation of the interpolation
inequality briefly described in Step (ii) above. First, we need a standing assumption that regards the
regularity of R(s, t) (expressed in terms of its so called 2D ρ-variation, see [12]) and complementary
Young regularity of X and its Cameron-Martin space. This is a standard assumption in the theory
of Gaussian rough paths. The first part of the condition guarantees the existence of a natural lift of
the process to a rough path. The complementary Young regularity in turn is necessary to perform
Malliavin calculus, and allows us to obtain the integrability estimates for JX

t←0(y0) in [5].
In order to understand the assumptions on which our central interpolation inequality hinges, let

us mention that it emerges from the need to prove lower bounds of the type:
∫

[0,T ]×[0,T ]

fsft dR (s, t) ≥ C |f |aγ;[0,T ] |f |
2−a
∞;[0,T ] , (1.2)

for some exponents γ and a, and all γ-Hölder continuous functions f . After viewing the integral
in (1.2) along a sequence of discrete-time approximations to the integral, relation (1.2) relies on
solving a sequence of finite dimensional partially constrained quadratic programming (QP) prob-
lems. These (QP) problem involve some matrices Q whose generic element can be written as
Qij = E[X1

ti,ti+1
X1

tj ,tj+1
], where X1

ti,ti+1
designates the increment X1

ti+1
−X1

ti of the first compo-
nent of X . Interestingly enough, some positivity properties of Schur complements computed within
the matrix Q play a prominent role in the resolution of the aforementioned (QP) problems. In
order to guarantee these positivity properties, we shall make two non-degeneracy type assumptions
on the conditional variance and covariance structure of our underlying process X1 (see Conditions
2 and 3 below). This is obviously quite natural, since Schur complements are classically related to
conditional variances in elementary Gaussian analysis. We also believe that our conditions essen-
tially characterise the class of processes for which we can quantify the non-degeneracy of CT (ω) in
terms of the conditional variance of the process X .

The outline of the article is as follows. In Section 2, we give a short overview of the elements
of the theory of rough paths required for our analysis. Section 3 then states our main result. In
Section 4, we demonstrate how to verify the non-degeneracy assumptions required on the driving
process in a number of concrete examples. The remainder of the article is devoted to the proofs.
First, in Section 5, we state and prove our general version of Norris’s lemma and we apply it to
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the class of Gaussian processes we have in mind. In Section 6, we then provide the proof of an
interpolation inequality of the type (1.2). In Section 7 we obtain bounds on the derivatives of the
solution with respect to its initial condition, as well as on its Malliavin derivative. Finally, we
combine all of these ingredients in Section 8 in order to prove our main theorem.

2. Rough paths and Gaussian processes

In this section we introduce some basic notation concerning rough paths, following the exposition
in [5]. In particular, we recall the conditions needed to ensure that a given Gaussian process has a
natural rough path lift.

For N ∈ N, recall that the truncated algebra TN(Rd) is defined by TN(Rd) =
⊕N

n=0(R
d)⊗n, with

the convention (Rd)⊗0 = R. TN(Rd) is equipped with a straightforward vector space structure,
plus an operation ⊗ defined by

πn(g ⊗ h) =

N
∑

k=0

πn−k(g)⊗ πk(h), g, h ∈ TN(Rd),

where πn designates the projection on the nth tensor level. Then (TN(Rd),+,⊗) is an associative
algebra with unit element 1 ∈ (Rd)⊗0.

At its most fundamental, we will study continuous Rd-valued paths parameterised by time on a
compact interval [0, T ] ; we denote the set of such functions by C([0, T ],Rd). We write xs,t := xt−xs

as a shorthand for the increments of a path. Using this notation we have

‖x‖∞ := sup
t∈[0,T ]

|xt| , ‖x‖p-var;[0,T ] :=

(

sup
D[0,T ]=(tj)

∑

j:tj∈D[0,T ]

∣

∣xtj ,tj+1

∣

∣

p
)1/p

,

for p ≥ 1, the uniform norm and the p-variation semi-norm respectively. We denote by Cp-var([0, T ],Rd)
the linear subspace of C([0, T ],Rd) consisting of the continuous paths that have finite p-variation.
Of interest will also be the set of γ-Hölder continuous function, denoted by Cγ([0, T ],Rd), which
consists of functions satisfying

‖x‖γ;[0,T ] := sup
0≤s<t≤T

|xs,t|
|t− s|γ < ∞.

For s < t and n ≥ 2, consider the simplex ∆n
st = {(u1, . . . , un) ∈ [s, t]n; u1 < · · · < un}, while

the simplices over [0, 1] will be denoted by ∆n. A continuous map x : ∆2 → TN(Rd) is called a
multiplicative functional if for s < u < t one has xs,t = xs,u ⊗ xu,t. An important example arises
from considering paths x with finite variation: for 0 < s < t we set

xn
s,t =

∑

1≤i1,...,in≤d

(
∫

∆n
st

dxi1 · · · dxin

)

ei1 ⊗ · · · ⊗ ein , (2.1)

where {e1, . . . , ed} denotes the canonical basis of Rd, and then define the signature of x as

SN(x) : ∆2 → TN(Rd), (s, t) 7→ SN (x)s,t := 1 +

N
∑

n=1

xn
s,t.

SN (x) will be our typical example of multiplicative functional. Let us also add the following two
remarks:
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(i) A rough path (see Definition 2.1 below), as well as the signature of any smooth function,
takes values in the strict subset GN (Rd) ⊂ TN(Rd) given by the “group-like elements”

GN (Rd) = exp⊕
(

LN(Rd)
)

,

where LN(Rd) is the linear span of all elements that can be written as a commutator of the
type a⊗ b− b⊗ a for two elements in TN(Rd).

(ii) It is sometimes convenient to think of the indices w = (i1, . . . , in) in (2.1) as words based on
the alphabet {1, . . . , d}. We shall then write xw for the iterated integral

∫

∆n
st
dxi1 · · · dxin .

More generally, if N ≥ 1 we can consider the set of such group-valued paths

xt =
(

1,x1
t , . . . ,x

N
t

)

∈ GN
(

R
d
)

.

Note that the group structure provides a natural notion of increment, namely xs,t := x−1s ⊗xt, and
we can describe the set of “norms” on GN

(

R
d
)

which are homogeneous with respect to the natural
scaling operation on the tensor algebra (see [12] for definitions and details). One such example is
the Carnot-Caratheodory (CC) norm (see [12]), which we denote by ‖ · ‖CC ; the precise one used is
mostly irrelevant in finite dimensions because they are all equivalent. The subset of these so-called
homogeneous norms which are symmetric and sub-additive (again, see [12]) gives rise to genuine
metrics on GN

(

R
d
)

, for example dCC in the case of the CC norm. In turn these metrics give rise to

a notion of homogenous p-variation metrics dp-var on the GN
(

R
d
)

-valued paths. Fixing attention to
the CC norm, we will use the following homogenous p-variation and γ-Hölder variation semi-norms:

‖x‖p-var;[s,t] = max
i=1,...,⌊p⌋

(

sup
D[s,t]=(tj)

∑

j:tj∈D[s,t]

∥

∥xtj ,tj+1

∥

∥

p

CC

)1/p

, (2.2)

‖x‖γ;[s,t] = sup
(u,v)∈∆2

st

‖xu,v‖CC

|v − u|γ .

Metrics on path spaces which are not homogenous will also feature. The most important will be
the following

Nx,γ;[s,t] :=
N
∑

i=1

sup
(u,v)∈∆2

st

|xk
u,v|(Rd)⊗k

|v − u|kγ , (2.3)

which will be written simply as Nx,γ when [s, t] is clear from the context.

Definition 2.1. The space of weakly geometric p-rough paths (denoted WGΩp(R
d)) is the set of

paths x : ∆2 → G⌊p⌋(Rd) such that (2.2) is finite.

We will also work with the space of geometric p-rough paths, which we denote by GΩp(R
d),

defined as the dp-var-closure of
{

S⌊p⌋ (x) : x ∈ C1-var
(

[0, T ] ,Rd
)}

.

Analogously, if γ > 0 and N = [1/γ] we define C0,γ([0, T ];GN(Rd)) to be the linear subspace of
GΩN (Rd) consisting of paths x : ∆2 → GN (Rd) such that

lim
n→∞

‖x− SN (xn)‖γ;[0,T ] = 0

for some sequence (xn)
∞
n=1 ⊂ C∞([0, T ];Rd).

In the following we will consider RDEs driven by paths x in WGΩp(R
d), along a collection of

vector fields V = (V1, . . . , Vd) on R
e, as well as a deterministic drift along V0. From the point of
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view of existence and uniqueness results, the appropriate way to measure the regularity of the Vi’s
turns out to be the notion of Lipschitz-γ (short: Lip-γ) in the sense of Stein (see [12] and [26]).
This notion provides a norm on the space of such vector fields (the Lip-γ norm), which we denote
| · |Lip-γ . For the collection V of vector fields we will often make use of the shorthand

|V |Lip-γ = max
i=1,...,d

|Vi|Lip-γ ,

and refer to the quantity |V |Lip-γ as the Lip-γ norm of V .

A theory of such Gaussian rough paths has been developed by a succession of authors (see [8,
14, 7, 11]) and we will mostly work within their framework. To be more precise, we will assume
that Xt =

(

X1
t , . . . , X

d
t

)

is a continuous, centred (i.e. mean zero) Gaussian process with i.i.d.

components on a complete probability space (Ω,F , P ). Let W = C([0, T ],Rd) and suppose that
(W ,H, µ) is the abstract Wiener space associated with X . The function R : [0, T ]× [0, T ] → R will
denote the covariance function of any component of X , i.e.:

R(s, t) = E
[

X1
sX

1
t

]

.

Following [14], we recall some basic assumptions on the covariance function of a Gaussian process
which are sufficient to guarantee the existence of a natural lift of a Gaussian rough process to a
rough path. We recall the notion of rectangular increments of R from [15], these are defined by

R

(

s, t
u, v

)

:= E
[(

X1
t −X1

s

) (

X1
v −X1

u

)]

.

The existence of a lift for X is ensured by insisting on a sufficient rate of decay for the correlation of
the increments. This is captured, in a very general way, by the following two-dimensional ρ-variation
constraint on the covariance function.

Definition 2.2. Given 1 ≤ ρ < 2, we say that R has finite (two-dimensional) ρ-variation if

Vρ (R; [0, T ]× [0, T ])
ρ
:= sup

D=(ti)∈D([0,T ])

D′=(t′j)∈D([0,T ])

∑

i,j

∣

∣

∣

∣

R

(

ti, ti+1

t′j , t
′
j+1

)∣

∣

∣

∣

ρ

< ∞. (2.4)

If a process has a covariance function with finite ρ-variation for ρ ∈ [1, 2) in the sense of Defi-
nition 2.2, [14, Thm 35] asserts that (Xt)t∈[0,T ] lifts to a geometric p-rough path provided p > 2ρ.

Moreover, there is a unique natural lift which is the limit, in the dp-var-induced topology, of the
canonical lift of piecewise linear approximations to X .

A related take on this notion is obtained by enlarging the set of partitions of [0, T ]
2
over which

the supremum is taken in (2.4). Recall from [15] that a rectangular partition of the square [0, T ]
2
is

a collection {Ai : i ∈ I} of rectangles of the form Ai = [si, ti] × [ui, vi], whose union equals [0, T ]
2

and which have pairwise disjoint interiors. The collection of rectangular partitions is denoted
Prec

(

[0, T ]2
)

, and R is said to have controlled ρ-variation if

|R|ρ
ρ-var;[0,T ]2

:= sup
{Ai:i∈I}∈Prec([0,T ]2)

Ai=[si,ti]×[ui,vi]

∑

i,j

∣

∣

∣

∣

R

(

si, ti
ui, vi

)∣

∣

∣

∣

ρ

< ∞. (2.5)

We obviously have Vρ(R; [0, T ]
2
) ≤ |R|ρ-var;[0,T ]2 , and it is shown in [15] that for every ǫ > 0 there

exists cp,ǫ such that |R|ρ-var;[0,T ]2 ≤ cp,ǫVρ+ǫ(R;[0,T ]2). The main advantage of the quantity (2.5)
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compared to (2.4) is that the map

[s, t]× [u, v] 7→ |R|ρρ-var;[s,t]×[u,v]
is a 2D control in the sense of [15].

Definition 2.3. Given 1 ≤ ρ < 2, we say that R has finite (two-dimensional) Hölder-controlled
ρ-variation if Vρ (R; [0, T ]× [0, T ]) < ∞, and if there exists C > 0 such that for all 0 ≤ s ≤ t ≤ T
we have

Vρ (R; [s, t]× [s, t]) ≤ C (t− s)
1/ρ

. (2.6)

Remark 2.4. This is (essentially) without loss of generality compared to Definition 2.2. To see
this, we note that if R also has controlled ρ-variation in the sense of (2.5), then we can introduce
the deterministic time-change τ : [0, T ] → [0, T ] given by τ = σ−1, where σ : [0, T ] → [0, T ] is the
strictly increasing function defined by

σ (t) :=
T |R|ρ

ρ-var;[0,t]2

|R|ρ
ρ-var;[0,T ]2

. (2.7)

It is then easy to see that R̃, the covariance function of X̃ = X ◦ τ , is Hölder-controlled in the sense
of Definition 2.3.

Two important consequences of assuming that R has finite Hölder-controlled ρ-variation are: (i)
X has 1/p−Hölder sample paths for every p > 2ρ, and (ii) by using [12, Thm 15.33] we can deduce
that

E
[

exp
(

η‖X‖21/p;[0,T ]

)]

< ∞ for some η > 0, (2.8)

i.e ‖X‖21/p;[0,T ] has a Gaussian tail.

The mere existence of this lift is unfortunately not sufficient to apply the usual concepts of
Malliavin calculus. In addition, it will be important to require a complementary (Young) regularity
of the sample paths of X and the elements of its Cameron-Martin space. The following assumption
captures both of these requirements.

Condition 1. Let (Xt)t∈[0,T ] =
(

X1
t , . . . , X

d
t

)

t∈[0,T ]
be a Gaussian process with i.i.d. components.

Suppose that the covariance function has finite Hölder-controlled ρ-variation for some ρ ∈ [1, 2).
We will assume that X has a natural lift to a geometric p-rough path and that H, the Cameron-
Martin space associated with X, has Young-complementary regularity to X in the following sense:
for some q ≥ 1 satisfying 1/p+ 1/q > 1, we have the continuous embedding

H →֒ Cq-var
(

[0, T ] ,Rd
)

.

The following theorem appears in [14] as Proposition 17 (cf. also the recent note [15]); it shows

how the assumption Vρ

(

R; [0, T ]2
)

< ∞ allows us to embed H in the space of continuous paths
with finite ρ variation. The result is stated in [14] for one-dimensional Gaussian processes, but the
generalisation to arbitrary finite dimensions is straightforward.

Theorem 2.5 ([14]). Let (Xt)t∈[0,T ] =
(

X1
t , . . . , X

d
t

)

t∈[0,T ]
be a mean-zero Gaussian process with

independent and identically distributed components. Let R denote the covariance function of (any)
one of the components. Then if R is of finite ρ-variation for some ρ ∈ [1, 2) we can embed H in
the space Cρ-var

(

[0, T ] ,Rd
)

, in fact

|h|H ≥
|h|ρ-var;[0,T ]

√

Vρ (R; [0, T ]× [0, T ])
. (2.9)
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Remark 2.6 ([13]). Writing HH for the Cameron-Martin space of fBM for H in (1/4, 1/2), the
variation embedding in [13] gives the stronger result that

HH →֒ Cq-var
(

[0, T ] ,Rd
)

for any q > (H + 1/2)
−1

.

Theorem 2.5 and Remark 2.6 provide sufficient conditions for a process to satisfy the fundamental
Condition 1, which we summarise in the following remark.

Remark 2.7. As already observed, the requirement that R has finite 2D ρ-variation, for some
ρ ∈ [1, 2), implies both that X lifts to a geometric p-rough path for all p > 2ρ and also that
H →֒ Cρ-var

(

[0, T ] ,Rd
)

(Theorem 2.5). Complementary regularity of H in the above condition thus
can be obtained by ρ ∈ [1, 3/2), which covers for example BM, the OU process and the Brownian
bridge (in each case with ρ = 1). When X is fBm, we know that X admit a lift to GΩp

(

R
d
)

if
p > 1/H, and Remark 2.6 therefore ensures the complementary regularity of X and H if H > 1/4.

3. Statement of the main theorem

We will begin the section by laying out and providing motivation for the assumptions we impose
on the driving Gaussian signal X . We will then end the section with a statement of the central
theorem of this paper, which is a version of Hörmander’s Theorem for Gaussian RDEs. First, we
give some notation which will feature repeatedly.

Notation 1. We define

Fa,b := σ (Xv,v′ : a ≤ v ≤ v′ ≤ b)

to be the σ-algebra generated by the increments of X between times a and b.

The following condition aims to capture the non-degeneracy of X , it will feature prominently in
the sequel.

Condition 2 (non-determinism-type condition). Let (Xt)t∈[0,T ] be a continuous Gaussian process.

Suppose that the covariance function R of X has finite Hölder-controlled ρ-variation for some ρ in
[1, 2). We assume that there exists α > 0 such that

inf
0≤s<t≤T

1

(t− s)α
Var (Xs,t|F0,s ∨ Ft,T ) > 0. (3.1)

Whenever this condition is satisfied we will call α the index of non-determinism if it is the
smallest value of α for which (3.1) is true.

Remark 3.1. It is worthwhile making a number of comments. Firstly, notice that the conditional
variance

Var (Xs,t|F0,s ∨ Ft,T )

is actually deterministic by Gaussian considerations. Then for any [s, t] ⊆ [0, S] ⊆ [0, T ], the law
of total variance can be used to show that

Var (Xs,t|F0,s ∨ Ft,S) ≥ Var (Xs,t|F0,s ∨ Ft,T ) .

It follows that if (3.1) holds on [0, T ], then it will also hold on any interval [0, S] ⊆ [0, T ] provided
S > 0.
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Note that Condition 2 implies the existence of c > 0 such that

Var (Xs,t|F0,s ∨ Ft,T ) ≥ c (t− s)
α
.

This is reminiscent of (but not equivalent to) other notions of non-determinism which have been
studied in the literature. For example, it should be compared to the similar notion introduced
in [3], where it was exploited to show the existence of a smooth local time function (see also the
subsequent work of Cuzick et al. [9] and [10]). In the present context, Condition 2 is also related
to the following condition: for any f of finite p-variation over [0, T ]

∫ T

0

fsdhs = 0 ∀h ∈ H ⇒ f = 0 a.e. on [0, T ]. (3.2)

This has been used in [6] to prove the existence of the density for Gaussian RDEs. In some sense,
our Condition 2 is the quantitative version of (3.2). In this paper when we speak of a non-degenerate
Gaussian process (Xt)t∈[0,T ] we will mean the following:

Definition 3.2. Let (Xt)t∈[0,T ] be a continuous, real-valued Gaussian process. If D = {ti : i = 0, 1, . . . , n}
is any partition of [0, T ] let (QD

ij)1≤i,j≤n denote the n× n matrix given by the covariance matrix of
the increments of X along D, i.e.

QD
ij = R

(

ti−1, ti
tj−1, tj

)

. (3.3)

We say that X is non-degenerate if QD is positive definite for every partition D of [0, T ].

Remark 3.3. An obvious example of a ‘degenerate’ Gaussian process is a bridge processes which
return to zero in [0, T ]. This is plainly ruled out by an assumption of non-degeneracy.

It is shown in [7] that non-degeneracy is implied by (3.2). Thus non-degeneracy is a weaker
condition than (3.2). It also has the advantage of being formulated more tangibly in terms of
the covariance matrix. The next lemma shows that Condition 2 also implies that the process is
non-degenerate.

Lemma 3.4. Let (Xt)t∈[0,T ] be a continuous Gaussian process which satisfies Condition 2 then X

is non-degenerate.

Proof. Fix a partition D of [0, T ], and denote the covariance matrix along this partition by Q with
entries as in (3.3). If Q is not positive definite, then for some non-zero vector λ = (λ1, . . . , λn) ∈ R

n

we have

0 = λTQλ = E





(

n
∑

i=1

λiXti−1,ti

)2


 . (3.4)

Suppose, without loss of generality, that λj 6= 0. Then from (3.4) we can deduce that

Xtj−1,tj =
n
∑

i6=j

λi

λj
Xti−1,ti

with probability one. This immediately implies that

Var
(

Xtj−1,tj |F0,tj−1 ∨ Ftj ,T

)

= 0,

which contradicts (3.1). �
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A crucial step in the proof of the main theorem is to establish lower bounds on the eigenvalues of
the Malliavin covariance matrix in order to obtain moment estimates for its inverse. In the setting
we have adopted, it transpires that these eigenvalues can be bounded from below by some power
of the 2D Young integral:

∫

[0,T ]2
fsftdR (s, t) , (3.5)

for some suitable (random) function f ∈ Cp-var
(

[0, T ] ,Rd
)

. By considering the Riemann sum
approximations to (3.5), the problem of finding a lower bound can be re-expressed in terms of solving
a sequence of finite-dimensional constrained quadratic programming problems. By considering the
dual of these problems, we can simplify the constraints which appear considerably; they become
non-negativity constraints, which are much easier to handle. Thus the dual problem has an explicit
solution subject to a dual feasibility condition. The following condition is what emerges as the limit
of the dual feasibility conditions for the discrete approximations.

Condition 3. Let (Xt)t∈[0,T ] be a continuous, real-valued Gaussian process. We will assume that

X has non-negative conditional covariance in that for every [u, v] ⊆ [s, t] ⊆ [0, S] ⊆ [0, T ] we have

Cov (Xs,t, Xu,v|F0,s ∨ Ft,S) ≥ 0. (3.6)

In Section 6 we will prove a novel interpolation inequality. The significance of Condition 3 will
become clearer when we work through the details of that section. For the moment we content
ourselves with an outline. Firstly, for a finite partition D of the interval [0, T ] one can consider
the discretisation of the process Xt conditioned on the increments in D∩ ([0, s] ∪ [t, T ]). Let QD be
the corresponding covariance matrix of the increments (see (3.3)). Then the conditional covariance
Cov

(

XD
s,t, X

D
u,v|FD

0,s ∨ FD
t,T

)

of the discretised process can be characterised in terms of a Schur

complement Σ of the matrix QD. Utilising this relation, the condition

Cov
(

XD
s,t, X

D
u,v|FD

0,s ∨ FD
t,T

)

≥ 0

is precisely what ensures that the row sums for Σ are non-negative. Conversely, if for any finite
partition D all Schur complements of the matrix QD have non-negative row sums Condition 3 is
satisfied. This relation motivates an alternative sufficient condition that implies Condition 3, which
has the advantage that it may be more readily verified for a given Gaussian process. In order to
state the condition, recall that an n× n real matrix Q is diagonally dominant if

Qii ≥
∑

j 6=i

|Qij | for every i ∈ {1, 2, . . . , n}. (3.7)

Condition 4. Let (Xt)t∈[0,T ] be a continuous real-valued Gaussian process. For every [0, S] ⊆ [0, T ]

we assume that X has diagonally dominant increments on [0, S]. By this we mean that for every
partition D = {ti : i = 0, 1, . . . , n} of [0, S], the n× n matrix

(

QD
ij

)

1≤i,j≤n
with entries

QD
ij = E

[

Xti−1,tiXtj−1,tj

]

= R

(

ti−1, ti
tj−1, tj

)

is diagonally dominant.

Diagonal dominance is obviously in general a stronger assumption than requiring that a covari-
ance matrix has positive row sums. Consequently, Condition 4 is particularly useful for negatively
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correlated processes, when diagonal dominance of the increments and positivity of row sums are
the same. The condition can then be expressed succinctly as

E [X0,SXs,t] ≥ 0 ∀ [s, t] ⊆ [0, S] ⊆ [0, T ] .

In fact, it turns out that Condition 4 implies Condition 3. This is not obvious a priori, and
ultimately depends on two nice structural features. The first is the observation from linear algebra
that the property of diagonal dominance is preserved under taking Schur complements (see [32]
for a proof of this). The second results from the interpretation of the Schur complement (in the
setting of Gaussian vectors) as the covariance matrix of a certain conditional distribution. We will
postpone the proof of this until Section 6 when these properties will be used extensively.

The final condition we will impose is classical, namely Hörmander’s condition on the vector fields
defining the RDE.

Condition 5 (Hörmander). We assume that

span {V1, . . . , Vd, [Vi, Vj ] , [Vi, [Vj , Vk]] , . . . : i, j, k, . . . = 0, 1, . . . , d} |y0 = Ty0R
e ∼= R

e. (3.8)

We are ready to formulate our main theorem.

Theorem 3.5. Let (Xt)t∈[0,T ] =
(

X1
t , . . . , X

d
t

)

t∈[0,T ]
be a continuous Gaussian process, with i.i.d.

components associated to the abstract Wiener space (W ,H, µ). Assume that some (and hence every)
component of X satisfies:

(1) Condition 1, for some ρ ∈ [1, 2);
(2) Condition 2, with index of non-determinancy α < 2/ρ;
(3) Condition 3, i.e. it has non-negative conditional covariance.

Fix p > 2ρ, and let X ∈GΩp

(

R
d
)

denote the canonical lift of X to a Gaussian rough path.
Suppose V = (V1, . . . , Vd) is a collection of C∞-bounded vector fields on R

e, and let (Yt)t∈[0,T ] be

the solution to the RDE

dYt = V (Yt) dXt + V0 (Yt) dt, Y (0) = y0.

Assume that the collection (V0, V1, . . . , Vd) satisfy Hörmander’s condition, Condition 5, at the start-
ing point y0. Then random variable Yt has a smooth density with respect to Lebesgue measure on
R

e for every t ∈ (0, T ].

4. Examples

In this section we demonstrate how the conditions on X we introduced in the last section can be
checked for a number of well known processes. We choose to focus on three particular examples:
fractional Brownian motion (fBm) with Hurst parameter H > 1/4, the Ornstein Uhlenbeck (OU)
process and the Brownian bridge. Together these encompass a broad range of Gaussian processes
that one encounters in practice. Of course there are many more examples, but these should be
checked on a case-by-case basis by analogy with our presentation for these three core examples. We
first remark that Conditions 1 is straight forward to check in these cases (see e.g. [12] and [7]). We
will therefore commence with a verification of the non-determinism condition i.e. Condition 2.

4.1. Non-determinism-type condition. Recall that the Cameron-Martin space H is defined to
be the the completion of the linear space of functions of the form

n
∑

i=1

aiR (ti, ·) , ai ∈ R and ti ∈ [0, T ] ,
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with respect to the inner product
〈

n
∑

i=1

aiR (ti, ·) ,
m
∑

j=1

bjR (sj , ·)
〉

H

=

n
∑

i=1

m
∑

j=1

aibjR (ti, sj) .

Some authors prefer instead to work with the set of step functions E

E =

{

n
∑

i=1

ai1[0,ti] : ai ∈ R,ti ∈ [0, T ]

}

,

equipped with the inner product
〈

1[0,t], 1[0,s]
〉

H̃
= R (s, t) .

If H̃ denote the completion of ξ w.r.t 〈·, ·〉H̃, then it is obvious that the linear map φ : E → H
defined by

φ
(

1[0,t]
)

= R (t, ·) (4.1)

extends to an isometry between H̃ and H. We also recall that H̃ is isometric to the Hilbert space
H1 (Z) ⊆ L2 (Ω,F , P ) which is defined to be the |·|L2(Ω)-closure of the set:

{

∑n

i=1
aiZti : ai ∈ R, ti ∈ [0, T ] , n ∈ N

}

.

In particular, we have that
∣

∣1[0,t]
∣

∣

H̃
= |Zt|L2(Ω). We will now prove that Condition 2 holds whenever

it is the case that H̃ embeds continuously in Lq ([0, T ]) for some q ≥ 1. Hence, Condition 2 will
simplify in many cases to showing that

|h̃|Lq [0,T ] ≤ C|h̃|H̃,

for some C > 0 and all h̃ ∈ H̃.

Lemma 4.1. Suppose (Zt)t∈[0,T ] is a continuous real-valued Gaussian processes. Assume that for

some q ≥ 1 we have H̃ →֒Lq ([0, T ]). Then Z satisfies Condition 2 with index of non-determinancy
less than or equal to 2/q; i.e.

inf
0≤s<t≤T

1

(t− s)
2/q

Var (Zs,t|F0,s ∨ Ft,T ) > 0.

Proof. Fix [s, t] ⊆ [0, T ] and for brevity let G denote the σ-algebra F0,s ∨ Ft,T . Then, using the
fact that Var (Zs,t|G) is deterministic and positive, we have

Var (Zs,t|G) = ‖Var (Zs,t|G)‖L2(Ω) = E

[

E
[

(Zs,t − E [Zs,t|G])2 |G
]2
]1/2

= E
[

(Zs,t − E [Zs,t|G])2
]

= ‖Zs,t − E [Zs,t|G]‖2L2(Ω)

= inf
Y ∈L2(Ω,G,P )

‖Zs,t − Y ‖2L2(Ω) .

We can therefore find sequence of random variables (Yn)
∞
n=1 ⊂ L2 (Ω,G, P ) such that

‖Zs,t − Yn‖2L2(Ω) = E
[

(Zs,t − Yn)
2
]

↓ Var (Zs,t|G) . (4.2)
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Moreover because E [Zs,t|G] belongs to the closed subspace H1 (Z), we can assume that Yn has the
form

Yn =

kn
∑

i=1

ani Ztn
i
,tn

i+1

for some sequence of real numbers
{ani : i = 1, . . . , kn} ,

and a collection of subintervals
{[

tni , t
n
i+1

]

: i = 1, . . . , kn
}

which satisfy
[

tni , t
n
i+1

]

⊆ [0, s] ∪ [s, T ] for every n ∈ N.

We now exhibit a lower bound for ‖Zs,t − Yn‖2L2(Ω) which is independent of n (and hence from

(4.2) will apply also to Var (Zs,t|G)). Let us note that the isometry between the H1 (Z) and H̃
gives that

‖Zs,t − Yn‖2L2(Ω) = |h̃n|2H̃, (4.3)

where

h̃n (·) :=
kn
∑

i=1

ani 1[tni ,tni+1]
(·) + 1[s,t] (·) ∈ ξ.

The embedding H̃ →֒Lq ([0, T ]) then shows that

|h̃n|2H̃ ≥ c|h̃|2Lq[0,T ] ≥ c (t− s)
2/q

.

The result follows immediately from this together with (4.2) and (4.3). �

Checking that H̃ embeds continuously in a suitable Lq ([0, T ]) space is something which is readily
done for our three examples. This is what the next lemma shows.

Lemma 4.2. If (Zt)t∈[0,T ] is fBm with Hurst index H ∈ (0, 1/2) and q ∈ [1, 2) then H̃ →֒ Lq ([0, T ]).

If (Zt)t∈[0,T ] is the (centred) Ornstein-Uhlenbeck process or the Brownian bridge (returning to zero

after time T ) then H̃ →֒ L2 ([0, T ]).

Proof. The proof for each of the three examples has the same structure. We first identify an
isometry K∗ which maps H̃ surjectively onto L2 [0, T ]. (The operator K∗ is of course different for

the three examples). We then prove that the inverse (K∗)
−1

is a bounded linear operator when
viewed as a map from L2 [0, T ] into Lq [0, T ]. For fBm this is shown via the Hardy-Littlewood
lemma (see [30]). For the OU process and the Brownian bridge it follows from a direct calculation
on the operator K∗. Equipped with this fact, we can deduce that

|h̃|Lq [0,T ] =
∣

∣

∣
(K∗)

−1
K∗h̃

∣

∣

∣

Lq [0,T ]
≤
∣

∣

∣
(K∗)

−1
∣

∣

∣

L2→Lq

∣

∣

∣
K∗h̃

∣

∣

∣

L2[0,T ]
=
∣

∣

∣
(K∗)

−1
∣

∣

∣

L2→Lq
|h̃|H̃,

which concludes the proof. �

As an immediate corollary of the last two lemmas we can conclude that the (centred) Ornstein-
Uhlenbeck process and the Brownian bridge (returning to zero after time T ) both satisfy Condition 2
with index of non-determinism no greater than unity. In the case of fBm (ZH

t )t∈[0,T ] the scaling

properties of ZH enable us to say more about the non-determinism index than can be obtained by
an immediate application of Lemmas 4.1 and 4.2. To see this, note that for fixed [s, t] ⊆ [0, T ] we
can introduce a new process

Z̃H
u := (t− s)

−H
ZH
u(t−s).
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Z̃ defines another fBm, this time on the interval [0, T (t− s)
−1

] =: [0, T̃ ]. Let u = s (t− s)
−1

, v =

t (t− s)−1 and denote by F̃a,b the σ-algebra generated by the increments of Z̃ in [a, b]. Scaling then
allows us to deduce that

Var (Zs,t|F0,s ∨ Ft,T ) = (t− s)
2H

Var(Z̃u,v|F̃0,u ∨ F̃v,T̃ ). (4.4)

By construction u− v = 1. And since Z̃ is fBm it follows from Lemmas 4.1 and 4.2 that

inf
[u,v]⊆[0,T̃ ],
|u−v|=1

Var(Z̃u,v|F̃0,u ∨ F̃v,T̃ ) > 0. (4.5)

It follows from (4.4) and (4.5) that ZH satisfies Condition 2 with index of non-determinancy no
greater than 2H .

4.2. Non-negativity of the conditional covariance. We finally verify that our example pro-
cesses also satisfy Condition 3. We first consider the special case of process with negatively corre-
lated increments.

4.2.1. Negatively correlated increments. From our earlier discussion, it suffices to check that Condi-
tion 4 holds. In other words, that QD is diagonally dominant for every partition D. This amounts
to showing that

E
[

Zti−1,ti Z0,T

]

≥ 0

for every 0 ≤ ti−1 < ti ≤ T . It is useful to have two general conditions on R which will guarantee
that (i) the increments of Z are negatively correlated, and (ii) diagonal dominance is satisfied. Here
is a simple characterisation of these properties:
Negatively correlated increments: If i < j, write

Qij = E
[

Zti−1,ti Ztj−1,tj

]

=

∫ ti

ti−1

∫ tj

tj−1

∂2
abR(a, b) da db,

so that a sufficient condition for Qij < 0 is ∂2
abR(a, b) ≤ 0 for a < b. This is trivially verified for

fBm with H < 1/2. Note that ∂2
abR(a, b) might have some nasty singularities on the diagonal, but

the diagonal is avoided here.
Diagonal dominance: If we assume negatively correlated increments, then diagonal dominance is
equivalent to

∑

j Qij > 0. Moreover, if we assume Z0 is deterministic and Z is centred we get

∑

j

Qij = E
[

Zti−1,ti ZT

]

=

∫ ti

ti−1

∂aR(a, T ) da,

so that a sufficient condition for
∑

j Qij ≥ 0 is ∂aR(a, b) ≥ 0 for a < b. This is again trivially

verified for fBm with H < 1/2.

Example 4.3. In the case where (Zt)t∈[0,T ] is the Brownian bridge, which returns to zero at time

T ′ > T we have

R (a, b) = a (T ′ − b) , for a < b.

It is then immediate that ∂2
abR(a, b) = −1 < 0 and ∂aR(a, b) = T ′ − b > 0. Similarly, for the

centred Ornstein-Uhlenbeck process we have

R (a, b) = 2e−b sinh (a) , for a < b.

From which it follows that ∂2
abR(a, b) = −2e−b cosh (a) < 0 and ∂aR(a, b) = 2e−b cosh (a) > 0.
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4.2.2. Without negatively correlated increments. In the three examples we were able to check Con-
dition 3 by using the negative correlation of the increments and showing explicitly the diagonal
dominance. In the case where the increments have positive or mixed correlation we may have to
check the weaker condition, Condition 3, directly. An observation that might be useful in this
regard is the following geometrical interpretation. Recall that we want to want to check that

Cov (Zs,t, Zu,v|F0,s ∨ Ft,T ) ≥ 0.

For simplicity, let X = Zs,t, Y = Zu,v and G = F0,s∨Ft,T . The map PG : Z 7→ E [Z|G] then defines
a projection from the Hilbert space L2 (Ω,F ,P ) onto the closed subspace L2 (Ω,G, P ), which gives
the orthogonal decomposition

L2 (Ω,F , P ) = L2 (Ω,G, P )⊕ L2 (Ω,G, P )
⊥
.

A simple calculation then yields

Cov (X,Y |G) = E [Cov (X,Y |G)] = E [(I − PG)X (I − PG)Y ] =
〈

P⊥G X,P⊥G Y
〉

L2(Ω)
,

where P⊥G is the projection onto L2 (Ω,G, P )
⊥
. In other words, Cov (X,Y |G) ≥ 0 if and only if

cos θ ≥ 0, where θ is the angle between the projections P⊥G X and P⊥G Y of, respectively, X and Y

onto the orthogonal complement of L2 (Ω,G, P ).

5. A Norris-type Lemma

In this section we generalise a deterministic version of the Norris Lemma, obtained in [21] for p
rough paths with 1 < p < 3, to general p > 1. It is interesting to note that the assumption on the
driving noise we make is consistent with [21]. In particular, it still only depends on the roughness
of the basic path and not the rough path lift.

5.1. Norris’s lemma. To simplify the notation, we will assume that T = 1 in this subsection; all
the work will therefore be done on the interval [0, 1]. Our Norris type lemma relies on the notion
of controlled process, which we proceed to define now. Recall first the definition contained in [16]
for second order rough paths: whenever x ∈ C0,γ([0, 1];GN (Rd)) with γ > 1/3, the space Qx(R)
of controlled processes is the set of functions y ∈ Cγ([0, 1];R) such that the increment yst can be
decomposed as

yst = yisx
i
s,t + rs,t,

where the remainder term r satisfies |rs,t| ≤ cy|t−s|2γ and where we have used the summation over
repeated indices convention. Notice that y has to be considered in fact as a vector (y, y1, . . . , yd).

In order to generalize this notion to lower values of γ, we shall index our controlled processes by
words based on the alphabet {1, . . . , d}. To this end, we need the following additional notations:

Notation 2. Let w = (i1, . . . , in) and w̄ = (j1, . . . , jm) be two words based on the alphabet
{1, . . . , d}. Then |w| = n denotes the length of w, and ww̄ stands for the concatenation (i1, . . . , in,
j1, . . . , jm) of w and w̄. For L ≥ 1, WL designates the set of words of length at most L.

Let us now turn to the definition of controlled process based on a rough path:

Definition 5.1. Let x ∈ C0,γ([0, 1];GN(Rd)), with γ > 0, N = [1/γ]. A controlled path based
on x is a family (yw)w∈WN−1 indexed by words of length at most N − 1, such that for any word
w ∈ WN−2 we have:

yws,t =
∑

w̄∈WN−1−|w|

yww̄
s xw̄

s,t + rws,t, where |rws,t| ≤ cy|t− s|(N−|w|)γ. (5.1)
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In order to take the drift term of (1.1) into account, we also assume that for w = ∅ we get a
decomposition for the increment ys,t of the form

ys,t =
∑

w̄∈WN−1

yw̄s x
w̄
s,t + y0s(t− s) + ryst, where |rys,t| ≤ cy|t− s|Nγ . (5.2)

The set of controlled processes is denoted by Qγ
x
, and the norm on Qγ

x
is given by

‖y‖Qγ
x
= ‖y0‖γ +

∑

w∈WN−1

‖yw‖γ .

We next recall the definition of θ-Hölder-roughness introduced in [21].

Definition 5.2. Let θ ∈ (0, 1). A path x : [0, T ] → R
d is called θ-Hölder rough if there exists a

constant c > 0 such that for every s in [0, T ], every ǫ in (0, T/2], and every φ in R
d with |φ| = 1,

there exists t in [0, T ] such that ǫ/2 < |t− s| < ǫ and

|〈φ, xs,t〉| > cǫθ.

The largest such constant is called the modulus of θ-Hölder roughness, and is denoted Lθ (x).

A first rather straightforward consequence of this definition is that if a rough path x happens to
be Hölder rough, then the derivative processes yw in the decomposition (5.1) of a controlled path
y is uniquely determined by y. This can be made quantitative in the following way:

Proposition 5.3. Let x ∈ C0,γ([0, 1];GN (Rd)), with γ > 0 and N = [1/γ]. We also assume that
x is a θ-Hölder rough path with θ < 2γ. Let y be a R-valued controlled path defined as in Definition
5.1, and set Yn(y) = sup|w|=n ‖yw‖∞. Then there exists a constant M depending only on d such
that the bound

Yn(y) ≤
M [Yn−1(y)]

1− θ
2γ

Lθ(x)

(

1 +
N−n
∑

|w̄|=2

(

‖yww̄‖∞‖xw̄‖|w̄|γ
)

θ
|w̄|γ +

∑

|w̄|=n−1

‖rw‖
θ

(N−n+1)γ

(N−n+1)γ

)

(5.3)

holds for every controlled rough path Qγ
x
and every 1 ≤ n ≤ N − 1.

Proof. For sake of clarity we shall assume that y0 = 0, leaving to the patient reader the straight-
forward adaptation to a non vanishing drift coefficient. Now start from decomposition (5.1), and
recast it as

yws,t =

d
∑

j=1

ywj
s x

(j)
s,t +

∑

2≤|w̄|≤N−1−|w|

yww̄
s xw̄

s,t + rws,t,

where we have set wj for the concatenation of the word w and the word (j) for notational sake.
This identity easily yields

sup
|t−s|≤ε

∣

∣

∣

∣

∣

∣

d
∑

j=1

ywj
s x

(j)
s,t

∣

∣

∣

∣

∣

∣

≤ 2‖yw‖∞ +
∑

2≤|w̄|≤N−1−|w|

‖yww̄‖∞‖xw̄‖γ|w̄| ε|w̄| γ + ‖rw‖γ(N−|w|) ε(N−|w|)γ

(5.4)
Since x is θ-Hölder rough by assumption, for every j ≤ d, there exists v = v(j) with ε/2 ≤ |v−s| ≤ ε
such that

∣

∣

∣

∣

∣

∣

d
∑

j=1

ywj
s x

(j)
s,t

∣

∣

∣

∣

∣

∣

> Lθ(x) ε
θ|
(

yw1
s , . . . , ywd

s

)

|. (5.5)
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Combining both (5.4) and (5.5) for all words w of length n− 1, we thus obtain that

Yn(y) ≤
c

Lθ(x)

[

Yn−1(y) ε
−θ

+ sup
|w|=n

(

∑

2≤|w̄|≤N−1−|w|

‖yww̄‖∞‖xw̄‖γ|w̄| ε|w̄| γ−θ + ‖rw‖γ(N−|w|) ε(N−|w|)γ−θ
)]

.

One can optimise the right hand side of the previous inequality over ε, by choosing ε such that the
term Yn−1(y) ε

−θ is of the same order as the other ones. The patient reader might verify that our
claim (5.3) is deduced from this elementary computation. �

Remark 5.4. Definition 5.1 and Proposition 5.3 can be generalized straightforwardly to d-dimensional
controlled processes. In particular, if y is a d dimensional path, decomposition (5.2) becomes

yis,t =
∑

w̄∈WN−1

yi,w̄s xw̄
s,t + ri,ys,t , where |ri,ys,t | ≤ cy|t− s|Nγ , (5.6)

for all i = 1, . . . , d.

We now show how the integration of controlled processes fits into the general rough paths theory.
For this we will use the non-homogeneous norm Nx,γ = Nx,γ,[0,1] introduced in (2.3).

Proposition 5.5. Let y be a d-dimensional controlled process, given as in Definition 5.1 and whose
increments can be written as in (5.6). Then (x,y) is a geometrical rough path in GN (R2d). In

particular, for (s, t) ∈ ∆2, the integral Ist ≡
∫ t

s y
i
s dx

i
s is well defined and admits the decomposition

Is,t =

d
∑

j=1

(

yjsx
j
s,t +

∑

w̄∈WN−1

yw̄s x
w̄j
s,t

)

+ rIs,t, (5.7)

where |rIs,t| ≤ Nx‖y‖γ |t− s|(N+1)γ.

Proof. Approximate x and y by smooth functions xm, ym, while preserving the controlled process
structure (namely ym ∈ Qxm). Then one can easily check that (xm, ym) admits a signature, and

that Ims,t ≡
∫ t

s y
m,i
s dxm,i

s can be decomposed as (5.7). Limits can then be taken thanks to [17],
which ends the proof.

�

The following theorem is a version of Norris’ Lemma, and constitutes the main result of this
section.

Theorem 5.6. Let x be a geometric rough path of order N ≥ 1 based on the R
d-valued function x.

We also assume that x is a θ-Hölder rough path with 2γ > θ. Let y be a R
d-valued controlled path

of the form given in Definition 5.1, b ∈ Cγ([0, 1]), and set

zt =

d
∑

i=1

∫ t

0

yis dx
i
s +

∫ t

0

bs ds = Ist +

∫ t

0

bs ds .

Then, there exist constants r > 0 and q > 0 such that, setting

R = 1 + Lθ(x)
−1

+Nx,γ + ‖y‖Qγ
x
+ ‖b‖Cγ , (5.8)

one has the bound
‖y‖∞ + ‖b‖∞ ≤ MRq ‖z‖r∞ ,
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for a constant M depending only on T , d and y.

Proof. We shall divide this proof in several steps. In the following computations, κ will designate a
certain power forR andM will stand for a multiplicative constant, whose exact values are irrelevant
and can change from line to line.

Step 1: Bounds on y. Combining (5.7), the bound on rI given at Proposition 5.5 and the definition
of R, we easily get the relation

‖z‖∞ ≤ MRκ.

We now resort to relation (5.3) applied to the controlled path z and for n = 1, which means that
Yn(z) ≍ ‖y‖∞ and Yn−1(z) ≍ ‖z‖∞. With the definition of R in mind, this yields the bound

‖y‖∞ ≤ M ‖z‖1−
θ
2γ

∞ Rκ, (5.9)

which corresponds to our claim for y.
Along the same lines and thanks to relation (5.3) for n > 1, we iteratively get the bounds

Yn(y) ≤ M ‖z‖(1−
θ
2γ )n

∞ Rκ, (5.10)

which will be useful in order to complete the bound we have announced for b.

Step 2: Bounds on rI and I. In order to get an appropriate bound on r, it is convenient to consider
x as a rough path with Hölder regularity β < γ, still satisfying the inequality 2β > θ. Notice
furthermore that Nx,β ≤ Nx,γ . Consider now w ∈ Wn. According to (5.10) we have

‖yw‖∞ ≤ M ‖z‖(1−
θ
2γ )n

∞ Rκ,

while ‖yw‖γ ≤ MR by definition. Hence, invoking the inequality

‖yw‖β ≤ 2‖yw‖
β
γ
γ ‖yw‖

1− β
γ

∞ ,

which follows immediately from the definition of the Hölder norm, we obtain the bound

‖yw‖β ≤ M ‖z‖(1−
θ
2γ )n(1− β

γ
)

∞ Rκ,

which is valid for all w ∈ Wn and all n ≤ N − 1. Summing up, we end up with the relation

‖y‖β ≤ M ‖z‖(1−
θ
2γ )N−1(1− β

γ
)

∞ Rκ.

Now according to Proposition 5.5, we get rIs,t ≤ Nx,β‖y‖β |t − s|(N+1)β and the above estimate
yields

‖rI‖(N+1)β ≤ M ‖z‖(1−
θ
2γ )N−1(1− β

γ
)

∞ Rκ.

Plugging this estimate into the decomposition (5.7) of Ist we end up with

‖I‖∞ ≤ M ‖z‖(1−
θ
2γ )N−1(1− β

γ
)

∞ Rκ. (5.11)

Step 3: Bound on b. According to the bound (5.11) we have just obtained, we obviously have
∥

∥

∥

∫ ·

0

bs ds
∥

∥

∥

∞
≤ M ‖z‖(1−

θ
2γ )N−1(1− β

γ
)

∞ Rκ .

Once again we use an interpolation inequality to strengthen this bound. Indeed, we have

‖∂tf‖∞ ≤ M‖f‖∞ max
( 1

T
, ‖f‖−

1
γ+1
∞ ‖∂tf‖

1
γ+1
γ

)

,
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and applying this inequality to ft =
∫ t

0
bs ds, it follows that

‖b‖∞ ≤ M ‖z‖(1−
θ
2γ )N−1(1− β

γ
)( γ

γ+1 )
∞ Rκ . (5.12)

Gathering the bounds (5.9) and (5.12), our proof is now complete. �

5.2. Small-ball estimates for Lθ (X). We now take X to be a Gaussian process satisfying Con-
dition 2. As the reader might have noticed, equation (5.8) above involves the random variable

Lθ (X)
−1

, for which we will need some tail estimates. The non-determinism condition naturally
gives rise to such estimates as the following lemma makes clear.

Lemma 5.7. Suppose (Xt)t∈[0,T ] is a zero-mean, R
d-valued, continuous Gaussian process with

i.i.d. components, with each component having a continuous covariance function R. Suppose that
one (and hence every) component of X satisfies Condition 2. Let α0 > 0 be the index of non-
determinism for X and suppose α ≥ α0. Then there exist positive and finite constants C1 and C2

such that for any interval Iδ ⊆ [0, T ] of length δ and 0 < x < 1 we have

P

(

inf
|φ|=1

sup
s,t∈Iδ

|〈φ,Xs,t〉| ≤ x

)

≤ C1 exp
(

−C2δx
−2/α

)

. (5.13)

Proof. The proof is similar to Theorem 2.1 of Monrad and Rootzen [28]; we need to adapt it because
our non-determinism condition is different.

We start by introducing two simplifications. Firstly, for any φ in R
d with |φ| = 1 we have

(〈φ,Xt〉)t∈[0,T ]
D
=
(

X1
t

)

t∈[0,T ]
, (5.14)

which implies that

P

(

sup
s,t∈Iδ

|〈φ,Xs,t〉| ≤ x

)

= P

(

sup
s,t∈Iδ

∣

∣X1
s,t

∣

∣ ≤ x

)

. (5.15)

We will prove that the this probability is bounded above by

exp
(

−cδx2/α
)

,

for a positive real constant c, which will not depend on T , δ or x. The inequality (5.13) will then
follow by a well-known compactness argument (see [21] and [29]). The second simplification is to
assume that δ = 1. We can justify this by working with the scaled process

X̃t = δα/2Xt/δ,

which is still Gaussian process only now parametrised on the interval [0, T̃ ] := [0, T δ]. Furthermore,
the scaled process also satisfies Condition 2 since

Var
(

X̃s,t|F̃0,s ∨ F̃t,T̃

)

= δα Var
(

Xs/δ,t/δ|F0,s/δ ∨ Ft/δ,T

)

≥ cδα
(

t− s

δ

)α

= c (t− s)
α
.

Thus, if we can prove the result for intervals of length 1, we can deduce the bound on (5.15) we
want from the identity

P

(

sup
s,t∈Iδ

∣

∣X1
s,t

∣

∣ ≤ x

)

= P

(

sup
s,t∈I1

∣

∣X̃1
s,t

∣

∣ ≤ x

δα/2

)

.



20 THOMAS CASS, MARTIN HAIRER, CHRISTIAN LITTERER, AND SAMY TINDEL

To conclude the proof, we begin by defining the natural number n := ⌊x−2/α⌋ ≥ 1 and the
dissection D (I) = {ti : i = 0, 1, . . . , n+ 1} of I = I1, given by

ti = inf I + ix2/α, i = 0, 1, . . . , n

tn+1 = inf I + 1 = sup I.

Then it is trivial to see that

P

(

sup
s,t∈I

∣

∣X1
s,t

∣

∣ ≤ x

)

≤ P

(

max
i=1,2,...,n

∣

∣X1
ti−1,ti

∣

∣ ≤ x

)

. (5.16)

To estimate (5.16) we successively condition on the components of

(X1
t0,t1 , . . . , X

1
tn−1,tn).

More precisely, the distribution of X1
tn−1,tn conditional on (X1

t0,t1 , . . . , X
1
tn−2,tn−1

) is Gaussian with

a variance σ2. Condition 2 ensures that σ2 is bounded below by cx2. When Z is a Gaussian random
variable with fixed variance, P (|Z| ≤ x) will be maximised when the mean is zero. We therefore
obtain the following upper bound

P

(

sup
s,t∈I

∣

∣X1
s,t

∣

∣ ≤ x

)

≤
(
∫ x/σ

−x/σ

1√
2π

exp

(

−1

2
y2
)

dy

)n

.

Using x/σ ≤ √
c, we can finally deduce that

P

(

sup
s,t∈I

∣

∣X1
s,t

∣

∣ ≤ x

)

≤ exp (−Cn) ≤ exp

(

−Cx−2/α

2

)

,

where C := log [2Φ (
√
c)− 1]

−1 ∈ (0,∞). �

Corollary 5.8. Suppose (Xt)t∈[0,T ] is a zero-mean, Rd-valued, continuous Gaussian process with

i.i.d. components satisfying the conditions of Lemma 5.7. Then for every θ > α/2, the path
(Xt)t∈[0,T ] is almost surely θ-Hölder rough. Furthermore, for 0 < x < 1 there exist positive finite

constants C1 and C2 such that the modulus of θ-Hölder roughness, Lθ (X), satisfies

P (Lθ (X) < x) ≤ C1 exp
(

−C2x
−2/α

)

.

In particular, under these assumptions we have that Lθ (X)
−1

is in ∩p>0L
p (Ω).

Proof. The argument of [21] applies in exactly the same way to show that Lθ (X) is bounded below
by

1

2 · 8θDθ (X) ,

where

Dθ (X) := inf
‖φ‖=1

inf
n≥1

inf
k≤2n

sup
s,t∈Ik,n

|〈φ,Xs,t〉|
(2−nT )θ

and Ik,n := [(k − 1) 2−nT, k2−nT ]. We can deduce that for any x ∈ (0, 1)

P (Dθ (X) < x) ≤
∞
∑

n=1

2n
∑

k=1

P

(

inf
‖φ‖=1

sup
s,t∈Ik,n

|〈φ,Xs,t〉|
(2−nT )

θ
< x

)

,
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whereupon we can apply Lemma 5.7 to yield

P (Dθ (X) < x) ≤ c1

∞
∑

n=1

2n exp
(

−c22
−n(1−2θ/α)T−2θ/αx−2/α

)

.

By exploiting the fact that θ > α/2, we can then find positive constants c3 and c4 such that

P (Dθ (X) < x) ≤ c3

∞
∑

n=1

exp
(

−c4nx
−2/α

)

= c3
exp

(

−c4x
−2/α

)

1− exp
(

−c4x−2/α
)

≤ c5 exp
(

−c4x
−2/α

)

,

which concludes the proof. �

6. An interpolation inequality

Under the standing assumptions on the Gaussian process, the Malliavin covariance matrix of
the random variable UX

t←0 (y0) ≡ Yt can be represented as a 2D Young integral (see [7])

Ct =

d
∑

i=1

∫

[0,t]2
JX

t←s (y0)Vi (Ys)⊗ JX

t←s′ (y0)Vi (Ys′ ) dR (s, s′) . (6.1)

In practice, showing the smoothness of the density boils down to getting integrability estimates
on the inverse of inf‖v‖=1 v

TCT v, the smallest eigenvalue of CT . For this reason we will be interested
in

vTCT v =

d
∑

i=1

∫

[0,T ]2

〈

v, JX

t←s (y0)Vi (Ys)
〉 〈

v, JX

t←s′ (y0)Vi (Ys′)
〉

dR (s, s′) .

We will return to study the properties of CT more extensively in Section . For the moment, we look
to generalise this perspective somewhat. Suppose f : [0, T ] → R is some (deterministic) real-valued
Hölder-continuous function, where γ is Young-complementary to ρ, 2D-variation regularity of R.
Our aim in this section is elaborate on the non-degeneracy of the 2D Young integral

∫

[0,T ]

fsftdR (s, t) . (6.2)

More precisely, what we want is to use Conditions 2 and 3 to give a quantitative version of the
non-degeneracy statement:

∫

[0,T ]

fsftdR (s, t) = 0 ⇒ f ≡ 0. (6.3)

To give an idea of the type of estimate we might aim for, consider the case where R ≡ RBM is the
covariance function of Brownian motion. The 2D Young integral (6.2) then collapses to the square
of the L2-norm of f :

∣

∣

∣

∣

∣

∫

[0,T ]

fsftdR
BM (s, t)

∣

∣

∣

∣

∣

= |f |2L2[0,T ] , (6.4)

and the interpolation inequality (Lemma A3 of [20]) gives

‖f‖∞;[0,T ] ≤ 2max
(

T−1/2 |f |L2[0,T ] , |f |
2γ/(2γ+1)
L2[0,T ] ‖f‖1/(2γ+1)

γ-Höl;[0,T ]

)

. (6.5)
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Therefore, in the setting of Brownian motion at least, (6.5) and (6.4) quantifies (6.3). The problem
is that the proof of (6.5) relies heavily properties of the L2-norm, in particular we use the fact that

if f (u) ≥ c > 0 for all u ∈ [s, t] then |f |L2[s,t] ≥ c (t− s)1/2 .

We cannot expect for this to naively generalise to inner products resulting from other covariance
functions. We therefore have to re-examine the proof of the inequality (6.5) with this generalisation
in mind.

It is easier to first consider a discrete version of the problem. Suppose D is some (finite) partition
of [0, T ]. Then the Riemann sum approximation to (6.2) along D can be written as

f (D)
T
Qf (D) ,

where Q is the the matrix (3.3) and f (D) the vector with entries given by the values of f at the
points in the partition. The next sequence of results is aimed at addressing the following question:

Problem 6.1. Suppose |f |∞;[s,t] ≥ 1 for some interval [s, t] ⊆ [0, T ] . Can we find a positive lower

bound f (D)
T
Qf (D) which holds uniformly over some sequence of partitions whose mesh tends to

zero?

The next lemma is the first step towards securing an answer.

Lemma 6.2. Let (Qij)i,j∈{1,2,...,n} be a real n × n positive definite matrix and k be an integer in

{1, . . . , n}. Suppose Q has the block decomposition

Q =

(

Q11 Q12

Q21 Q22

)

, with Q11 ∈ R
k,k, Q12 ∈ R

k,n−k, Q21 ∈ R
n−k,k, Q22 ∈ R

n−k,n−k.

Let S denote the Schur complement of Q11 in Q, i.e. S is the (n− k)× (n− k) matrix given by

S = Q22 −Q21Q
−1
11 Q12.

Assume S has non-negative row sums:

n−k
∑

j=1

Sij ≥ 0 for all i ∈ {1, . . . , n− k} , (6.6)

and b > 0 is such that b =(b, . . . , b) is in R
n−k. Then the infimum of the quadratic form xTQx

over the subset

C = {(x1, . . . , xn) : (xk+1, . . . , xn) ≥ b}
is given by

inf
x∈C

xTQx = bTSb =b2
n−k
∑

i,j=1

Sij .

Proof. Without loss of generality we may assume that b = 1. We can then reformulate the statement
as describing the infimal value for the following constrained quadratic programming problem:

min xTQx subject to Ax ≥ (0Rk ,1Rn−k)

where 0Rk := (0, . . . , 0) ∈ R
k, 1Rn−k := (1, . . . , 1) ∈ R

n−k and A the n× n matrix which is defined
(in the standard basis) by

Ax = A (x1, . . . , xn)
T
= (0Rk , xk+1, . . . , xn)

T
.
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The Lagrangian function of this quadratic programming problem (see e.g. [4] page 215) is given by

L(x, λ) = xTQx+ λT (−Ax+ (0Rk ,1Rn−k)) .

Solving for
∇xL(x, λ) = 2Qx−ATλ = 0

and using the strict convexity of the function we deduce that x∗ = 1/2Q−1ATλ is the minimiser of
L. Hence, the (Lagrangian) dual function g (λ) := infx L (x, λ) is given by

g (λ) = −1

4
λTAQ−1ATλ+ λT (0Rk ,1Rn−k)

and the dual problem consists of

max g (λ) subject to λ ≥ 0.

As Q−1 is positive definite the function g is strictly concave and the local maximum λ∗ = 2Qb > 0
that is obtained by solving ∇λg (λ) = 0 with

∇λg (λ) = −1

2
AQ−1ATλ+ λT (0Rk ,1Rn−k) (6.7)

is also the unique global maximum. Writing Q−1 in block form

Q−1 =

(
(

Q−1
)

11

(

Q−1
)

12(

Q−1
)

21

(

Q−1
)

22

)

,

and using the definition of A it is easy to see that the vector

λ∗ :=
(

0Rk , 2
(

Q−1
)−1

22
1Rn−k

)

(6.8)

solves (6.7). We need to check that this vector is feasible for the dual problem, since then strong
duality holds (see e.g. [4] pages 226-227) and the optimal values for the dual and primal problems
coincide.

In order to check that (6.8) is feasible we need to show λ∗ ≥ 0. To do this, we first remark that
a straight-forward calculation gives the inverse of the sub-block

(

Q−1
)

22
as the Schur complement

of Q11 in Q; that is
(

Q−1
)−1

22
= S = Q22 −Q21Q

−1
11 Q12.

Condition (6.6) gives immediately that for every i ∈ {k + 1, . . . , n}

λ∗i = 2
n−k
∑

j=1

S(i−k)j ≥ 0

and hence λ∗ ≥ 0. It now follows from strong duality that we have

inf
x∈C

xTQx = min
λ∈Rn

+

g(λ) = 1T
Rn−kS1Rn−k ,

as required. �

Suppose now that Q arises as the covariance matrix of the increments of a Gaussian process
along some partition. In light of the previous lemma, we need to know when the Schur complement
of some sub-block of Q will satisfy condition (6.6). In the context of Gaussian vectors, these
Schur complements have a convenient interpretation; they are the covariance matrices which result
from partially conditioning on some of the components. This identification motivates the positive
conditional covariance condition (Condition 3).
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In order to present the proof of the interpolation inequality as transparently as possible, we first
gather together some relevant technical comments. To start with, suppose we have two sets of real
numbers

D = {ti : i = 0, 1, . . . , n} ⊂ D̃ =
{

t̃i : i = 0, 1, . . . , ñ
}

⊆ [0, T ]

ordered in such a way that 0 ≤ t0 < t1 < . . . < tn ≤ T , and likewise for D̃. Suppose s and t be
real numbers with s < t and let Z be a continuous Gaussian process. We need to consider how the
variance of the increment Zs,t changes when we condition on

FD := σ
(

Zti−1,ti : i = 1, . . . , n
)

,

compared to conditioning the larger σ-algebra

F D̃ := σ
(

Zt̃i−1,t̃i : i = 1, . . . , ñ
)

.

To simplify the notation a little we introduce

G =σ
(

Zt̃i−1,t̃i :
{

t̃i−1, t̃i
}

∩ D̃ \D 6= ∅
)

,

so that
F D̃ = FD ∨ G.

Because
(

Zs,t, Zt0,t1 , . . . , Ztñ−1,tñ

)

∈ R
ñ+1 (6.9)

is Gaussian, the joint distribution of Zs,t and the vector (6.9) conditional on FD (or indeed F D̃)
is once again Gaussian, with a random mean but a deterministic covariance matrix. A simple
calculation together with the law of total variance gives that

Var
(

Zs,t|FD
)

= E
[

Var
(

Zs,t|FD ∨ G
)]

+Var
(

E
[

Zs,t|FD ∨ G
])

≥ E
[

Var
(

Zs,t|FD ∨ G
)]

= Var
(

Zs,t|F D̃
)

,

which is the comparison we sought. We condense these observations into the following lemma.

Lemma 6.3. Let (Zt)t∈[0,T ] be a Gaussian process, and suppose that D and D̃ are two partitions

of [0, T ] with D ⊆ D̃. Then for any [s, t] ⊆ [0, T ] we have

Var
(

Zs,t|FD
)

≥ Var
(

Zs,t|F D̃
)

.

Our aim is to show how the optimisation problem of Lemma 6.2 can be used to exhibit lower
bounds on 2D Young integrals with respect to R. In order to do this we need to take a detour via
two technical lemmas. The first is the following continuity result for the conditional covariance,
which we need approximate when passing to a limit from a discrete partition. The situation we will
often have is two subintervals [s, t] ⊆ [0, S] of [0, T ], and a sequence of sets (Dn)

∞
n=1of the form

Dn = D1
n ∪D2

n.
(

D1
n

)∞

n=1
and

(

D2
n

)∞

n=1
here will be nested sequences of partitions of [0, s] and [t, S] respectively

with mesh
(

Di
n

)

→ 0 as n → ∞ for i = 1, 2. If

FD := σ (Zu,v : {u, v} ⊆ D) ,

then we can define a filtration (Gn)
∞
n=1 by Gn := FD1

n ∨ FD2
n and ask about the convergence of

Cov (Zp,qZu,v|Gn)
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as n → ∞ for subintervals [p, q] and [u, v] are subintervals of [0, S]. The following lemma records
the relevant continuity statement.

Lemma 6.4. For any p, q, u, v such that [p, q] and [u, v] are subintervals of [0, S] ⊆ [0, T ] we have

Cov (Zp,qZu,v|Gn) → Cov (Zp,qZu,v|F0,s ∨ Ft,S) ,

as n → ∞.

Proof. The martingale convergence theorem gives

Cov (Zp,qZu,v|Gn) → Cov (Zp,qZu,v| ∨∞n=1 Gn) , a.s. and in Lp for all p ≥ 1.

The continuity of Z and the fact that mesh (Dn) → 0 easily implies that, modulo null sets, one has
∨∞n=1Gn = F0,s ∨ Ft,T .

�

We now introduce another condition on Z, which we will later discard. This condition is virtually
the same as Condition 3, the only difference being that we insist on the strict positivity of the
conditional variance.

Condition 6. Let (Zt)t∈[0,T ] be a real-valued continuous Gaussian process. We will assume that

for every [u, v] ⊆ [s, t] ⊆ [0, S] ⊆ [0, T ] we have

Cov (Zs,t, Zu,v|F0,s ∨ Ft,S) > 0. (6.10)

The second technical lemma we need will apply whenever we work with a Gaussian process that
satisfies Condition 6. It delivers a nested sequence of partitions, with mesh tending to zero, and
such that the discretisation of Z along each partition will satisfy the dual feasibility condition (i.e.
(6.6) in Lemma 6.2).

Lemma 6.5. Let (Zt)t∈[0,T ] be a continuous Gaussian process that satisfies Condition 6. Then for

every 0 ≤ s < t ≤ S ≤ T there exists a nested sequence of partitions

(Dm)∞m=1 = ({tmi : i = 0, 1, . . . , nm})∞m=1

of [0, S] such that:

(1) mesh(Dm) → 0 as m → ∞;
(2) {s, t} ⊆ Dm for all m;
(3) If Zm

1 and Zm
2 are the jointly Gaussian vectors

Zm
1 =

(

Ztmi ,tmi+1
: tmi ∈ Dm ∩ ([0, s) ∪ [t, S))

)

,

Zm
2 =

(

Ztm
i
,tm

i+1
: tmi ∈ Dm ∩ [s, t)

)

,

with respective covariance matrices Qm
11 and Qm

22. Then the Gaussian vector (Zm
1 , Zm

2 ) has
a covariance matrix of the form

Qm =

(

Qm
11 Qm

12

(Qm
12)

T
Qm

22

)

,

and the Schur complement of Qm
11 in Qm has non-negative row sums.

Proof. See the appendix. �
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The next result shows how we can bound from below the 2D Young integral of a Hölder-
continuous f against R. The lower bound thus obtained is expressed in terms of the minimum
of f , and the conditional variance of the Gaussian process.

Proposition 6.6. Suppose R : [0, T ]
2 → R is the covariance function of some continuous Gaussian

process (Zt)t∈[0,T ]. Suppose R has finite 2D ρ-variation for some ρ in [1, 2), and that Z is non-

degenerate and has a non-negative conditional covariance (i.e. satisfies Condition 3)). Let γ ∈ (0, 1)
be such that 1/ρ+ γ > 1 and assume f ∈ Cγ ([0, T ] ,R). Then for every [s, t] ⊆ [0, T ] we have the
following lower bound on the 2D-Young integral of f against R :

∫

[0,T ]2
fufvdR (u, v) ≥

(

inf
u∈[s,t]

|f (u)|2
)

Var (Zs,t|F0,s ∨ Ft,T ) .

Remark 6.7. We emphasise again that Fa,b is the σ-algebra generated by the increments of the
form Zu,v for u, v ∈ [a, b].

Proof. Fix [s, t] ⊆ [0, T ], and take b := infu∈[s,t] |f (u)|.
Step 1 : We first note that there is no loss of generality in assuming the stronger Condition 6
instead of Condition 3. To see this, let (Bt)t∈[0,T ] be a Brownian motion, which is independent of

(Zt)t∈[0,T ], and for every ǫ > 0 define the perturbed process

Zǫ
t := Zt + ǫBt.

It is easy to check that Zǫ satisfies the conditions in the statement. Let F ǫ
p,q be the σ-algebra

generated by the increments Zǫ
u,v between times p and q (note that F ǫ

p,q actually equals Fp,q ∨
σ (Bl,m : u ≤ l < m ≤ q)), and note that we have

Cov
(

Zǫ
s,t, Z

ǫ
u,v|F ǫ

0,s ∨ F ǫ
t,T

)

= Cov (Zs,t, Zu,v|F0,s ∨ Ft,T ) + ǫ2 (u− v) > 0

for every 0 ≤ s < u < v ≤ t ≤ T . It follows that Zǫ satisfies Condition 6. Let Rǫ denote the
covariance function of Zǫ. If we could prove the result with the additional hypothesis of Condition
6, then it would follow that

∫

[0,T ]2
fufvdR

ǫ (u, v) ≥ b2 Var
(

Zǫ
s,t|F ǫ

0,s ∨ F ǫ
t,T

)

= b2 Var (Zs,t|F0,s ∨ Ft,T ) + b2ǫ2 (t− s) . (6.11)

Because
∫

[0,T ]2
fufvdR

ǫ (u, v) =

∫

[0,T ]2
fufvdR (u, v) + ǫ2 |f |2L2[0,T ] ,

the result for Z will then follow from (6.11) by letting ǫ tend to zero.

Step 2: We now prove the result under the additional assumption of Condition 6. By considering
−f if necessary we may assume that f is bounded from below by b on [s, t]. Since we now assume
Condition 6 we can use Lemma 6.5 to obtain a nested sequence of partitions (Dr)

∞
r=1 such that

{s, t} ⊂ Dr for all r, mesh(Dr) → 0 as r → ∞, and such that the dual feasibility condition
(property 3 in the Lemma 6.5) holds. Suppose D = {ti : i = 0, 1, . . . , n} is any partition of [0, T ]
in this sequence (i.e. D = Dr for some r). Then for some l < m ∈ {0, 1, . . . , n− 1} we have tl = s
and tm = t . Denote by f (D) the column vector

f (D) = (f (t0) , . . . , f (tn−1))
T ∈ R

n,
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and Q = (Qi,j)1≤i,j<n the symmetric n× n matrix with entries

Qij = R

(

ti−1, ti
tj−1, tj

)

= E
[

Zti−1,tiZtj−1,tj

]

.

From the non-degeneracy of Z it follows that Q is positive definite. The Riemann sum approxima-
tion to the 2D integral of f against R along the partition D can be written as

n
∑

i=1

n
∑

j=1

fti−1ftj−1R

(

ti−1, ti
tj−1, tj

)

=

n
∑

i=1

n
∑

j=1

fti−1ftj−1Qi,j = f (D)
T
Qf (D) . (6.12)

If necessary, we can ensure that that last m − l components of f (D) are bounded below by b. To
see this, we simply permute its coordinates using any bijective map τ : {1, . . . , n} → {1, . . . , n}
which has the property that

τ (l + j) = n−m+ l + j, for j = 0, 1, . . . ,m− l.

Fix one such map τ , and let fτ (D) denote the vector resulting from applying τ to the coordinates
of f (D). Similarly, let Qτ =

(

Qτ
i,j

)

1≤i,j<n
be the n× n matrix

Qτ
ij = Qτ(i)τ(j),

and note that Qτ is the covariance matrix of the Gaussian vector

Z =
(

Ztτ(1)−1,tτ(1)
, . . . , Ztτ(n)−1,tτ(n)

)

.

A simple calculation shows that

f (D)
T
Qf (D) = fτ (D)

T
Qτfτ (D) .

We can apply Lemma 6.2 because condition (6.6) is guaranteed to hold by the properties of the
sequence (Dr)

∞
r=1. We deduce that

f (D)
T
Qf (D) = fτ (D)

T
Qτfτ (D) ≥ b2

m−l
∑

i,j=1

Sij , (6.13)

where S is the (m− l) × (m− l) matrix obtained by taking the Schur complement of the leading

principal (n−m+ l)× (n−m+ l) minor of Q̃. As already mentioned, the distribution of a Gauss-
ian vector conditional on some of its components remains Gaussian; the conditional covariance is
described by a suitable Schur complement . In this case, this means we have that

S = Cov
[(

Ztl,tl+1
, . . . , Ztm−1,tm

)

|Ztj−1,tj , j ∈ {1, . . . , l} ∪ {m+ 1, . . . , n}
]

. (6.14)

If we define

FD := σ
(

Ztj−1,tj : j ∈ {1, . . . , l} ∪ {m+ 1, . . . , n}
)

,

to be the σ-algebra generated by the increments of Z in D \ [s, t], then using (6.14) we arrive at

m−l
∑

i,j=1

Sij =

m−l−1
∑

i,j=1

E
[(

Ztl+i−1,tl+i

) (

Ztl+j−1,tl+j

)

|FD
]

−
m−l−1
∑

i,j=1

E
[(

Ztl+i−1,tl+i

)

|FD
]

E
[(

Ztl+j−1,tl+j

)

|FD
]

= E
[

(Zs,t)
2 |FD

]

− E
[

Zs,t|FD
]2

= Var
(

Zs,t|FD
)

. (6.15)
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To finish the proof we note that FD ⊆ F0,s∨Ft,T , and exploit the monotonicity of the conditional
variance described by Lemma 6.3 to give

Var
(

Zs,t|FD
)

≥ Var (Zs,t|F0,s ∨ Ft,T ) . (6.16)

Then by combining (6.16), (6.15) and (6.13) in (6.12) we obtain

n
∑

i=1

n
∑

j=1

fti−1ftj−1Qi,j ≥ b2Var (Zs,t|F0,s ∨ Ft,T ) .

Because this inequality holds for any D ∈ (Dr)
∞
r=1, we can apply it for D = Dr and let r → ∞ to

give:
∫

[0,T ]2
fufvdR (u, v) ≥ b2 Var (Zs,t|F0,s ∨ Ft,T ) ,

whereupon the proof is complete. �

We now deliver on a promise we made in Section 3 by proving that the diagonal dominance of
the increments implies the positivity of the conditional covariance.

Corollary 6.8. Let (Zt)t∈[0,T ] be a real-valued continuous Gaussian process. If Z satisfies Condi-

tion 4 then it also satisfies Condition 3.

Proof. Fix s < t in [0, T ], let (Dn)
∞
n=1 be a sequence of partitions having the properties described

in the statement of Lemma 6.4 and suppose [u, v] ⊆ [s, t]. From the conclusion of Lemma 6.4 we
have that

Cov (Zs,tZu,v|Gn) → Cov (Zs,tZu,v|F0,s ∨ Ft,T ) (6.17)

as n → ∞. Let Zn be the Gaussian vector whose components consist of the increments of Z over
all the consecutive points in the partition Dn ∪ {s, u, v, t}. Let Q denote the covariance matrix
of Zn. The left hand side of (6.17) is the sum of all the entries in some row of a particular
Schur complement of Q. Z is assumed to have diagonally dominant increments. Any such Schur
complement of Q will therefore be diagonally dominant, since diagonal dominance is preserved
under Schur-complementation (see [32]). As diagonally dominant matrices have non-negative row
sums it follows that Cov (Zs,tZu,v|Gn) is non-negative, and hence the limit in (6.17) is too. �

We are now in a position to generalise the L2-interpolation inequality (6.5) stated earlier.

Theorem 6.9 (interpolation). Let (Zt)t∈[0,T ] be a continuous Gaussian process with covariance

function R : [0, T ]2 → R. Suppose R has finite two-dimensional ρ-variation for some ρ in [1, 2).
Assume that Z is non-degenerate in the sense of Definition 3.2, and has positive conditional co-
variance (i.e. satisfies Condition 3 ). Suppose f ∈ C ([0, T ] ,R) with γ + 1/ρ > 1. Then for every
0 < S ≤ T at least one of the following inequalities is always true:

‖f‖∞;[0,S] ≤ 2E
[

Z2
S

]−1/2

(

∫

[0,S]2
fsftdR (s, t)

)1/2

, (6.18)

or, for some interval [s, t] ⊆ [0, S] of length at least
(

‖f‖∞;[0,S]

2 ‖f‖γ;[0,S]

)1/γ

,
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we have
1

4
‖f‖2∞;[0,S] Var (Zs,t|F0,s ∨ Ft,S) ≤

∫

[0,S]2
fvfv′dR (v, v′) . (6.19)

Proof. We take S = T , the generalisation to 0 < S < T needing only minor changes. f is continuous
and therefore achieves its maximum in [0, T ]. Thus, by considering −f if necessary, we can find
t ∈ [0, T ] such that

f (t) = ‖f‖∞;[0,T ] .

There are two possibilities which together are exhaustive. In the first case f never takes any value
less than half its maximum, i.e.

inf
u∈[0,T ]

f (u) ≥ 1

2
‖f‖∞;[0,T ] .

Hence we can can apply Proposition 6.6 to deduce (6.18). In the second case, there exists u ∈ [0, T ]
such that f (u) = 2−1 ‖f‖∞;[0,T ]. Then, assuming that u < t (the argument for u > t leads to the

same outcome), we can define

s = sup

{

v < t : f (v) ≤ 1

2
‖f‖∞;[0,T ]

}

.

By definition f is then bounded below by ‖f‖∞;[0,T ] /2 on [s, t]. The Hölder continuity of f gives

a lower bound on the length of this interval in an elementary way

1

2
‖f‖∞;[0,T ] = |f (t)− f (s)| ≤ ‖f‖γ;[0,T ] |t− s|γ ,

which yields

|t− s| ≥
(

‖f‖∞;[0,T ]

2 ‖f‖γ;[0,T ]

)1/γ

.

Another application of Proposition 6.6 then gives (6.19). �

Corollary 6.10. Assume Condition 2 so that the ρ-variation of R is Hölder-controlled, and for
some c > 0 and some α ∈ (0, 1) we have the lower bound on the conditional variance:

Var (Zs,t|F0,s ∨ Ft,T ) ≥ c (t− s)
α
.

Theorem 6.9 then allows us to bound ‖f‖∞;[0,T ] above by the maximum of

2E
[

Z2
T

]−1/2
(
∫

[0,T ]2
fsftdR (s, t)

)1/2

and
2√
c

(
∫

[0,T ]2
fsftdR (s, t)

)γ/(2γ+α)

‖f‖α/(2γ+α)
γ;[0,T ] .

Proof. This is immediate from Theorem 6.9. �

In particular, if Z is a Brownian motion we have Var (Zs,t|F0,s ∨ Ft,T ) = (t− s), hence Corollary
6.10 shows that

‖f‖∞;[0,T ] ≤ 2max
(

T−1/2 |f |L2[0,T ] , |f |
2γ/(2γ+1)
L2[0,T ] ‖f‖1/(2γ+1)

γ;[0,T ]

)

,

which is exactly (6.5). We have therefore achieved out goal of generalising this inequality.
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7. Malliavin differentiability of the flow

7.1. High order directional derivatives. Let x be in WGΩp

(

R
d
)

and suppose that the vector
fields V = (V1, . . . , Vd) and V0 are smooth and bounded. For t ∈ [0, T ] we let Ux

t←0 (·) denote the
map defined by

Ux

t←0 (·) : y0 7→ yt,

where y is the solution to the RDE

dyt = V (yt) dxt + V0 (yt) dt, y (0) = y0. (7.1)

It is well-known (see [12]) that the flow (i.e. the map y0 7→ Ux

t←0 (y0)) is differentiable; its derivative
(or Jacobian) is the linear map

Jx

t←0 (y0) (·) ≡
d

dǫ
Ux

t←0 (y0 + ǫ·)
∣

∣

∣

∣

ǫ=0

∈ L (Re,Re) .

If we let Φx

t←0 (y0) denote the pair

Φx

t←0 (y0) = (Ux

t←0 (y0) , J
x

t←0 (y0)) ∈ R
e ⊕ L (Re,Re) ,

and if W = (W1, . . . ,Wd) is the collection vector fields given by

Wi (y, J) = (Vi (y) ,∇Vi (y) · J) , i = 1, . . . , d,

and

W0 (y, J) = (V0 (y) ,∇V0 (y) · J)
then Φx

t←0 (y0) is the solution1 to the RDE

dΦx

t←0 = W (Φx

t←0) dxt +W0 (Φ
x

t←0) dt,Φ
x

t←0|t=0 = (y0, I) .

In fact, the Jacobian is invertible as a linear map and the inverse, which we will denote Jx

0←t (y0), is
also a solution to an RDE (again jointly with the base flow Ux

t←0 (y0)). We also recall the relation

Jx

t←s (y) :=
d

dǫ
Ux

t←s (y + ǫ·)
∣

∣

∣

∣

ǫ=0

= Jx

t←0 (y) · Jx

0←s (y) .

Notation 3. In what follows we will let

Mx

·←0 (y0) ≡ (Ux

t←0 (y0) , J
x

t←0 (y0) , J
x

0←t (y0)) ∈ R
e ⊕ R

e×e ⊕ R
e×e. (7.2)

For any path h in Cq−var
(

[0, T ] ,Rd
)

with 1/q+1/p > 1 we can canonically define the translated
rough path Thx (see [12]). Hence, we have the directional derivative

DhU
x

t←0 (y0) ≡
d

dǫ
UTǫhx

t←0 (y0)

∣

∣

∣

∣

ǫ=0

.

It is not difficult to show that

DhU
x

t←0 (y0) =

d
∑

i=1

∫ t

0

Jx

t←s (y0) Vi (U
x

s←0 (y0)) dh
i
s,

which implies by Young’s inequality that

|DhU
x

t←0 (y0)| ≤ C ‖Mx

·←0 (y0)‖p-var;[0,t] |h|q-var;[0,t] . (7.3)

1A little care is needed because the vector fields have linear growth (and hence are not Lip-γ. But one can exploit
the ‘triangular’ dependence structure in the vector fields to rule out the possibility of explosion. See [12] for details.
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In this section we will be interested in the form of the higher order directional derivatives

Dh1 . . . Dhn
Ux

t←0 (y0) :=
∂n

∂ǫ1, . . . ∂ǫn
U

Tǫnhn ...Tǫ1h1
x

t←0 (y0)

∣

∣

∣

∣

ǫ1=...=ǫn=0

.

Our aim will be to obtain bounds of the form (7.3). To do this in a systematic way is a challenging
exercise. We rely on the treatment presented in [21]. For the reader’s convenience when comparing
the two accounts, we note that [21] uses the notation

(DsU
x

t←0 (y0))s∈[0,T ] =
(

D1
sU

x

t←0 (y0) , . . . , D
d
sU

x

t←0 (y0)
)

s∈[0,T ]
∈ R

d

to identify the derivative. The relationship between DsU
x

t←0 (y0) and DhU
x

t←0 (y0) is simply that

DhU
x

t←0 (y0) =

d
∑

i=1

∫ t

0

Di
sU

x

t←0 (y0) dh
i
s.

Note, in particular DsU
x

t←0 (y0) = 0 if t < s.

Proposition 7.1. Assume x is in WGΩp

(

R
d
)

and let V = (V1, . . . , Vd) be a collection of smooth
and bounded vector fields. Denote the solution flow to the RDE (7.1) by

Ux

t←0 (y0) = (Ux

t←0 (y0)1 , . . . , U
x

t←0 (y0)e) ∈ R
e

Suppose q ≥ 1 and n ∈ N and let {h1, . . . , hn} be any subset of Cq−var
(

[0, T ] ,Rd
)

. Then the direc-
tional derivative Dh1 . . .Dhn

Ux

t←0 (y0) exists for any t ∈ [0, T ]. Moreover, there exists a collection
of finite indexing sets

{

K(i1,...,in) : (i1, . . . , in) ∈ {1, . . . , d}n
}

,

such that for every j ∈ {1, .., e} we have the identity

Dh1 . . . Dhn
Ux

t←0 (y0)j =

d
∑

i1,...,in=1

∑

k∈K(i1,...,in)

∫

0<t1<...<tn<t

fk
1 (t1) . . . f

k
n (tn) f

k
n+1 (t) dh

i1
t1 . . . dh

in
tn ,

(7.4)
for some functions fk

l which are in Cp−var ([0, T ] ,R) for every l and k, i.e.

∪(i1,...,in)∈{1,...,d}
n ∪k∈K(i1,...,in)

{

fk
l : l = 1, .., n+ 1

}

⊂ Cp−var ([0, T ] ,R) .

Furthermore, there exists a constant C, which depends only on n and T such that

∣

∣fk
l

∣

∣

p-var;[0,T ]
≤ C

(

1 + ‖Mx

·←0 (y0)‖p-var;[0,T ]

)p

(7.5)

for every l = 1, . . . , n+ 1, every k ∈ K(i1,...,in) and every (i1, . . . , in) ∈ {1, . . . , d}n.

Proof. We observe that Dh1 . . . Dhn
Ux

t←0 (y0)j equals

d
∑

i1,...,in=1

∫

0<t1<...<tn<t

Di1...in
t1...tnU

x

t←0 (y0)j dh
i1
t1 . . . dh

in
tn . (7.6)

The representation for the integrand in (7.6) derived in Proposition 4.4 in [21] then allows us to
deduce (7.4) and (7.5). �
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7.1.1. Malliavin differentiability. We now switch back to the context of a continuous Gaussian
process (Xt)t∈[0,T ] =

(

X1
t , . . . , X

d
t

)

t∈[0,T ]
with i.i.d. components associated to the abstract Wiener

space (W ,H, µ). Under the assumption of finite 2d ρ-variation we have already remarked that, for
any p > 2ρ, X has a unique natural lift to a geometric p-rough path X. But the assumption of
finite ρ-variation on the covariance also gives rise to the embedding

H →֒Cq−var
(

[0, T ] ,Rd
)

(7.7)

for the Cameron-Martin space, for any 1/p + 1/q > 1 [7, Prop. 2]. The significance of this result
it twofold. First, it is proved in [7, Prop. 3] that it implies the existence of a (measurable) subset
V ⊂ W with µ (V) = 1 on which

ThX (ω) ≡ X (ω + h) ,

for all h ∈ H simultaneously. It follows that the Malliavin derivative DU
X(ω)
t←0 (y0) : H →R

e

DU
X(ω)
t←0 (y0) : h 7→ DhU

X(ω)
t←0 (y0) :=

d

dǫ
U

X(ω+ǫh)
t←0 (y0)

∣

∣

∣

∣

ǫ=0

, (7.8)

coincides with the directional derivative of the previous section, i.e.

d

dǫ
U

X(ω+ǫh)
t←0 (y0)

∣

∣

∣

∣

ǫ=0

=
d

dǫ
UTǫhx

t←0 (y0)

∣

∣

∣

∣

ǫ=0

. (7.9)

The second important consequence results from combining (7.7), (7.9) and (7.3), namely that
∥

∥

∥
DU

X(ω)
t←0 (y0)

∥

∥

∥

op
≤ C

∥

∥

∥
M

X(ω)
·←0 (y0)

∥

∥

∥

p-var;[0,t]
. (7.10)

If we can show that the right hand side of (7.10) has finite positive moments of all order, then
these observations lead to the conclusion that

Yt = UX

t←0(y0) ∈ ∩p>1D
1,p (Re) ,

where D
k,p is the Shigekawa-Sobolev space (see Nualart). The purpose of Proposition 7.1 is to

extend this argument to the higher order derivatives. We will make this more precisely shortly, but
first we remark that the outline just given is what motivates the assumption

H →֒Cq−var
(

[0, T ] ,Rd
)

detailed in Condition 12.
The following theorem follows from the recent paper [5]. It asserts the sufficiency of Condition

1 to show the existence of finite moments for the p-variation of the Jacobian of the flow (and its
inverse).

Theorem 7.2 (Cass-Litterer-Lyons (CLL)). Let (Xt)t∈[0,T ] be a continuous, centred Gaussian

process in R
d with i.i.d. components. Let X satisfy Condition 1, so that for some p ≥ 1, X admits

a natural lift to a geometric p-rough path X . Assume V = (V0, V1, . . . , Vd) is any collection of
smooth bounded vector fields on R

e and let UX

t←0 (·) denote the solution flow to the RDE

dUX

t←0 (y0) = V
(

UX

t←0 (y0)
)

dXt + V0

(

UX

t←0 (y0)
)

dt,

UX

0←0 (y0) = y0.

2The requirement of complementary regularity in the Condition 1 then amounts to ρ ∈ [1, 3/2). This covers BM,
the OU process and the Brownian bridge (all with ρ = 1) and fBm for H > 1/3 (taking ρ = 1/2H). For the special
case of fBm one can actually improve on this general embedding statement via Remark 2.6 . The requirement of
complementary then leads to the looser restriction H > 1/4.
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Then the map UX

t←0 (·) is differentiable with derivative JX

t←0 (y0) ∈ R
e×e; JX

t←0 (y0) is invertible as
a linear map with inverse denoted by JX

0←t (y0). Furthermore, if we define

MX

·←0 (y0) ≡
(

UX

t←0 (y0) , J
X

t←0 (y0) , J
X

0←t (y0)
)

∈ R
e ⊕ R

e×e ⊕ R
e×e,

and assume X satisfies Condition 1, we have that
∥

∥MX

·←0 (y0)
∥

∥

p-var;[0,T ]
∈
⋂

q≥1

Lq (µ) .

Proof. This follows from by repeating the steps of [5] generalized to incorporate a drift term. �

Remark 7.3. Under the additional assumption that the covariance R has finite Hölder-controlled
ρ-variation, it is possible to prove a version of this theorem showing that:

∥

∥MX

·←0 (y0)
∥

∥

1/p
∈
⋂

q≥1

Lq (µ) .

7.2. Proof that U
X(·)
t←0 (y0) ∈ D

∞ (Re). We have already seen that appropriate assumptions on the
covariance lead to the observation that for all h ∈ H,

DhU
X(ω)
t←0 (y0) ≡

d

dǫ
U

ThX(ω)
t←0 (y0)

∣

∣

∣

∣

ǫ=0

for all ω in a set of µ-full measure. We will show that the Wiener functional ω 7→ U
X(ω)
t←0 (y0) belongs

to the Sobolev space D
∞ (Re). Recall that

D
∞ (Re) := ∩p>1 ∩∞k=1 D

k,p (Re) ,

where Dk,p is the usual Shigekawa-Sobolev space, which is defined as the completion of the smooth
random variables with respect to a Sobolev-type norm (see Nualart [30]). There is an equivalent
characterisation of the spaces Dk,p (originally due to Kusuoka and Stroock), which is easier to use
in the present context. We briefly recall the main features of this characterisation starting with the
following definitions. Suppose E is a given Banach space and F : W →E is a measurable function.
Recall (see Sugita [31]) that F is called ray absolutely continuous (RAC) if for every h ∈ H, there

exists a measurable map F̃h : W →E satisfying:

F (·) = F̃h (·) , µ− a.e.,

and for every ω ∈ W
t 7→ F̃h (ω + th) is absolutely continuous in t ∈ R.

And furthermore, F is called stochastically Gateaux differentiable (SGD) if there exists a measurable
G : W →L (H, E), such that for any h ∈ H

1

t
[F (·+ th)− F (·)] µ→ G (ω) (h) as t → 0,

where
µ→ indicates convergence in µ-measure.

If F is SGD, then its derivative G is unique µ-a.s. and we denote it by DF . Higher order
derivatives are defined inductively in the obvious way. Hence DnF (ω) (if it exists) is a multilinear
map (in n variables) from H to E.

We now define the spaces D̃k,p (Re) for 1 < p < ∞ by

D̃
1,p (Re) := {F ∈ Lp (Re) : F is RAC and SGD,DF ∈ Lp (L (H,Re))} ,
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and for k = 2, 3, . . ..

D̃
k,p (Re) :=

{

F ∈ D̃
k−1,p (Re) : DF ∈ D̃

k−1,p (L (H,Re))
}

.

Theorem 7.4 (Sugita [31]). For 1 < p < ∞ and k ∈ N we have D̃
k,p (Re) = D

k,p (Re).

It follows immediately from this result that we have

D
∞ (Re) = ∩p>1 ∩∞k=1 D̃

k,p (Re) .

With these preliminaries out the way, we can prove the following.

Proposition 7.5. Suppose (Xt)t∈[0,T ] is an R
d-valued, zero-mean Gaussian process with i.i.d com-

ponents associated with the abstract Wiener space (W ,H, µ).Assume that for some p ≥ 1, X lifts
to a geometric p-rough path X. Let V = (V0, V1, . . . , Vd) be a collection of C∞-bounded vector fields

on R
e, and let U

X(ω)
t←0 (y0) denote the solution flow of the RDE

dYt = V (Yt) dXt (ω) + V0 (Yt) dt, Y (0) = y0.

Then, under the assumption that X satisfies Condition 1, we have that the Wiener functional

U
X(·)
t←0 (y0) : ω 7→ U

X(ω)
t←0 (y0)

is in D
∞ (Re) for every t ∈ [0, T ].

Proof. We have already remarked that Condition 1 implies that on a set of µ-full measure

ThX (ω) ≡ X (ω + h) (7.11)

for all h ∈ H. It easily follows that U
X(·)
t←0 (y0) is RAC. Furthermore, its stochastic Gateaux derivative

is precisely the map DU
X(ω)
t←0 (y0) defined in (7.8). The relation (7.11) implies that the directional

and Malliavin derivatives coincide (on a set of µ-full measure) hence DU
X(ω)
t←0 (y0) ∈ L (H,Re) is the

map

DU
X(ω)
t←0 (y0) : h 7→ DhU

X(ω)
t←0 (y0) .

We have shown in (7.10) that
∥

∥

∥
DU

X(ω)
t←0 (y0)

∥

∥

∥

op
≤ C

∥

∥MX

·←0 (y0)
∥

∥

p-var;[0,T ]
, (7.12)

where
MX

·←0 (y0) ≡
(

UX

t←0 (y0) , J
X

t←0 (y0) , J
X

0←t (y0)
)

. (7.13)

It follows from Theorem 7.2 that
∥

∥MX

·←0 (y0)
∥

∥

p-var;[0,T ]
∈ ∩p≥1L

p (µ) .

Using this together with (7.12) proves that U
X(·)
t←0 (y0) is in ∩p>1D̃

1,p (Re) which equals ∩p>1D
1,p (Re)

by Theorem 7.4

We prove that U
X(·)
t←0 (y0) is in ∩p>1D̃

k,p (Re) for all k ∈ N by induction. If U
X(·)
t←0 (y0) ∈

D̃
k−1,p (Re) then, by the uniqueness of the stochastic Gateaux derivative, we must have

Dk−1U
X(ω)
t←0 (y0) (h1, . . . , hk−1) = Dh1 . . . Dhk

U
X(ω)
t←0 (y0) .

It is then easy to see that Dk−1U
X(ω)
t←0 (y0) is RAC and SGD. Moreover, the stochastic Gateaux

derivative is
DkU

X(ω)
t←0 (y0) : (h1, . . . , hk) = Dh1 . . . Dhk

U
X(ω)
t←0 (y0) .
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It follows from Proposition 7.1 together with Condition 1 that we can bound the operator norm of

DkU
X(ω)
t←0 (y0) in the following way:

‖DkU
X(ω)
t←0 (y0) ‖op ≤ C

(

1 +
∥

∥

∥
M

X(ω)
·←0 (y0)

∥

∥

∥

p-var;[0,T ]

)(k+1)p

for some non-random constants C > 0. The conclusion that U
X(·)
t←0 (y0) ∈ ∩p>1D

k,p (Re) follows at
once from Theorems 7.2 and 7.4. �

8. Smoothness of the density: the proof of the main theorem

This section is devoted to the proof of our Hörmander type theorem 3.5. As mentioned in
the introduction, apart from rather standard considerations concerning probabilistic proofs of
Hörmander’s theorem (see e.g. [21]), this boils down to the following steps:

(1) Let W be a smooth and bounded vector field in R
e. Following [21], denote by

(

ZW
t

)

t∈[0,T ]

the process
ZW
t = JX

0←tW
(

UX

t←0 (y0)
)

. (8.1)

Then assuming Conditions 2 and 3 we get a bound on |ZW |∞ in terms of the Malliavin
matrix CT defined at (6.1). This will be the content of Proposition 8.4.

(2) We invoke iteratively our Norris lemma (Theorem 5.6) to processes like ZW in order to
generate enough upper bounds on Lie brackets of our driving vector fields at the origin.

In order to perform this second step, we first have to verify the assumptions of Theorem 5.6 for
the process Mx

·←0 (y0) defined by (7.13). Namely, we shall see that Mx

·←0 (y0) is a process controlled
by X in the sense of Definition 5.1 and relation (5.6).

Proposition 8.1. Suppose (Xt)t∈[0,T ] satisfies the condition of Theorem 7.2. In particular, X has

a lift to X, a geometric-p rough path for some p > 1 which is in C0,γ([0, T ];G⌊p⌋(Rd)) for γ = 1/p.
Then Mx

·←0 (y0) is a process controlled by X in the sense of Definition 5.1 and
∥

∥MX

·←0 (y0)
∥

∥

Qγ
X

∈
⋂

p≥1

Lp (Ω) .

Proof. For notational sake, the process MX

·←0 (y0) will be denoted by M only. It is readily checked
that M is solution to a rough differential equation driven by X, associated to the vector fields given
by

Fi (y, J,K) = (Vi (y) , ∇Vi (y) · J, −K · ∇Vi (y)) , i = 0, . . . , d. (8.2)

This equation can be solved either by genuine rough paths methods or within the landmark of
algebraic integration. As mentioned in Proposition 5.5, both notions of solution coincide thanks to
approximation procedures. This finishes the proof of our claim M ∈ Qγ

X
.

In order to prove integrability of M as an element of Qγ
X
, let us write the equation governing

the dynamics of M under the form

dMt = F0(Mt) dt+

d
∑

i=1

Fi(Mt) dX
i
t,

where X is our Gaussian rough path of order at most N = 3. The expansion of M as a controlled
process is simply given by the Euler scheme introduced in [12, Proposition 10.3]. More specifically,
M admits a decomposition (5.2) of the form:

M j
s,t = M j,0

s (t− s) +M j,i1
s X1,i1

s,t +M j,i1,i2
s X2,i1,i2

s,t +Rj,M
s,t ,
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with

M j,0
s = F j

0 (Ms), M j,i1
s = F j

i1
(Ms), M j,i1,i2

s = Fi2F
j
i1
(Ms), |Rj,M

s,t | ≤ cM |t− s|3γ .

With the particular form (8.2) of the coefficient F and our assumptions on the vector fields V , it is
thus readily checked that

‖M‖Qγ
X

≤ cV
(

1 + ‖J‖2∞ + ‖J−1‖2∞ + ‖J‖γ + ‖U‖γ
)

,

and the right hand side of the latter relation admits moments of all order thanks to Theorem 7.2
and the remark which follows it. �

Define Lx (y0, θ, T ) to be the quantity

Lx (y0, θ, T ) := 1 + Lθ (x)
−1 + |y0|+ ‖Mx

·←0 (y0)‖Qγ
x
+Nx,γ

Corollary 8.2. Under the assumptions of Proposition 8.1 we have

Lx (y0, θ, T ) ∈
⋂

p≥1

Lp (Ω) .

Proof. We recall that the standing assumptions imply that ‖X‖γ;[0,T ] has a Gaussian tail (see (2.8)

from Section 2). It is easily deduce from this that

NX,γ ∈
⋂

p≥1

Lp (Ω) .

Similarly we see from Corollary 5.8 and Proposition 8.1 that Lθ (x)
−1

and ‖Mx

·←0 (y0)‖Qγ
x
have

moments of all orders and the claim follows. �

Definition 8.3. We define the sets of vector fields Vk for k ∈ N inductively by

V1 = {Vi : i = 1, . . . , d} ,

and then

Vn+1 = {[Vi,W ] : i = 0, 1, . . . , d,W ∈ Vn} .

Proposition 8.4. Let (Xt)t∈[0,T ] =
(

X1
t , . . . , X

d
t

)

t∈[0,T ]
be a continuous Gaussian process, with

i.i.d. components associated to the abstract Wiener space (W ,H, µ). Assume that X satisfies the
assumptions of Theorem 3.5. Then there exist real numbers p and θ satisfying 2/p > θ > α/2
such that: (i) X is θ-Hölder rough and (ii) X has a natural lift to a geometric p rough path X in
C0,1/p([0, T ];G⌊p⌋(Rd)). For t ∈ (0, T ] let

Ct =

d
∑

i=1

∫

[0,t]2
JX

t←s (y0)Vi (Ys)⊗ JX

t←s′ (y0)Vi (Ys′ ) dR (s, s′) ,

and suppose k ∈ N ∪ {0}. Then there exist constants µ = µ (k) > 0 and C = C (t, k) > 0 such that
for all W ∈ Vk and all v ∈ R

e with |v| = 1, we have
∣

∣

〈

v, ZW
·

〉∣

∣

∞;[0,t]
≤ CLX (y0, θ, t)

µ (vTCtv
)µ

. (8.3)
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Proof. Let us prove the first assertion. To do this, we note that the constraint on ρ implies that X
lifts to a geometric p-rough path for any p > 2ρ. Because the ρ-variation is assumed to be Hölder-
controlled, it follows that X is in C0,1/p([0, T ];G⌊p⌋(Rd)). By assumption α < 2/ρ, therefore we
may always choose p close enough to 2ρ in order that

2

p
>

α

2
.

On the other hand X is θ-Hölder rough for any θ > α/2 by Corollary 5.8. Hence there always exist
p and θ with the stated properties.

We have that

vTCtv =

d
∑

i=1

Λi
t, with Λi

t ≡
∫

[0,t]2
f i (s) f i (s′) dR (s, s′) , (8.4)

where we have set f i (s) :=
〈

v, JX

t←s (y0)Vi (ys)
〉

=
〈

v, ZVi
s

〉

. Furthermore, because the hypotheses
of Theorem 6.9 and Corollary 6.10 are satisfied, we can deduce that

∣

∣f i
∣

∣

∞;[0,t]
≤ 2max

[

∣

∣Λi
t

∣

∣

1/2

E [X2
t ]

1/2
,
1√
c

∣

∣Λi
t

∣

∣

γ/(2γ+α) ∣
∣f i
∣

∣

α/(2γ+α)

γ;[0,t]

]

, (8.5)

for i = 1, . . . , d. On the other hand Young’s inequality for 2D integrals (see [14]) gives

∣

∣Λi
t

∣

∣ .
[

∣

∣f i
∣

∣

γ;[0,t]
+
∣

∣f i (0)
∣

∣

]2

Vρ

(

R; [0, t]
2
)

. (8.6)

From (8.6), (8.5) and the relation vTCtv =
∑d

i=1 Λi
t it follows that there exists some C1 > 0,

depending on t and c, such that we have

∣

∣f i
∣

∣

∞;[0,t]
≤ C1

(

vTCtv
)γ/(2γ+α)

max
i=1,...,d

[

∣

∣f i (0)
∣

∣+
∣

∣f i
∣

∣

γ;[0,t]

]α/(2γ+α)

.

Using the fact that for some ν > 0
∣

∣f i (0)
∣

∣+
∣

∣f i
∣

∣

γ;[0,t]
≤ C2LX (y0, θ, t)

ν for i = 1, .., d,

it is easy to deduce that (8.3) holds whenever W ∈ V1.
The proof of (8.3) for arbitrary k ∈ N now follows by induction. The key relation comes from

observing that

〈

v, ZW
u

〉

= 〈v,W (y0)〉+
d
∑

i=1

∫ u

0

〈

v, Z [Vi,W ]
r

〉

dX i
r,

in the sense of Proposition 5.5. Hence, assuming the induction hypothesis, we can use Theorem 5.6
to obtain a bound of the form (8.3) on

∣

∣

∣

〈

v, Z
[Vi,W ]
·

〉∣

∣

∣

∞;[0,t]

for all W ∈ Vk. Since Vk+1 = {[Vi,W ] : i = 0, 1, . . . , d,W ∈ Vn}, the result is then established. �

We are now in a position to prove our main theorem. Since the structure of the argument is the
classical one, we will minimise the amount of detail where possible.
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Proof of Theorem 3.5. This involves assembling together the pieces we have developed in the paper.
First let 2/p > θ > α/2 be chosen such that X is θ-Hölder rough and X has a natural lift to a
geometric p rough path X in C0,1/p([0, 1];G⌊p⌋(Rd)). This is always possible by the first part of

Proposition 8.4. Let 0 < t ≤ T and note that we have shown in Proposition 7.5 that U
X(ω)
t←0 (y0) is

in D
∞ (Re). The result will therefore follow by showing that for every q > 0, there exists c1 = c1 (q)

such that

P

(

inf
|v|=1

〈v, Ctv〉 < ǫ

)

≤ c1ǫ
q,

for all ǫ ∈ (0, 1). It is classical that proving (detCt)
−1

has finite moments of all order is sufficient

for U
X(ω)
t←0 (y0) to have a smooth density (see, e.g., [30]).

Step 1: From Hörmander’s condition there exists N ∈ N with the property that

span
{

W (y0) : W ∈ ∪N
i=1Vi

}

= R
e.

Consequently, we can deduce that

a := inf
|v|=1

∑

W∈∪N
i=1Vi

|〈v,W (y0)〉| > 0. (8.7)

For every W ∈ ∪N
i=1Vi we have

∣

∣

〈

v, ZW
·

〉∣

∣

∞;[0,t]
≥ |〈v,W (y0)〉| , (8.8)

and hence using (8.7), (8.8) and Proposition 8.4 we end up with

a ≤ inf
|v|=1

sup
W∈∪N

i=1Vi

∣

∣

〈

v, ZW
·

〉
∣

∣

∞;[0,t]
≤ c1LX (y0, θ, t)

µ
inf
|v|=1

∣

∣vTCtv
∣

∣

π
, (8.9)

for some positive constants c1, µ = µN and π = πN .

Step 2: From (8.9) can deduce that for any ǫ ∈ (0, 1)

P

(

inf
|v|=1

∣

∣vTCtv
∣

∣ < ǫ

)

≤ P
(

LX (y0, θ, t)
µ
>c2ǫ

−k
)

for some constants c2 > 0 and k > 0 which do not depend on ǫ. It follows from Corollary 8.2 that
for every q > 0 we have

P

(

inf
|v|=1

∣

∣vTCtv
∣

∣ < ǫ

)

≤ c3ǫ
kq,

where c3 = c3 (q) > 0 does not depend on ǫ. �

9. Appendix

Proof of Lemma 6.5. We prove the result for S = T , the modifications for S < T are straight
forward. Consider three nested sequences (Am)∞m=1, (Bm)

∞
m=1 and (Cm)

∞
m=1 consisting of partitions

of [0, s], [s, t] and [t, T ] respectively, and suppose that the mesh of each sequence tends to zero as
m tends to infinity. For each m1 and m2 in N let Dm1,m2 denote the partition of [0, T ] defined by

Dm1,m2 = Am1 ∪Bm2 ∪ Cm1 .

We now construct an increasing function r : N → N such that

(Dm)
∞
m=1 =

(

Dr(m),m
)∞

m=1

together form a nested sequence of partitions of [0, T ] having the needed properties.
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We do this inductively. First let m = 1, then for every two consecutive points u < v in the
partition Bm Lemma 6.4 implies that

Cov
(

Zs,tZu,v|FAn ∨ FCn
)

→ Cov (Zs,tZu,v|Fs,t ∨ Ft,T ) .

as n → ∞. Z has positive conditional covariance, therefore the right hand side of the last expression
is positive. This means we can choose r (1) to ensure that

Cov
(

Zs,tZu,v|FAr(1) ∨ FCr(1)
)

≥ 0, (9.1)

for every two consecutive points u and v in Bm (the total number of such pairs does not depend
on r(1)). We then let D1 = Dr(1),1, both properties 2 and 3 in the statement are easy to check; the
latter follows from (9.1), when we interpret the Schur complement as the covariance matrix of Z1

2

conditional on Z1
1 (see also the proof of Proposition 6.6). Having specified r (1) < . . . < r (k − 1) we

need only repeat the treatment outlined above by choosing some natural number r (k) > r (k − 1)
to ensure that

Cov
(

Zs,tZu,v|FAr(k) ∨ FCr(k)
)

≥ 0,

for each pair of consecutive points u < v in Bk. It is easy to verify that (Dm)
∞
m=1 constructed in

this way has the properties we need. �
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[1] Baudoin, F.; Hairer, M. A version of Hörmander’s theorem for the fractional Brownian motion. Probab. Theory
Related Fields 139 (2007), no. 3-4, 373–395.

[2] Baudoin, F., Ouyang C., Tindel ,S.: Upper bounds for the density of solutions of stochastic differential equations
driven by fractional Brownian motions, arXiv:1104.3884, to appear in Ann. Inst. Henri Poincaré Probab. Stat.
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[29] Norris, J.: Simplified Malliavin calculus. Séminaire de Probabilités, XX, 1984/85, 101–130, Lecture Notes in
Math., 1204, Springer, Berlin, 1986

[30] Nualart, D: The Malliavin Calculus and Related Topics, Springer, 2006
[31] Sugita, H.: Sobolev spaces of Wiener functionals and Malliavin’s calculus, J. Math. Kyoto Univ. Volume 25,

Number 1 (1985), 31-48.
[32] Zhang, Fuzhen (Ed.): The Schur Complement and Its Applications, Series: Numerical Methods and Algorithms,

Vol. 4, Springer 2005

Thomas Cass, Department of Mathematics, Imperial College London, The Huxley Building, 180 Queens-

gate, London.

E-mail address: thomas.cass@imperial.ac.uk

Martin Hairer, Mathematics Institute, University of Warwick, Coventry, CV4 7AL.

E-mail address: M.Hairer@Warwick.ac.uk

Christian Litterer, Department of Mathematics, Imperial College London, The Huxley Building, 180

Queensgate, London.
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